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Abstract. We propose a geometric framework to describe and analyze a wide array
of operator splitting methods for solving monotone inclusion problems. The initial
inclusion problem, which typically involves several operators combined through
monotonicity-preserving operations, is seldom solvable in its original form. We
embed it in an auxiliary space, where it is associated with a surrogate monotone in-
clusion problem with a more tractable structure and which allows for easy recovery
of solutions to the initial problem. The surrogate problem is solved by successive
projections onto half-spaces containing its solution set. The outer approximation
half-spaces are constructed by using the individual operators present in the model
separately. This geometric framework is shown to encompass traditional methods
as well as state-of-the-art asynchronous block-iterative algorithms, and its flexible
structure provides a pattern to design new ones.
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1 Introduction

Throughout, H is a real Hilbert space with scalar product 〈· | ·〉 and 2H stands
for the power set of H . Our main focus is on the following monotone inclusion
problem.

Problem 1.1 Let " : H → 2H be a monotone operator, that is,

(∀G ∈ H)(∀H ∈ H)(∀G∗ ∈ "G) (∀H∗ ∈ "H) 〈G − H | G∗ − H∗〉 > 0. (1.1)

The task is to find G ∈ H such that 0 ∈ "G.

Monotone inclusion problems are intimately linked to the birth of nonlinear
analysis. They first appeared as a powerful models to establish existence, unique-
ness, and stability results for various nonlinear problems [87, 205, 239, 403, 405].
Over the past six decades, monotone inclusion models have penetrated almost
all areas of mathematics and its applications. Nowadays, Problem 1.1 mod-
els a broad range of equilibria in areas such as dynamical systems [2], ill-
posed problems [4], domain decomposition methods [6, 18, 21], circuit theory
[11, 107, 108, 109, 211], machine learning [15, 149, 232, 382], evolution equations
[17, 70, 353], partial differential equations [29, 71, 123, 206, 304, 353, 406], sig-
nal processing [45, 144, 152, 318], image processing [47, 114, 153, 210, 311],
game theory [48, 57, 77, 98, 124, 189, 190, 203], network flow problems
[54, 92, 341, 342], equilibrium theory [73, 140, 296], mean-field games [80, 81],
control theory [83, 84, 101, 165, 356], data science [116, 148, 391], optimization
[131, 179, 215, 373, 374], statistics [141, 394], neural networks [147, 389, 395],
traffic equilibrium [158, 196], systems theory [162, 166], mechanics [194, 278],
optimal transportation [302], and minimax theory [335].

Early numerical solution methods to solve Problem 1.1 can be found in [12,
88, 89, 246, 262, 312, 354, 378, 379, 403, 404]. These methods are of the explicit
Euler type, meaning that, at iteration =, the update G=+1 is determined by finding
a point in "G=. An alternative method, which first appeared in [259] and then in
more detail in [339], is the proximal point algorithm, where the update is obtained
through the implicit relation G= − G=+1 ∈ "G=+1. Such approaches have limited
potential since they can be directly implemented only in specific situations. For
instance, the Euler step methods of [88, 89, 90] impose certain properties on " and
asymptotically vanishing step sizes, which is detrimental to numerical stability and
speed of convergence. On the other hand, the proximal point algorithm requires
explicit expressions for the resolvent of " , which is seldom possible. In most
problems, however, " has a complex structure and it is typically expressed in
terms of monotonicity-preserving operations involving simpler operators. The
principle governing splitting methods is to devise algorithms in which each of

4



the elementary operators arising in the decomposition of " are used individually,
hence breaking up Problem 1.1 into tasks that are more manageable.

The first monotone operator splitting methods arose in the late 1970s and
were motivated by applications in mechanics and partial differential equations
[194, 209, 278]. The three main algorithms that dominated the field were designed
for problems in which

" = � + �, (1.2)

where � : H → 2H and � : H → 2H are maximally monotone: the forward-
backward method [277], the Douglas–Rachford method [265], and Tseng’s forward-
backward-forward method [375]. In recent years, the field of monotone operator
splitting algorithms has benefited from a new impetus, fueled by the emerging
application areas mentioned above and their demand for solving efficiently increas-
ingly complex large-dimensional problems. Thus, duality techniques have arisen
to address composite models of the form

" = � + !∗ ◦ � ◦ !, (1.3)

where ! is a linear operator from H to a Hilbert space G and � : H → 2H

and � : G → 2G are maximally monotone [76]. These techniques have been
further developed to devise splitting algorithms for the more structured model
[62, 145, 387]

" = � +
?∑

:=1

!∗: ◦
(
�−1
: + �−1

:

)−1◦!: + �, (1.4)

where each linear operator !: maps H to a Hilbert space G: , and the operators
� : H → 2H , �: : G: → 2G: , �: : G: → 2G: , and � : H → H are maximally
monotone. Splitting algorithms for models which are more finely structured than
(1.4) have also been proposed as well as multivariate versions that capture coupled
systems of monotone inclusions; see [97] and the references therein. On a different
front, block-iterative algorithms, which allow for the activation of only a subgroup
of operators present in the model at a given iteration, have also been developed
[93, 97, 136, 237]. At the same time, a multitude of splitting algorithms tailored to
specific models have been elaborated. For instance, if � : H → 2H and � : H →
2H are maximally monotone and � : H → H is cocoercive, splitting algorithms
have been proposed in [161, 321] for the decomposition " = � + � + � and in
particular in [79] if � : H → H is Lipschitzian and in [249] if � : H → H is
linear and bounded.

Given the abundance of activity in monotone operator splitting techniques, it
is important to identify general structures and principles, as well as possible bonds
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between algorithm design methodologies in order not only to simplify and clarify
the state of the art, but also to facilitate the developments of new methods in the
future. From the outset, fixed point theory has been a tool of choice to achieve this
goal. For instance, it has played an important role in the analysis of the proximal
point algorithm [248, 275, 339]. In [127], fixed point iterations of averaged oper-
ators were shown to provide a convenient framework to investigate the asymptotic
behavior of classical splitting algorithms such as the forward-backward, backward-
backward, Douglas–Rachford, and Peaceman–Rachford algorithms. Further ap-
plications of averaged operator iterations to design and analyze splitting methods
can be found in [82, 114, 137, 148, 154, 156, 161, 321, 322, 323, 348, 392]. Fixed
point modeling is also a central algorithmic development tool in recent works such
as [14, 79, 272]. In spite of these achievements, fixed point methods seem less well
suited to capture in simple terms the most flexible splitting methods such as the
block-iterative asynchronous methods of [93, 97, 136, 237], which were built using
geometric arguments. The purpose of the present paper is to provide a standardized
pattern for building and analyzing splitting methods around the following geomet-
ric framework. It comprises an embedding step, where the initial Problem 1.1 is
replaced by a more tractable surrogate inclusion problem in an auxiliary space X

from which the solutions to the original problem can be easily recovered. The
second step is an iterative process in which the current iterate is projected onto a
closed half-space that serves as an outer approximation to the surrogate solution
set.

Framework 1.2 Geometric algorithmic template for solving Problem 1.1.

(i) Embedding: Find a real Hilbert space X, a maximally monotone operator
M : X → 2X, and an operator T : X → H such that T (zerM) ⊂ zer" . We
call (X,M,T) an embedding of Problem 1.1.

(ii) Iterations:

for = = 0, 1, . . .⌊
H= is a closed half-space of X such that zerM ⊂ H=

x=+1 is a relaxed projection of x= onto H=.

(1.5)

In optimization, the use of half-spaces as outer approximations to the solution
set goes back to the cutting plane methods of [121, 243, 258]; see also [250,
383, 402]. In monotone inclusion problems, modeling iterations as successive
projections onto separating half-spaces occurs in several papers [35, 125, 358,
359]. We aim at showing that Framework 1.2 is sufficiently broad and flexible to
encompass a wide array of existing methods while providing a template to create
new ones. It will allow us to derive in a unified fashion simple proofs of existing
convergence results. It will also make it possible to establish seamlessly strongly
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convergent variants of these algorithms. The proofs we provide are new, and so are
some of the results.

The remainder of the paper is organized as follows. To make our presenta-
tion self-contained, Section 2 covers the necessary mathematical background on
monotone operator theory. It also contains various examples of maximally mono-
tone operators and a detailed history of the field. In Section 3, we present several
models for decomposing " in Problem 1.1. These decompositions will generate
the embeddings required in Framework 1.2 and form the backbone of the splitting
methods discussed in the paper. The geometric principles underlying our approach
are presented in Section 4, where the main convergence theorems are laid out.
In Section 5, we study the proximal point algorithm and explore several of its
facets. In Sections 6, 7, and 8, we study, respectively, the Douglas–Rachford,
forward-backward-forward, and forward-backward methods through the lens of
Framework 1.2 and capture a broad range of algorithms and applications by em-
bedding them in bigger spaces. Block-iterative Kuhn–Tucker and saddle projective
splitting methods are addressed in Sections 9 and 10, respectively. Finally, several
extensions and variants of the results are discussed in Section 11.

2 Monotone operators

2.1 Notation and basic definitions

The material of this section can be found in [37].

2.1.1 General notation

H and G are real Hilbert spaces, B(H ,G) is the space of bounded linear operators
from H to G, B(H) = B(H ,H), and H ⊕ G denotes the Hilbert direct sum of H
and G. The identity operator of H is denoted by IdH, its scalar product by 〈· | ·〉H ,
and the associated norm by ‖ · ‖H (the subscripts will be omitted when the context
is clear). The weak convergence of a sequence (G=)=∈N to G is denoted by G= ⇀ G,
whereas G= → G denotes its strong convergence; the set of weak sequential cluster
points of (G=)=∈N is denoted by W(G=)=∈N.

2.1.2 Sets

Let � be a subset of H . The interior of � is int�, the indicator function of � is

]� : H → ]−∞,+∞] : G ↦→
{

0, if G ∈ �;

+∞, otherwise,
(2.1)
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the support function of � is

f� : H → [−∞, +∞] : G∗ ↦→ sup
G∈�

〈G | G∗〉, (2.2)

and the distance function to � is

3� : H → ]−∞,+∞] : G ↦→ inf
H∈�

‖G − H‖. (2.3)

Suppose that � is convex. We denote by cone� the smallest cone that contains �
and by sri� the strong relative interior of �, i.e.,

sri� =
{
G ∈ � | cone(−G + �) is a closed vector subspace of H

}
. (2.4)

If H is finite-dimensional, sri� coincides with the relative interior ri� of �,
i.e., the interior of � relative to the smallest affine subspace of H containing �.
Suppose that � is nonempty, closed, and convex. For every G ∈ H ,

proj� G is the unique point in � such that 3� (G) = ‖G − proj� G‖. (2.5)

This process defines the projection operator proj� : H → H of �. The simple
case of a closed half-space is central to our approach.

Example 2.1 ([37, Example 29.20]) Let D∗ ∈ H , let [ ∈ R, and suppose that
� =

{
I ∈ H | 〈I | D∗〉 6 [

}
≠ ∅. Let G ∈ H and set

3 =




〈G | D∗〉 − [
‖D∗‖2

D∗, if 〈G | D∗〉 > [;

0, otherwise.
(2.6)

Then proj� G = G − 3.

2.1.3 Functions

The set of minimizers of a function 5 : H → ]−∞,+∞] is denoted by Argmin 5
and, if it is a singleton, its unique element is denoted by argminG∈H 5 (G). The
infimal convolution of 5 : H → ]−∞, +∞] and ℎ : H → ]−∞,+∞] is

5 � ℎ : H → [−∞,+∞] : G ↦→ inf
H∈H

(
5 (H) + ℎ(G − H)

)
. (2.7)

We denote by Γ0 (H) the class of functions 5 : H → ]−∞, +∞] which are lower
semicontinuous, convex, and such that dom 5 =

{
G ∈ H | 5 (G) < +∞

}
≠ ∅. Let

5 ∈ Γ0 (H). The conjugate of 5 is

Γ0(H) ∋ 5 ∗ : G∗ ↦→ sup
G∈H

(
〈G | G∗〉 − 5 (G)

)
. (2.8)
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For every G ∈ H ,

prox 5 G is the unique minimizer over H of H ↦→ 5 (H) + 1

2
‖G − H‖2. (2.9)

This process defines the proximity operator prox 5 : H → H of 5 . We have

(∀W ∈ ]0, +∞[)(∀G ∈ H) G = proxW 5 G + W prox 5 ∗/W
(
G/W

)
. (2.10)

The Moreau envelope of 5 of parameter W ∈ ]0, +∞[ is

W5 = 5 �

(
1

2W
‖ · ‖2

)
. (2.11)

2.1.4 Set-valued operators

Let " : H → 2H . The graph of " is

gra" =
{
(G, G∗) ∈ H ×H | G∗ ∈ "G

}
. (2.12)

The inverse of " is the operator "−1 : H → 2H defined through the relation

(
∀(G, G∗) ∈ H ×H

)
G∗ ∈ "G ⇔ G ∈ "−1G∗. (2.13)

Thus,

gra"−1
=

{
(G∗, G) ∈ H ×H | (G, G∗) ∈ gra"

}
. (2.14)

The set of fixed points of " is

Fix" =
{
G ∈ H | G ∈ "G

}
, (2.15)

the set of zeros of " is

zer" = "−10 =
{
G ∈ H | 0 ∈ "G

}
, (2.16)

and the resolvent of " is the operator

�" = (Id + ")−1. (2.17)

In other words,

(∀G ∈ H)(∀? ∈ H) ? ∈ �"G ⇔ (?, G − ?) ∈ gra" (2.18)

and therefore

zer" = Fix �" . (2.19)
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We have

(∀W ∈ ]0, +∞[)(∀G ∈ H) G − �W"G = W �"−1/W
(
G/W

)
. (2.20)

The Yosida approximation of index W ∈ ]0, +∞[ of " is

W" =
Id − �W"

W
=

(
WId + "−1)−1

=
(
�W−1"−1

)
◦ W−1Id (2.21)

and it satisfies

zer" = zer W". (2.22)

The domain of " is

dom" =
{
G ∈ H | "G ≠ ∅

}
(2.23)

and the range of " is

ran" =

⋃

G∈dom"

"G =
{
G∗ ∈ H | (∃ G ∈ dom") G∗ ∈ "G

}
. (2.24)

We have

dom"−1
= ran" and ran"−1

= dom". (2.25)

If, for some G ∈ H , "G is a singleton, we let "G denote its single element. We say
that " is injective if (∀G ∈ H)(∀H ∈ H) "G ∩ "H ≠ ∅ ⇒ G = H. Finally, given
� : H → 2H , � : G → 2G , ! ∈ B(H ,G), and U ∈ R, we set

� + U!∗ ◦ � ◦ ! : H → 2H

G ↦→
{
G∗ + U!∗H∗ | G∗ ∈ �G and H∗ ∈ �(!G)

}
.

(2.26)

2.1.5 Monotone operators

Let " : H → 2H . Then " is monotone if

(
∀(G, G∗) ∈ gra"

) (
∀(H, H∗) ∈ gra"

)
〈G − H | G∗ − H∗〉 > 0 (2.27)

and maximally monotone if, further, there exists no monotone operator � : H → 2H

such that gra " ⊂ gra � ≠ gra" , that is (see Figure 2.1),

(
∀(G, G∗) ∈ H ×H

)
[
(G, G∗) ∈ gra " ⇔

(
∀(H, H∗) ∈ gra "

)
〈G − H | G∗ − H∗〉 > 0

]
. (2.28)
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We have

" maximally monotone ⇒ zer " is closed and convex. (2.29)

Let V ∈ ]0, +∞[. Then " is V-strongly monotone if " − VId is monotone, that is,

(
∀(G, G∗) ∈ gra "

) (
∀(H, H∗) ∈ gra"

)
〈G − H | G∗ − H∗〉 > V‖G − H‖2. (2.30)

Now let � be a nonempty subset of H , let U ∈ ]0, +∞[, and let " : � → H . Then
" is nonexpansive if

(∀G ∈ �) (∀H ∈ �) ‖"G − "H‖ 6 ‖G − H‖, (2.31)

U-averaged if U 6 1 and Id + U−1(" − Id) is nonexpansive, U-cocoercive if "−1

is U-strongly monotone, that is,

(∀G ∈ �) (∀H ∈ �) 〈G − H | "G − "H〉 > U‖"G − "H‖2, (2.32)

and firmly nonexpansive if it is 1-cocoercive. Alternatively,

" is firmly nonexpansive ⇔ 2" − Id is nonexpansive. (2.33)

The following result is known as the Baillon–Haddad theorem.

Lemma 2.2 ([26, Corollaire 10]) Let U ∈ ]0, +∞[ and let 5 : H → R be convex,
Fréchet differentiable, and such that ∇ 5 is 1/U-Lipschitzian. Then ∇ 5 is U-
cocoercive.

2.2 History

Monotonicity goes back to classical calculus and the notion of an increasing real-
valued function defined on an interval � ⊂ R, i.e., a function 5 : � → R that
satisfies

(∀G ∈ �) (∀H ∈ �)
(
G − H

) (
5 (G) − 5 (H)

)
> 0. (2.34)

The special properties enjoyed by such functions have long been recognized; see
for instance [159, 195, 222]. The monotonicity condition (2.34) is also tied to the
infancy of the theory of convex functions. Thus, it was shown in [233] that, if � is
open and 6 : � → R is a twice differentiable function with derivative 5 , then (2.34)
implies that 6 is convex. On the numerical side, (2.34) is an important property in
connection with solving iteratively the root finding problem [303]

find G ∈ � such that 5 (G) = 0. (2.35)
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H

H

G0

|

G∗0 − b

H

H

Figure 2.1: Left: Graph of a monotone, but not maximally monotone, operator: the
point (G0, G

∗
0) can be added to the graph and the resulting graph remains monotone.

Right: Graph of a maximally monotone operator: adding any point to the graph
does not preserve its monotonicity.

Monotone operators on R also appeared in nonlinear circuit theory in the 1940s
in the form of quasi-linear resistors [171, 172, 173]. A quasi-linear resistor is
a two-pole circuit element characterized by the property that the current going
through it increases smoothly with the voltage across it. In other words, the
transformation underlying its current-voltage characteristic is differentiable and
increasing. Dipoles with monotonic characteristics were further investigated in
[280]. To study networks involving a broader range of devices, this concept was
extended by Minty in [281, 282] to maximally monotone set-valued transformations
on R (see Figure 2.2 and [103] for examples). Interestingly, as will be discussed
shortly, Minty turned out to be one of the founders of monotone operator theory.
For further relevant early work on the connections between monotone operators and
network theory, see [52, 163] and, for more abstract ramifications, see [166, 341].

Another precursor of monotonicity is found in linear functional analysis, where
a linear operator " : H ⊃ � → H is declared accretive if [241]

(∀G ∈ �) 〈G | "G〉 > 0. (2.36)

In this context, the notion of a maximally accretive operator was introduced in [314].
Accretive operators are also central to passive linear network theory [50, 401].
One of the first instances of (2.36) in electrical networks is the current-voltage

12
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voltage
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voltage
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voltage

Figure 2.2: Current-voltage characteristics of quasi-linear resistors as monotone
operators from R to 2R. Top left: breakdown diodes in series [327]. Top right:
breakdown diode and resistance in series [327]. Bottom left: anode-dynode beam-
deflection tube [327]. Bottom right: the maximally monotone current-voltage
characteristic of [282].
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transformation of the four-pole circuit element known as an ideal gyrator [370].
The above notions of increasing functions and positive operators can be brought

together by considering an operator " : H ⊃ � → H such that

(∀G ∈ �) (∀G ∈ �) 〈G − H | "G − "H〉 > 0. (2.37)

Instances of (2.37) appear implicitly in [216] and, more explicitly, in [376, 377]
in connection with the existence of solutions to Hammerstein integral equations;
see also [217] for more general types of equations. Another instance, which
corresponds to what is now called strict monotonicity, appears in [91], where
H is the standard Euclidean space. The systematic study of operators satisfying
(2.37) started in 1960 an opened an important new chapter of nonlinear functional
analysis. Three independent papers submitted that year are associated with the
birth of monotone operator theory.

• In an article submitted in February 1960, Kačurovskiı̆ [239] called monotone
an operator that satisfies (2.37). This paper concerned the monotonicity
of the gradient of a differentiable convex function (see also [381]) and the
existence of solutions to certain nonlinear equations. It also introduced
strongly monotone operators.

• In a technical report completed in June 1960, Zarantonello called (2.37) an
(isotonically) monotonicity property and discussed supra-unitary (in modern
language, strongly monotone) operators. In connection with the solution of
nonlinear equations, an important result of [403] is that, if " : H → H is
monotone and Lipschitzian, then Id + " is surjective.

• In an article submitted in December 1960, Minty [283] also called " : � →
H monotone if it satisfies (2.37). In addition, he introduced the fundamental
concept of maximal monotonicity and established key connections with non-
expansive operators. Although, strictly speaking, his definitions dealt with
single-valued operators, he established results on monotone relations that nat-
urally suggest extensions to the set-valued case (1.1). According to Browder
[86], who initiated the study of set-valued monotone operators in Banach
spaces, the Hilbertian setting was worked out by Minty in unpublished notes.

Accounts of the history of the development of monotone operator theory in the
1960s can be found in [58], [87], [240], [263, Section 2.12], [286], and [380,
Chapter VI]. In that period, the main mathematical areas of applications were
nonlinear equations, partial differential equations, boundary-value problems, non-
expansive semigroups, convex analysis, evolution equations, and variational in-
equalities; see [68, 85, 87, 205, 245, 257, 292, 386, 405] and their bibliographies.
At the same time, monotonicity continued to be used in the analysis of networks and
systems, for instance in [399, 400], where it is known as incremental positiveness;
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see also [162] where monotonicity is called incremental passivity. The main use
of monotone operators was to establish existence, uniqueness, or stability results
in a variety of nonlinear problems in analysis.

2.3 Examples of maximally monotone operators

The following example concerns single-valued operators; Examples 2.4–2.10 fol-
low from it [37, Chapter 20].

Example 2.3 ([284, Lemma 1]) Let � : H → H be monotone and hemicontinu-
ous (in particular, continuous) in the sense that

(
∀(G, H, I) ∈ H 3) lim

0<U↓0
〈I | �(G + UH)〉 = 〈I | �G〉. (2.38)

Then � is maximally monotone.

Example 2.4 Let ) : H → H be nonexpansive and let U ∈ [−1, 1]. Then Id + U)
is maximally monotone. In particular, set � = Id − ) . Then � is maximally
monotone and zer � = Fix) .

Example 2.5 Let � : H → H be cocoercive. Then � is maximally monotone.

Example 2.6 Let " : H → 2H be maximally monotone and set � = �" . Then �
is maximally monotone and zer � = zer"−1.

Example 2.7 Let " : H → 2H be maximally monotone, let W ∈ ]0, +∞[, and set
� = W" (see (2.21)). Then � is W-cocoercive, hence maximally monotone, and
zer � = zer" .

Example 2.8 Let 5 ∈ Γ0 (H) and set � = prox 5 . Then � is maximally monotone.

Example 2.9 Let � be a nonempty closed convex subset of H and set � = proj� .
Then � is maximally monotone.

Example 2.10 Let � ∈ B(H) be a skew operator, i.e., �∗ = −�. Then � is
maximally monotone.

Here is an elementary example of a maximally monotone set-valued operator
on the real line.
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Example 2.11 Let 0 ∈ R and 1 ∈ R be such that 0 < 1, let 5 : [0, 1] → R be
increasing (see (2.34)), and define

(∀G ∈ R) �G =




∅, if G ∉ [0, 1];
]−∞, 5 (0)] , if G = 0;

[ 5 (1), +∞[ , if G = 1;[
sup 5 ([0, G [), inf 5 (]G, 1])

]
, if G ∈ ]0, 1[ .

(2.39)

Then � is maximally monotone.

The following example is a central result in variational methods (see [285,
Corollary p. 244] for a special case).

Example 2.12 ([291]) Let 5 : H → ]−∞,+∞] be proper. Then the subdifferential

m 5 : H → 2H : G ↦→
{
G∗ ∈ H | (∀H ∈ H) 〈H − G | G∗〉 + 5 (G) 6 5 (H)

}
(2.40)

of 5 is monotone and (Fermat’s rule) zer m 5 = Argmin 5 . If 5 ∈ Γ0 (H), then m 5
is maximally monotone and (m 5 )−1 = m 5 ∗.

Example 2.13 ([334, Theorem 24.3]) Let � : R → 2R be maximally monotone.
Then there exists 5 ∈ Γ0(R) such that � = m 5 .

Example 2.14 Let � be a nonempty convex subset of H . Then, setting 5 = ]� in
Example 2.12, we conclude that the normal cone operator

#� = m]� : H → 2H

G ↦→
{{
G∗ ∈ H | (∀H ∈ �) 〈H − G | G∗〉 6 0

}
, if G ∈ �;

∅, otherwise

(2.41)

of � is monotone and that it is maximally monotone if � is closed, in which case
(#�)−1 = mf� .

Example 2.15 Let + be a closed vector subspace of H . Then it follows from
Example 2.14 that

#+ : H → 2H : G ↦→
{
+⊥, if G ∈ + ;

∅, otherwise
(2.42)

is maximally monotone and (#+ )−1 = #+⊥ .

The next two examples involve the Laplacian operator and are central to partial
differential equations [19, 29, 69, 206, 406].
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Example 2.16 ([19, Theorem 17.2.10]) Let Ω be a nonempty bounded open sub-
set of R# , suppose that H = !2 (Ω), and set

� : H → 2H : G ↦→
{
−ΔG, if G ∈ �1

0 (Ω) and ΔG ∈ H ;

∅, otherwise.
(2.43)

Then it follows from Example 2.12 that � is maximally monotone as the subdiffer-
ential of the function

5 : H → ]−∞, +∞] : G ↦→



1

2

∫

Ω

‖∇G (l)‖23l, if G ∈ �1
0 (Ω);

+∞, otherwise,
(2.44)

which is in Γ0(H). In addition, if bdryΩ is of class C 2, then dom m 5 = �2 (Ω) ∩
�1

0 (Ω).

Example 2.17 ([19, Section 17.2.9]) LetΩ be a nonempty bounded open subset of
R
# such that bdryΩ is of class C 2, let m/ma denote the outward normal derivative

to bdryΩ, suppose that H = !2 (Ω), let ℎ ∈ H , and set

� : H → 2H

G ↦→
{
−ΔG − ℎ, if G ∈ �2(Ω) and mG/ma = 0 a.e. on bdryΩ;

∅, otherwise.

(2.45)

Then it follows from Example 2.12 that � is maximally monotone as the subdiffer-
ential of the function

5 : H → ]−∞,+∞]

G ↦→



1

2

∫

Ω

‖∇G (l)‖23l −
∫

Ω

G (l)ℎ(l)3l, if G ∈ �1(Ω);

+∞, otherwise,

(2.46)

which is in Γ0 (H).

The next scenario arises in the study of evolution equations by monotonicity
methods [69, 70, 353, 406].

Example 2.18 ([69, Example 4], [353, Chapter IV], [406, Chapter 32]) Let H

be a separable real Hilbert space, let ) ∈ ]0, +∞[, and suppose that H =

!2 ([0, ) ]; H). For every H ∈ H , the function G : [0, ) ] → H : C ↦→
∫ C
0
H(B)3B

is differentiable a.e. on ]0, ) [ with G′ = H a.e. Define

�1 ([0, ) ]; H
)
=

{
G ∈ H | G′ ∈ !2 ([0, ) ]; H

)}
, (2.47)
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let x0 ∈ H, and set

� : H → 2H : G ↦→
{
{G′}, if G ∈ �1

(
[0, ) ]; H

)
and G (0) = x0;

∅, otherwise
(2.48)

and

� : H → 2H : G ↦→
{
{G′}, if G ∈ �1

(
[0, ) ]; H

)
and G (0) = G () );

∅, otherwise.
(2.49)

Then � and � are maximally monotone.

Example 2.19 ([70, Exemple 2.3.3]) Let (Ω,F , `) be a measure space, let H be
a separable real Hilbert space, let A : H → 2H be maximally monotone, and set
H = !2 ((Ω,F , `); H). Define � : H → 2H via

(∀G ∈ H)(∀G∗ ∈ H) (G, G∗) ∈ gra � ⇔
for `-almost every l ∈ Ω,

(
G (l), G∗ (l)

)
∈ gra A (2.50)

and suppose that one of the following holds:

(i) `(Ω) < +∞.

(ii) 0 ∈ A0.

Then � is maximally monotone.

We now turn to an equilibrium problem in the sense of [56].

Example 2.20 ([13, Theorem 3.5]) Let � be a nonempty closed convex subset of
H and suppose that � : � × � → R satisfies the following:

(i) (∀G ∈ �) � (G, G) = 0.

(ii) (∀G ∈ �) (∀H ∈ �) � (G, H) + � (H, G) 6 0.

(iii) For every G ∈ �, � (G, ·) : � → R is lower semicontinuous and convex.

(iv) (∀G ∈ �) (∀H ∈ �) (∀I ∈ �) lim
0<Y→0

�
(
(1 − Y)G + YI, H

)
6 � (G, H).

Set

� : H → 2H

G ↦→
{{
G∗ ∈ H | (∀H ∈ �) � (G, H) + 〈G − H | G∗〉 > 0

}
, if G ∈ �;

∅, otherwise.

(2.51)

Then � is maximally monotone and zer � =
{
G ∈ � | (∀H ∈ �) � (G, H) > 0

}
is the

set of equilibria of �.
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We conclude with an example in the theory of saddle functions.

Example 2.21 ([335, Theorem 3]) Let � : H ⊕G → [−∞,+∞] be a saddle func-
tion, i.e., a convex-concave function which is proper and closed in the sense of
[335, 336] (for instance, for every G ∈ H and every H ∈ G, −� (G, ·) ∈ Γ0 (G) and
� (·, H) ∈ Γ0 (H)). Set

(∀G ∈ H)(∀H ∈ G) �(G, H) = m� (·, H) (G) × m
(
−� (G, ·)

)
(H). (2.52)

Then � is maximally monotone and

zer � =
{
(G, H) ∈ H ⊕ G | � (G, H) = inf � (H , H) = sup � (G,G)

}
(2.53)

is the set of saddle points of �.

The following illustration is set in the powerful perturbation framework of
Rockafellar [333, 335, 338] (see also [238]), which provides a systematic tool to
construct duality frameworks in minimization problems.

Example 2.22 Let V be a real Hilbert space, let 5 : H → ]−∞,+∞] be a proper
function, and consider the primal problem

minimize
G∈H

5 (G). (2.54)

Let � : H⊕V → ]−∞, +∞] be a perturbation of 5 , i.e., (∀G ∈ H) 5 (G) = � (G, 0).
The associated Lagrangian is

L� : H ⊕V ↦→ [−∞, +∞] : (G, E∗) ↦→ inf
E∈V

(
� (G, E) − 〈E | E∗〉

)
, (2.55)

the associated dual problem is

minimize
E∗∈V

sup
G∈H

(
−L� (G, E∗)

)
, (2.56)

and the associated saddle operator is

S� : H ⊕V → 2H⊕ V : (G, E∗) ↦→ m
(
L� (·, E∗)

)
(G)×m

(
−L� (G, ·)

)
(E∗). (2.57)

It follows from Example 2.21 that S� is maximally monotone. In addition, if
(G, E∗) ∈ zerS� , then G solves (2.54) and E∗ solves (2.56).
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2.4 Basic theory

2.4.1 Operations preserving maximal monotonicity

The examples of Section 2.3 can be combined in various fashions to create max-
imally monotone operators.

Lemma 2.23 ([37, Proposition 20.22]) Let � : H → 2H be maximally monotone,
let I ∈ H , let D ∈ H , and let W ∈ ]0, +∞[. Then �−1 and G ↦→ D + W�(G + I) are
maximally monotone.

Lemma 2.24 ([37, Proposition 23.18]) Let (H8)8∈� be a finite family of real Hil-
bert spaces, set

H =

⊕

8∈�
H8, (2.58)

and, for every 8 ∈ �, let �8 : H8 → 2H8 be maximally monotone. Set

G : H → 2H : (G8)8∈� ↦→×8∈� �8G8 . (2.59)

Then G is maximally monotone.

Lemma 2.25 Let V ∈ ]0, +∞[, let � : H → 2H , let* ∈ B(H) be self-adjoint and
V-strongly monotone, and let X be the real Hilbert space obtained by endowing H
with the scalar product (G, H) ↦→ 〈*G | H〉. Then the following hold:

(i) zer(*−1 ◦ �) = zer �.

(ii) Suppose that � : H → 2H is maximally monotone. Then*−1 ◦ � : X → 2X

is maximally monotone.

(iii) Let U ∈ ]0, +∞[ and suppose that � : H → H is U-cocoercive. Then
*−1 ◦ � : X → 2X is UV-cocoercive.

Proof. (i) is clear and (ii) is proved in [151, Lemma 3.7(i)].
(iii): Take (G, H) ∈ H ×H . Then

〈G − H | (*−1 ◦ �)G − (*−1 ◦ �)H〉X = 〈G − H | �G − �H〉H
> U‖�G − �H‖2

H. (2.60)

However, ‖*−1G‖2
X = 〈G | *−1G〉H 6 ‖*‖−1 ‖G‖2

H and ‖*‖−1
6 V−1 [241, Sec-

tion VI.2.6].
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Lemma 2.26 ([37, Theorem 25.3], [59, Section 24], [308, Corollary 4.2(a)]) Let
� : H → 2H and � : G → 2G be maximally monotone, let ! ∈ B(H ,G), and
suppose that

cone
(
! (dom �) − dom �

)
is a closed vector subspace of G. (2.61)

Then � + !∗ ◦ � ◦ ! is maximally monotone.

Lemma 2.27 ([37, Corollary 25.5]) Let � : H → 2H and � : H → 2H be max-
imally monotone and such that one of the following holds:

(i) cone (dom � − dom �) is a closed vector subspace of H .

(ii) dom � = H .

(iii) dom � ∩ int dom � ≠ ∅.

Then � + � is maximally monotone.

Lemma 2.28 ([8, Theorem 2.1]) Let � : H → 2H be maximally monotone and
let � : H → 2H be monotone and such that dom � = H and � − � is monotone.
Then � − � is maximally monotone.

Lemma 2.29 Let � : H → 2H and � : H → 2H be maximally monotone. Define
the parallel sum of � and � as

�� � =
(
�−1 + �−1)−1

(2.62)

and suppose that cone (ran � − ran �) is a closed vector subspace of H . Then
�� � is maximally monotone.

Proof. This follows from (2.25), Lemma 2.23, and Lemma 2.27(i).

Lemma 2.30 ([46, Lemma 2.2]) Let � : H → 2H and � : G → 2G be maximally
monotone, and let ! ∈ B(H ,G). Define the parallel composition of � with ! as

! ⊲ � =
(
! ◦ �−1 ◦ !∗

)−1
. (2.63)

Suppose that

cone
(
ran � − !∗ (ran �)

)
is a closed vector subspace of H . (2.64)

Then (! ⊲ �) � � is a maximally monotone operator from G to 2G .
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Example 2.31 ([132, Proposition 4.5(i)–(ii)]) Let ! ∈ B(H ,G) be such that
‖!‖ 6 1 and let � : G → 2G be maximally monotone. Define the resolvent
composition of � with ! as

! �� = !∗ ⊲ (� + IdG) − IdH (2.65)

and the resolvent cocomposition of � with ! as ! �� = (! ��−1)−1. Then ! ��
and ! �� are maximally monotone operators from H to 2H .

Example 2.32 Let 0 < ? ∈ N, let (l:)16:6? be a family in ]0, 1] such that∑?

:=1 l: = 1, and let (�:)16:6? be maximally monotone operators from H to 2H .
Then the resolvent average

(
?∑

:=1

l:��:

)−1

− IdH (2.66)

is maximally monotone. This result was originally established in [30, Proposi-
tion 2.7] and derived from Example 2.31 in [132, Remark 4.10(ii)].

Example 2.33 Let � : H → 2H be a maximally monotone operator and let + be
a closed vector subspace of H . The partial inverse of � with respect to + is the
operator �+ : H → 2H with graph

gra �+ =
{
(proj+ G + proj+⊥ G

∗, proj+ G
∗ + proj+⊥ G) | (G, G∗) ∈ gra �

}
. (2.67)

This construction was introduced in [362], which contains the following (see [362,
Section 2]):

(i) �+ is maximally monotone.

(ii) Let G ∈ H . Then G ∈ zer �+ ⇔ (proj+ G, proj+⊥ G) ∈ gra �.

2.4.2 Resolvent

In terms of solving inclusion problems, the resolvent of (2.17) is the most important
operator attached to a monotone operator �. First, as seen in (2.18), it can be
employed as a device to generate points in the graph of �. Second, as seen in
(2.19), its fixed point set coincides with the set of zeros of �. Third, resolvents
provide an effective bridge between the theory of nonexpansive operators and that
of monotone operators. This connection goes back to the theory of semigroups
of linear nonexpansive operators. The following result, essentially due to Minty
[283], establishes such a connection in the nonlinear case. It states in particular that
the resolvent of a maximally monotone operator is a firmly nonexpansive operator
which is defined everywhere.
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Figure 2.3: Illustration of Minty’s theorem (Lemma 2.34). From left to right on
each row: graph of �, graph of Id + �, and graph of ��. Top: � is not monotone:
ran(Id + �) = dom �� ≠ H and �� is not firmly nonexpansive. Middle: � is
monotone but not maximally monotone: �� is firmly nonexpansive but ran (Id+�) =
dom �� ≠ H . Bottom: � is maximally monotone: �� is firmly nonexpansive with
ran(Id + �) = dom �� = H .
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Lemma 2.34 ([37, Proposition 23.8]) Let � be a nonempty subset of H , let
) : � → H , and set � = )−1 − Id. Then the following hold (see Figure 2.3):

(i) � = ran(Id + �) and ) = ��.

(ii) ) is firmly nonexpansive if and only if � is monotone.

(iii) ) is firmly nonexpansive and � = H if and only if � is maximally monotone.

Here are a few examples of resolvents that will be explicitly needed; see [37,
122, 144] for additional examples with closed form expressions and, in particular,
instances of proximity operators.

Example 2.35 ([291, Proposition 6.a]) Let 5 ∈ Γ0 (H). Then �m 5 = prox 5 .

Example 2.36 ([290, Exemple p. 2897]) Let� be a nonempty closed convex sub-
set of H . Then �#�

= prox ]� = proj� .

Example 2.37 ([37, Proposition 23.18]) Let 0 < < ∈ N, let (H8)1686< be real
Hilbert spaces, set

H =

<⊕

8=1

H8, (2.68)

and, for every 8 ∈ {1, . . . , <}, let �8 : H8 → 2H8 be maximally monotone. Set

G : H → 2H : (G8)1686< ↦→ ×
1686<

�8G8 . (2.69)

Then G is maximally monotone (Lemma 2.24) and

�G : H → H : (G8)1686< ↦→
(
��8

G8
)
1686< . (2.70)

Example 2.38 Let � : H → 2H be maximally monotone, let + be a closed vector
subspace of H , and let �+ be the partial inverse of Example 2.33. In addition, let
G ∈ H and ? ∈ H . Then

? = ��+
G ⇔ proj+ ? + proj+⊥ (G − ?) = ��G. (2.71)

Proof. This is implicitly in [362, Section 4]; see [7, Lemma 2.2] for a proof.

Example 2.39 ([151, Lemmas 3.7(iii) and 3.1]) As in Lemma 2.25(ii), � : H →
2H is maximally monotone, * ∈ B(H) is self-adjoint and strongly monotone,
and X is the real Hilbert space obtained by endowing H with the scalar product
(G, H) ↦→ 〈*G | H〉. Then �*−1◦� = (* + �)−1 ◦*.
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Example 2.40 ([132, Propositions 1.2 and 4.1(v)]) Let ! ∈ B(H ,G) be such
that ‖!‖ 6 1, let � : G → 2G be maximally monotone, and consider the resolvent
compositions of Example 2.31. Then

�! �� = !∗ ◦ �� ◦ ! and �! �� = IdH − !∗ ◦ ! + !∗ ◦ �� ◦ !. (2.72)

2.4.3 Warped resolvents

A generalization of the notion of a resolvent is the following.

Definition 2.41 ([95, Definition 1.1]) Let � be a nonempty subset of H , let
* : � → H , and let " : H → 2H be such that ran* ⊂ ran(*+") and*+" is in-
jective. The warped resolvent of " with kernel* is �*

"
= (*+")−1◦* : � → �.

The properties of warped resolvent generalize those of classical ones. In this
respect, here is an extension of (2.18)–(2.19).

Lemma 2.42 Let � and � be nonempty subsets of H , let* : � → H , let� : � →
H , and let , : H → 2H be such that ran* ⊂ ran(* +, + �) and * +, + � is
injective. Then the following hold:

(i) Let G ∈ � and ? ∈ �. Then ? = �*
,+�G ⇔ (?,*G −*? − �?) ∈ gra, .

(ii) Fix �*
,+� = � ∩ zer(, + �).

Proof. Note that �*
,+� : � → � is well defined.

(i): ? = �*
,+�G ⇔ ? = (* + , + �)−1(*G) ⇔ *G ∈ *? + ,? + �? ⇔

*G −*? − �? ∈ ,?.
(ii): Let G ∈ H . Then (i) yields G = �*

,+�G ⇔ [G ∈ � and (G,−�G) ∈ gra,]
⇔ [G ∈ � and G ∈ zer(, + �)].

An instance of a warped resolvent with a linear kernel appears in Example 2.39,
where � = H and * ∈ B(H) is a self-adjoint strongly monotone operator. Self-
adjoint monotone operators which are not strongly monotone have also been used
as kernels; see [65, 392]. The next example features a monotone kernel in B(H)
which is not self-adjoint.

Example 2.43 Let � : H → 2H and � : G → 2G be maximally monotone, and
suppose that 0 ≠ ! ∈ B(H ,G). Set X = H ⊕ G and

{
K : X → 2X : (G, H∗) ↦→ (�G + !∗H∗) × (�−1H∗ − !G)
[ : X → X : (G, H∗) ↦→ (G − !∗H∗, !G + H∗).

(2.73)
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As will be seen in Lemma 3.8, K is the Kuhn–Tucker operator associated with the
problem of finding a zero of � + !∗ ◦ � ◦ !. It follows from (2.73) that

�[
K

: X → X : (G, H∗) ↦→
(
��(G − !∗H∗), ��−1 (!G + H∗)

)
, (2.74)

whereas �K is typically intractable.

The next examples employ nonlinear kernels.

Example 2.44 Let " : H → 2H be maximally monotone and such that zer" ≠

∅, let 5 : H → ]−∞,+∞] be a Legendre function such that dom" ⊂ int dom 5 ,
and set � = int dom 5 and * = ∇ 5 . Then it follows from [33, Corollary 3.14(ii)]
that �*

"
: � → � is a well-defined warped resolvent, called the �-resolvent of " .

It is an essential tool in the study of algorithms based on Bregman distances which
goes back to [67, 106, 176, 368].

Example 2.45 Let � : H → 2H and � : H → 2H be maximally monotone, and
let 5 ∈ Γ0 (H) be essentially smooth [33]. Suppose that � = (int dom 5 ) ∩ dom �

is a nonempty subset of int dom �, that � is single-valued on int dom �, that ∇ 5 is
strictly monotone on �, and that (∇ 5 − �) (�) ⊂ ran(∇ 5 + �). Set " = � + �
and* : � → H : G ↦→ ∇ 5 (G) − �G. Then the warped resolvent coincides with the
Bregman forward-backward operator �*

"
= (∇ 5 + �)−1 ◦ (∇ 5 − �) investigated

in [96], where it is shown to capture a construction found in [326] and known as
the auxiliary principle. In the case when � and � are subdifferentials, �*

"
is the

operator studied in [299] and, in Euclidean spaces, in [31]. Scenarios in which �*
"

is more manageable than �" are discussed in [31, 96, 267, 299, 326, 369].

Example 2.46 Let � : H → 2H , let � : H → H be cocoercive, let & : H → H
be monotone and Lipschitzian, and let W ∈ ]0, +∞[. The underlying problem is
to find a point in zer(� + � + &) and we recover the nonlinear forward-backward
operator of [207] as a warped resolvent as follows. Set " = W(� + � + &), let
 : H → H be strongly monotone and Lipschitzian, and set * =  − W(� + &).
Then �*

"
= ( + W�)−1 ◦ ( − W(� + &)), which is the operator driving the

algorithms of [207].

Remark 2.47 If � is cocoercive and 5 = ‖ · ‖2/2 in Example 2.45, or if  = Id
and & = 0 and � = � in Example 2.46, then �*

"
= �W� ◦ (Id − W�). This operator

will arise in the forward-backward algorithm of Section 8.

Lemma 2.48 Let & : H → H be Lipschitzian with constant V ∈ ]0, +∞[, let
 : H → H be strongly monotone with constant U ∈ ]0, +∞[, let Y ∈ ]0, U[, and
set * =  − W&. Then the following hold:
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(i) Let W ∈ ]0, (U − Y)/V]. Then* is Y-strongly monotone. ([95, Lemma 5.1(i)])

(ii) Suppose that U = 1 and  = Id, and let W ∈ ]0, (1 − Y)/V], Then * is
cocoercive with constant 1/(2 − Y). ([95, Lemma 5.1(ii)])

(iii) Suppose that U = 1,  = Id, and & is 1/V-cocoercive, and let W ∈ ]0, 2/V[.
Then* is WV/2-averaged, hence nonexpansive. ([127, Lemma 2.3])

2.4.4 Topological properties

We record key properties of the graphs of monotone operators.

Lemma 2.49 ([37, Proposition 20.38(ii)]) Let " : H → 2H be maximally mono-
tone. Then gra" is sequentially closed in Hweak ×H strong, i.e., for every sequence
(G=, G∗=)=∈N in gra" and every (G, G∗) ∈ H × H , if G= ⇀ G and G∗= → G∗, then
(G, G∗) ∈ gra " .

Lemma 2.50 ([37, Corollary 26.6]) Let � : H → 2H and � : H → 2H be max-
imally monotone, let (G=, G∗=)=∈N be a sequence in gra �, let (H=, H∗=)=∈N be a
sequence in gra �, let G ∈ H , and let G∗ ∈ H . Suppose that

G= ⇀ G, G∗= ⇀ G∗, G= − H= → 0, and G∗= + H∗= → 0. (2.75)

Then G ∈ zer(� + �), −G∗ ∈ zer(−�−1 ◦ (−Id) + �−1), (G, G∗) ∈ gra �, and
(G,−G∗) ∈ gra �.

2.4.5 Subdifferentials

The subdifferential operator of Example 2.12 is an essential tool in variational
analysis.

Lemma 2.51 ([37, Proposition 16.6 and Theorem 16.47(i)]) Let 5 ∈ Γ0 (H),
6 ∈ Γ0 (G), and ! ∈ B(H ,G) be such that (! (dom 5 )) ∩ dom 6 ≠ ∅. Then
the following hold:

(i) zer(m 5 + !∗ ◦ (m6) ◦ !) ⊂ zer m ( 5 + 6 ◦ !) = Argmin ( 5 + 6 ◦ !).

(ii) Suppose that one of the following is satisfied:

(a) 0 ∈ sri(! (dom 5 ) − dom 6).
(b) ! (dom 5 ) − dom 6 is a closed vector subspace of G.

(c) dom 6 = G.

(d) G is finite-dimensional and (ri ! (dom 5 )) ∩ (ri dom 6) ≠ ∅.

Then m ( 5 + 6 ◦ !) = m 5 + !∗ ◦ (m6) ◦ !.
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3 Structured monotone inclusions

Our master problem is the following two-operator inclusion.

Problem 3.1 Let � : H → 2H and � : H → 2H be maximally monotone. The
objective is to

find G ∈ H such that 0 ∈ �G + �G. (3.1)

3.1 Two-operator formulations

We provide problem formulations which correspond to specific choices of the
operators � and � in Problem 3.1 from the examples of Section 2.3.

Problem 3.2 In Problem 3.1, let 5 ∈ Γ0 (H), set � = m 5 , and suppose that � is at
most single-valued. Then (3.1) reduces to the variational inequality problem [263]

find G ∈ H such that (∀H ∈ H) 〈G − H | �G〉 + 5 (G) 6 5 (H). (3.2)

Problem 3.3 In Problem 3.2, let � be a nonempty closed convex subset of H
and set 5 = ]� . Then (3.2) reduces to the standard variational inequality problem
[192, 244]

find G ∈ � such that (∀H ∈ �) 〈G − H | �G〉 6 0. (3.3)

Problem 3.4 In Problem 3.3, suppose that � is a cone with dual cone �⊕. Then
(3.3) reduces to the complementarity problem [190]

find G ∈ � such that G ⊥ �G and �G ∈ �⊕. (3.4)

Problem 3.5 In Problem 3.1, let 5 ∈ Γ0 (H) and 6 ∈ Γ0 (H), and set � = m 5 and
� = m6. Suppose that one of the following holds:

(i) 0 ∈ sri(dom 5 − dom 6).
(ii) 6 : H → R is differentiable.

Then the objective is to

minimize
G∈H

5 (G) + 6(G). (3.5)

Problem 3.6 In Problem 3.5, let � be a nonempty closed convex subset of H and
set 5 = ]� . Suppose that one of the following holds:

(i) 0 ∈ sri(� − dom 6).
(ii) 6 : H → R is differentiable.

Then the objective is to

minimize
G∈�

6(G). (3.6)
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3.2 Composite problems

We start by presenting a duality framework for monotone inclusions introduced in
[308, 330, 331] (see [5, 23, 180, 196, 197, 278, 293, 329] for special cases).

Problem 3.7 Let � : H → 2H and � : G → 2G be maximally monotone, and let
! ∈ B(H ,G). The objective is to solve the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗
(
�(!G)

)
(3.7)

together with the dual inclusion

find H∗ ∈ G such that 0 ∈ −!
(
�−1(−!∗H∗)

)
+ �−1H∗. (3.8)

Lemma 3.8 ([76, Propositions 2.7 and 2.8]) In the setting of Problem 3.7, let X =

H ⊕G, let / and /∗ be the sets of solutions to (3.7) and (3.8), respectively, and set
{
S : X → 2X : (G, H∗) ↦→ �G × �−1H∗

Y : X → X : (G, H∗) ↦→ (!∗H∗,−!G).
(3.9)

Define the Kuhn–Tucker operator of Problem 3.7 as

K = S + Y (3.10)

and the set of Kuhn–Tucker points as zerK. Then the following hold:

(i) S is maximally monotone.

(ii) Y ∈ B(X) is skew and maximally monotone, with ‖Y‖ = ‖!‖.

(iii) K is maximally monotone.

(iv) zerK is a closed convex subset of / × /∗ in X.

(v) (see also [180, 308, 330]) / ≠ ∅⇔ zerK ≠ ∅⇔ /∗ ≠ ∅.

The best known instance for Problem 3.7 is the classical Fenchel–Rockafellar
duality framework [332].

Problem 3.9 Let 5 ∈ Γ0 (H), 6 ∈ Γ0 (G), and ! ∈ B(H ,G) be such that

0 ∈ sri
(
! (dom 5 ) − dom 6

)
. (3.11)

Set � = m 5 and � = m6 in Problem 3.7. Then it follows from Lemma 2.51 that
(3.7) is the primal problem

minimize
G∈H

5 (G) + 6(!G), (3.12)
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(3.8) is the Fenchel–Rockafellar dual problem

minimize
H∗∈G

5 ∗ (−!∗H∗) + 6∗ (H∗), (3.13)

and (3.10) yields the Kuhn–Tucker operator

K : (G, H∗) ↦→
(
m 5 (G) + !∗H∗

)
×

(
−!G + m6∗(H∗)

)
. (3.14)

Problem 3.10 Let + be a closed vector subspace of H and let � : H → 2H be
maximally monotone. Then, in the case when G = H and ! = Id, the Kuhn–Tucker
operator (3.10) associated with the operators #+ and � is

K : H ⊕H → 2H⊕H : (G, G∗) ↦→
(
#+G + G∗

)
×

(
�−1G∗ − G

)
. (3.15)

In view of Example 2.15, the problem of finding a zero of the maximally monotone
operator K reduces to

find G ∈ + and G∗ ∈ +⊥ such that G∗ ∈ �G. (3.16)

This formulation was first considered by Spingarn in [362].

An extension of Problem 3.7 involving several linearly composed terms is the
following.

Problem 3.11 Let 0 < ? ∈ N, let � : H → 2H be maximally monotone, and,
for every : ∈ {1 . . . , ?}, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, and let !: ∈ B(H ,G:). The objective is to solve the primal
inclusion

find G ∈ H such that 0 ∈ �G +
?∑

:=1

!∗:
(
�: (!:G)

)
(3.17)

together with the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that

(
∃ G ∈ �−1

(
−

?∑

:=1

!∗:H
∗
:

)) (
∀: ∈ {1, . . . , ?}

)
!:G ∈ �−1

: H
∗
: . (3.18)

Lemma 3.12 In the setting of Problem 3.11, set X = H ⊕ G1 ⊕ · · · ⊕ G? and let
/ and /∗ be the sets of solutions to (3.17) and (3.18), respectively. Define the
Kuhn–Tucker operator of Problem 3.11 as

K : X → 2X : (G, H∗1, . . . , H∗?) ↦→
(
�G +

?∑

:=1

!∗:H
∗
:

)
×

(
−!1G + �−1

1 H∗1
)
× · · · ×

(
−!?G + �−1

? H
∗
?

)
(3.19)

and the set of Kuhn–Tucker points as zerK. Then the following hold:
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(i) K is maximally monotone.

(ii) zerK is a closed convex subset of / × /∗ in X.

(iii) / ≠ ∅⇔ zerK ≠ ∅⇔ /∗ ≠ ∅.

Proof. Similar to that of Lemma 3.8.

An alternative angle on Problem 3.9 is provided by the Lagrangian approach
of Example 2.22. Set f : H ⊕ G → ]−∞,+∞] : x = (G, H) ↦→ 5 (G) + 6(H),
R : H ⊕G → G : (G, H) ↦→ !G − H, and X = H ⊕G ⊕G. Then the primal problem
(3.12) is equivalent to

minimize
x∈ker R

f (x) (3.20)

and a standard perturbation function for it is [338, Example 4’] (see also [37,
Proposition 19.21])

L : X → ]−∞,+∞] : (x, E) ↦→ f (x) + ]{0} (Rx + E). (3.21)

We derive from (2.55) that the associated Lagrangian is

LL : X → ]−∞,+∞] : (x, E∗) ↦→ f (x) + 〈Rx | E∗〉, (3.22)

from (2.56) that the associated dual problem is (3.13), and from (2.57) that the
associated saddle operator is

SL : X → 2X : (x, E∗) ↦→ (m f (x) + R∗E∗) × {−Rx}, (3.23)

i.e.,

SL : X → 2X

(G, H, E∗) ↦→
(
m 5 (G) + !∗E∗

)
×

(
m6(H) − E∗

)
× {−!G + H}. (3.24)

We saw in Example 2.22 that, if (G, H, E∗) ∈ zerSL , then G solves the primal
problem (3.12) and E∗ solves the dual problem (3.13). A version of this result for
Problem 3.7 is the following where, although there is no notion of a Lagrangian,
we can introduce a saddle operator.

Lemma 3.13 In the setting of Problem 3.7, set X = H ⊕ G ⊕ G and let / and /∗

be the sets of solutions to (3.7) and (3.8), respectively. Define the Kuhn–Tucker
operator K as in (3.10) and define the saddle operator of Problem 3.7 as

S : X → 2X

(G, H, E∗) ↦→ (�G + !∗E∗) × (�H − E∗) × {−!G + H}. (3.25)

Then the following hold:
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(i) S is maximally monotone.

(ii) zerS is closed and convex.

(iii) Suppose that (G, H, E∗) ∈ zer S. Then (G, E∗) ∈ zerK ⊂ / × /∗.

(iv) /∗ ≠ ∅⇔ zerS ≠ ∅⇔ zerK ≠ ∅⇔ / ≠ ∅.

Proof. A special case of [97, Proposition 1(i)–(v)(a)].

3.3 Examples of embeddings in Framework 1.2

Example 3.14 Suppose that it is computationally feasible solve Problem 1.1 dir-
ectly in the original spaceH . Then an embedding of Problem 1.1 is just (H , ", Id).

Example 3.15 Let " : H → 2H be a maximally monotone operator, let * ∈
B(H) be a self-adjoint strongly monotone operator, let X be the real Hilbert
space obtained by endowing H with the scalar product (G, H) ↦→ 〈*G | H〉, let
M = *−1 ◦ " , and set T = Id. Then it follows from Lemma 2.25(i)–(ii) that
(X,M,T) is an embedding of Problem 1.1.

Example 3.16 Let U ∈ ]0, 1] and let ) : H → H be U-averaged. In Problem 1.1,
suppose that " = Id − ) (see Example 2.4) and set

X = H , M =

(
Id + 1

2U
() − Id)

)−1

− Id, and T = Id. (3.26)

Then (X,M,T) is an embedding of Problem 1.1. Indeed, since Id + U−1() − Id)
is nonexpansive, we derive from [37, Proposition 4.4] that Id + (2U)−1() − Id)
is firmly nonexpansive and hence from Lemma 2.34(iii) that M is maximally
monotone, with zerM = zer " = Fix) .

Example 3.17 Let � : H → 2H and � : H → 2H be maximally monotone, and
let W ∈ ]0, +∞[. Let

X = H , M =
(
�W� ◦ (2�W� − Id) + Id − �W�

)−1 − Id, and T = �W� . (3.27)

Then it follows from [179, Section 4] that (X,M,T) is an embedding of Prob-
lem 3.1. In this setting, we actually have T (zerM) = zer " [127, Lemma 2.6(iii)].

Example 3.18 Let � : H → 2H and � : H → 2H be maximally monotone. Let
X = H ⊕ H , M : X → 2X : (G, G∗) ↦→ (�G + G∗) × (−G + �−1G∗), and T : X →
H : (G, G∗) ↦→ G. Then applying Lemma 3.8 with G = H and ! = Id shows that
(X,M,T) is an embedding of Problem 3.1. This embedding is implicitly present
in the projective splitting algorithm of [181], which is therefore an instance of
Framework 1.2.
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We now discuss structured inclusion problems that offer greater modeling flex-
ibility by involving three or more operators. The principle of a splitting algorithm,
which is to involve each operator individually, faces a serious challenge in the
presence of such formulations. Indeed, since inclusion is a binary relation, for
reasons discussed in [76, 129] and analyzed in more depth in [346], it is not pos-
sible to split problems that involve more than two set-valued operators. A purpose
of Framework 1.2 is to circumvent this fundamental limitation by seeking more
tractable reformulations in bigger spaces.

Example 3.19 Let 0 < ? ∈ N and, for every : ∈ {1, . . . , ?}, let �: : H → 2H be
maximally monotone. The problem is to

find G ∈ H such that 0 ∈
?∑

:=1

�:G. (3.28)

Let X be the ?-fold Hilbert direct sum H ? and set




\ =
{
(G1, . . . , G?) ∈ X | G1 = · · · = G?

}

G : X → 2X : (G1, . . . , G?) ↦→ �1G1 × · · · × �?G?
M = G + #\

T : X → H : (G1, . . . , G?) ↦→ G1.

(3.29)

Then

\⊥
=

{
(G∗1, . . . , G∗?) ∈ X

�����

?∑

:=1

G∗: = 0

}
(3.30)

and it follows from Example 2.15 that (X,M,T) is an embedding of (3.28). This
setting to split the sum of ? > 2 monotone operators was introduced by Spingarn
in [362, Section 5] (see also [218]). It reduces the ?-operator problem (3.28) to
the two-operator inclusion 0 ∈ Gx + #\ x. The idea of rephrasing multi-operator
problems in product spaces finds its roots in convex feasibility problems [315, 316],
where the problem of finding a point in the intersection

⋂?

:=1 �: of closed convex
subsets (�:)16:6? of H is associated with that of finding a point in I ∩ \ in X,
where I = �1 × · · · × �?.

Example 3.20 In the setting of Problem 3.7, set X = H ⊕ G, define S and Y as
in (3.9), let K = S + Y be the Kuhn–Tucker operator of (3.10), and let T : X →
H : (G, H∗) ↦→ G. Then, in view of Lemma 3.8(iv), (X,K,T) is an embedding of
(3.7). This embedding, which underlies the monotone+skew framework of [76],
reduces Problem 3.7, which involves three operators in the primal spaceH (namely,
�, �, and !), to a problem in X that involves the two operators S and Y.
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Example 3.21 In the setting of Problem 3.11, set X = H ⊕ G1 ⊕ · · · ⊕ G?, let K
be the Kuhn–Tucker operator of (3.19), and let

T : X → H : (G, H∗1, . . . , H∗?) ↦→ G. (3.31)

Then it follows from Lemma 3.12(ii) that (X,K,T) is an embedding of (3.17).

Next, we consider an embedding for strongly monotone problems.

Example 3.22 Let d ∈ ]0, +∞[, let 0 < ? ∈ N, let I ∈ H , and let � : H → 2H

be maximally monotone. For every : ∈ {1, . . . , ?}, let �: : G: → 2G: and
�: : G: → 2G: be maximally monotone, and suppose that 0 ≠ !: ∈ B(H ,G:).
The problem is to

find G ∈ H such that I ∈ �G +
?∑

:=1

!∗:
(
(�: ��:) (!:G)

)
+ dG. (3.32)

Let X = G1 ⊕ · · · ⊕ G?, let

M : X → 2X

(H∗1, . . . , H
∗
?) ↦→

(
−!1

(
��/d

(
1

d

(
I −

?∑

:=1

!∗:H
∗
:

)))
+ �−1

1 H∗1 + �−1
1 H∗1

)

× · · · ×
(
−!?

(
��/d

(
1

d

(
I−

?∑

:=1

!∗:H
∗
:

)))
+ �−1

? H
∗
? +�−1

? H
∗
?

)
, (3.33)

and let

T : X → H : (H∗1, . . . , H∗?) ↦→ ��/d

(
1

d

(
I −

?∑

:=1

!∗:H
∗
:

))
. (3.34)

Then it follows from [151, Proposition 5.2(iii)] that (X,M,T) is an embedding of
(3.32).

Our last example concerns an embedding based on a saddle operator.

Example 3.23 In the setting of Problem 3.7, set X = H ⊕ G ⊕ G, let S be the
saddle operator of (3.25), and let T : X → H : (G, H, E∗) ↦→ G. Then it follows from
Lemma 3.13(iii) that (X,S,T) is an embedding of (3.7).

Additional examples of embeddings will be provided by Examples 7.9, 9.8, and
10.4.
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4 Two geometric convergence principles

4.1 Overview

The methodology of Framework 1.2 is to identify a target set / in a suitable Hilbert
space in such a way that every point in / yields a solution to the original problem
of interest. The algorithms we shall consider are Fejérian in the sense that every
iteration brings the current iterate closer to every point in / .

4.2 Fejér monotone scheme

Let us first recall some basic facts about weak and strong convergence in Hilbert
spaces.

Lemma 4.1 [37, Section 2.5] Let (G=)=∈N be a sequence in H and let G ∈ H .
Then the following hold:

(i) Let / be a nonempty subset of H . Suppose that W(G=)=∈N ⊂ / and that, for
every I ∈ / , (‖G= − I‖)=∈N converges. Then (G=)=∈N converges weakly to a
point in / .

(ii) G= ⇀ G ⇔
[
(G=)=∈N is bounded and W(G=)=∈N = {G}

]
.

(iii) G= → G ⇔
[
G= ⇀ G and lim ‖G=‖ 6 ‖G‖

]
.

Theorem 4.2 Let / be a nonempty closed convex subset of H , let (_=)=∈N be a
sequence of relaxation parameters in ]0, 2[, and let G0 ∈ H . Iterate (see Figure 4.1)

for = = 0, 1, . . .


�= is a closed half-space such that / ⊂ �=
?= = proj�=

G=
G=+1 = G= + _= (?= − G=).

(4.1)

Then the following hold:

(i) Fejér monotonicity: (∀I ∈ /) (∀= ∈ N) ‖G=+1 − I‖ 6 ‖G= − I‖.

(ii)
∑
=∈N _= (2 − _=)‖?= − G=‖2 < +∞.

(iii) Suppose that sup=∈N _= < 2. Then
∑
=∈N ‖G=+1 − G=‖2 < +∞.

(iv) Suppose that W(G=)=∈N ⊂ / . Then (G=)=∈N converges weakly to a point in
/ .
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Proof. Let I ∈ / . Then, for every = ∈ N, �= =
{
D ∈ H | 〈D − ?= | G= − ?=〉 6 0

}

and, since I ∈ �=, (4.1) yields

‖G=+1 − I‖2
= ‖G= − I‖2 + 2_=〈G= − I | ?= − G=〉 + _2

=‖?= − G=‖2

= ‖G= − I‖2 − _= (2 − _=)‖?= − G=‖2 + 2_=〈I − ?= | G= − ?=〉
6 ‖G= − I‖2 − _= (2 − _=)‖?= − G=‖2 (4.2)

= ‖G= − I‖2 − 2 − _=
_=

‖G=+1 − G=‖2 (4.3)

6 ‖G= − I‖2. (4.4)

(i): See (4.4).
(ii): Fix # ∈ N. Then (4.2) yields

#∑

==0

_= (2 − _=)‖?= − G=‖2
6 ‖G0 − I‖2 (4.5)

and we conclude by letting # → +∞.
(ii)⇒(iii): This follows from (4.3).
(iv): In view of (i), (‖G= − I‖)=∈N converges. The claim therefore follows from

Lemma 4.1(i).

Remark 4.3 In 1922, Fejér [191] studied the following problem: given a nonempty
closed set / ⊂ R# and a point H ∉ / , can one find a point G ∈ R# such that

(∀I ∈ /) ‖G − I‖ < ‖H − I‖. (4.6)

This led Motzkin and Schoenberg to adopt in [294] the terminology Fejér monotone
to describe sequences satisfying property (i) in Theorem 4.2. In their paper (see
also [3]), an algorithm was developed to solve systems of linear inequalities in
R
# by successive projections onto the half-spaces defining the polyhedral solution

set / , and Fejér monotonicity was shown to be an adequate tool to study the
convergence of this algorithm. Further analysis of Fejér monotonicity was proposed
in [66, 186, 187, 324, 325] and nowadays it constitutes a central tool to analyze the
asymptotic behavior of various algorithms [37].

Remark 4.4 In general, the convergence of (G=)=∈N to G ∈ / in Theorem 4.2(iv)
is only weak and, even if it were strong, there exists no rate of convergence on
(‖G= − G‖)=∈N, even in Euclidean spaces [39, 220, 397]. In particular, achieving
a linear rate of convergence, that is, securing the existence of ^ ∈ ]0, +∞[ and
d ∈ ]0, 1[ such that

(∀= ∈ N) ‖G= − G‖ 6 ^d=, (4.7)

36



�= = � (G=, ?=)

•

/

G=

•?=

Figure 4.1: Iteration = of the Fejérian algorithm (4.1).

requires stringent additional assumptions on the problem. In our inclusion context,
a typical assumption is strong monotonicity; see [37, Proposition 26.16] for an
example. In the broader context of Theorem 4.2(i), it is clear that (3� (G=))=∈N
decreases and that, for every = ∈ N and < ∈ N, ‖G= − G=+< ‖ 6 ‖G= − proj� G=‖ +
‖G=+< − proj� G=‖ 6 23� (G=). Hence, (4.7) will hold with ^ = 23� (G0) if the
decreasing property can be strengthened to (∀= ∈ N) 3� (G=+1) 6 d3� (G=).

Remark 4.5 The implementation of (4.1) is said to be unrelaxed if (∀= ∈ N)
_= = 1.

4.3 Haugazeau-like scheme

Theorem 4.2 guarantees only weak convergence to an unspecified point in / and,
as will be seen on several occasions later, strong convergence fails in general (many
of these examples will be based on a scenario of [230] concerning the method of al-
ternating projections). However, in some infinite-dimensional applications in areas
such as inverse problems, control, mechanics, PDEs, optics, and analog computing,
weak convergence does not offer sufficient guarantees and strong convergence is
required. The geometric approach described in this section emanates from ideas
found in the work of Haugazeau on the convex feasibility problem [224, 225]. It
will provide strong convergence to a specific point in / , namely the projection of
the initial point onto / . This means that the resulting algorithm is also of interest,
even in Euclidean spaces, as a best approximation method.
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The following technical fact will be employed repeatedly.

Lemma 4.6 ([225, Théorème 3-1]; see also [37, Corollary 29.25]) Let (G, H, I) ∈
H 3. Define

� (G, H) =
{
I ∈ H | 〈I − H | G − H〉 6 0

}
, (4.8)

� = � (G, H) ∩ � (H, I), and, if � ≠ ∅,

Q(G, H, I) = proj� G. (4.9)

Set j = 〈G − H | H − I〉, ` = ‖G − H‖2, a = ‖H− I‖2, and d = `a− j2. Then exactly
one of the following holds:

(i) d = 0 and j < 0, in which case � = ∅.

(ii) [ d = 0 and j > 0 ] or d > 0, in which case � ≠ ∅ and

Q(G, H, I) =



I, if d = 0 and j > 0;

G + (1 + j/a) (I − H), if d > 0 and ja > d;

H + (a/d)
(
j(G − H) + `(I − H)

)
, if d > 0 and ja < d.

(4.10)

The essential components of the following theorem are found in the unpublished
thesis of Haugazeau [225] (see [224] for a preliminary variant), where he considered
the specific problem of projecting a point onto the intersection of finitely many sets
using their individual projection operators cyclically.

Theorem 4.7 Let / be a nonempty closed convex subset of H , let (_=)=∈N be a
sequence of relaxation parameters in ]0, 1], and let G0 ∈ H . Iterate (see Figure 4.2)

for = = 0, 1, . . .


�= is a closed half-space such that / ⊂ �=
?= = proj�=

G=
A= = G= + _= (?= − G=)
G=+1 = Q(G0, G=, A=).

(4.11)

Then the sequence (G=)=∈N is well defined and the following hold:

(i) (∀= ∈ N) / ⊂ � (G0, G=) ∩ � (G=, A=).

(ii) (∃ ℓ ∈ [0, +∞[) ‖G= − G0‖ ↑ ℓ 6 3/ (G0).

(iii)
∑
=∈N ‖G=+1 − G=‖2 < +∞.

(iv)
∑
=∈N _

2
=‖?= − G=‖2 < +∞.
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(v) Suppose that W(G=)=∈N ⊂ / . Then (G=)=∈N converges strongly to proj/ G0.

Proof. First, recall that the projector onto a nonempty closed convex subset � of
H is characterized by [37, Theorem 3.16]

(∀G ∈ H) proj� G ∈ � and � ⊂ � (G, proj� G). (4.12)

We also observe that (4.11) implies that

(∀= ∈ N) � (G=, ?=)
=

{
I ∈ H | 〈I − ?= | G= − A=〉 6 0

}

=
{
I ∈ H | 〈I − A= | G= − A=〉 6 〈?= − A= | G= − A=〉

}

=
{
I ∈ H | 〈I − A= | G= − A=〉 6 −_= (1 − _=)‖G= − ?=‖2

}

⊂ � (G=, A=). (4.13)

(i): Let = ∈ N be such that G= exists. It follows from (4.11) and (4.13)
that / ⊂ �= = � (G=, ?=) ⊂ � (G=, A=). It is therefore enough to show that
/ ⊂ � (G0, G=). This inclusion certainly holds for = = 0 since � (G0, G0) = H .
Furthermore, it follows from (4.12) and (4.11) that

/ ⊂ � (G0, G=) ⇒ / ⊂ � (G0, G=) ∩ � (G=, A=)
⇒ / ⊂ �

(
G0,Q(G0, G=, A=)

)

⇔ / ⊂ � (G0, G=+1), (4.14)

which establishes the assertion by induction. This also shows that � (G0, G=) ∩
� (G=, A=) ≠ ∅ and hence that G=+1 is well defined.

(ii)–(iii): Let = ∈ N. By construction, G=+1 = Q(G0, G=, A=) ∈ � (G0, G=) ∩
� (G=, A=). Consequently, since G= is the projection of G0 onto � (G0, G=) and
G=+1 ∈ � (G0, G=), we have ‖G0 − G=‖ 6 ‖G0 − G=+1‖. On the other hand, since
proj/ G0 ∈ / ⊂ � (G0, G=), we have ‖G0 − G=‖ 6 ‖G0 − proj/ G0‖. It follows that
(‖G0 − G: ‖):∈N converges to some ℓ ∈ [0, ‖G0 − proj/ G0‖], which establishes (ii),
and that

lim ‖G0 − G: ‖ 6 ‖G0 − proj/ G0‖. (4.15)

However, since G=+1 ∈ � (G0, G=), we have

‖G=+1 − G=‖2
6 ‖G=+1 − G=‖2 + 2〈G=+1 − G= | G= − G0〉
= ‖G0 − G=+1‖2 − ‖G0 − G=‖2. (4.16)

Hence,

=∑

:=0

‖G:+1 − G: ‖2
6 ‖G0 − G=+1‖2

6 ‖G0 − proj/ G0‖2 (4.17)
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and therefore
∑

:∈N
‖G:+1 − G: ‖2 < +∞. (4.18)

(iv): For every = ∈ N, we derive from the inclusion G=+1 ∈ � (G=, A=) that

‖A= − G=‖2
6 ‖G=+1 − A=‖2 + ‖G= − A=‖2

6 ‖G=+1 − A=‖2 + 2〈G=+1 − A= | A= − G=〉 + ‖G= − A=‖2

= ‖G=+1 − G=‖2. (4.19)

Hence, by (iii) and (4.11),
∑

=∈N
_2
=‖?= − G=‖2

=

∑

=∈N
‖A= − G=‖2 < +∞. (4.20)

(v): Let us note that (ii) implies that (G=)=∈N is bounded. Now let G ∈
W(G=)=∈N, say G:= ⇀ G. Then, by weak lower semicontinuity of ‖ · ‖ [37,
Lemma 2.42] and (ii),

‖G0 − G‖ 6 lim ‖G0 − G:= ‖ 6 ‖G0 − proj/ G0‖ = inf
I∈/

‖G0 − I‖. (4.21)

Hence, since G ∈ / , G = proj/ G0 is the only weak sequential cluster point of
(G=)=∈N and it follows from Lemma 4.1(ii) that G= ⇀ proj/ G0. In turn, (ii) yields

‖G0 − proj/ G0‖ 6 lim ‖G0 − G=‖ = lim ‖G0 − G=‖ 6 ‖G0 − proj/ G0‖. (4.22)

Thus, G0 − G= ⇀ G0 − proj/ G0 and ‖G0 − G=‖ → ‖G0 − proj/ G0‖. We therefore
derive from Lemma 4.1(iii) that G0 − G= → G0 − proj/ G0, i.e., G= → proj/ G0.

4.4 Graph-based cuts

We consider the problem of finding a zero of a maximally monotone operator
" : H → 2H decomposed as " = , + �, where , : H → 2H is maximally
monotone and � : H → H is cocoercive, using the geometric principles of The-
orems 4.2 and 4.7. To this end, we shall construct half-spaces by selecting points
in the graph of , . Let us start with a weak convergence result.

Theorem 4.8 Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H , and
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�= = � (G=, ?=) � (G0, G=)

•

/

G0
G=

•

•

•

?=

G=+1

Figure 4.2: Iteration = of the Haugazeau-like algorithm (4.11) with _= = 1.

let (_=)=∈N be a sequence in ]0, 2[. Iterate

for = = 0, 1, . . .


(F=, F∗
=) ∈ gra,, @= ∈ H

C∗= = F
∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @= ‖2/(4U)

3= =




X=

‖C∗=‖2
C∗=, if X= > 0;

0, otherwise
G=+1 = G= − _=3= .

(4.23)

Then the following hold:

(i) (G=)=∈N is bounded.

(ii)
∑
=∈N _= (2 − _=)‖3=‖2 < +∞.

(iii) Suppose that F= − G= ⇀ 0, F= − @= → 0, and C∗= → 0. Then (G=)=∈N
converges weakly to a point in / .

Proof. We first observe that (4.23) is well defined since (∀= ∈ N) X= > 0 ⇒ C∗= ≠ 0.
It follows from Example 2.5 and Lemma 2.27(ii) that

, + � is maximally monotone, (4.24)
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and hence from (2.29) that / is a nonempty closed convex subset of H . Set

(∀= ∈ N) �= =

{
I ∈ H

���� 〈I − F= | C∗=〉 6
‖F= − @= ‖2

4U

}
(4.25)

and let I ∈ / . For every = ∈ N, since (I,−�I) ∈ gra, and (F=, F∗
=) ∈ gra, , it

results from the monotonicity of , that 〈F= − I | F∗
= + �I〉 > 0. Hence, since �

is U-cocoercive,

(∀= ∈ N) 〈I − F= | C∗=〉
= 〈I − F= | F∗

= + �@=〉
6 〈I − F= | �@= − �I〉 (4.26)

= 〈@= − F= | �@= − �I〉 + 〈I − @= | �@= − �I〉
6 〈@= − F= | �@= − �I〉 − U‖�@= − �I‖2 (4.27)

= 2

〈
@= − F=√

4U

����
√
U(�@= − �I)

〉
−

√U(�@= − �I)
2

=
‖F= − @=‖2

4U
−


√
U(�@= − �I) +

F= − @=√
4U


2

6
‖F= − @= ‖2

4U
. (4.28)

This shows that (∀= ∈ N) / ⊂ �=. In addition, it results from (4.23) and
Example 2.1 that

(∀= ∈ N) G=+1 = G= + _=
(
proj�=

G= − G=
)
, (4.29)

which corresponds to the setting of Theorem 4.2.
(i): This follows from Theorem 4.2(i).
(ii): This follows from Theorem 4.2(ii).
(iii): Let G ∈ W(G=)=∈N, say G:= ⇀ G. Then F:= = G:= + (F:= − G:=) ⇀ G.

On the other hand, since � is 1/U-Lipschitzian,

‖F∗
= + �F=‖ = ‖C∗= + �F= − �@=‖ 6 ‖C∗=‖ +

‖F= − @=‖
U

→ 0. (4.30)

In addition, since (F=, F∗
=)=∈N is in gra, , (F=, F∗

= + �F=)=∈N is in gra(, + �).
It then follows from (4.24) and Lemma 2.49 that G ∈ / . We conclude by invoking
Theorem 4.2(iv).

We now turn to strong convergence.
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Theorem 4.9 Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H , and
let (_=)=∈N be a sequence in ]0, 1]. Iterate

for = = 0, 1, . . .


(F=, F∗
=) ∈ gra,, @= ∈ H

C∗= = F
∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @= ‖2/(4U)

3= =




X=

‖C∗=‖2
C∗=, if X= > 0;

0, otherwise
A= = G= − _=3=
G=+1 = Q(G0, G=, A=),

(4.31)

where Q is defined in Lemma 4.6. Then the following hold:

(i) (G=)=∈N is bounded.

(ii)
∑
=∈N ‖G=+1 − G=‖2 < +∞.

(iii)
∑
=∈N _

2
=‖3=‖2 < +∞.

(iv) Suppose that F= − G= ⇀ 0, F= − @= → 0, and C∗= → 0. Then (G=)=∈N
converges strongly to proj/ G0.

Proof. Define (�=)=∈N as in (4.25) and note that (4.28) yields / ⊂ ⋂
=∈N �=.

Furthermore, we derive from (4.31) and Example 2.1 that (∀= ∈ N) A= = G= +
_= (proj�=

G= − G=). This places us in the setting of Theorem 4.7.
(i): This follows from Theorem 4.7(ii).
(ii): See Theorem 4.7(iii).
(iii): This follows from Theorem 4.7(iv).
(iv): As in the proof of Theorem 4.8(iii), W(G=)=∈N ⊂ / . The claim follows

from Theorem 4.7(v).

In the absence of the cocoercive operator �, we can choose (@=)=∈N = (F=)=∈N
in (4.23) and (4.31), and Theorems 4.8 and 4.9 simplify as follows.

Proposition 4.10 Let " : H → 2H be a maximally monotone operator such that
/ = zer " ≠ ∅, let G0 ∈ H , and let (_=)=∈N be a sequence in ]0, 2[. Iterate

for = = 0, 1, . . .


(<=, <∗
=) ∈ gra"

3= =




〈G= − <= | <∗
=〉

‖<∗
=‖2

<∗
=, if 〈G= − <= | <∗

=〉 > 0;

0, otherwise
G=+1 = G= − _=3= .

(4.32)
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Then the following hold:

(i)
∑
=∈N _= (2 − _=)‖3=‖2 < +∞.

(ii) Suppose that <= − G= ⇀ 0 and <∗
= → 0. Then (G=)=∈N converges weakly to

a point in / .

Proposition 4.11 Let " : H → 2H be a maximally monotone operator such that
/ = zer " ≠ ∅, let G0 ∈ H , and let (_=)=∈N be a sequence in ]0, 1]. Iterate

for = = 0, 1, . . .


(<=, <∗
=) ∈ gra"

3= =




〈G= − <= | <∗
=〉

‖<∗
=‖2

<∗
=, if 〈G= − <= | <∗

=〉 > 0;

0, otherwise
A= = G= − _=3=
G=+1 = Q(G0, G=, A=),

(4.33)

where Q is defined in Lemma 4.6. Then the following hold:

(i)
∑
=∈N _

2
=‖3=‖2 < +∞.

(ii) Suppose that <=− G= ⇀ 0 and <∗
= → 0. Then (G=)=∈N converges to strongly

to proj/ G0.

4.5 Warped resolvent cuts

Algorithms (4.23) and (4.31) are conceptual in the sense that they do not provide
an explicit mechanism to find points in the graph of, . In this section, we propose
implementable versions that pick points in gra, using the warped resolvents of
Lemma 2.42.

Theorem 4.12 Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H , and
let (_=)=∈N be a sequence in ]0, 2[. Further, for every = ∈ N, let *= : H → H
be an operator such that ran*= ⊂ ran(*= +, + �) and *= +, + � is injective.
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Iterate

for = = 0, 1, . . .


F= = �
*=

,+�G=
F∗
= = *=G= −*=F= − �F=

@= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @= ‖2/(4U)

3= =




X=

‖C∗=‖2
C∗=, if X= > 0;

0, otherwise
G=+1 = G= − _=3= .

(4.34)

Then the following hold:

(i)
∑
=∈N _= (2 − _=)‖3=‖2 < +∞.

(ii) Suppose that one of the following is satisfied:

(a)
∑
=∈N _= (2 − _=) = +∞ and (‖3=‖)=∈N converges;

(b) inf=∈N _= > 0 and sup _= < 2;

together with one of the following:

(c) F= − G= ⇀ 0, *=F= −*=G= → 0, and F= − @= → 0;

(d) @=− G= → 0 and there exist V1 ∈ ]1/(4U), +∞[ and V2 ∈ ]0, +∞[ such
that the kernels (*=)=∈N are V1-strongly monotone and V2 -Lipschitzian.

Then (G=)=∈N converges weakly to a point in / .

Proof. Lemma 2.42(i) indicates that (4.34) is governed by the scenario of The-
orem 4.8.

(i): See Theorem 4.8(ii).
(ii): A consequence of (i) under (ii)(a) or (ii)(b) is that

‖3=‖ → 0. (4.35)

Indeed, the claim is clear under (ii)(b) whereas, under (ii)(a), we have lim ‖3= ‖ = 0
and therefore lim ‖3=‖ = 0. Next, let us assume that (ii)(c) holds. Then it follows
from (4.34) and (2.32) that

(∀= ∈ N) ‖C∗=‖ = ‖*=F= −*=G= + �F= − �@=‖
6 ‖*=F= −*=G=‖ + ‖�F= − �@=‖ (4.36)

6 ‖*=F= −*=G=‖ +
‖F= − @=‖

U

→ 0. (4.37)
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In view of Theorem 4.8(iii), the claim is established. It remains to show that
(ii)(d)⇒(ii)(c). Because the operators (*= + , + �)=∈N are V1-strongly mono-
tone, the operators (*= +, + �)−1

=∈N are V1-cocoercive, hence 1/V1-Lipschitzian.
Consequently, since the operators (*=)=∈N are V2-Lipschitzian, the operators
(�*=

,+� )=∈N are V2/V1-Lipschitzian. Now let I ∈ / . Then we derive from (4.34)
and Lemma 2.42(ii) that

(∀= ∈ N) ‖F= − I‖ =
�*=

,+�G= − �
*=

,+� I
 6

V2

V1
‖G= − I‖. (4.38)

Appealing to Theorem 4.8(i), we infer that (F=)=∈N is bounded. Thus, since
@= − G= → 0 and � is 1/U-Lipschitzian, the sequences

(‖F=−G=‖)=∈N, (‖F=−@=‖)=∈N, and (‖�F=−�@=‖)=∈N are bounded. (4.39)

However, (4.36) entails that

(∀= ∈ N) ‖C∗=‖ 6 V2‖F= − G=‖ +
‖F= − @= ‖

U
, (4.40)

which verifies that (‖C∗=‖)=∈N is bounded. In turn, (4.34) and (4.35) imply that

lim X= 6 lim ‖C∗=‖ ‖3=‖ = 0. (4.41)

Moreover, for every = ∈ N, (4.34) yields

X= = 〈F= − G= | *=F= −*=G=〉 + 〈F= − G= | �F= − �@=〉 −
‖F= − @= ‖2

4U
> V1‖F= − G=‖2 + 〈F= − @= | �F= − �@=〉 + 〈@= − G= | �F= − �@=〉

− ‖F= − @= ‖2

4U

> V1

(
‖F= − @=‖2 + 2〈F= − @= | @= − G=〉 + ‖@= − G=‖2

)

+ U‖�F= − �@=‖2 + 〈@= − G= | �F= − �@=〉 −
‖F= − @=‖2

4U

>

(
V1 −

1

4U

)
‖F= − @=‖2 + V1

(
2〈F= − @= | @= − G=〉 + ‖@= − G=‖2

)

+ 〈@= − G= | �F= − �@=〉

>

(
V1 −

1

4U

)
‖F= − @=‖2

+ ‖@= − G=‖
(
V1‖@= − G=‖ − 2V1‖F= − @=‖ + ‖�F= − �@=‖

)
. (4.42)

Therefore, since ‖@=−G=‖ → 0, it follows from (4.39) and (4.41) that F=−@= → 0
and hence that F= − G= → 0. Since

‖*=F= −*=G=‖ 6 V2‖F= − G=‖ 6 V2(‖F= − @= ‖ + ‖@= − G=‖) → 0, (4.43)

46



the proof is complete.

Remark 4.13 In the special case when � = 0, (@=)=∈N = (F=)=∈N, and condi-
tions (ii)(b) and (ii)(c) are satisfied, Theorem 4.12(ii) is closely related to [95,
Theorem 4.2(ii)].

We conclude this section with the strongly convergent best approximation
companion algorithm resulting from Theorem 4.9.

Theorem 4.14 Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H , and
let (_=)=∈N be a sequence in ]0, 1]. Further, for every = ∈ N, let *= : H → H
be an operator such that ran*= ⊂ ran(*= +, + �) and *= +, + � is injective.
Iterate

for = = 0, 1, . . .


F= = �
*=

,+�G=
F∗
= = *=G= −*=F= − �F=

@= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @= ‖2/(4U)

3= =




X=

‖C∗=‖2
C∗=, if X= > 0;

0, otherwise
A= = G= − _=3=
G=+1 = Q(G0, G=, A=),

(4.44)

where Q is defined in Lemma 4.6. Then the following hold:

(i)
∑
=∈N _

2
=‖3=‖2 < +∞.

(ii) Suppose that one of the following is satisfied:

(a)
∑
=∈N _

2
= = +∞ and (‖3=‖)=∈N converges;

(b) inf=∈N _= > 0;

together with one of the following:

(c) F= − G= ⇀ 0, *=F= −*=G= → 0, and F= − @= → 0;

(d) @=− G= → 0 and there exist V1 ∈ ]1/(4U), +∞[ and V2 ∈ ]0, +∞[ such
that the kernels (*=)=∈N are V1-strongly monotone and V2 -Lipschitzian.

Then (G=)=∈N converges strongly to proj/ G0.
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Proof. In view of Lemma 2.42(i), (4.44) is an instance of (4.31) and we shall
therefore employ Theorem 4.9.

(i): See Theorem 4.9(iii).
(ii): It follows from (i) and (4.44) that 3= → 0. Indeed, this is evident under

(ii)(b) whereas, under (ii)(a), we have lim ‖3=‖ = 0 and therefore lim ‖3=‖ = 0.
Let us now assume that (ii)(c) holds. Then (4.37) is satisfied and we obtain the
assertion by invoking Theorem 4.9(iv). Finally, to show that (ii)(d)⇒(ii)(c), we
remark that Theorem 4.9(i) asserts that (G=)=∈N is bounded. Hence, we follow the
same pattern as in the proof of Theorem 4.12(ii)(d) to conclude.

5 The proximal point algorithm

5.1 Preview

The proximal point algorithm is an implicit method to construct a zero of a max-
imally monotone operator which goes back to a quadratic programming method
proposed in [49, Section 5.8]. In the nonlinear case, it first appeared in Lieutaud’s
work [259] (this fact seems to have been overlooked in the literature, see Re-
mark 6.1), then in [274, 275] for subdifferentials and in [339] for the general case.
Iteration = of the unrelaxed form of the algorithm can be interpreted as a backward
Euler discretization of the Cauchy problem [24, Section 3.2] (see Example 2.18)

{
G (0) = G0

−G′(C) ∈ "G (C), for a.e. C ∈ ]0, +∞[
(5.1)

with time step W= ∈ ]0, +∞[, that is,

G= − G=+1

W=
∈ "G=+1 (5.2)

or, equivalently, G=+1 = �W="G=.

5.2 Fejérian algorithm

The following theorem, which brings together results from [72, 179, 197, 214, 253,
274, 275, 339], will be derived from Theorem 4.12.

Theorem 5.1 Let " : H → 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let G0 ∈ H , let (_=)=∈N be a sequence in ]0, 2[, and let (W=)=∈N
be a sequence in ]0, +∞[. Iterate

(∀= ∈ N) G=+1 = G= + _=
(
�W="G= − G=

)
(5.3)

and suppose that one of the following holds:
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(i)
∑
=∈N _= (2 − _=) = +∞ and (∀= ∈ N) W= = 1.

(ii)
∑
=∈N W

2
= = +∞ and (∀= ∈ N) _= = 1.

(iii) inf=∈N _= > 0, sup=∈N _= < 2, and inf=∈N W= > 0.

Then ‖�W="G= − G=‖/W= → 0 and (G=)=∈N converges weakly to a point in / .

Proof. Let us apply Theorem 4.12 with

� = 0 and (∀= ∈ N) *= = W−1
= Id and @= = F=. (5.4)

We derive from (2.19) that the variables of the iterations (4.34) satisfy

(∀= ∈ N) C∗= =
G= − F=
W=

, X= = W=‖C∗=‖2, and 3= = G= − F=. (5.5)

Thus, the sequence (G=)=∈N produced by (5.3) coincides with that of (4.34). In
turn, Theorem 4.12(i) yields

∑

=∈N
_= (2 − _=)‖3=‖2 < +∞. (5.6)

We now show that one of conditions (ii)(a)–(ii)(b) and one of conditions (ii)(c)–
(ii)(d) of Theorem 4.12(ii) are fulfilled in each scenario. We also recall from (4.35)
that (ii)(a) and (ii)(b) in Theorem 4.12 each imply that

3= → 0. (5.7)

(i): Let us check that conditions (ii)(a) and (ii)(d) are fulfilled. For (ii)(a), it is
enough to show that (‖3=‖)=∈N decreases. To this end, set ) = 2�" − Id. Then
Lemma 2.34(iii) and (2.33) assert that ) is nonexpansive. Therefore, (5.5) yields

(∀= ∈ N) 2‖3=+1‖ = ‖)G=+1 − G=+1‖
= ‖)G=+1 − )G= + (1 − _=/2) ()G= − G=)‖
6 ‖G=+1 − G=‖ + (1 − _=/2)‖)G= − G=‖
= (_=/2)‖)G= − G=‖ + (1 − _=/2)‖)G= − G=‖
= 2‖3= ‖, (5.8)

as desired. For (ii)(d), note that (5.7) and (5.5) imply that @= − G= = F= − G= =

−3= → 0. In addition, it is clear from (5.4) that (*=)=∈N satisfies the required
conditions with V1 = V2 = 1.

(ii): Condition (ii)(b) holds. To show that (ii)(c) holds as well, we first infer
from (5.5) and (5.6) that

∑
=∈N W

2
=‖C∗=‖2 < +∞ and hence that F=−G= = −W=C∗= → 0.

Furthermore, since
∑
=∈N W

2
= = +∞, lim ‖C∗=‖ = 0. On the other hand, (∀= ∈ N)
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C∗= = W
−1
= (G= −F=) = W−1

= (G= − G=+1). Hence, using (2.18), the monotonicity of " ,
and the Cauchy–Schwarz inequality, we obtain

(∀= ∈ N) 0 6 〈F= − F=+1 | C∗= − C∗=+1〉/W=+1

= 〈G=+1 − G=+2 | C∗= − C∗=+1〉/W=+1

= 〈C∗=+1 | C∗= − C∗=+1〉
= 〈C∗=+1 | C∗=〉 − ‖C∗=+1‖2

6 ‖C∗=+1‖
(
‖C∗=‖ − ‖C∗=+1‖

)
, (5.9)

which shows that (‖C∗=‖)=∈N decreases. Altogether, *=G= −*=F= = C∗= → 0.
(iii): Condition (ii)(b) is assumed. Let us check (ii)(c). Since (5.5) and

(5.6) yield
∑
=∈N W

2
=‖C∗=‖2 < +∞, we have G= − F= = W=C

∗
= → 0. Finally, since

inf=∈N W= > 0, *=G= −*=F= = C∗= → 0.
We conclude the proof by noting that in all three cases above we have

‖�W="G= − G=‖/W= = ‖C∗=‖ → 0.

Remark 5.2 Let 5 ∈ Γ0 (H) and suppose that " = m 5 in Theorem 5.1. Then, as
seen in Example 2.12, " is maximally monotone and / = Argmin 5 . In this case,
the condition on (W=)=∈N in Theorem 5.1(ii) can be improved to

∑
=∈N W= = +∞

[72, Théorème 9].

5.3 Haugazeau-like algorithm

We employ Theorem 4.14 to obtain a strongly convergent variant of the proximal
point algorithm; see [35, 360] for related results. Examples of proximal point
iterations that fail to converge strongly are constructed in [41, 131, 221].

Theorem 5.3 Let " : H → 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let G0 ∈ H , let (_=)=∈N be a sequence in ]0, 1] such that
inf=∈N _= > 0, and let (W=)=∈N be a sequence in ]0, +∞[ such that inf=∈N W= > 0.
Iterate

(∀= ∈ N) G=+1 = Q
(
G0, G=, G= + _= (�W="G= − G=)

)
, (5.10)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. In Theorem 4.14, set � = 0 and (∀= ∈ N) *= = W−1
= Id and @= = F=.

Then (5.5) holds and the sequence (G=)=∈N produced by (5.10) coincides with
that of (4.44). In turn, Theorem 4.14(i) yields

∑
=∈N _

2
=‖3=‖2 < +∞. Therefore,

G= − F= = 3= → 0 and *=G= −*=F= = W−1
= 3= → 0. This confirms that condition

(ii)(c) in Theorem 4.14(ii) is fulfilled. Since condition (ii)(b) holds by assumption,
the proof is complete.
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5.4 Special cases and variants

As mentioned in Section 1, direct implementations of the proximal point algorithm
are limited due to the potential difficulty of evaluating the resolvents in (5.3) and
(5.10). As we shall see in this section, the proximal point framework can non-
etheless be an effective device to establish indirectly the convergence of algorithms
that can be identified, possibly in a different space, as an instance of (5.3). Early
examples in the context of inequality-constrained minimization problems are found
in [340], where a dual application of an approximate proximal point algorithm
was shown to yield a method of multipliers (also called the augmented Lagrangian
method) that extends some classical ones from [228] and [319] (see also [337]).
A primal-dual quadratically perturbed variant of this algorithm, known as the
proximal method of multipliers, was also introduced in [340] as an application of
an approximate proximal point algorithm to find saddle points of the Lagrangian
(see also [343, 352] and their bibliographies for recent work along these lines).
The applications described below reduce to implementations of the proximal point
algorithm that feature full operator splitting when several linear and nonlinear
operators are present in the original problem.

5.4.1 The Euler method

We derive from the proximal point algorithm a (forward) Euler method to find a
zero of a cocoercive operator.

Proposition 5.4 Let U ∈ ]0, +∞[ and let � : H → H be U-cocoercive, with
zer � ≠ ∅. Let (W=)=∈N be a sequence in ]0, 2U[ such that

∑
=∈N W= (2U−W=) = +∞

and let G0 ∈ H . Iterate

(∀= ∈ N) G=+1 = G= − W=�G=. (5.11)

Then (G=)=∈N converges weakly to a point in zer �.

Proof. Set " = (Id − U�)−1 − Id. Since U� is firmly nonexpansive with domain
H , Id−U� is likewise and Lemma 2.34(iii) asserts that " is maximally monotone.
On the other hand, zer" = zer �, �" = Id − U�, and hence (5.11) becomes

(∀= ∈ N) G=+1 = G= +_= (�"G=− G=), where _= = W=/U ∈ ]0, 2[ . (5.12)

Thus, since
∑
=∈N _= (2 − _=) = +∞, the claim follows from Theorem 5.1(i).

Remark 5.5 As just shown, the Euler method (5.11) is an instance of the proximal
point algorithm (5.3). Conversely, we can interpret the proximal point iterations in
the format

(∀= ∈ N) G=+1 = G= + _= (�"G= − G=), where _= ∈ ]0, 2[ (5.13)
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as an instance of (5.11). Indeed, let " : H → 2H be maximally monotone and set
� = 1" and (∀= ∈ N) W= = _=. Then, as seen in Example 2.7, zer" = zer � and
� is 1-cocoercive, while (2.21) implies that (5.13) reduces to (5.11).

The following example is about the gradient method (see [102, 157] for the
premises of this algorithm).

Example 5.6 Let U ∈ ]0, +∞[ and let 6 : H → R be convex, differentiable, and
such that ∇6 is 1/U-Lipschitzian, with Argmin 6 ≠ ∅. Let (W=)=∈N be a sequence
in ]0, 2U[ such that

∑
=∈N W= (2U − W=) = +∞ and let G0 ∈ H . Iterate

(∀= ∈ N) G=+1 = G= − W=∇6(G=). (5.14)

Then (G=)=∈N converges weakly to a point in Argmin 6.

Proof. Combine Lemma 2.2 and Proposition 5.4.

As noted in [38, Remark 4.8(ii)] in the context of Example 5.6, the conver-
gence in Proposition 5.4 can fail to be strong. The next result, which guarantees
strong convergence, is obtained by defining " and (_=)=∈N as in the proof of
Proposition 5.4 and using Theorem 5.3.

Proposition 5.7 Let U ∈ ]0, +∞[ and let � : H → H be U-cocoercive, with
zer � ≠ ∅. Let (W=)=∈N be a sequence in ]0, U] such that inf=∈N W= > 0 and let
G0 ∈ H . Iterate

(∀= ∈ N) G=+1 = Q
(
G0, G=, G= − W=�G=

)
, (5.15)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to projzer � G0.

5.4.2 Fixed point problem

We address the basic problem of constructing a fixed point of a nonexpansive
operator ) : H → H . The following result is derived as an instance of the
proximal point algorithm of Theorem 5.1 via the embedding of Example 3.16.

Proposition 5.8 Let U ∈ ]0, 1] and let ) : H → H be U-averaged. Suppose that
Fix) ≠ ∅, let (_=)=∈N be a sequence in ]0, 1/U[ such that

∑
=∈N _= (1−U_=) = +∞,

and let G0 ∈ H . Iterate

(∀= ∈ N) G=+1 = G= + _= ()G= − G=). (5.16)

Then (G=)=∈N converges weakly to a point in Fix) .
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Proof. We use the embedding of Example 3.16. Define M as in (3.26) and note
that �M = Id + (2U)−1() − Id). We therefore rewrite (5.16) as

(∀= ∈ N) G=+1 = G= + `= (�MG=−G=), where `= = 2U_= ∈ ]0, 2[ . (5.17)

Then
∑
=∈N `= (2 − `=) = +∞ and, appealing to Theorem 5.1(i), we conclude that

(G=)=∈N converges weakly to a point in zerM = Fix) .

In the case when U = 1, Proposition 5.8 is due to Groetsch [219] and (5.16) is
known as the Krasnosel’skiı̆–Mann iteration, owing to its connection with iterative
schemes proposed in [247] and [273], and it is a pillar of nonlinear numerical
functional analysis [37, 104, 168]. Here is a strongly convergent variant derived
from Theorem 5.3 (see [204] for an example of the failure of strong convergence
in Proposition 5.8).

Proposition 5.9 Let U ∈ ]0, 1] and let ) : H → H be U-averaged. Suppose that
Fix) ≠ ∅, let (_=)=∈N be a sequence in ]0, 1/(2U)] such that inf=∈N _= > 0, and
let G0 ∈ H . Iterate

(∀= ∈ N) G=+1 = Q
(
G0, G=, G= + _= ()G= − G=)

)
, (5.18)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to projFix) G0.

Proof. Define M as in (3.26), argue as in the proof of Proposition 5.8 to observe
that (5.18) is an instance of (5.10), and conclude by invoking Theorem 5.3.

5.4.3 Resolvent compositions

We focus on the inclusion problem of [132, Section 6], which is modeled by
resolvent compositions (see Example 2.40) and solvable via the proximal point
algorithm.

Proposition 5.10 Suppose that ! ∈ B(H ,G) satisfies 0 < ‖!‖ 6 1, let � : G →
2G be maximally monotone, let + ≠ {0} be a closed vector subspace of H , and let
W ∈ ]0, +∞[. Let ( be the set of solutions to the problem

find G ∈ + such that 0 ∈ �(!G) (5.19)

and let / be the set of solutions to the problem

find G ∈ H such that 0 ∈
(
proj+ �

(
! � (W�)

) )
G. (5.20)
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Then (5.20) is an exact relaxation of (5.19) in the sense that ( ≠ ∅⇒ / = (. Now
assume that / ≠ ∅, let (_=)=∈N be a sequence in ]0, 2[ such that

∑
=∈N _= (2−_=) =

+∞, and let G0 ∈ + . Iterate

for = = 0, 1, . . .


H= = !G=
@= = �W�H= − H=
I= = !

∗@=
G=+1 = G= + _= proj+ I=.

(5.21)

Then (G=)=∈N converges weakly to a point in / .

Proof. The exact relaxation claim is established in [132, Theorem 6.3(v)]. Now set
" = proj+ � (! � (W�)) and note that ‖ proj+ ‖ = 1 and proj∗+ = proj+ . Hence, it
follows from Example 2.31 that " is maximally monotone and from Example 2.40
that �" = proj+ ◦(IdH−!∗ ◦!+!∗ ◦�W� ◦!) ◦proj+ . Altogether, the convergence
result follows from Theorem 5.1(i)

Here is a strongly convergent algorithm based on the Haugazeau variant.

Proposition 5.11 Suppose that ! ∈ B(H ,G) satisfies 0 < ‖!‖ 6 1, let � : G →
2G be maximally monotone, let + ≠ {0} be a closed vector subspace of H , and let
W ∈ ]0, +∞[. Suppose that the set / of solutions to the problem

find G ∈ H such that 0 ∈
(
proj+ �

(
! � (W�)

) )
G (5.22)

is not empty. Let (_=)=∈N be a sequence in ]0, 1] such that inf=∈N _= > 0, and let
G0 ∈ + . Iterate

for = = 0, 1, . . .


H= = !G=
@= = �W�H= − H=
I= = !

∗@=
G=+1 = Q

(
G0, G=, G= + _= proj+ I=

)
,

(5.23)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. Arguing as in the proof of Proposition 5.10, this is an application of The-
orem 5.3 with " = proj+ � (! � (W�)) and (∀= ∈ N) W= = 1.

Below we recover the relaxation framework of [153] for signal reconstruction
in the presence of possibly inconsistent nonlinear observations.

Example 5.12 Let 0 < ? ∈ N, let W ∈ ]0, +∞[, and let + ≠ {0} be a closed
vector subspace of H . For every : ∈ {1, . . . , ?}, let G: be a real Hilbert space, let
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!: ∈ B(H ,G:), let l: ∈ ]0, +∞[, let �: : G: → G: be firmly nonexpansive, and
let A: ∈ G: . Consider the nonlinear reconstruction problem [153, Problem 1.1]

find G ∈ + such that
(
∀: ∈ {1, . . . , ?}

)
�: (!:G) = A: (5.24)

and the relaxed variational inequality problem [153, Problem 1.3]

find G ∈ + such that
?∑

:=1

l:!
∗
:

(
�: (!:G) − A:

)
∈ +⊥. (5.25)

Suppose that 0 <
∑?

:=1 l: ‖!: ‖
2
6 1 and that (5.25) admits solutions. Let G0 ∈ + ,

let (_=)=∈N be a sequence in ]0, 2[ such that
∑
=∈N _= (2 − _=) = +∞, and iterate

for = = 0, 1, . . .


for : = 1, . . . , ?⌊
H:,= = !:G=
@:,= = A: − �:H:,=

I= =
∑?

:=1 l:!
∗
:
@:,=

G=+1 = G= + _= proj+ I=.

(5.26)

Then (G=)=∈N converges weakly to a solution to (5.25).

Proof. Let G be the standard product vector space G1 × · · · × G?, with gen-
eric element y = (H:)16:6? , and equipped with the scalar product (y, y′) ↦→∑?

:=1 l: 〈H: | H′
:
〉. Further, set ! : H → G : G ↦→ (!1G, . . . , !?G) and

� : G → 2G : y ↦→
(
(Id−�1+A1)−1H1−H1

)
×· · ·×

(
(Id−�?+A?)−1H?−H?

)
. (5.27)

In this setting, (5.24) is a realization of (5.19), (5.25) of (5.20), and (5.26) of (5.21)
(see [132, Example 6.10] for details). The claim therefore results from Proposi-
tion 5.10.

5.4.4 The method of partial inverses

We go back to a formulation already touched upon in Problem 3.10. Given a
maximally monotone operator � : H → 2H and a closed vector subspace + of H ,
Spingarn considered in [362] the problem

find G ∈ + and G∗ ∈ +⊥ such that G∗ ∈ �G (5.28)

and solved it by applying the proximal point algorithm to the partial inverse �+ (see
Example 2.33). The resulting algorithm is called the method of partial inverses.
The following is a relaxed version of the convergence result of [362, Theorem 4.1(i)]
(see [7, Theorem 2.4]).
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Theorem 5.13 Let � : H → 2H be a maximally monotone operator, let + be a
closed vector subspace of H , and let (_=)=∈N be a sequence in ]0, 2[ such that∑
=∈N _= (2−_=) = +∞. Suppose that (5.28) has solutions, let G0 ∈ + , let G∗0 ∈ +⊥,

and iterate

for = = 0, 1, . . .


?= = ��(G= + G∗=)
?∗= = G= + G∗= − ?=
G=+1 = G= − _= proj+ ?

∗
=

G∗
=+1 = G∗= − _= proj+⊥ ?=.

(5.29)

Then the following hold:

(i) proj+ ?= − G= → 0 and proj+⊥ ?∗= − G∗= → 0.

(ii) There exists a solution (G, G∗) to (5.28) such that G= ⇀ G and G∗= ⇀ G∗.

Proof. Set

(∀= ∈ N) I= = G= + G∗= (5.30)

and note that, since (G=)=∈N lies in+ and (G∗=)=∈N lies in+⊥, (5.29) can be rewritten
as

for = = 0, 1, . . .


?= = ��(G= + G∗=)
?∗= = G= + G∗= − ?=
G=+1 = G= + _= (proj+ ?= − G=)
G∗
=+1 = G∗= + _= (proj+⊥ ?∗= − G∗=).

(5.31)

Thus,

(∀= ∈ N) proj+

(
I=+1 − I=
_=

+ I=
)
+ proj+⊥

(
I= −

(
I=+1 − I=
_=

+ I=
))

= proj+

(
I=+1 − I=
_=

+ I=
)
+ proj+⊥

(
I= − I=+1

_=

)

= proj+

(
G=+1 − G=

_=
+ G=

)
+ proj+⊥

(
G∗= − G∗=+1

_=

)

= proj+ ?= + proj+⊥ (G∗= − ?∗=)
= proj+ ?= + proj+⊥ (?= − G=)
= ?=

= ��I=. (5.32)
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Hence, it follows from (5.30), (5.31), and Example 2.38 that

(∀= ∈ N) I=+1 = I= + _=
(
��+

I= − I=
)
. (5.33)

Altogether, we derive from Theorem 5.1(i) that

��+
I= − I= → 0 (5.34)

and that there exists I ∈ zer �+ such that

I= ⇀ I. (5.35)

(i): In view of (5.31), (5.30), Example 2.38, and (5.34), we have

proj+ ?= − G= = proj+ (��+
I=) − G= = proj+

(
��+

I= − I=
)
→ 0 (5.36)

and

G∗= − proj+⊥ ?
∗
= = proj+⊥ (?= − G=) = proj+⊥ ��I= = proj+⊥

(
I= − ��+

I=
)
→ 0.

(5.37)

(ii): As seen above I ∈ zer �+ . Now set (G, G∗) = (proj+ I, proj+⊥ I). Then
Example 2.33(ii) guarantees that (G, G∗) solves (5.28). In addition, since proj+ and
proj+⊥ are linear and continuous, they are weakly continuous. We conclude that
G= = proj+ I= ⇀ proj+ I = G and G∗= = proj+⊥ I= ⇀ proj+⊥ I = G∗.

Example 5.14 In Theorem 5.13, let 5 ∈ Γ0 (H) be such that 0 ∈ sri(dom 5 − +),
set � = m 5 , and suppose that 5 admits minimizers over + . Then (5.28) amounts to
finding a solution to the Fenchel dual pair

minimize
G∈+

5 (G) and minimize
G∗∈+⊥

5 ∗(G∗). (5.38)

In this case, given G0 ∈ + and G∗0 ∈ +⊥, the method of partial inverses (5.29) iterates

for = = 0, 1, . . .


?= = prox 5 (G= + G∗=)
?∗= = G= + G∗= − ?=
G=+1 = G= − _= proj+ ?

∗
=

G∗
=+1 = G∗= − _= proj+⊥ ?=

(5.39)

and Theorem 5.13(ii) guarantees that there exists a primal-dual solution (G, G∗) of
(5.38) such that G= ⇀ G and G∗= ⇀ G∗.

57



Algorithm (5.29) has many applications in convex optimization, e.g., [231, 253,
256, 309, 362, 363, 364]. As shown in [344], it also constitutes the basic building
block of the progressive hedging algorithm in stochastic programming [345].

Although the method of partial inverses (5.29) is presented in the context of
the simple problem (5.28), it has far reaching ramifications. We present below
an application proposed in [7], where it is applied to Problem 3.11. In terms of
Framework 1.2, this approach can be seen as a rephrasing of Problem 3.11 as an
instance of (5.28) in X = H ⊕ G1 ⊕ · · · ⊕ G?.

Proposition 5.15 Let 0 < ? ∈ N, let � : H → 2H be maximally monotone, and,
for every : ∈ {1 . . . , ?}, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, and let !: ∈ B(H ,G:). Suppose that the set / of solutions
to the inclusion

find G ∈ H such that 0 ∈ �G +
?∑

:=1

!∗:
(
�: (!:G)

)
(5.40)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that

(
∃ G ∈ �−1

(
−

?∑

:=1

!∗:H
∗
:

)) (
∀: ∈ {1, . . . , ?}

)
!:G ∈ �−1

: H
∗
: . (5.41)

Let G0 ∈ H and let (_=)=∈N be a sequence in ]0, 2[ such that
∑
=∈N _= (2−_=) = +∞.

Set

* =

(
Id +

?∑

:=1

!∗: ◦ !:
)−1

(5.42)

and, for every : ∈ {1, . . . , ?}, let H∗
:,0 ∈ G: and set H:,0 = !:G0. Additionally, set

G∗0 = −
?∑

:=1

!∗:H
∗
:,0, (5.43)
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and iterate

for = = 0, 1, . . .


?= = ��(G= + G∗=)
?∗= = G= + G∗= − ?=
for : = 1, . . . , ?⌊
@:,= = ��:

(H:,= + H∗:,=)
@∗
:,=

= H:,= + H∗:,= − @:,=
C= = *

(
?∗= +

∑?

:=1 !
∗
:
@∗
:,=

)

F= = *
(
?= +

∑?

:=1 !
∗
:
@:,=

)

G=+1 = G= − _=C=
G∗
=+1 = G∗= + _= (F= − ?=)

for : = 1, . . . , ?⌊
H:,=+1 = H:,= − _=!: C=
H∗
:,=+1 = H∗

:,=
+ _= (!:F= − @:,=).

(5.44)

Then there exist G ∈ / and (H∗
:
)16:6? ∈ /∗ such that G= ⇀ G and, for every

: ∈ {1, . . . , ?}, H∗
:,=

⇀ H∗
:
.

Proof. Define




G = G1 ⊕ · · · ⊕ G?
� : G → 2G : (H1, . . . , H?) ↦→ �1H1 × · · · × �?H?
! : H → G : G ↦→ (!1G, . . . , !?G)

(5.45)

and note that !∗ : G → H : (H∗1, . . . , H
∗
?) ↦→ !∗1H

∗
1 + · · · + !∗?H∗?. Moreover set,

for every = ∈ N, @= = (@:,=)16:6? , @∗= = (@∗
:,=

)16:6? , H= = (H:,=)16:6? , and
H∗= = (H∗

:,=
)16:6? . In this setting, � is maximally monotone and �� : (H:)16:6? ↦→

(��:
H:)16:6? (Example 2.37), so that (5.44) can be rewritten as

for = = 0, 1, . . .


?= = ��(G= + G∗=)
@= = �� (H= + H∗=)
?∗= = G= + G∗= − ?=
@∗= = H= + H∗= − @=
C= = *

(
?∗= + !∗@∗=

)

F= = *
(
?= + !∗@=

)

G=+1 = G= − _=C=
H=+1 = H= − _=!C=
G∗
=+1 = G∗= + _= (F= − ?=)
H∗
=+1 = H∗= + _= (!F= − @=).

(5.46)
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Let us introduce




X = H ⊕ G
\ =

{
(G, H) ∈ X | !G = H

}

` =
{
(G, H∗) ∈ X | −!∗H∗ ∈ �G and H∗ ∈ �(!G)

}

G : X → 2X : (G, H) ↦→ �G × �H
Y =

{
(x, x∗) ∈ \ ×\⊥ | x∗ ∈ Gx

}

(5.47)

and observe that
{
\⊥ =

{
(G∗, H∗) ∈ X | G∗ = −!∗H∗

}

Y =
{(
(G, !G), (−!∗H∗, H∗)

)
∈ X × X | (G, H∗) ∈ `

}
.

(5.48)

Then Lemma 3.12(iii) implies that

(5.40) admits solutions ⇔ ` ≠ ∅ ⇔ Y ≠ ∅. (5.49)

Now define (∀= ∈ N) p= = (?=, @=), p∗= = (?∗=, @∗=), x= = (G=, H=), and x∗= =

(G∗=, H∗=). Then x0 ∈ \ and x∗0 ∈ \⊥. Moreover, by Lemma 2.24 and Example 2.37,
G is maximally monotone and

(∀= ∈ N) �G (x= + x∗=) =
(
��(G= + G∗=), �� (H= + H∗=)

)
. (5.50)

Furthermore, since * = (Id + !∗ ◦ !)−1, it follows from (5.47) and [37, Ex-
ample 29.19] that

(∀= ∈ N) proj\⊥ p= =
(
?= −* (?= + !∗@=), @= − !

(
* (?= + !∗@=)

))
(5.51)

and

(∀= ∈ N) proj\ p∗= =
(
* (?∗= + !∗@∗=), !

(
* (?∗= + !∗@∗=)

) )
. (5.52)

Combining (5.50), (5.51), and (5.52), we rewrite (5.46) as

for = = 0, 1, . . .


p= = �G (x= + x∗=)
p∗= = x= + x∗= − p=
x=+1 = x= − _= proj\ p∗=
x∗
=+1 = x∗= − _= proj\⊥ p=.

(5.53)

In turn, Theorem 5.13(ii) implies that there exists (x, x∗) ∈ Y such that x= ⇀ x

and x∗= ⇀ x∗. We then derive from (5.48) that there exists (G, H∗) ∈ ` such that
(G=, H∗=) ⇀ (G, H∗). We complete the proof by invoking Lemma 3.12(ii).
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5.4.5 Renorming

The potency of the proximal point algorithm can be further extended by setting it
up in a renormed space. In terms of Framework 1.2, the guiding principle lies in
the embedding of Example 3.15. Here is a weak convergence result.

Proposition 5.16 Let " : H → 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let * ∈ B(H) be a self-adjoint strongly monotone operator, and
let X be the real Hilbert space obtained by endowing H with the scalar product
(G, H) ↦→ 〈*G | H〉. Let G0 ∈ H , let (_=)=∈N be a sequence in ]0, 2[, and let (W=)=∈N
be a sequence in ]0, +∞[. Iterate

for = = 0, 1, . . .


D= = W
−1
= *G=

?= =
(
W−1
= * + "

)−1
D=

G=+1 = G= + _= (?= − G=)

(5.54)

and suppose that one of the following holds:

(i)
∑
=∈N _= (2 − _=) = +∞ and (∀= ∈ N) W= = 1.

(ii)
∑
=∈N W

2
= = +∞ and (∀= ∈ N) _= = 1.

(iii) inf=∈N _= > 0, sup=∈N _= < 2, and inf=∈N W= > 0.

Then (G=)=∈N converges weakly to a point in / .

Proof. In view of Lemma 2.25(ii) and Example 2.39, (5.54) is just the prox-
imal point algorithm (5.3) applied to the maximally monotone operator *−1 ◦ "
in X. Since weak convergences in H and X coincide, the claims follow from
Lemma 2.25(i) and Theorem 5.1.

Remark 5.17 In terms of the warped resolvent of Section 2.4.3, the update in
(5.54) can be written as G=+1 = G= + _= (�*W="G= − G=).

Likewise, Theorem 5.3 leads to a strongly convergent algorithm.

Proposition 5.18 Let " : H → 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let * ∈ B(H) be a self-adjoint strongly monotone operator, and
let X be the real Hilbert space obtained by endowing H with the scalar product
(G, H) ↦→ 〈*G | H〉. Let G0 ∈ H , let (_=)=∈N be a sequence in ]0, 1] such that
inf=∈N _= > 0, and let (W=)=∈N be a sequence in ]0, +∞[ such that inf=∈N W= > 0.
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Iterate

for = = 0, 1, . . .


D= = W
−1
= *G=

?= =
(
W−1
= * + "

)−1
D=

G=+1 = Q
(
G0, G=, G= + _= (?= − G=)

)
,

(5.55)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. It follows from Lemma 2.25(ii) and Example 2.39 that applying the al-
gorithm (5.10) to the maximally monotone operator *−1 ◦ " in X yields (5.55).
Since strong convergences in H and X coincide, the assertion follows from
Lemma 2.25(i) and Theorem 5.3.

Although the inversion of the operators (W−1
= * + ")=∈N in (5.54) and (5.55)

may be intimidating, we show below that the renormed proximal point algorithm
leads to important instances of fully executable splitting algorithms. First, we
revisit a classical minimization problem and recover an algorithm known as the
proximal Landweber method.

Example 5.19 Let i ∈ Γ0 (H), let ` ∈ ]0, +∞[, and let H ∈ G. Suppose that
0 ≠ ! ∈ B(H ,G) and that the set / of solutions to the optimization problem

minimize
G∈H

i(G) + `
2
‖!G − H‖2 (5.56)

is not empty. Without loss of generality (rescale), assume that `‖!‖2 < 1. Let
G0 ∈ H , let (_=)=∈N be a sequence in ]0, 2[ such that

∑
=∈N _= (2 − _=) = +∞, and

iterate

for = = 0, 1, . . .


D= = G= − `!∗ (!G=)
?= = proxi (D= + `!∗H)
G=+1 = G= + _= (?= − G=).

(5.57)

Then (G=)=∈N converges weakly to a point in / .

Proof. Set 5 = i − `〈· | !∗H〉, " = m (i + `‖! · −H‖2/2) = m 5 + `!∗ ◦ !, and
* = Id − `!∗ ◦ !. Then 5 ∈ Γ0 (H), " is maximally monotone with zer " = /

by virtue of Example 2.12, * ∈ B(H) is self-adjoint and strongly monotone, and
(* + ")−1 = prox 5 = proxi (· + `!∗H). Consequently, (5.57) is the implement-
ation of (5.54) with, for every = ∈ N, W= = 1, and Proposition 5.16(i) brings the
conclusion.

Next, we return to the primal-dual composite inclusion framework of Prob-
lem 3.7 and approach it via Framework 1.2 where, as discussed in Example 3.20,
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the embedding is based on X = H ⊕ G and the Kuhn–Tucker operator K of
Lemma 3.8.

Example 5.20 Let � : H → 2H and � : G → 2G be maximally monotone, and
let ! ∈ B(H ,G). Suppose that the set / of solutions to the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗
(
�(!G)

)
(5.58)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!
(
�−1(−!∗H∗)

)
+ �−1H∗. (5.59)

Let (_=)=∈N be a sequence in ]0, 2[ such that
∑
=∈N _= (2 − _=) = +∞, let G0 ∈ H ,

let H∗0 ∈ G, and let f ∈ ]0, +∞[ and g ∈ ]0, +∞[ be such that gf‖!‖2 < 1. Iterate

for = = 0, 1, . . .


G∗= = g!
∗H∗=

?= = �g�(G= − G∗=)
H= = f! (2?= − G=)
@∗= = �f�−1 (H∗= + H=)
G=+1 = G= + _= (?= − G=)
H∗
=+1 = H∗= + _= (@∗= − H∗=).

(5.60)

Then there exist G ∈ / and H∗ ∈ /∗ such that G= ⇀ G and H∗= ⇀ H∗.

Proof. Set X = H ⊕ G and

{
K : X → 2X : (G, H∗) ↦→

(
�G + !∗H∗

)
×

(
−!G + �−1H∗

)

[ : X → X : (G, H∗) ↦→
(
g−1G − !∗H∗,−!G + f−1H∗

)
.

(5.61)

As seen in Lemma 3.8(iii)–(iv), K is the maximally monotone Kuhn–Tucker op-
erator associated with (5.58)–(5.59) and to prove the claim it is enough to show
that (G=, H∗=)=∈N converges weakly to a point in zerK, which we shall derive
from Proposition 5.16(i). It is clear that [ ∈ B(X) is self-adjoint. Now set
V = 1 − √

fg‖!‖. Then, since gf‖!‖2 < 1, V ∈ ]0, 1[ and, for every (G, H∗) ∈ X,

63



the Cauchy–Schwarz inequality yields

〈[(G, H∗) | (G, H∗)〉X = g−1‖G‖2 − 2〈!G | H∗〉 + f−1‖H∗‖2

> g−1‖G‖2 − 2
√
gf‖!‖


G
√
g



H∗
√
f

 + f
−1‖H∗‖2

= g−1‖G‖2 − 2(1 − V)

G
√
g



H∗
√
f

 + f
−1‖H∗‖2

=

(
G
√
g

 −

H∗
√
f


)2

+ 2V


G
√
g



H∗
√
f



= (1 − V)
(
G
√
g

 −

H∗
√
f


)2

+ V
(
G
√
g


2

+

H∗
√
f


2)

> V
(
g−1‖G‖2 + f−1‖H∗‖2)

> Vmin{g−1, f−1}‖(G, H∗)‖2
X
, (5.62)

which confirms that [ is strongly monotone. It remains to show that (5.60) is
a realization of (5.54) with the above operators K and [. Define (∀= ∈ N)
x= = (G=, H∗=), p= = (?=, @∗=), and u= = [x=. Then we derive from (5.60) and
(2.18) that

(∀= ∈ N)
{
G= − ?= − g!∗H∗= ∈ g�?=
H∗= − @∗= + f! (2?= − G=) ∈ f�−1@∗=

(5.63)

This yields (∀= ∈ N) u= − [p= ∈ K p=, i.e., p= = ([ + K)−1u=. Altogether,
(5.60) corresponds to the iteration

for = = 0, 1, . . .


u= = [x=

p= =
(
[ +K

)−1
u=

x=+1 = x= + _= ( p= − x=),

(5.64)

which is precisely (5.54) with (∀= ∈ N) W= = 1.

Remark 5.21 Here are a few observations regarding Example 5.20.

(i) We have derived weak convergence from Proposition 5.16(i). Using items
(ii) or (iii) in Proposition 5.16 leads to alternative forms of (5.60) involving
proximal parameters (W=)=∈N.

(ii) It is straightforward to derive a strongly convergent best approximation vari-
ant of (5.60) from Proposition 5.18 by following the same pattern as in the
proof of Example 5.20, i.e., applying (5.55) to the operators K and [ of
(5.61).
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(iii) Algorithm (5.60) can be adapted to Problem 3.11 by applying it to the setting
of (5.45) and using Example 2.37.

(iv) Let 5 ∈ Γ0 (H) and 6 ∈ Γ0(G), and set � = m 5 and � = m6 in Example 5.20,
which corresponds to the primal-dual minimization setting of Problem 3.9.
The specialization of Example 5.20 to this minimization problem appears in
[155, Theorem 3.2], where (5.60) is called the Chambolle–Pock algorithm
because it collapses to the algorithm proposed in [113, Algorithm I] in
Euclidean spaces when (∀= ∈ N) _= = 1 (see [156] for variations on this
algorithm). The fact that the Chambolle–Pock algorithm is a renormed
proximal point algorithm was first observed in [227].

6 Douglas–Rachford splitting

6.1 Preview

The Douglas–Rachford splitting algorithm is an implicit alternating direction
method designed in [170] to solve the matrix equation �G + �G = 5 , where �
and � are positive-definite matrices arising from the discretization of partial dif-
ferentiation operators. It is described by the iteration process

for = = 0, 1, . . .⌊
G=+1/2 − G= + �G=+1/2 + �G= = 5

G=+1 − G= + �G=+1/2 + �G=+1 = 5 .

(6.1)

In 1968, Lieutaud [259] (see also [260]) proposed an infinite-dimensional nonlinear
generalization of the method by showing that (6.1) can be extended to single-valued
hemicontinuous monotone operators with dom � = dom � = H . In particular, he
established in [259] that, with the additional assumption that � or � is strongly
monotone, (G=)=∈N converges strongly to some G ∈ H which satisfies �G + �G =

5 . The investigation of the method for general set-valued maximally monotone
operators was initiated in [265], with subsequent improvements in [37, 42, 128,
179, 366]. See also [393] for further analysis.

To chart the path from the original Douglas–Rachford algorithm to its modern
version for monotone set-valued operators, let us go back to the matrix setting.
Upon eliminating the intermediate variables (G=+1/2)=∈N in (6.1) and noting that
��� = Id − ��, we obtain

(∀= ∈ N) G=+1 = ��
(
G= − ���(G= − �G= + 5 ) + 5

)

= ��
(
�G= + ��(G= − �G= + 5 )

)
. (6.2)
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Now set (∀= ∈ N) G= = ��H=. Then we derive from (6.2) that

(∀= ∈ N) H=+1 = ���H= + ��(��H= − ���H= + 5 )
= H= − ��H= + ��(2��H= − H= + 5 ), (6.3)

which leads to the recursion

for = = 0, 1, . . .


G= = ��H=
I= = ��(2G= − H= + 5 )
H=+1 = H= + I= − G=.

(6.4)

As noted in [265], unlike (6.1), this algorithm is well defined for arbitrary maximally
monotone set-valued operators and is now referred to as the Douglas–Rachford
splitting algorithm in this context.

Remark 6.1 In particular, upon setting � = 0 and 5 = 0 in (6.4) and assuming that
� : H → H is hemicontinuous and strongly monotone, it follows from Lieutaud’s
result [259] that the sequence (G=)=∈N generated by the recursion

(∀= ∈ N) G=+1 = ��G= (6.5)

converges strongly to a zero of �. This is actually the first instance of conver-
gence of the proximal point algorithm, which has been attributed to later work
in the literature. The case when � and � are gradients of convex functions was
also considered in [259] in connection with the minimization of the sum of two
differentiable convex functions.

6.2 Weak convergence

We present results for a form of the Douglas–Rachford algorithm (6.4) which
includes relaxation parameters and a dual inclusion problem.

Theorem 6.2 Let � : H → 2H and � : H → 2H be maximally monotone, let
(_=)=∈N be a sequence in ]0, 2[ such that

∑
=∈N _= (2 − _=) = +∞, and let W ∈

]0, +∞[. Suppose that the set / of solutions to the inclusion

find G ∈ H such that 0 ∈ �G + �G (6.6)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (6.7)

66



Let H0 ∈ H and iterate

for = = 0, 1, . . .


G= = �W�H=
G∗= = W

−1(H= − G=)
I= = �W�(2G= − H=)
H=+1 = H= + _= (I= − G=).

(6.8)

Then there exists H ∈ H such that H= ⇀ H. Now set G = �W�H and G∗ = W�H. Then
the following hold:

(i) G= ⇀ G ∈ / .

(ii) G∗= ⇀ G∗ ∈ /∗.

Proof. We rely on the embedding of Example 3.17. Set

'W� = 2�W�−Id, 'W� = 2�W�−Id, and M =

(
'W� ◦ 'W� + Id

2

)−1

−Id. (6.9)

Then it follows from (2.33) and Lemma 2.34(iii) that ('W� ◦ 'W� + Id)/2 is firmly
nonexpansive and that M is maximally monotone. In addition, [37, Proposi-
tion 26.1(iii)(b)] asserts that

∅ ≠ / = �W� (zerM), (6.10)

while [37, Proposition 26.1(iii)(c)] asserts that

∅ ≠ /∗
=
W�(zerM). (6.11)

Furthermore, we derive from (6.8) and (6.9) that

(∀= ∈ N) H=+1 = H= +
_=

2

(
'W�('W�H=) − H=

)
= H= +_=

(
�MH= − H=

)
, (6.12)

i.e., (H=)=∈N is constructed by the proximal point algorithm (5.3) for M. Since
(6.10) implies that zerM ≠ ∅, Theorem 5.1(i) asserts that

�MH= − H= → 0 and (∃ H ∈ zerM) H= ⇀ H. (6.13)

In turn, (6.10) yields G = �W�H ∈ / , while (6.8) yields

I= − G= = �W�(2G= − H=) − G= = �MH= − H= → 0. (6.14)

(i): Let us set

(∀= ∈ N) I∗= = W
−1(2G= − H= − I=). (6.15)
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Then (6.8) and (2.18) yield

(∀= ∈ N)



(I=, I∗=) ∈ gra �

(G=, G∗=) ∈ gra �

G= − I= = W(G∗= + I∗=).
(6.16)

Since Lemma 2.34(iii) asserts that �W� is nonexpansive,

(∀= ∈ N) ‖G= − G0‖ = ‖�W�H= − �W�H0‖ 6 ‖H= − H0‖. (6.17)

Hence, since (H=)=∈N is bounded, so is (G=)=∈N. Now take I ∈ W(G=)=∈N, say
G:= ⇀ I. Then it follows from (6.14), (6.13), (6.15), and (6.16) that

I:= ⇀ I, I∗:= ⇀ W−1 (I−H), I=−G= → 0, and I∗=+G∗= = W−1(G=−I=) → 0. (6.18)

In turn, Lemma 2.50 yields I ∈ zer(� + �) = / ,

(
I, W−1(I − H)

)
∈ gra �, and

(
I, W−1 (H − I)

)
∈ gra �. (6.19)

Hence, (2.18) implies that

I = �W�H. (6.20)

Thus, G = �W�H is the unique weak sequential cluster point of the bounded sequence
(G=)=∈N and therefore, by Lemma 4.1(ii), G= ⇀ G.

(ii): We have H= ⇀ H ∈ zerM and, by (i), G= ⇀ G. Hence, G∗= =

W−1 (H=−G=) ⇀ W−1 (H−G) = W�H = G∗. In view of (6.11), the proof is complete.

Remark 6.3 The convergence result of [265] is that, for the unrelaxed scheme (6.4),
(H=)=∈N converges weakly to a point H ∈ H such that �W�H ∈ / (see [127, 179] for
the relaxed case). In the special case when �W� is weakly sequentially continuous,
as is the case when H is finite-dimensional, G= = �W�H= ⇀ �W�H ∈ / . The key
fact that (G=)=∈N converges weakly to a point in zer(� + �) without any further
assumption was first proved in [366] in the unrelaxed case. Theorem 6.2 was
established in [37, Theorem 26.11]. The component of the proof given above up
to (6.13) exploits an idea from [179], that identifies the core iteration of (6.8) as an
instantiation of the proximal point algorithm.

Remark 6.4 Connections between the Douglas–Rachford algorithms and the
method of partial inverses of Section 5.4.4 are discussed in [251, Section 1]; see also
[179, Section 5] and [271]. Let us show that we can actually derive Theorem 5.13(ii)
from Theorem 6.2. Let (G=)=∈N, (G∗=)=∈N, (?=)=∈N and (?∗=)=∈N be the sequence
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generated by (5.29) and set (∀= ∈ N) H= = G= +G∗= and I= = proj+ (2?=− H=). Then
(5.29) yields

(∀= ∈ N) proj+ ?
∗
=+proj+⊥ ?= = proj+ (H=−?=)+?=−proj+ ?= = ?=−I=. (6.21)

Altogether,

(∀= ∈ N) ?= = ��H=, I= = proj+ (2?=−H=), and H=+1 = H=+_= (I=−?=). (6.22)

In view of Example 2.36, this recursion is precisely that of (6.8) for the operators
(#+ , �) with W = 1. We therefore derive the following from Theorem 6.2: (H=)=∈N
converges weakly to a point H ∈ H and, if we set G = ��H and G∗ = H − ��H,
then ?= ⇀ G ∈ zer(#+ + �) and, by Example 2.15, ?∗= ⇀ G∗ ∈ zer(#+⊥ + �−1).
Furthermore, (6.19)–(6.20) implies that (G,−G∗) = (G, G−H) ∈ gra #+ and (G, G∗) =
(G, H − G) ∈ gra �. Thus, Example 2.15 yields (G, G∗) ∈ gra #+ ∩ gra � and
(G, G∗) therefore solves (5.28). Finally, since [128, Equation (11)] asserts that
��H = proj+ H and since proj+ is weakly continuous, we have G= = proj+ (G=+G∗=) =
proj+ H= ⇀ proj+ H = G and G∗= = proj+⊥ H= ⇀ proj+⊥ H = H − proj+ H = G∗. Let
us add that, in this setting, the operator M of (6.9) is just the partial inverse �+ .

Remark 6.5 The many application areas of the Douglas–Rachford algorithm (in
its original two-operator form or transposed in product spaces) include road design
[40], equilibrium problems [73], biostatistics [142], signal recovery [143], traffic
theory [196], noise removal [365], and compressive sensing [398] (see also [261]
for additional references).

6.3 Strong convergence

As shown in [94, Counterexample 2], the convergence of (G=)=∈N in Theorem 6.2(i)
is only weak. The following version based on Theorem 5.3 furnishes strong
convergence.

Theorem 6.6 Let � : H → 2H and � : H → 2H be maximally monotone, suppose
that zer(� + �) ≠ ∅, let H0 ∈ H , let (_=)=∈N be a sequence in ]0, 1] such that
inf=∈N _= > 0, and let W ∈ ]0, +∞[. Iterate

for = = 0, 1, . . .


G= = �W�H=
G∗= = W

−1(H= − G=)
I= = �W�(2G= − H=)
H=+1 = Q

(
H0, H=, H= + _= (I= − G=)

)
,

(6.23)

where Q is defined in Lemma 4.6. Let / and /∗ be the sets of solutions to (6.6) and
(6.7), respectively. Then the following hold:
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(i) (G=)=∈N converges strongly to a point in / .

(ii) (G∗=)=∈N converges strongly to a point in /∗.

Proof. DefineM as in (6.9) and set H = projzerM H0, G = �W�H, and G∗ = W−1(H−G).
Then it follows from (6.10) that G ∈ / and from (6.11) that G∗ ∈ /∗. Additionally,
we derive from (6.23) that

(∀= ∈ N) H=+1 = Q
(
H0, H=, H= + _= (�MH= − H=)

)
. (6.24)

Hence, Theorem 5.3 yields H= → H and, by continuity of �W�, G= = �W�H= →
�W�H = G. Finally, G∗= = W

−1 (H= − G=) → W−1(H − G) = G∗.

Remark 6.7 The method of partial inverses of Theorem 5.13 may converge only
weakly [94, Counterexample 4]. A strongly convergent version can be designed
using Remark 6.4 and Theorem 6.6.

6.4 Special cases and variants

6.4.1 Minimization setting

We illustrate an application of the Douglas–Rachford algorithm to primal-dual
minimization.

Example 6.8 Let 5 ∈ Γ0 (H) and 6 ∈ Γ0 (H) be such that / = Argmin ( 5 +6) ≠ ∅
and 0 ∈ sri(dom 5 − dom 6). Set /∗ = Argmin ( 5 ∗ ◦ (−Id) + 6∗), let (_=)=∈N be a
sequence in ]0, 2[ such that

∑
=∈N _= (2 − _=) = +∞, let W ∈ ]0, +∞[, let H0 ∈ H ,

and iterate

for = = 0, 1, . . .


G= = proxW6 H=
G∗= = W

−1(H= − G=)
I= = proxW 5 (2G= − H=)
H=+1 = H= + _= (I= − G=).

(6.25)

Then it follows from Problem 3.9, Example 2.35, and Theorem 6.2 that there exists
(G, G∗) ∈ / × /∗ such that G= ⇀ G and G∗= ⇀ G∗.

Remark 6.9 Relations between the Douglas–Rachford algorithm (6.25) and other
methods have been noted in the literature.

(i) It is observed in [155, Section 3.1.1] that the Douglas–Rachford algorithm
(6.25) can be viewed as a limiting case of the Chambolle–Pock algorithm
(see Remark 5.21(iv)) by implementing it in the case when G = H , ! = Id,
and f = 1/g = W. Note, however, that this setting violates the condition
gf‖!‖2 < 1 used to prove weak convergence of (5.60) in Example 5.20.
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(ii) Consider the setting of Problem 3.9 and note that the primal minimization
problem (3.12) is equivalent to

minimize
(G,H) ∈gra !

5 (G) + 6(H). (6.26)

The (unscaled) augmented Lagrangian associated with (6.26) is the saddle
function (see Example 2.21) on (H ⊕ G) ⊕ G defined as

� : H ⊕ G ⊕ G → ]−∞, +∞]

(G, H, E∗) ↦→ 5 (G) + 6(H) + 〈!G − H | E∗〉 + 1

2
‖!G − H‖2. (6.27)

Iteration = of the alternating-direction method of multipliers (ADMM) con-
sists in minimizing � over G for H= and E∗= fixed to get G=, then over H for
G= and E∗= fixed to get H=+1, and then applying a proximal maximization step
with respect to the Lagrange multiplier E∗ for G= and H=+1 fixed to get E∗

=+1.
It was originally proposed in [208], refined in [198], and further developed
in [63, 179, 197, 209]. Given H0 ∈ G and E∗0 ∈ G, ADMM iterates

for = = 0, 1, . . .


G= ∈ Argmin
G∈H

(
5 (G) + 〈!G | E∗=〉 +

1

2
‖!G − H=‖2

)

3= = !G=

H=+1 = argmin
H∈G

(
6(H) − 〈H | E∗=〉 +

1

2
‖3= − H‖2

)

E∗
=+1 = E∗= + 3= − H=+1.

(6.28)

It should be emphasized that ADMM is not a splitting algorithm in our sense
since the computation of G= involves a minimization step which does not
separate 5 and !, and can therefore be hard to execute. This step is also set-
valued in general. Nonetheless, (6.28) can be interpreted as an application
of the Douglas–Rachford algorithm (6.25) to the functions 5 ∗ ◦ (−!∗) (here
again, note that 5 and ! are not separated and that the typically non-explicit
operator prox 5 ∗◦(−!∗ ) intervenes) and 6∗ present in the dual problem (3.13)
[197] (see also [179]). This is merely an algorithmic identification and not
a claim that ADMM converges. Convergence requires more restrictions on
the problem, for instance finite-dimensionality of H and G and invertibility
of !∗ ◦ ! in [179, Section 5]. For further analysis, see [28, 60, 347].

6.4.2 Peaceman–Rachford splitting

The first implicit alternating direction method [55] to solve the positive-definite
matrix equation �G + �G = 5 is the Peaceman–Rachford algorithm [307] (see also
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[169]). It is described by the iterative process

for = = 0, 1, . . .⌊
G=+1/2 − G= + �G=+1/2 + �G= = 5

G=+1 − G=+1/2 + �G=+1/2 + �G=+1 = 5 .

(6.29)

Using the same arguments used to transition from (6.1) to (6.4), we rewrite (6.29)
as

for = = 0, 1, . . .


G= = ��H=
I= = ��(2G= − H= + 5 )
H=+1 = H= + 2(I= − G=).

(6.30)

The strong convergence of (G=)=∈N to a solution to the equation �G + �G = 5 ,
where � and � are single-valued hemicontinuous monotone operators such that
dom � = dom � = H and � is strongly monotone, was established in [259] and,
with the additional assumption that H is finite-dimensional and the operators are
continuous, in [242].

Algorithm (6.30) was first considered for general maximally monotone set-
valued operators � and � in [265]. In the presence of a scaling parameter W ∈
]0, +∞[ and taking 5 = 0 without loss of generality, the Peaceman–Rachford
algorithm becomes

for = = 0, 1, . . .


G= = �W�H=
I= = �W�(2G= − H=)
H=+1 = H= + 2(I= − G=),

(6.31)

Upon defining M as in (6.9), we derive from (6.31) that

(∀= ∈ N) H=+1 = (2�M − Id)H=. (6.32)

We can view (6.31) as a limiting case of the Douglas–Rachford algorithm (6.8) in
which the relaxation parameters (_= )=∈N are allowed to be 2. This, of course, means
that (6.31) operates outside of the setting of Theorem 5.1 and hence of the geometric
framework of Theorem 4.2. As a result, the weak convergence of (H=)=∈N cannot
be guaranteed without additional assumptions since (6.32) amounts to iterating a
merely nonexpansive operator (see [265, Remark 6] for a counterexample). Strong
convergence of (G=)=∈N to a point in zer(� + �) takes place when � is strongly
monotone [265, Remark 2]. More generally, strong convergence occurs when � is
uniformly monotone on bounded sets or when int Fix(2�W� − Id) (2�W� − Id) ≠ ∅
[128, Remark 2.2(iv)].
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6.4.3 A three-operator splitting algorithm

An extension of the Douglas–Rachford algorithm (6.8) was proposed in [161] by
adding a cocoercive operator to the inclusion (6.6).

Proposition 6.10 Let g ∈ ]0, +∞[, let � : H → 2H and � : H → 2H be max-
imally monotone, and let � : H → H be g-cocoercive. Suppose that the set / of
solutions to the inclusion

find G ∈ H such that 0 ∈ �G + �G + �G (6.33)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −(� + �)−1(−G∗) + �−1G∗. (6.34)

Let W ∈ ]0, 2g[, set X = 2 − W/(2g), let (_=)=∈N be a sequence in ]0, X[ such that∑
=∈N _= (X − _=) = +∞, and let H0 ∈ H . Iterate

for = = 0, 1, . . .


G= = �W� H=
G∗= = W

−1(H= − G=)
A= = H= + W�G=
I= = �W�(2G= − A=)
H=+1 = H= + _= (I= − G=).

(6.35)

Then there exists H ∈ H such that H= ⇀ H. Now set G = �W�H and G∗ = W�H. Then
the following hold:

(i) G= ⇀ G ∈ / .

(ii) G∗= ⇀ G∗ ∈ /∗.

Proof. Remarkably, we can closely follow the proof of Theorem 6.2. The key
additional facts established in [161, Proposition 2.1 and Lemma 2.2] are that, for
U = 1/X,

) = �W�◦
(
2�W�−Id−W�◦�W�

)
+Id−�W� is U-averaged and / = �W� (Fix) ). (6.36)

We write the maximally monotone operator M of (3.26) as

M =

(
Id + 1

2U

(
�W� ◦

(
2�W� − Id − W� ◦ �W�

)
− �W�

))−1

− Id (6.37)

and, in view of Example 3.16 and (6.36), work with the embedding (H ,M, �W�)
of (6.33). Then ∅ ≠ / = �W� (zerM) and (H=)=∈N is produced by the proximal
point algorithm (∀= ∈ N) H=+1 = H= + `= (�MH= − H=), where `= = 2U_= ∈ ]0, 2[.
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Using Theorem 5.1(i), we infer that (H=)=∈N converges weakly to a point H ∈ zerM
and that �MH= − H= → 0. Hence, we derive from (6.36), (6.35), and (6.37) that

G = �W�H ∈ / 0=3 I= − G= = 2U(�MH= − H=) → 0, (6.38)

and hence that

‖�I= − �G=‖ 6 U−1‖I= − G=‖ → 0. (6.39)

(i): Set (∀= ∈ N) I∗= = W−1(2G= − I= − A=) +�I=. In view of (6.35) and (2.18),

(∀= ∈ N)



(I=, I∗=) ∈ gra(� + �)
(G=, G∗=) ∈ gra �

I∗= + G∗= = W−1(G= − I=) + �I= − �G=.
(6.40)

Next, fix I ∈ W(G=)=∈N, say G:= ⇀ I. Since H:= ⇀ H, it follows from (6.38),
(6.39), (6.40), and (6.35) that

I:= ⇀ I, I∗:= ⇀ W−1(I − H), I= − G= → 0, and I∗= + G∗= → 0. (6.41)

By applying Lemma 2.50 to the maximally monotone operators � + � (see Ex-
ample 2.5 and Lemma 2.27(ii)) and �, we deduce from (6.40) and (6.41) that
I ∈ zer(� + � + �) = / ,

(
I, W−1(I − H)

)
∈ gra(� + �), and

(
I, W−1(H − I)

)
∈ gra �. (6.42)

In turn, (2.18) asserts that I = �W�H, making G = �W�H the unique weak sequential
cluster point of (G=)=∈N which is bounded since (H=)=∈N is. By Lemma 4.1(ii),
G= ⇀ G.

(ii): Since H= ⇀ H and G= ⇀ G, we have G∗= = W−1 (H= − G=) ⇀ W−1(H − G) =
W�H = G∗ ∈ /∗ by (6.11).

Remark 6.11 Here are a few comments on Proposition 6.10.

(i) The conclusion of Proposition 6.10(i) was first established in [161, The-
orem 2.1.1(b)] with a different proof. See also [321] for a discussion and
connections with [322].

(ii) The duality result of Proposition 6.10(ii) is new.

(iii) A strongly convergent version of Proposition 6.10 can be obtained by adapt-
ing the proof of Theorem 6.6 to the presence of �, as was done above.

(iv) When � = 0, Proposition 6.10 produces the Douglas–Rachford setting of
Theorem 6.2. When � = 0, (6.35) yields a special case of the forward-
backward method of [154, Proposition 4.4(iii)] in which the proximal para-
meters are all equal to W.
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7 Tseng’s forward-backward-forward splitting

7.1 Preview

In Section 5.4.1, we have discussed a Euler method for finding a zero of a single-
valued operator � : H → H under a cocoercivity condition. Under the more
general assumption that � is monotone and V-Lipschitzian, the Euler method is
no longer appropriate, and we can use a scheme proposed by Antipin [12] and
Korpelevič [246] that involves a double activation of the operator �. Specifically,
in this method, W ∈ ]0, 1/V[ and G0 ∈ H are fixed and we iterate

for = = 0, 1, . . .


1∗= = W�G=
<= = G= − 1∗=
<∗
= = �<=

G=+1 = G= − W<∗
=.

(7.1)

Clearly, the sequence (<=, <∗
=)=∈N lies gra � and it is straightforward to see that, by

choosing (_=)=∈N suitably in (4.32), we obtain (7.1). The convergence properties
of the Antipin–Korpelevič method can therefore be deduced from the results of
Section 4.4 applied to �.

Tseng’s algorithm can be viewed as a generalization of (7.1) for the problem
of finding a zero of � + �, where � : H → 2H is maximally monotone and � is as
above. It is called the forward-backward-forward algorithm because it performs a
forward step on �, then a backward step on �, and finally another forward step on
�. We are going to derive the convergence of Tseng’s forward-backward-forward
splitting algorithm from the principles of Section 4.4 and, more precisely, from the
warped resolvent algorithm of Section 4.5.

7.2 Fejérian algorithm

We cast the forward-backward-forward algorithm as an instance of (4.34) and
then prove its weak convergence via Theorem 4.12. This result was originally
established in [375, Theorem 3.4(b)], where different arguments were used.

Theorem 7.1 Let V ∈ ]0, +∞[, let � : H → 2H be maximally monotone, let
� : H → H be monotone and V-Lipschitzian, and suppose that / = zer(� +
�) ≠ ∅. Let G0 ∈ H , let Y ∈ ]0, 1/(V + 1) [, and let (W=)=∈N be a sequence in
[Y, (1 − Y)/V]. Iterate

for = = 0, 1, . . .


1∗= = W=�G=
<= = �W=�(G= − 1∗=)
G=+1 = <= − W=�<= + 1∗= .

(7.2)

75



Then (G=)=∈N converges weakly to a point in / .

Proof. Our objective is to apply Theorem 4.12 with

, = � + �, � = 0, and (∀= ∈ N) *= = W−1
= Id − � and @= = F=. (7.3)

Since � = 0, let us rename (F=)=∈N as (<=)=∈N. Example 2.3 and Lemma 2.27(ii)
entail that, is maximally monotone. Moreover, a consequence of Lemma 2.48(i)–
(ii) is that

(∀= ∈ N) W=*= is Y-strongly monotone and 1/(2 − Y)-cocoercive. (7.4)

Additionally, we derive from [95, Proposition 3.9] that

(∀= ∈ N) ran*= ⊂ ran(*= +, + �) and *= +, + � is injective. (7.5)

We also observe that

(∀= ∈ N) �
*=

,+� = �
*=

�+� =
(
W−1
= Id+�

)
◦
(
W−1
= Id−�

)
= �W=�◦ (Id−W=�). (7.6)

Hence, the variables of (4.34) in this setting become

(∀= ∈ N)



<= = �W=�(G= − W=�G=)
C∗= = *=G= −*=<=
X= = 〈<= − G= | *=<= −*=G=〉.

(7.7)

Now set

(∀= ∈ N) _= =




W=‖C∗=‖2

X=
, if X= > 0;

Y, otherwise.
(7.8)

We derive from (7.4) that

(∀= ∈ N) X= = 〈<= − G= | *=<= −*=G=〉 > VY‖<= − G=‖2, (7.9)

which implies that

(∀= ∈ N) X= 6 0 ⇔ <= = G= ⇔ C∗= = 0. (7.10)

A consequence of (7.4) is that, if X= > 0,

Y

W=
6

‖*=<= −*=G=‖
‖<= − G=‖

6
‖*=<= −*=G=‖2

〈<= − G= | *=<= −*=G=〉
6

2 − Y
W=

(7.11)
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and we therefore obtain from (7.8) that

_= =
W=‖*=<= −*=G=‖2

〈<= − G= | *=<= −*=G=〉
∈ [Y, 2 − Y]. (7.12)

Hence, (4.34) and (7.10) yield

(∀= ∈ N) 3= =
W=

_=
C∗=. (7.13)

Consequently, the sequence (G=)=∈N produced by (7.2) coincides with that of (4.34).
We therefore appeal to Theorem 4.12(ii) to conclude since its condition (ii)(b) holds
thanks to (7.12), whereas its condition (ii)(d) holds thanks to (7.4) and the fact that
(W=)=∈N lies in [Y, (1 − Y)/V].

7.3 Haugazeau-like algorithm

We present a strongly convergent best approximation version of the forward-
backward-forward method based on Theorem 4.14.

Theorem 7.2 Let V ∈ ]0, +∞[, let � : H → 2H be maximally monotone, let
� : H → H be monotone and V-Lipschitzian, and suppose that / = zer(� +
�) ≠ ∅. Let G0 ∈ H , let Y ∈ ]0, 1/(V + 1) [, and let (W=)=∈N be a sequence in
[Y, (1 − Y)/V]. Iterate

for = = 0, 1, . . .


1∗= = W=�G=
<= = �W=�(G= − 1∗=)
A= =

1

2

(
G= + <= − W=�<= + 1∗=

)

G=+1 = Q(G0, G=, A=),

(7.14)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. We prove the claim as an application of Theorem 4.14 in the setting of (7.3).
Let us use the same variables as in (7.7) and

(∀= ∈ N) _= =




W=‖C∗=‖2

2X=
, if X= > 0;

Y/2, otherwise.
(7.15)

Then, using the same arguments as in the proof of Theorem 4.12, we see that
(_=)=∈N lies in [Y/2, 1] and that the sequence (G=)=∈N produced by (7.14) coin-
cides with that of (4.44). Since conditions (ii)(b) and (ii)(d) in Theorem 4.14(ii)
are fulfilled, we obtain the claim.
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7.4 Special cases and variants

7.4.1 The monotone+skew algorithm

The approach presented here was proposed in [76] to solve the monotone inclusion
(3.7) and it was the first algorithm to fully split the operators �, �, and !. Its
methodology conforms to the program of Framework 1.2: we use the embedding of
Example 3.20 to transfer the initial 3-operator problem (3.7) in the primal space H
to one involving the Kuhn–Tucker operatorK = S+Y of (3.10) in the larger primal-
dual space X = H ⊕ G. The algorithmic strategy per se is then straightforward:
since S is maximally monotone and Y is monotone and Lipschitzian, we can
apply Tseng’s forward-backward-forward algorithm (Theorem 7.1) in X to find a
Kuhn–Tucker point and hence a primal-dual solution.

We derive from Theorem 7.1 the weak convergence of the monotone+skew
algorithm of [76, Theorem 3.1(ii)] (we can derive a strongly convergent version
from Theorem 7.2 using the same arguments).

Proposition 7.3 Let � : H → 2H and � : G → 2G be maximally monotone, and
assume that 0 ≠ ! ∈ B(H ,G). Suppose that the set / of solutions to the primal
inclusion

find G ∈ H such that 0 ∈ �G + !∗
(
�(!G)

)
(7.16)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!
(
�−1(−!∗H∗)

)
+ �−1H∗. (7.17)

Let G0 ∈ H , let H∗0 ∈ G, let Y ∈ ]0, 1/(‖!‖ + 1) [, let (W=)=∈N be a sequence in
[Y, (1 − Y)/‖!‖ ], and set

for = = 0, 1, . . .


H1,= = G= − W=!∗H∗=
H∗2,= = H

∗
= + W=!G=

<1,= = �W=�H1,=

<∗
2,= = �W=�−1 H∗2,=

@1,= = <1,= − W=!∗<∗
2,=

@∗2,= = <∗
2,= + W=!<1,=

G=+1 = G= − H1,= + @1,=

H∗
=+1 = H∗= − H∗2,= + @∗2,= .

(7.18)

Then there exist G ∈ / and H∗ ∈ /∗ such that −!∗H∗ ∈ �G, H∗ ∈ �(!G), G= ⇀ G,
and H∗= ⇀ H∗.
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Proof. Set X = H ⊕G, define S and Y as in (3.9), and set (∀= ∈ N) x= = (G=, H∗=),
y= = (H1,=, H

∗
2,=), m= = (<1,=, <

∗
2,=), and q= = (@1,=, @

∗
2,=), Then, in view of

Example 2.37, (7.18) becomes

for = = 0, 1, . . .


y= = x= − W=Yx=
m= = �W=S y=
q= = m= − W=Ym=

x=+1 = x= − y= + q=,

(7.19)

which we rewrite as an instance of (7.2), namely,

for = = 0, 1, . . .


b∗= = W=Yx=
m= = �W=S (x= − b∗=)
x=+1 = m= − W=Ym= + b∗=.

(7.20)

It then follows from Theorem 7.1 and Lemma 3.8 that (x=)=∈N converges weakly
to a point in zer(S + Y) ⊂ / × /∗, as claimed.

Remark 7.4 The methodology of Theorem 7.1 is to find a Kuhn–Tucker point, i.e.,
a zero of S + Y. As noted in [76, Remark 2.9], this can also be achieved by using
the Douglas–Rachford algorithm (6.8) which, upon setting * = (Id + W2!∗ ◦ !)−1

and + = (Id + W2! ◦ !∗)−1, and taking W ∈ ]0, +∞[ and a sequence (_=)=∈N in
]0, 2[ such that

∑
=∈N _= (2 − _=) = +∞, assumes the form

for = = 0, 1, . . .


G= = * (H1,= − W!∗H∗2,=)
H∗= = + (H∗2,= + W!H1,=)
H1,=+1 = H1,= + _=

(
�W�(2G= − H1,=) − G=

)

H∗2,=+1 = H∗2,= + _=
(
�W�−1 (2H∗= − H∗2,=) − H∗=

)
.

(7.21)

Weak convergence of (G=, H∗=)=∈N to a point in / × /∗ follows from Theorem 6.2(i).
The numerical effectiveness of (7.21) depends on the ease of implementation of the
operators* and+ . This approach was rediscovered in [300] in an image restoration
application.

7.4.2 A Lagrangian approach to composite minimization

We revisit the setting of Problem 3.9, which was identified as an instance of
Problem 3.7 and can therefore be solved using (7.18) with � = m 5 and � =
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m6. Following [131, Section 4.5], we explore a different route which amounts to
employing the embedding (X,SL ,T), where X = H ⊕ G ⊕ G,

SL : X → 2X

(G, H, E∗) ↦→
(
m 5 (G) + !∗E∗

)
×

(
m6(H) − E∗

)
× {−!G + H} (7.22)

is the saddle operator of (3.24), and T : X → H : (G, H, E∗) ↦→ G. Let us write
SL = S + Y, where

{
S : (G, H, E∗) ↦→ m 5 (G) × m6(H) × {0}
Y : (G, H, E∗) ↦→

(
!∗E∗,−E∗,−!G + H

)
.

(7.23)

Then ‖Y‖ =
√

1 + ‖!‖2 and (∀= ∈ N) �W=S = proxW= 5 × proxW=6 × Id. Hence, ap-
plying Theorem 7.1 to this decomposition in X, we obtain the following realization
of Framework 1.2.

Proposition 7.5 Let 5 ∈ Γ0 (H), 6 ∈ Γ0 (G), and ! ∈ B(H ,G) be such that
0 ∈ sri(! (dom 5 ) − dom 6). Suppose that the primal problem

minimize
G∈H

5 (G) + 6(!G) (7.24)

admits solutions and consider the dual problem

minimize
E∗∈G

5 ∗ (−!∗E∗) + 6∗(E∗). (7.25)

Let (G0, H0, E
∗
0) ∈ H ⊕ G ⊕ G, let Y ∈ ]0, 1/(1 +

√
1 + ‖!‖2) [, and let (W=)=∈N be

a sequence in [Y, (1 − Y)/
√

1 + ‖!‖2]. Iterate

for = = 0, 1, . . .


A= = W= (!G= − H=)
<1,= = proxW= 5

(
G= − W=!∗E∗=

)

<2,= = proxW=6
(
H= + W=E∗=

)

G=+1 = <1,= − W=!∗A=
H=+1 = <2,= + W=A=
E∗
=+1 = E∗= + W=

(
!<1,= − <2,=

)
.

(7.26)

Then (G=)=∈N and (E∗=)=∈N converge weakly to solutions to (7.24) and (7.25),
respectively.
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Remark 7.6 Let (`=)=∈N be a sequence in [Y, (1 − Y)min{1, 1/‖!‖}/2]. Al-
gorithm (7.26) bears a certain resemblance with the iterative scheme

for = = 0, 1, . . .


?= = E
∗
= + `= (!G= − H=)

G=+1 = prox`= 5
(
G= − `=!∗?=

)

H=+1 = prox`=6
(
H= + `=?=

)

E∗
=+1 = E∗= + `=

(
!G=+1 − H=+1

)

(7.27)

proposed in [118] to solve (7.24)–(7.25) in a finite-dimensional setting.

Remark 7.7 In the finite-dimensional context of [177], the saddle operator (7.22)
was split as SL = S1 + S2, where

{
S1 : (G, H, E∗) ↦→

(
m 5 (G) + !∗E∗

)
× {0} × {−!G}

S2 : (G, H, E∗) ↦→ {0} ×
(
m6(H) − E∗

)
× {H}.

(7.28)

Given W ∈ ]0, +∞[, `1 ∈ R, `2 ∈ R, and (G0, H0, E
∗
0) ∈ H ⊕ G ⊕ G, applying the

Douglas–Rachford algorithm (6.8) to find a zero of S1+S2 leads to the algorithm
[177]

for = = 0, 1, . . .


G=+1 ∈ Argmin
G∈H

(
5 (G) + 〈!G | E∗=〉 +

1

2W
‖!G − H=‖2 +

W`2
1

2
‖G − G=‖2

)

H=+1 = argmin
H∈G

(
6(H) − 〈H | E∗=〉 +

1

2W
‖!G=+1 − H‖2 +

W`2
2

2
‖H − H=‖2

)

E∗
=+1 = E∗= + W−1

(
!G=+1 − H=+1

)
.

(7.29)

When `1 = `2 = 0, we recover the alternating direction method of multipliers
(ADMM) discussed in Remark 6.9(ii). Just like ADMM, (7.29) necessitates a
potentially complex minimization involving 5 and ! jointly to construct G=+1. By
contrast, (7.26) achieves full splitting of 5 , 6, and !.

Remark 7.8 In view of Example 3.23, the above saddle operator formalism can
be extended to the more general primal-dual inclusion pair of Problem 3.7. As
in Proposition 7.5, a zero (G, H, E∗) of the saddle operator S of (3.25) can be
constructed by executing (7.26), where proxW= 5 is replaced with �W=� and proxW=6
with �W=�. In this setting, the weak limits G and E∗ solve, respectively, the primal
inclusion (3.7) and the dual inclusion (3.8).
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7.4.3 Mixtures of composite, Lipschitzian, and parallel-sum operators

The Kuhn–Tucker operator of Lemma 3.8 employed in Section 7.4.1 can be ex-
pressed in block format as

K = S + Y =

[
� 0
0 �−1

]

︸      ︷︷      ︸
monotone

+
[

0 !∗

−! 0

]

︸      ︷︷      ︸
skew

. (7.30)

A Kuhn–Tucker point was obtained in Proposition 7.3 by applying the forward-
backward-forward algorithm (7.2) to S and Y. In doing so, we did not exploit the
linearity and skewness of Y, but just the fact that it is monotone and Lipschitzian.
Let us observe that, if we fill the diagonal of Y with monotone Lipschitzian operators
& : H → H and �−1 : G → G, we obtain a new monotone and Lipschitzian
operator W : X → X. In lieu of (7.30), we then consider the decomposition

K = S + W =

[
� 0
0 �−1

]

︸      ︷︷      ︸
monotone

+
[
& !∗

−! �−1

]

︸         ︷︷         ︸
monotone and Lipschitzian

. (7.31)

Using (2.62), we write

K =

[
� + & !∗

−! (���)−1

]
(7.32)

and interpret it as a variant of the Kuhn–Tucker operator (3.10) associated with
Problem 3.7 in which � is replaced with � +& and � with ���. In other words,
the primal inclusion is to

find G ∈ H such that 0 ∈ �G + !∗
(
(���) (!G)

)
+ &G (7.33)

and the dual inclusion is to

find H∗ ∈ G such that 0 ∈ −!
(
(� +&)−1(−!∗H∗)

)
+ �−1H∗ +�−1H∗ (7.34)

or, equivalently,

find H∗ ∈ G such that (∃ G ∈ H)
{
−!∗H∗ ∈ �G +&G
!G ∈ �−1H∗ + �−1H∗.

(7.35)

As in Lemma 3.8, for every (G, H∗) ∈ X,

(G, H∗) ∈ zerK ⇒
{
G solves (7.33)

H∗ solves (7.35)
(7.36)

and we therefore recover the embedding principle of Framework 1.2.
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Example 7.9 In the above setting, set X = H ⊕ G, let K be the Kuhn–Tucker
operator of (7.32), and let T : X → H : (G, H∗) ↦→ G. Then (X,K,T) is an
embedding of (7.33).

The primal-dual inclusion problem (7.33)–(7.34) was first investigated in [145],
where it was solved via Tseng’s forward-backward-forward algorithm. Here is [145,
Theorem 3.1(ii)(c)–(d)], which describes this approach when the operators !, �,
and � above are deployed in a product space G = G1 ⊕ · · · ⊕ G? in the spirit of
Problem 3.11 (further analysis of the asymptotic behavior of the method in special
cases can be found in [62]).

Proposition 7.10 Let 0 < ? ∈ N, let ` ∈ ]0, +∞[, let � : H → 2H be maximally
monotone, let & : H → H be monotone and `-Lipschitzian. For every : ∈
{1, . . . , ?}, let a: ∈ ]0, +∞[, let G: be a real Hilbert space, let �: : G: → 2G:

be maximally monotone, let �: : G: → 2G: be maximally monotone and such that
�−1
:

: G: → G: is a:-Lipschitzian, and assume that 0 ≠ !: ∈ B(H ,G:). Suppose
that the set / of solutions to the primal inclusion

find G ∈ H such that 0 ∈ �G +
?∑

:=1

!∗:
(
(�: ��:) (!:G)

)
+&G (7.37)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that

(∃ G ∈ H)
{
−∑?

:=1 !
∗
:
H∗
:
∈ �G +&G

(
∀: ∈ {1, . . . , ?}

)
!:G ∈ �−1

:
H∗
:
+ �−1

:
H∗
:
.

(7.38)

Set

V = max{`, a1, . . . , a?} +

√√
?∑

:=1

‖!: ‖2, (7.39)

let G0 ∈ H , let (H∗1,0, . . . , H
∗
?,0) ∈ G1 ⊕ · · · ⊕ G?, let Y ∈ ]0, 1/(V + 1) [, and let
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(W=)=∈N be a sequence in [Y, (1 − Y)/V]. Iterate

for = = 0, 1, . . .


H1,= = G= − W=
(
&G= +

∑?

:=1 !
∗
:
H∗
:,=

)

<1,= = �W=� H1,=

for : = 1, . . . , ?


H∗2,:,= = H∗
:,=

+ W=
(
!:G= − �−1

:
H∗
:,=

)

<∗
2,:,= = �W=�−1

:
H∗2,:,=

@∗2,:,= = <∗
2,:,= + W=

(
!:<1,= − �−1

:
<∗

2,:,=

)

H∗
:,=+1 = H∗

:,=
− H∗2,:,= + @

∗
2,:,=

@1,= = <1,= − W=
(
&<1,= +

∑?

:=1 !
∗
:
<∗

2,:,=

)

G=+1 = G= − H1,= + @1,= .

(7.40)

Then there exist G ∈ / and (H∗1, . . . , H∗?) ∈ /∗ such that G= ⇀ G, and, for every
: ∈ {1, . . . , ?}, H∗

:,=
⇀ H∗

:
.

Proof. The duality between (7.37) and (7.38) follows as in Problem 3.11, by
replacing � with � +& and (�−1

:
)16:6? with (�−1

:
+ �−1

:
)16:6? . Now set




G = G1 ⊕ · · · ⊕ G?
� : G → 2G : (H1, . . . , H?) ↦→ �1H1 × · · · × �?H?
� : G → 2G : (H1, . . . , H?) ↦→ �1H1 × · · · × � ?H?

! : H → G : G ↦→ (!1G, . . . , !?G),

(7.41)

define S and W as in (7.31), and set

(∀= ∈ N)
{
x= =

(
G=, H

∗
1,=, . . . , H

∗
?,=

)

m= =
(
<1,=, <

∗
2,1,= , . . . , <

∗
2, ?,=

)
.

(7.42)

Then S is maximally monotone and W is monotone and V-Lipschitzian [145,
Equation (3.11)] and, following the same steps as in the proof of Proposition 7.3,
we rewrite (7.40) as

for = = 0, 1, . . .


b∗= = W=Wx=
m= = �W=S (x= − b∗=)
x=+1 = m= − W=Wm= + b∗=

(7.43)

and conclude by invoking Theorem 7.1 and (7.36).

Remark 7.11 In (7.37), suppose that ? = 1, G1 = H , !1 = Id, �1 = �, �1 =

{0}−1, and zer(� + � + &) ≠ ∅. Let G0 ∈ H , let H∗0 ∈ H , let Y ∈ ]0, 1/(` + 2) [,
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and let (W=)=∈N be a sequence in [Y, (1 − Y)/(` + 1)]. Then we deduce from
Proposition 7.10 that the sequence (G=)=∈N generated by the iterations

for = = 0, 1, . . .


H= = G= − W=
(
&G= + H∗=

)

?= = �W=� H=
@∗= = �W=�−1 (H∗= + W=G=)
G=+1 = G= − H= + ?= − W=

(
&?= + @∗=

)

H∗
=+1 = @∗= + W= (?= − G=).

(7.44)

converges weakly to a zero of � + � + &. An alternative method to solve this
inclusion is proposed in [349], with constant proximal parameters (W=)=∈N and
the feature that it coincides with the unrelaxed version of the Douglas–Rachford
algorithm when & = 0 (in the spirit of the method of Section 6.4.3 where & is
cocoercive).

Example 7.12 In Proposition 7.10, make the additional assumptions that & = 0
and, for every : ∈ {1, . . . , ?}, G: = H , !: = Id, and �−1

:
is strictly monotone.

Then (7.37) collapses to

find G ∈ H such that 0 ∈ �G +
?∑

:=1

(�: ��:) (G). (7.45)

It is shown in [130, Proposition 4.2] that (7.45) is an exact relaxation of the (possibly
inconsistent) instance of the problem

find G ∈ H such that 0 ∈ �G and
(
∀: ∈ {1, . . . , ?}

)
0 ∈ �:G (7.46)

in the sense that the solutions to (7.45) are the same as those to (7.46) when the
latter happen to exist.

The specialization of Proposition 7.10 to minimization is as follows. It features
the ability to split infimal convolutions (see (2.7)) together with linearly composed
functions.

Example 7.13 ([145, Theorem 4.2(ii)(b)–(c)]) Let 0 < ? ∈ N, let ` ∈ ]0, +∞[,
let 5 ∈ Γ0 (H), and let ℎ : H → R be convex, differentiable, and such that ∇ℎ is
`-Lipschitzian. For every : ∈ {1, . . . , ?}, let a: ∈ ]0, +∞[, let G: be a real Hilbert
space, let 6: ∈ Γ0 (G:), let ℓ: ∈ Γ0 (G:) be 1/a:-strongly convex, and suppose that
0 ≠ !: ∈ B(H ,G:). Let / be the set of solutions to the primal problem

minimize
G∈H

5 (G) +
?∑

:=1

(6: � ℓ:) (!:G) + ℎ(G), (7.47)
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let /∗ be the set of solutions to the dual problem

minimize
H∗1∈G1,...,H

∗
? ∈G?

( 5 ∗ � ℎ∗)
(
−

?∑

:=1

!∗:H
∗
:

)
+

?∑

:=1

(
6∗: (H∗:) + ℓ∗: (H∗:)

)
, (7.48)

and suppose that

zer

(
m 5 +

?∑

:=1

!∗: ◦
(
m6: � mℓ:

)
◦ !: + ∇ℎ

)
≠ ∅. (7.49)

Set

V = max{`, a1, . . . , a?} +

√√
?∑

:=1

‖!: ‖2, (7.50)

let G0 ∈ H , let (H∗1,0, . . . , H∗?,0) ∈ G1 ⊕ · · · ⊕ G?, let Y ∈ ]0, 1/(V + 1) [, and let
(W=)=∈N be a sequence in [Y, (1 − Y)/V]. Iterate

for = = 0, 1, . . .


H1,= = G= − W=
(
∇ℎ(G=) +

∑?

:=1 !
∗
:
H∗
:,=

)

<1,= = proxW= 5 H1,=

for : = 1, . . . , ?


H∗2,:,= = H∗
:,=

+ W=
(
!:G= − ∇ℓ∗

:
(H∗
:,=

)
)

<∗
2,:,= = proxW=6∗: H

∗
2,:,=

@∗2,:,= = <∗
2,:,= + W=

(
!:<1,= − ∇ℓ∗

:
(<∗

2,:,=)
)

H∗
:,=+1 = H∗

:,=
− H∗2,:,= + @∗2,:,=

@1,= = <1,= − W=
(
∇ℎ(<1,=) +

∑?

:=1 !
∗
:
<∗

2,:,=

)

G=+1 = G= − H1,= + @1,= .

(7.51)

Then there exist G ∈ / and (H∗1, . . . , H∗?) ∈ /∗ such that G= ⇀ G, and, for every
: ∈ {1, . . . , ?}, H∗

:,=
⇀ H∗

:
.

Remark 7.14 Conditions under which (7.49) holds are provided in [145, Proposi-
tion 4.3].

8 Forward-backward splitting

8.1 Preview

The forward-backward splitting method is a basic algorithm for solving Problem 3.1
when � is cocoercive. At iteration =, given a step size W= ∈ ]0, +∞[, a discrete
dynamics associated with the Cauchy problem (5.1) with " = � + � is

G= − G=+1

W=
∈ �G=+1 + �G=. (8.1)
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It amounts to performing a forward Euler step relative to the operator � and a
backward Euler step relative to the operator �. In view of (2.18), this means
that G=+1 = �W=�(G= − W=�G=). This iteration scheme goes back to the gradient-
projection method [213, 258] for the constrained minimization of a smooth function
(see Example 8.7 below) and its extension to variational inequalities [27, 277].

8.2 Fejérian algorithm

We establish a new, geometric proof of the convergence of a relaxed primal-dual
version of the forward-backward algorithm found in [154, Proposition 4.4(iii)]
for the primal result and in [37, Theorem 26.14(ii)] for the dual result, where
the proximal parameters (W=)=∈N are constant. Related primal results and special
cases can be found in [197, 254, 255, 278, 374]. The importance of cocoercivity in
establishing weak convergence was first identified by Mercier [277] in the context
of variational inequalities and, more generally, in [278].

Theorem 8.1 Let U ∈ ]0, +∞[, let � : H → 2H be maximally monotone, and let
� : H → H be U-cocoercive. Let Y ∈ ]0, U/(U + 1) [, let (W=)=∈N be a sequence
in [Y, (2 − Y)U], and let

(∀= ∈ N) Y 6 `= 6 (1 − Y) 4U − W=
2U

. (8.2)

Suppose that the set / of solutions to the problem

find G ∈ H such that 0 ∈ �G + �G (8.3)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (8.4)

Let G0 ∈ H and iterate

for = = 0, 1, . . .


1∗= = W=�G=
F= = �W=�(G= − 1∗=)
G=+1 = G= + `= (F= − G=).

(8.5)

Then the following hold:

(i) (G=)=∈N converges weakly to a point in / .

(ii) /∗ contains a single point G∗ and (∀I ∈ /) �I = G∗.

(iii) (�G=)=∈N converges strongly to G∗.
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Proof. The proof hinges on an application of Theorem 4.12 with

, = �, � = �, and (∀= ∈ N) *= = W−1
= Id − � and @= = G=. (8.6)

In this setting

(∀= ∈ N) �
*=

,+� = �
*=

�+� =
(
W−1
= Id+�

)
◦
(
W−1
= Id−�

)
= �W=�◦ (Id−W=�) (8.7)

and the variables of (4.34) become

(∀= ∈ N)




F= = �W=�(G= − W=�G=)

C∗= =
G= − F=
W=

X= =

(
1

W=
− 1

4U

)
‖F= − G=‖2.

(8.8)

Furthermore, we derive from [95, Proposition 3.9] that (7.5) holds. Now set

(∀= ∈ N) _= =
4U`=

4U − W=
. (8.9)

Then (8.2) yields

(∀= ∈ N) Y 6
4UY

4U − Y 6 _= 6
4U(1 − Y) (4U − W=)

(4U − W=)2U
6 2 − Y. (8.10)

We also deduce from (8.8) that

(∀= ∈ N) X= 6 0 ⇔ F= = G= ⇔ C∗= = 0. (8.11)

Hence, (4.34) yields

(∀= ∈ N) 3= =
`=

_=
(G= − F=). (8.12)

Altogether, we arrive at the conclusion that the sequence (G=)=∈N produced by (8.5)
coincides with that of (4.34). Hence, by Theorem 4.12(i) and (8.10),

∑

=∈N
‖3=‖2 < +∞. (8.13)

In turn, upon invoking (8.12), we obtain

F= − G= → 0. (8.14)

(i): In view of (8.10), condition (ii)(b) in Theorem 4.12(ii) is fulfilled. On
the other hand, since Lemma 2.48(iii) asserts that the operators (W=*=)=∈N are
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nonexpansive, (8.14) implies that ‖*=F= − *=G=‖ 6 ‖F= − G=‖/Y → 0, so that
condition (ii)(c) is also fulfilled. Thus, the assertion follows from Theorem 4.12(ii).

(ii): The strong monotonicity of �−1 implies that of−�−1◦(−Id)+�−1. Hence,
[37, Corollary 23.37(ii)] asserts that (8.4) admits a unique solution G∗. Now let
I ∈ / . Then −�I ∈ �I and therefore −I ∈ −�−1(−�I). Thus, 0 = −I + I ∈
−�−1(−�I) + �−1(�I), i.e., �I ∈ /∗ = {G∗}.

(iii): It follows from (i) and (8.14) that (G=)=∈N and (F=)=∈N are bounded.
Now let I ∈ / . We retrieve from (4.27) that

(∀= ∈ N) 〈I − F= | C∗=〉 6 〈G= − F= | �G= − �I〉 − U‖�G= − �I‖2. (8.15)

Hence, the Cauchy–Schwarz inequality, (2.32), (8.8), and (8.14) imply that

U‖�G= − �I‖2
6 ‖F= − G=‖ ‖�G= − �I‖ + ‖F= − I‖ ‖C∗=‖

6
1

U
‖F= − G=‖ ‖G= − I‖ +

1

W=
‖F= − I‖ ‖F= − G=‖

→ 0. (8.16)

In view of (ii), �G= → �I = G∗.

The following examples address Example 3.2 and Example 3.3, respectively.

Example 8.2 Let U ∈ ]0, +∞[, let 5 ∈ Γ0(H), let � : H → H be U-cocoercive,
suppose that the set / of solutions to the variational inequality

find G ∈ H such that (∀H ∈ H) 〈G − H | �G〉 + 5 (G) 6 5 (H) (8.17)

is not empty, and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −m 5 ∗(−G∗) + �−1G∗. (8.18)

Let G0 ∈ H , let Y ∈ ]0, U/(U + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)U], and
suppose that (`=)=∈N satisfies (8.2). Iterate

for = = 0, 1, . . .


1∗= = W=�G=
F= = proxW= 5 (G= − 1

∗
=)

G=+1 = G= + `= (F= − G=).

(8.19)

Then (G=)=∈N converges weakly to a point in / and (�G=)=∈N converges strongly
to the unique point in /∗.

Proof. Use Example 2.12 and Example 2.35 and set � = m 5 in Theorem 8.1.
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Example 8.3 Let U ∈ ]0, +∞[, let � be a nonempty closed convex subset of H , let
� : H → H be U-cocoercive, suppose that the set / of solutions to the variational
inequality

find G ∈ � such that (∀H ∈ �) 〈G − H | �G〉 6 0 (8.20)

is not empty, and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −mf� (−G∗) + �−1G∗. (8.21)

Let G0 ∈ H , let Y ∈ ]0, U/(U + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)U], and
suppose that (`=)=∈N satisfies (8.2). Iterate

for = = 0, 1, . . .


1∗= = W=�G=
F= = proj� (G= − 1∗=)
G=+1 = G= + `= (F= − G=).

(8.22)

Then (G=)=∈N converges weakly to a point in / and (�G=)=∈N converges strongly
to the unique point in /∗.

Proof. Use Example 2.36 and (2.2), and set 5 = ]� in Example 8.2.

The following example focuses on the minimization in the setting of Prob-
lem 3.5(ii). This framework has found a multitude of applications, especially in
the areas of signal processing and machine learning [15, 45, 115, 149, 152, 164,
232, 382].

Example 8.4 Let V ∈ ]0, +∞[, let 5 ∈ Γ0 (H) and let 6 : H → R be convex and
differentiable. Suppose that ∇6 is V-Lipschitzian and that the set / of solutions to
the problem

minimize
G∈H

5 (G) + 6(G) (8.23)

is not empty, and let /∗ be the set of solutions to the dual problem

minimize
G∗∈H

5 ∗ (−G∗) + 6∗(G∗). (8.24)

Let G0 ∈ H , let Y ∈ ]0, 1/(V + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)/V],
and suppose that

(∀= ∈ N) Y 6 `= 6 (1 − Y) 4 − VW=
2

. (8.25)
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Iterate

for = = 0, 1, . . .


1∗= = W=∇6(G=)
F= = proxW= 5 (G= − 1

∗
=)

G=+1 = G= + `= (F= − G=).

(8.26)

Then (G=)=∈N converges weakly to a point in / and (∇6(G=))=∈N converges strongly
to the unique point in /∗.

Proof. The claim is established by applying Theorem 8.1(i) with � = m 5 (see
Example 2.12) and � = ∇6 (see Lemma 2.2).

Remark 8.5 In some applications, it may be of interest to quantify the asymptotic
behavior of the function values ( 5 (G=) + 6(G=))=∈N produced by (8.26). This topic
has been the focus of a lot of interest since the publication of the influential papers
[43, 44, 112]; see [201] and its bibliography for recent results on the unrelaxed
implementation of (8.26) with constant proximal parameters.

The following example, taken from [152], models linear inverse problems
in which the prior knowledge is modeled by penalizing the coefficients of the
decomposition of the ideal solution in an orthonormal basis (see [149, 160, 193]
for special cases).

Example 8.6 Suppose that H is separable, let (4:):∈K⊂N be an orthonormal basis
of H , let H ∈ G, suppose that 0 ≠ ! ∈ B(H ,G), and let (q:):∈K be functions in
Γ0 (R) such that (∀: ∈ K) q: > 0 = q: (0). Suppose that the set / of solutions to
the problem

minimize
G∈H

∑

:∈K
q:

(
〈G | 4:〉

)
+ 1

2
‖!G − H‖2 (8.27)

is not empty. Let G0 ∈ H , let Y ∈
]
0, 1/(‖!‖2 + 1)

[
, let (W=)=∈N be a sequence in[

Y, (2 − Y)/‖!‖2
]
, and suppose that

(∀= ∈ N) Y 6 `= 6 (1 − Y) 4 − ‖!‖2W=

2
. (8.28)

Iterate

for = = 0, 1, . . .


1∗= = W=!
∗ (!G= − H)

F= =
∑
:∈K

(
proxW=q: 〈G= − 1

∗
= | 4:〉

)
4:

G=+1 = G= + `= (F= − G=).

(8.29)

Then (G=)=∈N converges weakly to a point in / .
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Proof. Set 5 : G ↦→ ∑
:∈K q: (〈G | 4:〉) and 6 : G ↦→ ‖!G−H‖2/2. Then, as shown in

[152, Example 2.19], 5 ∈ Γ0 (H) and proxW 5 : G ↦→ ∑
:∈K(proxW=q: 〈G | 4:〉)4: .

On the other hand, 6 is convex and differentiable and ∇6 : G ↦→ !∗ (!G − H) is
‖!‖2-Lipschitzian. Altogether, the conclusion follows from Example 8.4.

Next, we specialize Example 8.4 to the gradient-projection method, which
minimizes a smooth function over a convex set (see Example 3.6) and goes back to
[213, 258].

Example 8.7 Let V ∈ ]0, +∞[, let � be a nonempty closed convex subset of H ,
and let 6 : H → R be convex and differentiable. Suppose that ∇6 is V-Lipschitzian
and that the set / of solutions to the problem

minimize
G∈�

6(G) (8.30)

is not empty, and let /∗ be the set of solutions to the dual problem

minimize
G∗∈H

f (−G∗) + 6∗(G∗). (8.31)

Let G0 ∈ H , let Y ∈ ]0, 1/(V + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)/V],
and suppose that (`=)=∈N satisfies (8.25). Iterate

for = = 0, 1, . . .


1∗= = W=∇6(G=)
F= = proj� (G= − 1∗=)
G=+1 = G= + `= (F= − G=).

(8.32)

Then (G=)=∈N converges weakly to a point in / and (∇6(G=))=∈N converges strongly
to the unique point in /∗.

Proof. Set 5 = ]� in Example 8.4. Alternatively, set � = ∇6 in Example 8.3.

Remark 8.8 In [22], the backward-forward iterations

for = = 0, 1, . . .


?= = �W�G=
@= = ?= − W�?=
G=+1 = G= + `= (@= − G=)

(8.33)

are studied and shown to be related to the forward-backward iterations applied to
Yosida envelopes of � and �.
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8.3 Haugazeau-like algorithm

As seen in [152, Remark 5.12], the strong convergence of (G=)=∈N in Theorem 8.1(i)
may fail. Item (i) below on the strong convergence of a best approximation forward-
backward algorithm extends [140, Theorem 5.6(i) and Remark 5.5], where (∀= ∈
N) W= = W ∈ ]0, 2U[ and `= 6 1.

Theorem 8.9 Let U ∈ ]0, +∞[, let � : H → 2H be maximally monotone, and
let � : H → H be U-cocoercive. Let Y ∈ ]0,min{1/2, 2U}[, let (W=)=∈N be a
sequence in [Y, 2U], and let

(∀= ∈ N) Y 6 `= 6
4U − W=

4U
. (8.34)

Suppose that the set / of solutions to the problem

find G ∈ H such that 0 ∈ �G + �G (8.35)

is not empty and let /∗ be the set of solutions to the dual

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (8.36)

Let G0 ∈ H and iterate

for = = 0, 1, . . .


1∗= = W=�G=
F= = �W=�(G= − 1∗=)
G=+1 = Q

(
G0, G=, G= + `= (F= − G=)

)
,

(8.37)

where Q is defined in Lemma 4.6. Then the following hold:

(i) (G=)=∈N converges strongly to proj/ G0.

(ii) /∗ contains a single point G∗ and (�G=)=∈N converges strongly to G∗.

Proof. We apply Theorem 4.14 in the setting of (8.6), using the same variables as
in (8.8) and (_=)=∈N defined as in (8.9). Then (8.11) holds and

(∀= ∈ N) Y 6
4UY

4U − Y 6 _= 6 1. (8.38)

Therefore the sequence (G=)=∈N produced by (8.37) coincides with that of (4.44).
Hence, by Theorem 4.14(i),

F= − G= → 0. (8.39)

(i): This follows from Theorem 4.14(ii) since, as in the proof of Theorem 8.1(i),
its conditions (ii)(b) and (ii)(d) are fulfilled.

(ii): Since � is continuous, (i) and Theorem 8.1(ii) imply that �G= →
�(proj/ G0) ∈ /∗, where /∗ is a singleton.
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8.4 Special cases and variants

8.4.1 Projected Landweber method

In inverse problems, constrained least-squares estimation has a long history [51,
53, 184, 298, 313]. We address the numerical solution of this problem from the
viewpoint of the forward-backward algorithm to obtain a relaxed version of the
projected Landweber method with iteration-dependent parameters.

Proposition 8.10 Let G be a real Hilbert space, suppose that 0 ≠ ! ∈ B(H ,G),
let H ∈ G, and let � be a closed convex subset of H such that the set / of solutions
to the problem

minimize
G∈�

1

2
‖!G − H‖2 (8.40)

is not empty. Let G0 ∈ H , let Y ∈
]
0, 1/(‖!‖2 + 1)

[
, let (W=)=∈N be a sequence in[

Y, (2 − Y)/‖!‖2
]
, and suppose that (`=)=∈N satisfies (8.28). Iterate

for = = 0, 1, . . .


1∗= = W=!
∗ (!G= − H)

F= = proj� (G= − 1∗=)
G=+1 = G= + `= (F= − G=).

(8.41)

Then (G=)=∈N converges weakly to a point in / .

Proof. Apply Example 8.7 with 6 : G ↦→ ‖!G − H‖2/2.

Proposition 8.10 was established in [184, Section 3.1] with (∀= ∈ N) _= = 1
and W= = W ∈

]
0, 2/‖!‖2

[
. There, it was also conjectured that the convergence was

strong, which was disproved in [152, Remark 5.12]. This motivates the following
result.

Proposition 8.11 LetG be a real Hilbert space, suppose that 0 ≠ ! ∈ B(H ,G), let
H ∈ G, let� be a closed convex subset of H , and suppose that the set / of solutions
to (8.40) is not empty. Let G0 ∈ H , let Y ∈

]
0,min{1/2, 2/‖!‖2})

[
, let (W=)=∈N be

a sequence in
[
Y, 2/‖!‖2

]
, and suppose that (∀= ∈ N) Y 6 `= 6 1 − ‖!‖2W=/4.

Iterate

for = = 0, 1, . . .


1∗= = W=!
∗ (!G= − H)

F= = proj� (G= − 1∗=)
G=+1 = Q

(
G0, G=, G= + `= (F= − G=)

)
,

(8.42)

where Q is defined in Lemma 4.6(ii). Then (G=)=∈N converges strongly to proj/ G0.
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Proof. Follow the pattern of the proof of Proposition 8.10 and use Example 2.36
to apply Theorem 8.9(i) with � = #� and � : G ↦→ !∗ (!G − H).

Here is an application of Proposition 8.10 to the problem of finding the best
approximation to a point from a linearly transformed convex set.

Example 8.12 Consider the setting of Proposition 8.10 with the assumption that
! (�) is closed, which guarantees that (8.40) admits solutions. Then G= ⇀ G, where
G solves (8.40). Furthermore, if we set ? = !G, then ? = proj! (� ) H. Hence, upon
rewriting (8.41) as

for = = 0, 1, . . .


@= = !G=
1∗= = W=!

∗ (@= − H)
F= = proj� (G= − 1∗=)
G=+1 = G= + `= (F= − G=)

(8.43)

and invoking the weak continuity of !, we conclude that @= ⇀ proj! (� ) H.

Example 8.13 Let G be a real Hilbert space, and suppose that 0 ≠ ! ∈ B(H ,G)
and that ran ! is closed. Additionally, let G0 ∈ H , let Y ∈

]
0, 1/(‖!‖2 + 1)

[
, and

let (a=)=∈N be a sequence in
[
Y, (2 − Y)/‖!‖2

]
. Iterate

for = = 0, 1, . . .⌊
@= = !G=
G=+1 = G= − a=!∗@=

(8.44)

and let @ be the minimal-norm element of ran !. Then @= ⇀ @.

Proof. Apply Example 8.12 with � = H and H = 0.

The next example is about a composite best approximation problem.

Example 8.14 Let G be a real Hilbert space, let H ∈ G, and let 0 < ? ∈ N.
For every : ∈ {1, . . . , ?}, let H: be a real Hilbert space, let �: be a nonempty
closed convex subset of H: , let 0 ≠ !: ∈ B(H: ,G), and let G:,0 ∈ H: . Sup-
pose that

∑?

:=1 !: (�:) is closed and set V =
∑?

:=1 ‖!: ‖
2. Furthermore, let

Y ∈ ]0, 1/(V + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)/V], and suppose
that (`=)=∈N satisfies (8.25). Iterate

for = = 0, 1, . . .


@= =
∑?

:=1 !:G:,=
for : = 1, . . . , ?


1∗
:,=

= W=!
∗
:
(@= − H)

F:,= = proj�:
(G:,= − 1∗:,=)

G:,=+1 = G:,= + `= (F:,= − G:,=).

(8.45)
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Then @= ⇀ proj∑?

:=1 !: (�: ) H.

Proof. Set H = H1 ⊕ · · · ⊕ H?, I = �1 × · · · × �?, and

R : H → G : (G:)16:6? ↦→
?∑

:=1

!:G: . (8.46)

Then projI : (G:)16:6? ↦→ (proj�:
G:)16:6? (see Examples 2.36 and 2.37),

‖!‖2 = V, and R∗ : G → H : H∗ ↦→ (!∗1H∗, . . . , !∗?H∗). Altogether, the result
is an application of Example 8.12 to I and R in H.

As an application of Example 8.14, we address the problem of computing the
best approximation from the Minkowski sum of closed convex sets; see [34, 175,
276, 320, 351, 388, 390] for instances of decompositions with respect to such sums.

Example 8.15 Let I ∈ H and 0 < ? ∈ N. For every : ∈ {1, . . . , ?}, let �: be
a nonempty closed convex subset of H and let G:,0 ∈ H . Suppose that

∑?

:=1 �:
is closed, let Y ∈ ]0, 1/(? + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)/?], and
suppose that (∀= ∈ N) Y 6 `= 6 (1 − Y) (2 − ?W=/2). Iterate

for = = 0, 1, . . .


@= =
∑?

:=1 G:,=
1∗= = W= (@= − I)
for : = 1, . . . , ?⌊
F:,= = proj�:

(G:,= − 1∗=)
G:,=+1 = G:,= + `= (F:,= − G:,=).

(8.47)

Then @= ⇀ proj∑?

:=1�:
I.

Proof. Apply Example 8.14 with G = H , H = I, and (∀: ∈ {1, . . . , ?}) H: = H
and !: = Id.

8.4.2 Partial Yosida approximation to inconsistent common zero problems

We extend a framework proposed in [127, Section 6.3], where no linear transform-
ations were present. We start with the following composite common zero problem
(see [100] for a special case).

Problem 8.16 Let � : H → 2H be maximally monotone and let 0 < ? ∈ N.
For every : ∈ {1, . . . , ?}, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, and suppose that 0 ≠ !: ∈ B(H ,G:). The objective is to

find G ∈ zer � such that
(
∀: ∈ {1, . . . , ?}

)
!:G ∈ zer �: . (8.48)
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Example 8.17 Suppose that, in Problem 8.16, � = #� , where � is a nonempty
closed convex subset of H , and, for every : ∈ {1, . . . , ?}, �: = #�:

, where �: is
a nonempty closed convex subset of G: . Then (8.48) is the split feasibility problem
[328]

find G ∈ � such that
(
∀: ∈ {1, . . . , ?}

)
!:G ∈ �: . (8.49)

Example 8.18 Suppose that, in Problem 8.16, � = m 5 , where 5 ∈ Γ0 (H), and,
for every : ∈ {1, . . . , ?}, G: = H , !: = Id, and �: = m 5: , where 5: ∈ Γ0 (H).
Then (8.48) becomes

find G ∈
(
Argmin 5

)
∩

?⋂

:=1

Argmin 5: . (8.50)

Example 8.19 Suppose that, in Problem 8.16, � = #� , where � is a nonempty
closed convex subset ofH , and, for every : ∈ {1, . . . , ?}, �: = (Id−�:+A:)−1−Id,
where �: : G: → G: is firmly nonexpansive and A: ∈ G: . Then (8.48) becomes

find G ∈ � such that
(
∀: ∈ {1, . . . , ?}

)
�: (!:G) = A: . (8.51)

Note that the operators (Id− �: + A:)16:6? are firmly nonexpansive as well, which
makes the operators (�:)16:6? maximally monotone by Lemma 2.34(iii). This
formulation was investigated in [153] in the context of recovering a signal in �
from ? nonlinear observations modeled as outputs of Wiener systems (see also
Example 5.12).

Our focus here is on situations in which (8.48) is not guaranteed to have solutions
(see [105, 133, 138, 212] for concrete illustrations). In such environments, it
is natural to approximate it by a more general problem, which exhibits better
regularity properties and admits solutions. We propose the following relaxation of
Problem 8.16, in which dom � serves as a hard constraint.

Problem 8.20 Consider the setting of Problem 8.16 and let (d:)16:6? and
(l:)16:6? be in ]0, +∞[. The objective is to solve the partial Yosida approx-
imation

find G ∈ H such that 0 ∈ �G +
?∑

:=1

l:!
∗
:

(
d:�: (!:G)

)
(8.52)

to Problem 8.16.

The fact that Problem 8.20 is an appropriate relaxation of Problem 8.16 is
supported by the following argument.
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Proposition 8.21 Suppose that the set of solutions to Problem 8.16 is not empty.
Then it coincides with the set of solutions to Problem 8.20.

Proof. Let G be a solution to Problem 8.16. Then (2.22) yields

0 = −
?∑

:=1

l:!
∗
:

(
d:�: (!:G)

)
∈ �G, (8.53)

which shows that G solves Problem 8.20. Now let G be a solution to Problem 8.20.
Then

−
?∑

:=1

l:!
∗
:

(
d:�: (!:G)

)
∈ �G. (8.54)

It follows from (8.53), (8.54), the monotonicity of �, and the cocoercivity of the
operators (d:�:)16:6? (see Example 2.7) that

0 >

〈
G − G

����
?∑

:=1

l:!
∗
:

(
d:�: (!:G)

)
−

?∑

:=1

l:!
∗
:

(
d:�: (!:G)

)〉

=

?∑

:=1

l:

〈
!:G − !:G

����
d:�: (!:G) − d:�: (!:G)

〉

>

?∑

:=1

l:d:
 d:�: (!:G) − d:�: (!:G)

2

=

?∑

:=1

l:d:
 d:�: (!:G)

2
. (8.55)

Hence, we deduce from (2.22) that (∀: ∈ {1, . . . , ?}) !:G ∈ zer d:�: = zer �: . In
view of (8.54), we conclude that G solves Problem 8.16.

Remark 8.22 It should be emphasized that Problem 8.20 is a relaxation of Prob-
lem 8.16, and not of the inclusion

find G ∈ H such that 0 ∈ �G +
?∑

:=1

l:!
∗
:

(
�: (!:G)

)
. (8.56)

In particular, zer(� + d�) ≠ zer(� + �) when zer(� + �) ≠ ∅. However, the
problem of finding a zero of � + d� can be regarded as a regularization of that
of finding a zero of � + � in the sense that solutions to the former approaches a
particular solution of the latter as d → 0 [270, 278, 295].
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Example 8.23 Consider the setting of Example 8.17 and let (∀: ∈ {1, . . . , ?})
d: = 1. Then (8.52) relaxes the possibly inconsistent problem (8.49) to the
problem

minimize
G∈�

?∑

:=1

l:3
2
�:

(!:G). (8.57)

(i) Assume that, for every : ∈ {1, . . . , ?}, G: = H and !: = Id. Then (8.57) is
the relaxed formulation of [133].

(ii) Assume that H = R# , � = R# , and, for every : ∈ {1, . . . , ?}, G: = R,
!: : G ↦→ D⊤

:
G with D: ∈ R# , and �: = {[:} with [: ∈ R. Let * ∈ R?×#

be the matrix with rows D⊤1 , . . . , D⊤? and set H = ([:)16:6?. Then (8.49)
amounts to solving the linear system *G = H and (8.57) to minimizing
G ↦→ ‖*G − H‖2. This least-squares relaxation was proposed by Legendre
[252] and rediscovered by Gauss [202].

Example 8.24 Consider the setting of Example 8.18 and recall that (∀: ∈
{1, . . . , ?}) d:(m 5:) = {∇(d: 5:)} [37, Example 23.3]. Thus, (8.52) relaxes the
possibly inconsistent problem (8.50) to the problem

minimize
G∈H

5 (G) +
?∑

:=1

l:
(
d: 5:

)
(G). (8.58)

This formulation arises in particular in federated learning [306].

Example 8.25 Consider the setting of Example 8.19 and let (∀: ∈ {1, . . . , ?})
d: = 1. Then it follows from Example 2.14 and (2.21) that (8.52) relaxes the
possibly inconsistent problem (8.51) to the variational inequality problem (see
Problem 3.3)

find G ∈ � such that (∀H ∈ �)
?∑

:=1

l: 〈!: (H − G) | �: (!:G) − A:〉 > 0, (8.59)

which is precisely the relaxation of (8.51) studied in [153].

Let us now solve Problem 8.20 with the forward-backward algorithm.

Proposition 8.26 Consider the setting of Problem 8.20, suppose that its set / of
solutions is not empty, and set

U =
1

?∑

:=1

l: ‖!: ‖2

d:

. (8.60)
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Let G0 ∈ H , let Y ∈ ]0, U/(U + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)U], and
suppose that (`=)=∈N satisfies (8.2). Iterate

for = = 0, 1, . . .


for : = 1, . . . , ?⌊
H:,= = !:G=
?:,= = d−1

:

(
H:,= − �d:�:

H:,=
)

1∗= = W=

?∑

:=1

l:!
∗
: ?:,=

F= = �W=�(G= − 1∗=)
G=+1 = G= + `= (F= − G=).

(8.61)

Then (G=)=∈N converges weakly to a point in / .

Proof. Define

� =

?∑

:=1

l:!
∗
: ◦ (d:�:) ◦ !: . (8.62)

Then it follows from [37, Proposition 4.12] and Example 2.7 that � is U-cocoercive.
Since (8.61) is a specialization of (8.5), Theorem 8.1(i) furnishes the desired con-
clusion.

8.4.3 Backward-backward splitting

We focus on the following special case of Problem 8.20.

Problem 8.27 Let � : H → 2H and � : H → 2H be maximally monotone, and
let d ∈ ]0, +∞[. The objective is to

find G ∈ H such that 0 ∈ �G + d�G. (8.63)

Proposition 8.28 Consider the setting of Problem 8.27 under the assumption that
/ = zer(�+d�) ≠ ∅. Let G0 ∈ H , let Y ∈ ]0, d/(d + 1) [, let (W=)=∈N be a sequence
in [Y, (2 − Y)d], and suppose that (`=)=∈N satisfies (8.2) with U = d. Iterate

for = = 0, 1, . . .


?= = d
−1

(
G= − �d�G=

)

F= = �W=�(G= − W=?=)
G=+1 = G= + `= (F= − G=).

(8.64)

Then (G=)=∈N converges weakly to a point in / .
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Proof. Apply Proposition 8.26 with ? = 1, G1 = H , !1 = Id, �1 = �, l1 = 1, and
d1 = d.

Example 8.29 In particular, if we execute (8.64) with, for every = ∈ N, W= = d

and `= = 1, then

(∀= ∈ N) G=+1 = �d�
(
�d�G=

)
. (8.65)

This recursion is known as the backward-backward algorithm, as it alternates two
backward Euler steps. As derived above, it is a special case of (8.61) and therefore
of the forward-backward algorithm (8.5). Its asymptotic behavior has been studied
in [38, 278] (see also [264, 305] for ergodic convergence).

Example 8.30 Let 5 and 6 be functions in Γ0 (H). In Problem 8.27, suppose that
� = m 5 and � = m6. Then, as in Example 8.24, (8.65) becomes

minimize
G∈H

5 (G) + d6(G) (8.66)

and (8.65) reduces to the alternating proximal point algorithm

(∀= ∈ N) G=+1 = proxd 5
(
proxd6 G=

)
. (8.67)

This method was first investigated in [1], with further developments in [38].

Example 8.31 Let � and � be nonempty closed convex subsets of H . In Ex-
ample 8.30, suppose that 5 = ]� and 6 = ]� . Then (8.67) is the problem of finding
a point in� at minimal distance from � and (8.67) yields the alternating projection
method

(∀= ∈ N) G=+1 = proj�
(
proj� G=

)
, (8.68)

which was first investigated in [120]. Its weak convergence was established in [220,
Theorem 2]

Example 8.32 Let 5 ∈ Γ0 (H), ℎ ∈ Γ0 (H), I ∈ H , and d ∈ ]0, +∞[. The
problem is to

minimize
G∈H,F∈H

5 (G) + ℎ(F) + 1

2d
‖G + F − I‖2. (8.69)

Following [152, Section 4.4], set 6 : H ↦→ ℎ(I − H). Then, with the change of
variable H = I − F, the objective of (8.69) is to

minimize
G∈H,H∈H

5 (G) + 6(H) + 1

2d
‖G − H‖2, (8.70)
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which is precisely (8.66) in terms of the variable G. Now let G0 ∈ H , let Y ∈
]0, d/(d + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)d], and let (`=)=∈N be a
sequence in [Y, 1]. Applying algorithm (8.64) to � = m 5 and � = m6, and noting
that �d� = proxd6 : G ↦→ I − proxdℎ (I − G) yields

for = = 0, 1, . . .


?= = d
−1

(
G= − I + proxdℎ (I − G=)

)

F= = proxW= 5 (G= − W=?=)
G=+1 = G= + `= (F= − G=).

(8.71)

It follows from Proposition 8.28 that (G=)=∈N converges weakly to a point G such
that (G, proxdℎ (I − G)) solves (8.69).

Next, we revisit the problem of projecting onto the Minkowski sum of two
convex sets (see Example 8.15).

Example 8.33 Let � and � be nonempty closed convex subsets of H such that
� + � is closed, and let I ∈ H . Upon setting 5 = ]� , ℎ = ]� , and d = 1 in
Example 8.32, (8.69) specializes to the problem of finding the projection of I onto
� + �. Now let G0 ∈ �, let Y ∈ ]0, 1/2[, let (W=)=∈N be a sequence in [Y, 2 − Y],
and let (`=)=∈N be a sequence in [Y, 1]. Then (8.71) assumes the form

for = = 0, 1, . . .


?= = G= − I + proj� (I − G=)
F= = proj� (G= − W=?=)
G=+1 = G= + `= (F= − G=)

(8.72)

and it follows from Proposition 8.28 that (G=)=∈N converges weakly to a point G
such that proj�+� I = G + proj� (I − G). This best approximation algorithm was
first obtained in [351, Theorem 2.1] in the case when (∀= ∈ N) W= = `= = 1, i.e.,

(∀= ∈ N) G=+1 = proj�
(
I − proj� (I − G=)

)
. (8.73)

8.4.4 Dual implementation

We present a framework for solving strongly monotone composite inclusion prob-
lems by applying the forward-backward algorithm to the dual problem. The em-
bedding underlying this approach is that of Example 3.22.

Problem 8.34 Let d ∈ ]0, +∞[, let 0 < ? ∈ N, let I ∈ H , and let � : H → 2H be
maximally monotone. For every : ∈ {1, . . . , ?}, let �: : G: → 2G: be maximally
monotone, let a: ∈ ]0, +∞[, let �: : G: → 2G: be maximally monotone and
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a:-strongly monotone, and suppose that 0 ≠ !: ∈ B(H ,G:). Further, suppose
that

I ∈ ran

(
� +

?∑

:=1

!∗: ◦ (�: ��:) ◦ !: + dId

)
. (8.74)

The problem is to solve the primal inclusion

find G ∈ H such that I ∈ �G +
?∑

:=1

!∗:
(
(�: ��:) (!:G)

)
+ dG, (8.75)

together with the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that

(
∀: ∈ {1, . . . , ?}

)

0 ∈ −!:
(
��/d

(
1

d

(
I −

?∑

9=1

!∗9 H
∗
9

)))
+ �−1

: H
∗
: + �−1

: H
∗
: . (8.76)

We refer to [151, Proposition 5.2(iv)] for sufficient conditions that guarantee
(8.74). The mechanism to solve (8.75) dually hinges on the following properties.

Proposition 8.35 ([151, Proposition 5.2(ii)–(iii)]) Consider the setting of Prob-
lem 8.34 and set

" = � +
?∑

:=1

!∗: ◦ (�: ��:) ◦ !: and G = �"/d
(
I/d

)
. (8.77)

Then the following hold:

(i) G is the unique solution to the primal problem (8.75).

(ii) The dual problem (8.76) admits solutions and, if (H∗:)16:6? solves (8.76),
then

G = ��/d

(
d−1

(
I −

?∑

:=1

!∗:H
∗
:

))
. (8.78)

We now apply the forward-backward algorithm of Theorem 8.1 to the dual
inclusion (8.76) to construct a sequence (G=)=∈N which converges strongly to the
solution to primal inclusion (8.75). The following result is an adaptation of [151,
Corollary 5.4].
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Proposition 8.36 Consider the setting of Problem 8.34 and set

a = min
16:6?

a: and U =
1

1

a
+ 1

d

∑

16:6?

‖!: ‖2
. (8.79)

Let Y ∈ ]0, U/(U + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)U], suppose that
(`=)=∈N satisfies (8.2), and, for every : ∈ {1, . . . , ?}, let H∗

:,0 ∈ G: . Iterate

for = = 0, 1, . . .


@= = I −
∑?

:=1 !
∗
:
H∗
:,=

G= = ��/d (@=/d)
for : = 1, . . . , ?⌊
F:,= = H∗

:,=
+ W=

(
!:G= − �−1

:
H∗
:,=

)

H∗
:,=+1 = H∗

:,=
+ `=

(
�W=�−1

:
F:,= − H∗:,=

)
.

(8.80)

Then the following hold for the solution G to (8.75) and for some solution y∗ =

(H∗1, . . . , H∗?) to (8.76):

(i) (∀: ∈ {1, . . . , ?}) H∗
:,=

⇀ H∗: .

(ii) G= → G.

Proof. We deduce from [37, Proposition 22.11(ii)] that, for every : ∈ {1, . . . , ?},
�−1
:

is a:-cocoercive with dom�−1
:

= G: . Let us set G = G1 ⊕ · · · ⊕ G? and




) : H → H : G ↦→ �d−1�

(
d−1(I − G)

)

G : G → 2G : y∗ ↦→
?

16:6?

�−1
:
H∗
:

J : G → G : y∗ ↦→
(
�−1
:
H∗
:

)
16:6?

R : H → G : G ↦→
(
!:G

)
16:6?

H = J − R ◦ ) ◦ R∗.

(8.81)

It follows from Lemmas 2.23 and 2.24 that G is maximally monotone, from (8.79)
that J is a-cocoercive, from Lemma 2.34(iii) that −) is d-cocoercive, and hence
from [37, Proposition 4.12] that

H = J + R ◦ (−) ) ◦ R∗ is 1/(1/a + ‖R‖2/d)-cocoercive. (8.82)

Since ‖R‖2
6

∑?

:=1 ‖!: ‖
2, (8.79) implies that H is U-cocoercive. Next, let us

define (∀= ∈ N) y∗= = (H∗
:,=

)16:6? and w= = (F:,=)16:6?. Then, upon combining
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(8.81) and Example 2.37, (8.80) can be rewritten as

for = = 0, 1, . . .⌊
w= = y∗= − W=Hy∗=
y∗
=+1 = y∗= + `=

(
�W=G w= − y∗=

)
,

(8.83)

and the dual problem (8.76) as

find y∗ ∈ G such that 0 ∈ Gy∗ + Hy∗. (8.84)

(i): In view of the above, the claim follows from Theorem 8.1(i).
(ii): We derive from Proposition 8.35, (8.80), and (8.81) that

G = ) (R∗y∗) and (∀= ∈ N) G= = ) (R∗y∗=). (8.85)

In turn, we deduce from the d-cocoercivity of −) , (i), the monotonicity of J, and
the Cauchy–Schwarz inequality that

(∀= ∈ N) d‖G= − G‖2
= d‖) (R∗y∗=) − ) (R∗y∗)‖2

6 〈R∗(y∗= − y∗) | ) (R∗y∗) − ) (R∗y∗=)〉
= 〈y∗= − y∗ | (R ◦ ) ◦ R∗)y∗ − (R ◦ ) ◦ R∗)y∗=〉
6 〈y∗= − y∗ | Jy∗= − Jy∗〉
− 〈y∗= − y∗ | (R ◦ ) ◦ R∗)y∗= − (R ◦ ) ◦ R∗)y∗〉

= 〈y∗= − y∗ | Hy∗= − Hy∗〉
6 X‖Hy∗= − Hy

∗‖ (8.86)

where, by (i),

X = sup
=∈N

‖y∗= − y∗‖ < +∞. (8.87)

Therefore, using (8.83) and Theorem 8.1(ii)–(iii), we conclude that ‖G= − G‖ → 0.

Here is an application to strongly convex minimization problems that arise in
particular in mechanics [185, 278] and in signal processing [134, 135, 318].

Example 8.37 Let 0 < ? ∈ N, let I ∈ H , let 5 ∈ Γ0 (H), and let 1( 5 ∗) be the
Moreau envelope of 5 ∗ (see (2.11)). For every : ∈ {1, . . . , ?}, let 6: ∈ Γ0 (G:), let
a: ∈ ]0, +∞[, let ℎ: ∈ Γ0(G:) be a:-strongly convex, and suppose that 0 ≠ !: ∈
B(H ,G:). Define U as in (8.79) and suppose that

I ∈ ran

(
m 5 +

?∑

:=1

!∗: ◦ (m6: � mℎ:) ◦ !: + Id

)
. (8.88)
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Then the primal problem

minimize
G∈H

5 (G) +
?∑

:=1

(6: � ℎ:) (!:G) +
1

2
‖G − I‖2 (8.89)

admits a unique solution G, namely

G = prox 5 +∑?

:=1 (6: � ℎ: )◦!: I, (8.90)

and the dual problem is

minimize
H∗1∈G1, ..., H

∗
?∈G?

1(
5 ∗

) (
I −

?∑

:=1

!∗:H
∗
:

)
+

?∑

:=1

(
6∗: (H∗:) + ℎ∗: (H∗:)

)
. (8.91)

Now let Y ∈ ]0, U/(U + 1) [, let (W=)=∈N be a sequence in [Y, (2 − Y)U], suppose
that (`=)=∈N satisfies (8.2), and, for every : ∈ {1, . . . , ?}, let H∗

:,0 ∈ G: . Iterate

for = = 0, 1, . . .


@= = I −
∑?

:=1 !
∗
:
H∗
:,=

G= = prox 5 @=
for : = 1, . . . , ?⌊
F:,= = H∗

:,=
+ W=

(
!:G= − ∇ℎ∗

:
(H∗
:,=

)
)

H∗
:,=+1 = H∗

:,=
+ `=

(
proxW=6∗:

F:,= − H∗:,=
)
.

(8.92)

Then the following hold:

(i) There exists a solution (H∗1, . . . , H∗?) to (8.91) such that (∀: ∈ {1, . . . , ?})
H∗
:,=

⇀ H∗: .

(ii) G= → G.

Proof. Apply Proposition 8.36 with d = 1, � = m 5 , and (∀: ∈ {1, . . . , ?})
�: = m6: and �: = mℎ: (see [151, Eample 5.6] for details).

Remark 8.38 In Example 8.37, suppose that H = �1
0 (Ω), where Ω is a bounded

open domain in R2, ? = 1, G1 = !2(Ω) ⊕ !2(Ω), !1 = ∇, 61 = `‖ · ‖2,1 with
` ∈ ]0, +∞[, and ℎ1 = ]{0} . Then (8.89) reduces to

minimize
G∈�1

0 (Ω)
5 (G) + `

∫

Ω

|∇G (l) |23l + 1

2
‖G − I‖2. (8.93)

In mechanics, (8.93) has been studied for certain potentials 5 [185]. For instance,
5 = 0 yields Mossolov’s problem and its dual analysis is carried out in [185,
Section IV.3.1]. In image processing, Mossolov’s problem corresponds to the total
variation denoising problem. In 1980, Mercier [278] proposed a dual projection
algorithm to solve Mossolov’s problem. In image processing, this approach was
rediscovered in a discrete setting in [110, 111].
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8.4.5 Barycentric Dykstra-like algorithm

Using Proposition 8.36 and, thereby, the forward-backward algorithm, we obtain
a method for computing the resolvent of a sum of maximally monotone operators.
This result, which generalizes the barycentric Dykstra algorithm of [199] for pro-
jecting onto an intersection of closed convex sets, was originally derived in [128,
Theorem 3.3] with different techniques.

Proposition 8.39 Let 0 < ? ∈ N, let I ∈ H , and, for every : ∈ {1, . . . , ?}, let
�: : H → 2H be maximally monotone. Suppose that

I ∈ ran

( ?∑

:=1

�: + Id

)
(8.94)

and consider the inclusion problem

find G ∈ H such that I ∈
?∑

:=1

�:G + G. (8.95)

Set G0 = I and (∀: ∈ {1, . . . , ?}) I:,0 = I. Iterate

for = = 0, 1, . . .


for : = 1, . . . , ?⌊
A:,= = �?�:

I:,=

G=+1 = (1/?)∑?

:=1 A:,=
for : = 1, . . . , ?⌊
I:,=+1 = I:,= − A:,= + G=+1.

(8.96)

Then G= → �∑?

:=1 �:
I.

Proof. First, we observe that (8.94)–(8.95) is the special case of (8.74)–(8.75) in
which � = 0 and, for every : ∈ {1, . . . , ?}, G: = H , �: = �: , !: = Id, and
�: = {0}−1. Moreover, the cocoercivity constant in (8.79) is U = 1/?. With this
scenario, implementing (8.80) with, for every = ∈ N, `= = 1 and W= = 1/?, and,
for every : ∈ {1, . . . , ?}, H∗

:,0 = 0 leads to the recursion

for = = 0, 1, . . .


G= = I −
∑?

:=1 H
∗
:,=

for : = 1, . . . , ?⌊
H∗
:,=+1 = ��−1

:
/?

(
H∗
:,=

+ G=/?
)

(8.97)
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and Proposition 8.36(ii) guarantees that G= → �∑?

:=1 �:
I. Alternatively, with the

initialization G0 = I, we rewrite (8.97) as

for = = 0, 1, . . .


for : = 1, . . . , ?⌊
H∗
:,=+1 = ��−1

:
/?

(
H∗
:,=

+ G=/?
)

G=+1 = I − ∑?

:=1 H
∗
:,=+1 .

(8.98)

Let us introduce the variables (∀= ∈ N) (∀: ∈ {1, . . . , ?}) I:,= = ?H∗
:,=

+G=, where
I:,0 = G0 = I. Then (8.98) corresponds to the iterations

for = = 0, 1, . . .


G=+1 = I − ∑?

:=1 ��−1
:
/?

(
I:,=/?

)

for : = 1, . . . , ?⌊
I:,=+1 = ? ��−1

:
/?

(
I:,=/?

)
+ G=+1.

(8.99)

By construction,

(∀= ∈ N)
?∑

:=1

I:,= = ?I. (8.100)

Hence, appealing to (2.21), (8.99) becomes

for = = 0, 1, . . .


G=+1 = (1/?)∑?

:=1 �?�:
I:,=

for : = 1, . . . , ?⌊
I:,=+1 = I:,= − �?�:

I:,= + G=+1,

(8.101)

which is precisely (8.96).

Example 8.40 Consider the instantiation of Proposition 8.39 in which, for every
: ∈ {1, . . . , ?}, �: = m 5: , with 5: ∈ Γ0 (H), and execute (8.96), which becomes

for = = 0, 1, . . .


for : = 1, . . . , ?⌊
A:,= = prox? 5: I:,=

G=+1 = (1/?)∑?

:=1 A:,=
for : = 1, . . . , ?⌊
I:,=+1 = I:,= − A:,= + G=+1.

(8.102)

Then G= → prox∑?

:=1 5:
I.
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Our last example addresses the barycentric Dykstra algorithm per se. The
original Dykstra algorithm was devised in [174] to project onto the intersection of
closed convex cones (see also [223] for general closed convex sets whose intersec-
tion has a nonempty interior) in Euclidean spaces using periodic applications of
the projectors onto the individual sets. Convergence of this periodic scheme in the
general case of arbitrary closed and convex sets in Hilbert spaces was established
in [64] (see [36] for an extension to monotone operators). The barycentric version
described below, in which all the projectors are used at each iteration, was devised
in [199, Section 6]. Its connection with the forward-backward algorithm is dis-
cussed in [134, Remark 3.8] and [135, Remark 2.3], and its asymptotic behavior in
the inconsistent case in [32, Theorem 6.1].

Example 8.41 In Example 8.40, suppose that, for every : ∈ {1, . . . , ?}, 5: = ]�:
,

where �: is a nonempty closed convex subset of H . Then algorithm (8.102)
becomes

for = = 0, 1, . . .


for : = 1, . . . , ?⌊
A:,= = proj�:

I:,=

G=+1 = (1/?)∑?

:=1 A:,=
for : = 1, . . . , ?⌊
I:,=+1 = I:,= − A:,= + G=+1

(8.103)

and G= → proj⋂?

:=1�:
I.

8.4.6 Renorming

We preface our discussion with a renormed version of Theorem 8.1.

Proposition 8.42 Let U ∈ ]0, +∞[, let V ∈ ]0, +∞[, let � : H → 2H be maximally
monotone, let � : H → H be U-cocoercive, let * ∈ B(H) be self-adjoint and
V-strongly monotone, and let X be the real Hilbert space obtained by endowing H
with the scalar product (G, H) ↦→ 〈*G | H〉. Let Y ∈ ]0, UV/(UV + 1) [, let (W=)=∈N
be a sequence in [Y, (2 − Y)UV], and let (_=)=∈N be a sequence in [Y, 1]. Suppose
that the set / of solutions to the problem

find G ∈ H such that 0 ∈ �G + �G (8.104)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (8.105)
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Let G0 ∈ H and iterate

for = = 0, 1, . . .


D∗= = W
−1
= *G= − �G=

F= =
(
W−1
= * + �

)−1
D∗=

G=+1 = G= + _= (F= − G=).

(8.106)

Then the following hold:

(i) (G=)=∈N converges weakly to a point in / .

(ii) /∗ contains a single point G∗ and (∀I ∈ /) �I = G∗.

(iii) (�G=)=∈N converges strongly to G∗.

Proof. We derive from Lemma 2.25 and Example 2.39 that

(∀= ∈ N) G=+1 = G= + _=
(
�W=*−1◦�

(
G= − W=*−1(�G=)

)
− G=

)
, (8.107)

where *−1 ◦ � : X → 2X is maximally monotone, *−1 ◦ � : X → X is UV-
cocoercive, and zer(� + �) = zer(*−1 ◦ (� + �)). Hence the assertions follow
from Theorem 8.1 applied to *−1 ◦ � and *−1 ◦ � in X.

Remark 8.43 In terms of the warped resolvents of Section 2.4.3, (8.106) can be
condensed into

(∀= ∈ N) G=+1 = G= +_=
(
�
*=

W= (�+�)G= − G=
)
, where *= = * − W=�. (8.108)

We present an approach proposed in [387], which revisited the primal-dual
setting of [145] discussed in Proposition 7.10 by replacing the monotone Lipschitz
property of the operators� and (�−1

:
)16:6? with the stronger cocoercivity property.

Proposition 8.44 ([387, Theorem 3.1(i)]) Let 0 < ? ∈ N, let U ∈ ]0, +∞[, let
� : H → 2H be maximally monotone, and let � : H → H be U-cocoercive.
For every : ∈ {1, . . . , ?}, let V: ∈ ]0, +∞[, let G: be a real Hilbert space,
let �: : G: → 2G: be maximally monotone, let �: : G: → 2G: be maximally
monotone and V:-strongly monotone, and suppose that 0 ≠ !: ∈ B(H ,G:).
Additionally, suppose that the set / of solutions to the primal inclusion

find G ∈ H such that 0 ∈ �G +
?∑

:=1

!∗:
(
(�: ��:) (!:G)

)
+ �G (8.109)
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is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that

(∃ G ∈ H)



G ∈ (� + �)−1

(
−∑?

:=1 !
∗
:
H∗
:

)

(
∀: ∈ {1, . . . , ?}

)
!:G ∈ �−1

:
H∗
:
+ �−1

:
H∗
:
.

(8.110)

Let Y ∈ ]0, 1[, let (_=)=∈N be a sequence in [Y, 1], let G0 ∈ H , let (H∗1,0, . . . , H∗?,0) ∈
G1 ⊕ · · · ⊕ G?, let g ∈ ]0, +∞[, and let (f1, . . . , f?) ∈ ]0, +∞[?. Set

ℵ = min{U, V1, . . . , V?} and V =

1 −
√
g
∑?

:=1 f: ‖!: ‖2

max{g, f1, . . . , f?}
(8.111)

and assume that

ℵV > 1

2
. (8.112)

Iterate

for = = 0, 1, . . .


G∗= = g
(∑?

:=1 !
∗
:
H∗
:,=

+ �G=
)

?= = �g�(G= − G∗=)
G=+1 = G= + _= (?= − G=)
for : = 1, . . . , ?


H:,= = f:
(
!: (2?= − G=) − �−1

:
H∗
:,=

)

@∗
:,=

= �f:�
−1
:
(H∗
:,=

+ H:,=)
H∗
:,=+1 = H∗

:,=
+ _= (@∗:,= − H∗:,=).

(8.113)

Then there exist G ∈ / and (H∗1, . . . , H
∗
?) ∈ /∗ such that G= ⇀ G, and, for every

: ∈ {1, . . . , ?}, H∗
:,=

⇀ H∗
:
.

Proof. Set X = H ⊕ G1 ⊕ · · · ⊕ G? and




S : X → 2X : (G, H∗1, . . . , H∗?) ↦→(
�G +∑?

:=1 !
∗
:
H∗
:

)
×

(
−!1G + �−1

1 H∗1
)
× · · · ×

(
−!?G + �−1

? H
∗
?

)

I : X → X : (G, H∗1, . . . , H∗?) ↦→
(
�G, �−1

1 H∗1, . . . , �
−1
? H

∗
?

)

[ : X → X : (G, H∗1, . . . , H∗?) ↦→(
g−1G − ∑?

:=1 !
∗
:
H∗
:
,−!1G + f−1

1 H∗1, . . . ,−!?G + f−1
? H∗?

)
.

(8.114)

As in (5.61), S is maximally monotone, while I is ℵ-cocoercive. Furthermore,
[ ∈ B(H) is self-adjoint and, as shown in [387, Equation (3.20)], (8.112) implies
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that it is V-strongly monotone. Now set (∀= ∈ N) x= = (G=, H∗1,=, . . . , H∗?,=) and
w= = (?=, @∗1,= , . . . , @∗?,=). Then, adopting the same pattern as in the proof of
Example 5.20, we rewrite (8.113) as

for = = 0, 1, . . .


u∗
= = [x= − Ix=

w= =
(
[ + S

)−1
u∗
=

x=+1 = x= + _= (w= − x=),

(8.115)

and thus recover (8.106) with (∀= ∈ N) W= = 1 < 2ℵV. We therefore appeal
to Proposition 8.42(i) to obtain the weak convergence of (x=)=∈N to a point
(G, H∗1, . . . , H∗?) ∈ zer(S + I). However, replacing � with � + � and (�−1

:
)16:6?

with (�−1
:

+ �−1
:
)16:6? in Lemma 3.12(ii) yields zer(S + I) ⊂ / × /∗.

Remark 8.45 In terms of Framework 1.2, the embedding underlying Proposi-
tion 8.44 employs X = H ⊕ G1 ⊕ · · · ⊕ G?, M = S + I, and T : X →
H : (G, H∗1, . . . , H∗?) ↦→ G.

The following application to minimization revisits the setting of Example 7.13
and Remark 7.14.

Example 8.46 Let 0 < ? ∈ N, let U ∈ ]0, +∞[, let 5 ∈ Γ0 (H), and let ℎ : H → R
be convex, differentiable, and such that ∇ℎ is 1/U-Lipschitzian. For every : ∈
{1, . . . , ?}, let V: ∈ ]0, +∞[, let G: be a real Hilbert space, let 6: ∈ Γ0 (G:), let
ℓ: ∈ Γ0 (G:) be V:-strongly convex, and suppose that 0 ≠ !: ∈ B(H ,G:). Let /
be the set of solutions to the primal problem

minimize
G∈H

5 (G) +
?∑

:=1

(6: � ℓ:) (!:G) + ℎ(G), (8.116)

let /∗ be the set of solutions to the dual problem

minimize
H∗1∈G1,...,H

∗
? ∈G?

( 5 ∗ � ℎ∗)
(
−

?∑

:=1

!∗:H
∗
:

)
+

?∑

:=1

(
6∗: (H

∗
:) + ℓ

∗
: (H

∗
:)

)
, (8.117)

and suppose that

zer

(
m 5 +

?∑

:=1

!∗: ◦
(
m6: � mℓ:

)
◦ !: + ∇ℎ

)
≠ ∅. (8.118)

Let Y ∈ ]0, 1[, let (_=)=∈N be a sequence in [Y, 1], let G0 ∈ H , let (H∗1,0, . . . , H∗?,0) ∈
G1 ⊕ · · · ⊕ G?, let g ∈ ]0, +∞[, and let (f1, . . . , f?) ∈ ]0, +∞[? be such that
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(8.111)–(8.112) hold. Iterate

for = = 0, 1, . . .


G∗= = g
(∑?

:=1 !
∗
:
H∗
:,=

+ ∇ℎ(G=)
)

?= = proxg 5 (G= − G∗=)
G=+1 = G= + _= (?= − G=)
for : = 1, . . . , ?


H:,= = f:
(
!: (2?= − G=) − ∇ℓ∗

:
(H∗
:,=

)
)

@∗
:,=

= proxf:6
∗
:
(H∗
:,=

+ H:,=)
H∗
:,=+1 = H∗

:,=
+ _= (@∗:,= − H∗:,=).

(8.119)

Then there exist G ∈ / and (H∗1, . . . , H∗?) ∈ /∗ such that G= ⇀ G, and, for every
: ∈ {1, . . . , ?}, H∗

:,=
⇀ H∗

:
.

Proof. It follows from the arguments presented in [145, Section 4] that this is an
application of Proposition 8.44 with � = m 5 , � = ∇ℎ, and (∀: ∈ {1, . . . , ?})
�: = m6: and �: = mℓ: .

Remark 8.47 If we make the additional assumptions that, for every : ∈ {1, . . . , ?},
ℓ: = ]{0} and f: = f1, Example 8.46 was independently obtained in [155, Sec-
tion 5]. For this reason, (8.119) in this particular setting is called the Condat–Vũ
algorithm.

8.5 Forward-backward-half-forward splitting

Let � : H → 2H be maximally monotone, let � : H → H be cocoercive, and let
& : H → H be monotone and Lipschitzian. Then a zero of " = � +� +& can be
constructed through the forward-backward-forward algorithms of Theorem 7.1 or
Theorem 7.2, applied to � and the monotone and Lipschitzian operator � = � +&.
These algorithms require two applications of �, i.e., two applications of � and &,
at each iteration. However, the algorithms discussed so far require two applications
of a monotone Lipschitzian operator per iteration, as in the Antipin–Korpelevič
method of Section 7.1 and the forward-backward-forward methods of Sections 7.2
and 7.3, but only one application of a cocoercive operator, as in the Euler method
of Section 5.4.1 and the forward-backward methods of Sections 8.2 and 8.3. It is
therefore natural to ask whether one can find a zero of � + � + & using only one
application of � per iteration. A positive answer to this question was given in [79]
with the following forward-backward-half-forward splitting algorithm. We provide
a simple proof of its convergence using our geometric framework.

Proposition 8.48 ([79, Theorem 2.3.1]) Let U ∈ ]0, +∞[, let V ∈ ]0, +∞[, let
� : H → 2H be maximally monotone, let � : H → H be U-cocoercive, let
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& : H → H be monotone and V-Lipschitzian, and suppose that the set of solutions
/ to the inclusion

find G ∈ H such that 0 ∈ �G + �G +&G (8.120)

is not empty. Let G0 ∈ H , set j = 4U/(1 +
√

1 + 16U2V2), let Y ∈ ]0, j/(j + 1) [,
and let (W=)=∈N be a sequence in [Y, (1 − Y)j]. Iterate

for = = 0, 1, . . .


2∗= = W=�G=
@∗= = W=&G=
F= = �W=�(G= − 2∗= − @∗=)
G=+1 = F= − W=&F= + @∗=.

(8.121)

Then (G=)=∈N converges weakly to a point in / .

Proof. The claims will be established as an application of Theorem 4.12 with

, = � + &, and (∀= ∈ N) *= = W−1
= Id − � −& and @= = G=. (8.122)

In this setting, [95, Proposition 3.9] implies that (7.5) is satisfied, we have

(∀= ∈ N) �
*=

,+� =
(
W−1
= Id + �

)
◦

(
W−1
= Id − � −&

)

= �W=� ◦
(
Id − W= (� +&)

)
, (8.123)

and the variables of (4.34) become

(∀= ∈ N)




F= = �W=�
(
G= − W= (�G= + &G=)

)

C∗= =
(
W−1
= Id −&

)
G= −

(
W−1
= Id −&

)
F=

X= =

(
1

W=
− 1

4U

)
‖F= − G=‖2 − 〈F= − G= | &F= −&G=〉.

(8.124)

Now set

(∀= ∈ N) _= =




W=‖C∗=‖2

X=
, if X= > 0;

Y, otherwise
(8.125)

and note that the assumptions yield

inf
=∈N

_= > 0 and sup
=∈N

_= < 2. (8.126)
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As a consequence of (8.124) and the properties of &, we have

(∀= ∈ N) X= 6 0 ⇒
(

1

W=
− 1

4U
− V

)
‖F= − G=‖2

6 0

⇔ F= = G=

⇔ C∗= = 0. (8.127)

Hence, (4.34) yields

(∀= ∈ N) 3= =
W=

_=
C∗= =

1

_=

(
G= − F= + W= (&F= −&G=)

)
. (8.128)

As a result, the sequence (G=)=∈N produced by (8.121) coincides with that of
(4.34). Hence, by Theorem 4.12(i) and (8.126),

∑
=∈N ‖3=‖2 < +∞ which, in view

of (8.128), yields

(Id − W=&)F= − (Id − W=&)G= → 0. (8.129)

However, since j 6 1/V, (W=)=∈N lies in [Y, (1− Y)/V] and Lemma 2.48(i) implies
that the operators (Id − W=&)=∈N are Y-strongly monotone. Hence,

(∀= ∈ N) Y‖F=−G=‖2
6 〈F= − G= | (Id − W=&)F= − (Id − W=&)G=〉 (8.130)

and, by the Cauchy–Schwarz inequality and (8.129),

‖F= − G=‖ 6 Y−1‖(Id − W=&)F= − (Id − W=&)G=‖ → 0. (8.131)

In turn, since � is 1/U-Lipschitzian, these facts confirm that

‖*=F= −*=G=‖ 6 W−1
= ‖(Id − W=&)F= − (Id − W=&)G=‖ + ‖�F= − �G=‖

6 Y−1‖(Id − W=&)F= − (Id − W=&)G=‖ + U−1‖F= − G=‖
→ 0. (8.132)

Thus, the assertion follows from Theorem 4.12(ii) since its conditions (ii)(b) and
(ii)(c) are fulfilled.

Remark 8.49 We complement Proposition 8.48 with a few commentaries.

(i) Suppose that � = 0. Then, since U can be arbitrarily large, j = 1/V and
(8.121) reverts to the forward-backward-forward algorithm (7.2).

(ii) Suppose that & = 0. Then, since V = 0, j = 2U and (8.121) becomes an
unrelaxed version of forward-backward algorithm (8.5).
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(iii) Using the geometric pattern of the proof given above, a strongly convergent
version of the forward-backward-half-forward algorithm can be derived from
Theorem 4.14.

As an illustration, we extend the Lagrangian approach of Proposition 7.5.

Example 8.50 Let 5 ∈ Γ0 (H), 6 ∈ Γ0 (G), and ! ∈ B(H ,G) be such that
0 ∈ sri(! (dom 5 ) − dom 6). Let U ∈ ]0, +∞[ and let ℎ : H → R be convex
and differentiable and such that ∇ℎ is 1/U-Lipschitzian. Suppose that the primal
problem

minimize
G∈H

5 (G) + 6(!G) + ℎ(G) (8.133)

admits solutions and consider the dual problem

minimize
E∗∈G

( 5 ∗ � ℎ∗) (−!∗E∗) + 6∗(E∗). (8.134)

Let (G0, H0, E
∗
0) ∈ H ⊕ G ⊕ G, set j = 4U/(1 +

√
1 + 16U2 (1 + ‖!‖2) ), let Y ∈

]0, j/(j + 1) [, and let (W=)=∈N be a sequence in [Y, (1 − Y)j]. Iterate

for = = 0, 1, . . .


2∗= = W=∇ℎ(G=)
@∗1,= = W=!

∗E∗=
@∗2,= = −W=E∗=
@∗3,= = W= (H= − !G=)
01,= = proxW= 5

(
G= − 2∗= − @∗1,=

)

02,= = proxW=6
(
H= − @∗2,=

)

G=+1 = 01,= + W=!∗@∗3,=
H=+1 = 02,= − W=@∗3,=
E∗
=+1 = E∗= + W=

(
!01,= − 02,=

)
.

(8.135)

Then (G=)=∈N and (E∗=)=∈N converge weakly to solutions to (8.133) and (8.134),
respectively.

Proof. We adapt the approach of Section 7.4.2. The saddle operator of (7.22)–
(7.23) becomes S = G + I + W, where




G : (G, H, E∗) ↦→ m 5 (G) × m6(H) × {0}
I : (G, H, E∗) ↦→

(
∇ℎ(G), 0, 0

)

W : (G, H, E∗) ↦→
(
!∗E∗,−E∗,−!G + H

)
.

(8.136)

As in Section 7.4.2, G is maximally monotone and W is monotone and
√

1 + ‖!‖2-
Lipschitzian. Further, by virtue of Lemma 2.2, I is U-cocoercive. Now set
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(∀= ∈ N) x= = (G=, H=, E∗=), c∗= = (2∗=, 0, 0), q∗= = (@∗1,=, @∗2,= , @∗3,=), and w= =

(01,= , 02,= , E
∗
= − @∗3,=). Then (8.135) assumes the form

for = = 0, 1, . . .


c∗= = W=Ix=
q∗= = W=Wx=
w= = �W=G(x= − c∗= − q∗=)
x=+1 = w= − W=Ww= + q∗=,

(8.137)

which is (8.121). Hence, by Proposition 8.48, (G=, H=, E∗=)=∈N converges weakly to
a point (G, H, E∗) ∈ zerS.

Remark 8.51 Let U ∈ ]0, +∞[, let � : H → 2H and � : G → 2G be maximally
monotone, let � : H → H be U-cocoercive, and let 0 ≠ ! ∈ B(H ,G). As in
Remark 7.8, the saddle approach of Example 8.50 has a natural extension to the
problem of finding a zero of � + !∗ ◦ � ◦ ! + � and the dual problem of finding a
zero of −! ◦ (� + �)−1 ◦ (−!∗) + �−1. In this setting, the saddle operator is

S : H ⊕ G ⊕ G → 2H⊕G⊕G

(G, H, E∗) ↦→ (�G + �G + !∗E∗) × (�H − E∗) × {−!G + H}. (8.138)

Accordingly, it suffices to replace ∇ℎ with �, proxW= 5 with �W=�, and proxW=6 with
�W=� in (8.135) to find primal-dual solutions.

9 Block-iterative Kuhn–Tucker projective splitting

9.1 Preview

Unlike the methods described so far, those described in this section were explicitly
designed by employing the geometric principle of Theorem 4.2. The terminology
projective splitting was coined in [181] in the context of an algorithm to solve
Problem 3.1 by choosing points in the graph of � and � to construct half-spaces
containing an “extended solution set.” In the language of Lemma 3.8, this set is
actually the set of zeros of the Kuhn–Tucker operator (3.10), which collapses to

zerK =
{
(G, G∗) ∈ H ⊕ H | −G∗ ∈ �G and G ∈ �−1G∗

}
. (9.1)

The paper [181] initiated a fruitful line of work towards more complex monotone
inclusions [9, 10, 47, 93, 136, 178, 182, 234, 235, 236, 237, 268, 269, 355]. We
use the term Kuhn–Tucker projective splitting to describe a method that operates
through the principles of Framework 1.2, where M is a Kuhn-Tucker operator. As
we shall see, projective splitting algorithms have features quite different from those
of the traditional methods of Sections 5–8 and they display an unprecedented level
of flexibility in terms of implementation.
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9.2 Primal-dual composite inclusions

Let us go back to the composite Problem 3.7. The sets of primal and dual solutions
are, respectively,

/ = zer(� + !∗ ◦ � ◦ !) and /∗
= zer

(
−! ◦ �−1 ◦ (−!∗) + �−1) . (9.2)

Moreover, as pointed out in Example 3.20, an embedding of (3.7) is (X,K,T),
where X = H ⊕ G, K is the Kuhn–Tucker operator of (3.10), that is,

K : X → 2X : (G, H∗) ↦→
(
�G + !∗H∗

)
×

(
�−1H∗ − !G

)
, (9.3)

and T : X → H : (G, H∗) ↦→ G. The task is therefore to find a zero of K. This is
the path followed in the monotone+skew approach of Section 7.4.1. However, this
method requires knowledge of ‖!‖ (or of a tight upper bound for it), which may be
difficult to obtain in certain problems. The renormed algorithms of Example 5.20
and [61], the saddle algorithm of Remark 8.51, or the minimal lifting algorithm
of [14] share the same potential limitation. On the other hand, the method of
Proposition 5.15, which was derived from the method of partial inverses, requires
the inversion of linear operators, a task that may also face implementation issues.

A strategy which circumvents the above shortcomings was proposed in [9],
where the approach of [181] for solving Problem 3.1 was extended to Problem 3.7.
More precisely, it employs the geometric principle of Proposition 4.10 as follows.
Let us assume that, at iteration =, points (0=, 0∗=) ∈ gra � and (1=, 1∗=) ∈ gra � are
available and set

m= = (0=, 1∗=) and m∗
= = (0∗= + !∗1∗=, 1= − !0=). (9.4)

Then it is clear from (9.3) that (m=,m
∗
=) ∈ graK. Hence, given _= ∈ ]0, 2[,

iteration = of algorithm (4.32) updates (G=, H∗=) ∈ X via the routine



(C=, C∗=) = (1= − !0=, 0∗= + !∗1∗=)
g= = ‖C=‖2 + ‖C∗=‖2

if g= > 0⌊
\= =

_=

g=
max

{
0, 〈G= | C∗=〉 + 〈C= | H∗=〉 − 〈0= | 0∗=〉 − 〈1= | 1∗=〉

}

else \= = 0
(G=+1, H

∗
=+1) = (G= − \=C∗=, H∗= − \=C=).

(9.5)

In view of Proposition 4.10(ii), the task is now to specify (0=, 0∗=) ∈ gra � and
(1=, 1∗=) ∈ gra � so as to guarantee that m= − (G=, H∗=) ⇀ 0 and m∗

= → 0, that is,

0= − G= ⇀ 0, 1∗= − H∗= ⇀ 0, 1= − !0= → 0, and 0∗= + !∗1∗= → 0. (9.6)
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Given W= and f= in ]0, +∞[, choosing

(0=, 0∗=) =
(
�W=�(G= − W=!∗H∗=), W−1

=

(
G= − �W=�(G= − W=!∗H∗=)

)
− !∗H∗=

)
(9.7)

and

(1=, 1∗=) =
(
�f=� (!G= + f=H∗=), f−1

=

(
!G= − �f=� (!G= + f=H∗=)

)
+ H∗=

)
(9.8)

satisfies this requirement, which leads to the following result.

Proposition 9.1 ([9, Proposition 3.5]) Let � : H → 2H and � : G → 2G be
maximally monotone, and let ! ∈ B(H ,G). Suppose that the set / of solutions to
the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗
(
�(!G)

)
(9.9)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!
(
�−1(−!∗H∗)

)
+ �−1H∗. (9.10)

Let Y ∈ ]0, 1[, let (W=)=∈N and (f=)=∈N be sequences in [Y, 1/Y], let (_=)=∈N be a
sequence in [Y, 2 − Y], let G0 ∈ H , and let H∗0 ∈ G. Iterate

for = = 0, 1, . . .


0= = �W=�(G= − W=!∗H∗=)
;= = !G=
1= = �f=� (;= + f=H∗=)
C= = 1= − !0=
C∗= = W

−1
= (G= − 0=) + f−1

= !∗ (;= − 1=)
g= = ‖C=‖2 + ‖C∗=‖2

if g= > 0⌊
\= = _=

(
W−1
= ‖G= − 0=‖2 + f−1

= ‖;= − 1= ‖2
)
/g=

else \= = 0
G=+1 = G= − \=C∗=
H∗
=+1 = H∗= − \=C=.

(9.11)

Then (G=)=∈N converges weakly to a point G ∈ / and (H∗=)=∈N converges weakly to
a point H∗ ∈ /∗.

Remark 9.2 Here are notable instantiations of Proposition 9.1.

(i) The first instance of (9.11) in the literature seems to be that of [167], where
H and G are Euclidean spaces, � = 0, and (∀= ∈ N) W= = f= = 1
and _= = _ ∈ ]0, 2[. Convergence of the primal sequence (G=)=∈N was
established by different means.
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(ii) In the setting of Problem 3.1 (i.e., G = H and ! = Id), (9.11) was studied in
[181]. Under the additional assumptions that � + � is maximally monotone
or that H is finite-dimensional, weak convergence was established in [181,
Proposition 3] for a version of (9.11) which allows for an additional relaxation
parameter in the definition of 0=.

Remark 9.3 So far, we have presented several methods to solve Problem 3.7; see
Proposition 5.15, Example 5.20, Proposition 7.3, and Remark 8.51. Some features
that distinguish the splitting algorithm (9.11) from them are as follows.

(i) At each iteration of (9.11), different proximal parameters W= and f= can be
used for the operators � and � and, since Y is chosen by the user, their values
can be arbitrarily large.

(ii) The execution of (9.11) does not require that ‖!‖ or an approximation thereof
be known, or the inversion of linear operators.

(iii) A variant of (9.11) exploiting the cocoercivity of some of the operators and
activating them via Euler steps is discussed in [236].

(iv) The complexity of certain special cases and variants of (9.11) is investigated
in [234, 269].

The following strongly convergent projective splitting algorithm results from
Proposition 4.11.

Proposition 9.4 ([10, Proposition 3.5]) Let � : H → 2H and � : G → 2G be
maximally monotone, and let ! ∈ B(H ,G). Suppose that the set / of solutions to
the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗
(
�(!G)

)
(9.12)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!
(
�−1(−!∗H∗)

)
+ �−1H∗. (9.13)

Let Y ∈ ]0, 1[, let (W=)=∈N and (f=)=∈N be sequences in [Y, 1/Y], let (_=)=∈N be a
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sequence in [Y, 1], let G0 ∈ H , and let H∗0 ∈ G. Iterate

for = = 0, 1, . . .


0= = �W=�(G= − W=!∗H∗=)
;= = !G=
1= = �f=� (;= + f=H∗=)
C= = 1= − !0=
C∗= = W

−1
= (G= − 0=) + f−1

= !∗ (;= − 1=)
g= = ‖C=‖2 + ‖C∗=‖2

if g= > 0⌊
\= = _=

(
W−1
= ‖G= − 0=‖2 + f−1

= ‖;= − 1= ‖2
)
/g=

else \= = 0
A= = G= − \=C∗=
A∗= = H

∗
= − \=C=

j= = \=
(
〈G0 − G= | C∗=〉 + 〈C= | H∗0 − H∗=〉

)

`= = ‖G0 − G=‖2 + ‖H∗0 − H∗=‖2

a= = \
2
=g=

d= = `=a= − j2
=

if d= = 0 and j= > 0⌊
G=+1 = A=
H∗
=+1 = A∗=

if d= > 0 and j=a= > d=⌊
G=+1 = G0 − \= (1 + j=/a=)C∗=
H∗
=+1 = H∗0 − \= (1 + j=/a=)C=

if d= > 0 and j=a= < d=⌊
G=+1 = G= + (a=/d=)

(
j= (G0 − G=) − `=\=C∗=

)

H∗
=+1 = H∗= + (a=/d=)

(
j= (H∗0 − H∗=) − `=\=C=

)
.

(9.14)

Then (G=)=∈N converges strongly to a point G ∈ / and (H∗=)=∈N converges strongly
to a point H∗ ∈ /∗.

9.3 Block-iterative asynchronous method

We consider a refinement of Problem 3.11 in which the primal variable is specified
in terms of finitely many coordinates, say x = (G1, . . . , G<), where each G8 lies
in a Hilbert space H8. Such coupled systems of inclusions arise in particular in
multivariate optimization [1, 16, 17, 130], domain decomposition methods [6, 18,
21], image processing [25, 78, 117, 384], game theory [48, 57, 77, 98], network
flow problems [54, 92, 341, 342], machine learning [74, 232, 279, 385], signal
processing [75], mean field games [81], statistics [141, 394], tensor completion
[200, 288], and semi-definite programming [229, 301].
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Problem 9.5 Let � = {1, . . . , <} and  = {1, . . . , ?} be nonempty finite sets. For
every 8 ∈ � and every : ∈  , letH8 and G: be real Hilbert spaces, let �8 : H8 → 2H8

and �: : G: → 2G: be maximally monotone, and let !:8 ∈ B(H8,G:). Set

H =

⊕

8∈�
H8 and G =

⊕

:∈ 
G: . (9.15)

The objective is to solve the primal inclusion

find x ∈ H such that

(∀8 ∈ �) 0 ∈ �8G8 +
∑

:∈ 
!∗:8

(
�:

( ∑

9∈�
!: 9G 9

))
(9.16)

together with the dual inclusion

find y∗ ∈ G such that

(∃ x ∈ H)




(∀8 ∈ �) G8 ∈ �−1
8

(
−

∑

:∈ 
!∗:8H

∗
:

)

(∀: ∈  )
∑

8∈�
!:8G8 ∈ �−1

: H
∗
: .

(9.17)

Remark 9.6 There is an oversight in the dual problem given in [136, Problem 1],
the correct formulation of the dual inclusion is (9.17).

The counterpart of Lemma 3.12 for Problem 9.5 is as follows.

Lemma 9.7 In the setting of Problem 9.5, set X = H ⊕ G, and let ` and `∗ be
the sets of solutions to (9.16) and (9.17), respectively. Define the Kuhn–Tucker
operator of Problem 9.5 as

K : X → 2X : (x, y∗) ↦→
(
�1G1 +

∑

:∈ 
!∗:1H

∗
:

)
× · · · ×

(
�<G< +

∑

:∈ 
!∗:<H

∗
:

)

×
(
−

∑

8∈�
!18G8 + �−1

1 H∗1

)
× · · · ×

(
−

∑

8∈�
!?8G8 + �−1

? H
∗
?

)
(9.18)

and the set of Kuhn–Tucker points as zerK. Then the following hold:

(i) K is maximally monotone.

(ii) zerK is a closed convex subset of ` × `∗.

(iii) `∗ ≠ ∅⇔ zerK ≠ ∅⇒ ` ≠ ∅.
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Example 9.8 In the setting of Problem 9.5, set X = H ⊕ G, let K be the Kuhn–
Tucker operator of (9.18), and let T : X → H : (x, y∗) ↦→ x. Then it follows from
Lemma 9.7(ii) that (X,K,T) is an embedding of (9.16).

When the monotone operators (�8)1686< and (�:)16:6? are taken to be sub-
differentials, Problem 9.5 specializes to a multivariate minimization problem under
a suitable qualification condition.

Example 9.9 Define H and G as in Problem 9.5. For every 8 ∈ � and every
: ∈  , let 58 ∈ Γ0(H8), let 6: ∈ Γ0(G:), and let !:8 ∈ B(H8,G:). Suppose that
(existence of a Kuhn–Tucker point)

(∃ x ∈ H) (∃ y∗ ∈ G)




(∀8 ∈ �) −
∑

:∈ 
!∗:8H

∗
: ∈ m 58 (G8)

(∀: ∈  )
∑

8∈�
!:8G8 ∈ m6∗: (H∗:).

(9.19)

The objective is to solve the primal minimization problem

minimize
x∈H

∑

8∈�
58 (G8) +

∑

:∈ 
6:

( ∑

8∈�
!:8G8

)
(9.20)

together with its dual problem

minimize
y∗∈G

∑

8∈�
5 ∗8

(
−

∑

:∈ 
!∗:8H

∗
:

)
+

∑

:∈ 
6∗: (H∗:). (9.21)

In an attempt to recast Problem 9.5 as a realization of Problem 3.7, let us define




� : H → 2H : x ↦→ �1G1 × · · · × �<G<
� : G → 2G : y ↦→ �1H1 × · · · × �?H?
! : H → G : x ↦→

(∑
8∈� !18G8, . . . ,

∑
8∈� !?8G8

)
.

(9.22)

Upon injecting these operators into (9.11) and invoking Example 2.37, we obtain an
algorithm that requires that <+ ? resolvents be evaluated at each iteration. In large-
scale problems, < and/or ? can be huge and this requirement poses implementation
issues as the only information flow within an iteration is from the < operators
(�8)8∈� calculations to the ? operators (�:):∈ calculations. This results in an
algorithm in which large blocks of calculations must be performed before any
information is exchanged between subsystems. Thus, if some small subset of the
subsystems represented by the operators (�8)8∈� or (�:):∈ are more computation-
intensive than others, load balancing can become problematic: most processors may
have to sit idle while the remaining few complete their tasks. More generally, none
of the methods discussed so far can handle block-processing or asynchronicity.

The algorithm we present now was conceived in [136] around combined ob-
jectives which were beyond the reach of the existing splitting algorithms:
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• Block iterations: At iteration =, it necessitates calculation of new points in
the graphs of only some of the operators, say (�8)8∈�= and (�:):∈ =

with
�= ⊂ � and  = ⊂  . The deterministic control sequences (�=)=∈N and
( =)=∈N dictate how frequently the various operators are used.

• Asynchronicity: A new point (08,= , 0∗8,= ) ∈ gra �8 being incorporated into
the calculations at iteration =may be based on data G8,c8 (=) and (H∗

:,c8 (=) ):∈ 
available at some possibly earlier iteration c8 (=) 6 =. Therefore, the cal-
culation of (08,= , 0∗8,=) could have been initiated at iteration c8 (=), with its
results becoming available only at iteration =. Likewise, for every : ∈  =,
the computation of (1:,= , 1∗:,=) ∈ gra �: can be initiated at some iteration
l: (=) 6 =, based on (G8,l: (=) )8∈� and H∗

:,l: (=) .

• Convergence: It guarantees (weak or strong) convergence of the iterates to
primal and dual solutions.

Remark 9.10 Regarding block iterations for Problem 9.5, a product space version
of the Douglas–Rachford algorithm was introduced in [146], which features random
activation of the blocks. A random block-iterative version of the forward-backward
algorithm was also proposed in [146], which led in [310] to algorithms for Prob-
lem 9.5 via the renorming techniques presented in Section 8.4.6 (for specialized
block-iterative forward-backward algorithms tailored for instances of Example 9.9,
see [74, 266, 350, 372]). These methods differ from the deterministic ones presen-
ted below in that they operate under stochastic assumptions on the underlying
processes, have a less predictable computational load over the iterations, have
less freedom in the choice of the proximal parameters, and offer only almost sure
convergence guarantees (see also [99] for numerical comparisons).

Going back to (9.5) in the setting of (9.22) and Lemma 9.7, what is actually
needed at iteration = to create the half-space containing zerK are points

{
(08,= , 0∗8,=) ∈ gra �8, for 8 ∈ �;
(1:,= , 1∗:,=) ∈ gra �: , for : ∈  .

(9.23)

The key observation is that not all of these points have to be new in order to obtain
a new half-space. In other words, we can update only some of them while keeping
old ones and still create a new half-space onto which the current primal-dual iterate
(x=, y∗=) = (G1,=, . . . , G<,=, H

∗
1,=, . . . , H

∗
?,=) will be projected. How often the points

in the individual graphs should be updated, and in which fashion, will be regulated
by the following rules.
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Assumption 9.11 Given 0 < ' ∈ N, (�=)=∈N is a sequence of nonempty subsets of
�, and ( =)=∈N is a sequence of nonempty subsets of  such that

�0 = �,  0 =  , and (∀= ∈ N)




=+'−1⋃

9==

� 9 = �

=+'−1⋃

9==

 9 =  .

(9.24)

Assumption 9.12 ) ∈ N and, for every 8 ∈ � and every : ∈  , (c8 (=))=∈N and
(l: (=))=∈N are sequences in N such that (∀= ∈ N) = − ) 6 c8 (=) 6 = and
= − ) 6 l: (=) 6 =.

With these considerations and by making selections for the updated points
(08,= , 0∗8,=)8∈�= and (1∗

:,=
, 1∗
:,=

):∈ =
akin to those of (9.7) and (9.8), we arrive at

the following realization of (9.5).

Algorithm 9.13 Consider the setting of Problem 9.5, suppose that Assump-
tions 9.11 and 9.12 are in force, let Y ∈ ]0, 1[, and let (_=)=∈N be a sequence
in [Y, 2 − Y]. For every 8 ∈ �, let (W8,=)=∈N be a sequence in [Y, 1/Y] and let
G8,0 ∈ H8. For every : ∈  , let (f:,=)=∈N be a sequence in [Y, 1/Y] and let
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H∗
:,0 ∈ G: . Iterate

for = = 0, 1, . . .


for every 8 ∈ �=


;∗8,= =
∑
:∈ !

∗
:8
H∗
:,c8 (=)

08,= = �W8, c8 (=) �8

(
G8,c8 (=) − W8,c8 (=) ;∗8,=

)

0∗
8,=

= W−1
8,c8 (=) (G8,c8 (=) − 08,=) − ;

∗
8,=

for every 8 ∈ � r �=⌊ (
08,= , 0

∗
8,=

)
=

(
08,=−1 , 0

∗
8,=−1

)

for every : ∈  =


;:,= =
∑
8∈� !:8G8,l: (=)

1:,= = �f:,l: (=)�:

(
;:,= + f:,l: (=) H

∗
:,l: (=)

)

1∗
:,=

= H∗
:,l: (=) + f

−1
:,l: (=) (;:,= − 1:,=)

for every : ∈  r  =⌊ (
1:,= , 1

∗
:,=

)
=

(
1:,=−1 , 1

∗
:,=−1

)

for every 8 ∈ �⌊
C∗
8,=

= 0∗
8,=

+∑
:∈ !

∗
:8
1∗
:,=

for every : ∈  ⌊
C:,= = 1:,= −

∑
8∈� !:808,=

g= =
∑
8∈� ‖C∗8,= ‖2 +∑

:∈ ‖C:,= ‖2

if g= > 0


\= =
_=

g=
max

{
0,

∑
8∈�

(
〈G8,= | C∗

8,=
〉 − 〈08,= | 0∗

8,=
〉
)

+∑
:∈ 

(
〈C:,= | H∗

:,=
〉 − 〈1:,= | 1∗

:,=
〉
)}

else \= = 0
for every 8 ∈ �⌊
G8,=+1 = G8,= − \=C∗8,=

for every : ∈  ⌊
H∗
:,=+1 = H∗

:,=
− \=C:,= .

(9.25)

Weak convergence is obtained by applying the principles of Proposition 4.10(ii).

Theorem 9.14 ([136, Theorem 13]) Consider the setting of Problem 9.5 and Al-
gorithm 9.13, and suppose that the Kuhn–Tucker operator K of (9.18) has zeros.
Then, for every 8 ∈ �, (G8,=)=∈N converges weakly to a point G8 ∈ H8 and, for every
: ∈  , (H∗

:,=
)=∈N converges weakly to a point H∗

:
∈ G: . In addition, (G8)8∈� solves

the primal problem (9.16) and (H∗
:
):∈ solves the dual problem (9.17).

Remark 9.15 Here are a few comments on algorithm (9.13).

(i) The synchronous implementation is obtained by taking, for every = ∈ N,
every 8 ∈ �=, and every : ∈  =, c8 (=) = l: (=) = =.

126



(ii) We recover [9, Theorem 4.3] (and in particular Proposition 9.4 when < =

? = 1) in the special case when the implementation is synchronous, and at
every iteration =, every operator is used (i.e., �= = � and  = =  ), with
W8,= = W= for every 8 ∈ � and f:,= = f= for every : ∈  .

(iii) The specialization of Theorem 9.14 to the minimization setting of Ex-
ample 9.9 is obtained by replacing each �W8, c8 (=) �8

with proxW8, c8 (=) 58
and

each �f:,l: (=)�:
with proxf:,l: (=)6: . Numerical experiments are presented

in [99] in the context of signal recovery and machine learning, and in [183]
in the context of stochastic programming.

(iv) For the strongly convergent variant of Theorem 9.14 based on Proposi-
tion 4.11, see [136, Theorem 15].

(v) When < = 1 and � = 0, a variant that takes into account the fact that some
of the operators (�:):∈ may be monotone and Lipschitzian, and which
activate them via Euler steps is presented in [237] (see also [235]).

10 Block-iterative saddle projective splitting

10.1 Preview

In all the algorithms discussed so far, each monotone operator has one of three
properties: it is set-valued, single-valued and cocoercive, or single-valued and
Lipschitzian. In addition, at each iteration, a set-valued operator is used once
via its resolvents, a cocoercive operator once via a Euler step, and a Lipschitzian
operator twice via Euler steps. This is particularly the case in the forward-backward-
half-forward algorithm of Section 8.5, the objective of which is to find a zero of

" = �+�+&, where




� : H → 2H is maximally monotone

� : H → H is cocoercive

& : H → H is monotone and Lipschitzian.

(10.1)

On the other hand, the Kuhn–Tucker projective splitting techniques of Section 9 ac-
tivate all the operators via their resolvents (exceptions were noted in Remarks 9.3(iii)
and 9.15(v), but they concern special cases of Problem 9.5). Furthermore, they
are not designed to handle problems such as (7.37) or (8.109), which incorporate
parallel sums.

In this section, following [97], we unify all the problem formulations en-
countered in Sections 5–9 by including parallel sums in the system of monotone
inclusions of Problem 9.5, and decomposing each operator in the resulting problem
as in (10.1). In addition, nonlinear coupling operators ('8)8∈� are incorporated.
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Problem 10.1 Let (H8)8∈� and (G:):∈ be finite families of real Hilbert spaces,
and set

H =

⊕

8∈�
H8 and G =

⊕

:∈ 
G: . (10.2)

For every 8 ∈ � and every : ∈  , suppose that the following are satisfied:

[a] �8 : H8 → 2H8 is maximally monotone, �8 : H8 → H8 is cocoercive with
constant Uc

8
∈ ]0, +∞[, &8 : H8 → H8 is monotone and Lipschitzian with

constant Ul
8
∈ [0, +∞[, and '8 : H → H8.

[b] �m

:
: G: → 2G: is maximally monotone, �c

:
: G: → G: is cocoercive with

constant Vc
:
∈ ]0, +∞[, and �l

:
: G: → G: is monotone and Lipschitzian

with constant Vl
:
∈ [0, +∞[.

[c] �m

:
: G: → 2G: is maximally monotone, �c

:
: G: → G: is cocoercive with

constant Xc
:
∈ ]0, +∞[, and �l

:
: G: → G: is monotone and Lipschitzian

with constant Xl
:
∈ [0, +∞[.

[d] !:8 ∈ B(H8,G:).

In addition,

[e] X : H → H : x ↦→ ('8x)8∈� is monotone and Lipschitzian with constant
j ∈ [0, +∞[.

The objective is to solve the primal problem

find x = (G8)8∈� ∈ H such that (∀8 ∈ �) 0 ∈ �8G8 + �8G8 +&8G8 + '8x

+
∑

:∈ 
!∗:8

(((
�m

: + �c

: + �
l

:

)
�

(
�m

: + �c

: + �
l

:

))
(∑

9∈�
!: 9G 9

))
(10.3)

and the associated dual problem

find y∗ = (H∗:):∈ ∈ G such that (∃ x ∈ H)



(∀8 ∈ �) −
∑

:∈ 
!∗:8H

∗
: ∈ �8G8 + �8G8 +&8G8 + '8x

(∀: ∈  ) H∗
:
∈

( (
�m

:
+ �c

:
+ �l

:

)
�

(
�m

:
+ �c

:
+ �l

:

) )
(∑

8∈�
!:8G8

)
.

(10.4)

Here is an instance of Problem 10.1 which is not captured by previous monotone
inclusion models.
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Example 10.2 We consider a game theoretic minimax problem. Let � be a finite
set and suppose that ∅ ≠ � ⊂ �. For every 8 ∈ �, the strategy G8 of player 8 belongs
to a real Hilbert space H8. A strategy profile is a point

x = (G8)8∈� ∈
⊕

8∈�
H8, (10.5)

and the associated profile of the players other than 8 ∈ � is xr8 = (G 9) 9∈�r{8} . For
every 8 ∈ � and every

(G8, y) ∈ H8 ⊕
⊕

9∈�
H 9 , (10.6)

we set (G8; yr8) = (H1, . . . , H8−1, G8, H8+1, . . . , H?). Now set

U =

⊕

8∈�r�
H8, V =

⊕

9∈�
H 9 , and H = U ⊕ V, (10.7)

and, for every 8 ∈ �, let 58 ∈ Γ0 (H8). Further, let L : H → R be differentiable
with a Lipschitzian gradient and such that, for every u ∈ U and every v ∈ V, the
functions −L(u, ·) and L(·, v) are convex. We consider the multivariate minimax
problem

minimize
u∈U

maximize
v∈V

∑

8∈�r�
58 (D8) + L(u, v) −

∑

9∈�
5 9 (E 9). (10.8)

Now define

(∀8 ∈ �) h8 : H → R : (u, v) ↦→
{
L(u, v), if 8 ∈ � r �;
−L(u, v), if 8 ∈ �.

(10.9)

Then (10.8) can be put in the form

find x ∈ H such that (∀8 ∈ �) G8 ∈ Argmin 58 + h8 (·; xr8). (10.10)

Since

(∀8 ∈ �) (∀x ∈ H) ∇8h8 (x) =
{
∇8L(x), if 8 ∈ � r �;
−∇8L(x), if 8 ∈ �,

(10.11)

the operator

X : H → H : x ↦→
(
∇8h8 (x)

)
8∈� =

( (
∇8L(x)

)
8∈�r� ,

(
−∇9L(x)

)
9∈�

)
(10.12)

is monotone [335, 336] and Lipschitzian. Now, for every 8 ∈ �, set �8 = m 58 . Then,
by Fermat’s rule, (10.10) is equivalent to

find x ∈ H such that (∀8 ∈ �) 0 ∈ �8G8 + '8x, (10.13)

which shows that (10.8) is an instantiation of (10.3). Special cases of (10.8) under
the above assumptions arise in [17, 148, 226, 297, 342, 371, 396].

129



Our objective is to solve Problem 10.1 with the same level of flexibility and
the same primal-dual convergence guarantees as in Theorem 9.14, i.e., to achieve
full splitting of all the operators using an asynchronous block-iterative algorithm
without knowledge of the norms of the linear operators or inversion of linear
operators. In addition, all the single-valued operators should be activated via Euler
steps.

10.2 Saddle operator formulation

The approach adopted in Section 9 to break Problem 9.5 into manageable pieces
hinged on the Kuhn–Tucker operator of Lemma 9.7 to obtain the embedding
of Framework 1.2. This strategy does not appear to lead to a full splitting of
Problem 10.1, as it contains a larger number of operators. We therefore re-
quire an embedding in a space X which is bigger than the primal-dual space
H1 ⊕ · · ·H< ⊕ G1 ⊕ · · · ⊕ G? of Theorem 9.14. As discussed in Remark 8.51,
saddle operators are defined on a bigger space than Kuhn–Tucker operators (for in-
stance, H⊕G⊕G versus H⊕G in (8.138)) and their zeros still provide primal-dual
solutions. Following Framework 1.2, as we did in Example 3.23, the methodology
of saddle projective splitting is to introduce a saddle operator for Problem 10.1.
We shall then devise asynchronous block-iterative splitting algorithms based on
the geometric principles of Theorems 4.8 and 4.9 to find a zero of it, from which
solutions to Problem 10.1 will be extracted. This is outlined in the following
lemma.

Lemma 10.3 ([97, Proposition 1]) Define H and G as in (10.2), set X = H ⊕
G ⊕ G ⊕ G, and define the saddle operator of Problem 10.1 as

S : X → 2X : (x, y, z, v∗) ↦→
(
?

8∈�

(
�8G8 + �8G8 + &8G8 + '8x +

∑

:∈ 
!∗:8E

∗
:

)
,

?

:∈ 

(
�m

: H: + �
c

: H: + �
l

:H: − E
∗
:

)
,

?

:∈ 

(
�m

: I: + �
c

: I: + �
l

:I: − E
∗
:

)
,

?

:∈ 

{
H: + I: −

∑

8∈�
!:8G8

} )
, (10.14)

let ` be the set of solutions to (10.3) and let `∗ be the set of solutions to (10.4).
Then the following hold:

(i) S is maximally monotone.
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(ii) zerS is closed and convex.

(iii) Suppose that (x, y, z, v∗) ∈ zerS. Then (x, v∗) ∈ ` × `∗.

(iv) `∗ ≠ ∅⇔ zerS ≠ ∅⇒ ` ≠ ∅.

We thus obtain the following generalization of Example 3.23.

Example 10.4 In the setting of Problem 10.1, set

X = H ⊕ G ⊕ G ⊕ G, (10.15)

let S be the saddle operator of (10.14), and let

T : X → H : (x, y, z, v∗) ↦→ x. (10.16)

Then it follows from Lemma 10.3(iii) that (X,S,T) is an embedding of (10.3).

Thus, to solve Problem 10.1 via Theorem 4.8, we need a decomposition of the
saddle operator (10.14) as S = W + C, where W : X → 2X is maximally monotone
and C : X → X is U-cocoercive. This will be achieved with

C : X → X : (x, y, z, v∗) ↦→
((
�8G8

)
8∈� ,

(
�c

: H:
)
:∈ ,

(
�c

: I:
)
:∈ , 0

)
(10.17)

and U = min{Uc
8
, Vc
:
, Xc
:
}8∈�,:∈ . These considerations lead to the following

implementation of (4.23).

Algorithm 10.5 In the setting of Problem 10.1, set

U = min
{
Uc
8 , V

c

: , X
c

:

}
8∈�
:∈ 

, (10.18)

let f ∈ ]1/(4U),+∞[ and Y ∈ ]0, 1[ be such that

1

Y
> f + max

{
Ul
8 + j, Vl: , X

l

:

}
8∈�
:∈ 

, (10.19)

and let (_=)=∈N be a sequence in [Y, 2 − Y]. For every 8 ∈ �, let (W8,=)=∈N be a
sequence in

[
Y, 1/(Ul

8
+ j + f)

]
and let G8,0 ∈ H8. For every : ∈  , let (`:,=)=∈N

be a sequence in
[
Y, 1/(Vl

:
+ f)

]
, let (d:,=)=∈N be a sequence in

[
Y, 1/(Xl

:
+ f)

]
,

let (f:,=)=∈N be a sequence in [Y, 1/Y], and let {H:,0, I:,0, E∗:,0} ⊂ G: . Suppose
that Assumptions 9.11 and 9.12 are in force and iterate
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for = = 0, 1, . . .


for every 8 ∈ �=


;∗8,= = &8G8,c8 (=) + '8xc8 (=) +
∑
:∈ !

∗
:8
E∗
:,c8 (=) ;

08,= = �W8, c8 (=) �8

(
G8,c8 (=) − W8,c8 (=) (;∗8,= + �8G8,c8 (=) )

)
;

0∗
8,=

= W−1
8,c8 (=) (G8,c8 (=) − 08,=) − ;

∗
8,=

+&808,= ;

b8,= = ‖08,= − G8,c8 (=) ‖2;
for every 8 ∈ � r �=⌊
08,= = 08,=−1 ; 0∗

8,=
= 0∗

8,=−1 ; b8,= = b8,=−1;
for every : ∈  =


D∗
:,=

= E∗
:,l: (=) − �

l

:
H:,l: (=) ;F

∗
:,=

= E∗
:,l: (=) − �

l

:
I:,l: (=) ;

1:,= = �`:,l: (=)�m

:

(
H:,l: (=) + `:,l: (=) (D∗:,= − �c

:
H:,l: (=) )

)
;

3:,= = �d:,l: (=)�m

:

(
I:,l: (=) + d:,l: (=) (F∗

:,=
− �c

:
I:,l: (=) )

)
;

4∗
:,=

= f:,l: (=)
( ∑

8∈� !:8G8,l: (=) − H:,l: (=) − I:,l: (=)
)

+ E∗
:,l: (=) ;

@∗
:,=

= `−1
:,l: (=) (H:,l: (=) − 1:,=) + D∗:,= + �

l

:
1:,= − 4∗:,= ;

C∗
:,=

= d−1
:,l: (=) (I:,l: (=) − 3:,=) + F∗

:,=
+ �l

:
3:,= − 4∗:,=;

[:,= = ‖1:,= − H:,l: (=) ‖2 + ‖3:,= − I:,l: (=) ‖2;
4:,= = 1:,= + 3:,= −

∑
8∈� !:808,= ;

for every : ∈  r  =


1:,= = 1:,=−1; 3:,= = 3:,=−1; 4∗
:,=

= 4∗
:,=−1;

@∗
:,=

= @∗
:,=−1; C∗

:,=
= C∗

:,=−1; [:,= = [:,=−1;
4:,= = 1:,= + 3:,= −

∑
8∈� !:808,= ;

for every 8 ∈ �⌊
?∗
8,=

= 0∗
8,=

+ '8a= +
∑
:∈ !

∗
:8
4∗
:,=

;
Δ= = −(4U)−1

( ∑
8∈� b8,= +

∑
:∈ [:,=

)
+∑

8∈� 〈G8,= − 08,= | ?∗8,=〉
+∑

:∈ 
(
〈H:,= − 1:,= | @∗

:,=
〉 + 〈I:,= − 3:,= | C∗

:,=
〉

+ 〈4:,= | E∗:,= − 4
∗
:,=〉

)
;

if Δ= > 0


\= = _=Δ=/
( ∑

8∈� ‖?∗8,= ‖2+∑
:∈ 

(
‖@∗
:,=

‖2+‖C∗
:,=

‖2+‖4:,= ‖2
) )

;
for every 8 ∈ �⌊
G8,=+1 = G8,= − \=?∗8,=;

for every : ∈  ⌊
H:,=+1 = H:,= − \=@∗:,=; I:,=+1 = I:,= − \=C∗:,=;
E∗
:,=+1 = E∗

:,=
− \=4:,=;

else


for every 8 ∈ �⌊
G8,=+1 = G8,=;

for every : ∈  ⌊
H:,=+1 = H:,=; I:,=+1 = I:,=; E∗

:,=+1 = E∗
:,=
.

(10.20)
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10.3 Convergence

The convergence properties of Algorithm 10.5 are laid out in the following theorem.

Theorem 10.6 ([97, Theorem 1(iv)]) Consider the setting of Problem 10.1 and
Algorithm 10.5, and suppose that the saddle operator S of (10.14) has zeros.
Then, for every 8 ∈ �, (G8,=)=∈N converges weakly to a point G8 ∈ H8 and, for every
: ∈  , (E∗

:,=
)=∈N converges weakly to a point E∗

:
∈ G: . In addition, (G8)8∈� solves

the primal problem (10.3) and (E∗
:
):∈ solves the dual problem (10.4).

Remark 10.7 The strongly convergent variant of Theorem 10.6 based on The-
orem 4.9 is proposed in [97, Theorem 2(iv)].

Remark 10.8 A fact that has not be appreciated previously is that Theorem 10.6
contains as special cases various weak convergence results of Sections 7–8. Thus,
suppose that

� =  = {1}, '1 = 0, and !11 = 0. (10.21)

Then Problem 10.1 reduces to finding a zero of �1+�1+&1 (see (8.120)), (10.20) re-
duces to the forward-backward-half-forward algorithm (8.121), and Theorem 10.6
reduces to Proposition 8.48. This covers both the forward-backward-forward al-
gorithm (7.2) for �1 = 0 (Theorem 7.1) and the unrelaxed forward-backward
algorithm (8.5) for &1 = 0 (Theorem 8.1). In a similar fashion, we can recover the
multivariate forward-backward-forward algorithm of [130] by choosing

(∀8 ∈ �) (∀: ∈  ) �8 = '8 = 0 and �c

: = �l

: = �
c

: = �l

: = 0. (10.22)

Going back to the simple inclusion problem (8.120), Theorem 10.6 offers several
other possibilities, for instance by implementing it with

� =  = {1}, �1 = �, '1 = �1 = &1 = 0, !11 = Id,

�m

1 = 0 , �c

1 = �, �l

1 = &, and �m

1 = �c

1 = �l

1 = {0}−1. (10.23)

As mentioned earlier, Problem 10.1 encompasses all the problems discussed
earlier. Theorem 10.6 can therefore be used to provide alternative algorithms
to solve them in an asynchronous and block-iterative manner, and with operator-
dependent proximal parameters (these features are absent from the algorithms of
Sections 5–8). Here is an example.

Example 10.9 In Problem 10.1, suppose that

� = {1},  = {1, . . . , ?}, �1 = �, �1 = '1 = 0, &1 = &, and (∀: ∈  )
!:1 = !: , �

m

: = �: , �
c

: = �l

: = 0, �m

: = �: , and �c

: = �l

: = 0. (10.24)
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Then we obtain the primal-dual inclusions (7.37)–(7.38) of Proposition 7.10, and
Theorem 10.6 furnishes a flexible alternative to Proposition 7.10 which, in addition,
places no restriction on the operators (�:):∈ , with the algorithm

for = = 0, 1, . . .


;∗= = &Gc (=) +
∑
:∈ !

∗
:
E∗
:,c (=) ;

0= = �Wc (=) �
(
Gc (=) − Wc (=) ;∗=

)
;

0∗= = W
−1
c (=) (Gc (=) − 0=) − ;

∗
= +&0=;

for every : ∈  =


1:,= = �`:,l: (=)�:

(
H:,l: (=) + `:,l: (=) E

∗
:,l: (=)

)
;

3:,= = �d:,l: (=)�:

(
I:,l: (=) + d:,l: (=)E

∗
:,l: (=)

)
;

4∗
:,=

= f:,l: (=)
(
!:Gl: (=) − H:,l: (=) − I:,l: (=)

)
+ E∗

:,l: (=) ;

@∗
:,=

= `−1
:,l: (=) (H:,l: (=) − 1:,=) + E∗:,l: (=) − 4

∗
:,=

;

C∗
:,=

= d−1
:,l: (=) (I:,l: (=) − 3:,=) + E∗:,l: (=) − 4

∗
:,=

;

[:,= = ‖1:,= − H:,l: (=) ‖2 + ‖3:,= − I:,l: (=) ‖2;
4:,= = 1:,= + 3:,= − !:0=;

for every : ∈  r  =


1:,= = 1:,=−1; 3:,= = 3:,=−1; 4∗
:,=

= 4∗
:,=−1 ;

@∗
:,=

= @∗
:,=−1; C∗

:,=
= C∗

:,=−1; [:,= = [:,=−1;
4:,= = 1:,= + 3:,= − !:0=;

?∗= = 0
∗
= +

∑
:∈ !

∗
:
4∗
:,=

;
Δ= = −(4U)−1

(
‖0= − Gc (=) ‖2 +∑

:∈ [:,=
)
+ 〈G= − 0= | ?∗=〉

+ ∑
:∈ 

(
〈H:,= − 1:,= | @∗

:,=
〉 + 〈I:,= − 3:,= | C∗

:,=
〉

+ 〈4:,= | E∗:,= − 4∗:,=〉
)
;

if Δ= > 0


\= = _=Δ=/
(
‖?∗=‖2 + ∑

:∈ 
(
‖@∗
:,=

‖2 + ‖C∗
:,=

‖2 + ‖4:,= ‖2
) )

;
G=+1 = G= − \=?∗=;
for every : ∈  ⌊
H:,=+1 = H:,= − \=@∗:,=; I:,=+1 = I:,= − \=C∗:,=;
E∗
:,=+1 = E∗

:,=
− \=4:,=;

else


G=+1 = G=;
for every : ∈  ⌊
H:,=+1 = H:,=; I:,=+1 = I:,=; E∗

:,=+1 = E∗
:,=
.

(10.25)

Remark 10.10 In the same vein as Example 10.9, we can solve the primal-dual
inclusions (8.109)–(8.110) of Proposition 8.44 via Theorem 10.6 by making the
modifications �1 = � and &1 = 0 in (10.24).
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11 Extensions and variants

The following flowchart summarizes the articulation of the main splitting methods
presented in the previous sections (a similar flowchart can be drawn for the chain of
strong convergence results starting with the Haugazeau principle of Theorem 4.7,
then Theorem 4.9, etc.).

• Cutting plane Fejér principle (Theorem 4.2)

⇓
• Graph-based cuts (Theorem 4.8)

• Section 9 (Block-iterative Kuhn–Tucker projective splitting)

• Section 10 (Block-iterative saddle projective splitting)

• Warped resolvent splitting (Theorem 4.12)

⇓
• Section 5 (Proximal point algorithm)

• Section 6 (Douglas–Rachford splitting)

• Section 7 (Forward-backward-forward splitting)

• Section 8 (Forward-backward splitting). (11.1)

This flowchart suggests that any extension or variant of the main theorems of
Section 4 (Theorems 4.2, 4.8, and 4.12) will lead to further splitting methods
or, at least, different implementations of them. We discuss some of the possible
variations on the basic geometric principles we have employed.

The basic operating principle of Theorem 4.2 is Fejér-monotonicity, i.e., its
property (i). There are extensions of this notion which preserve the main weak
convergence conclusions. For instance the notion of quasi-Fejér monotonicity, in-
troduced in [188] and studied in detail in [126], requires that there exist a summable
sequence (Y=)=∈N in [0, +∞[ such that

(∀I ∈ /) (∀= ∈ N) ‖G=+1 − I‖2
6 ‖G= − I‖2 + Y=. (11.2)

It follows from [126, Section 3] that Theorem 4.2 remains valid if, for some
sequence (4=)=∈N in H such that

∑
=∈N _=‖4= ‖ < +∞, we use an approximate

projection ?= = proj�=
G=+4= in (4.1) (see also [146] for a stochastic version of this

result that allows for random iteration modeling). This summable error framework
can be propagated in (11.1) to recover approximate implementation results from
[61, 127, 130, 145, 155, 339, 387]. Variable metric quasi-Fejér-monotonicity is an
extension of (11.2) described by

(∀I ∈ /) (∀= ∈ N) ‖G=+1 − I‖2
*=+1
6 ‖G= − I‖2

*=
+ Y=, (11.3)
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where (*=)=∈N is a sequence of strongly monotone operators in B(H) satisfying
certain properties [150]. It follows from [150, Theorem 3.3] that the conclusions of
Theorem 4.2 remain valid in this setting, which amounts to changing the metric of
H at each iteration. See [119, 151] for applications to forward-backward splitting,
[343] for applications to multiplier methods, and [323] for considerations on the
choice of the variable metrics. All the results derived from Theorem 4.2 can be
revisited in this variable-metric context. Another extension of (11.2) of interest is
the multi-step quasi-Fejér-monotonicity notion

(∀I ∈ /) (∀= ∈ N) ‖G=+1 − G‖2
6

=∑

9=0

`=, 9 ‖G 9 − G‖2 + Y= (11.4)

of [139, Lemma 2.2], where (`=, 9 )=∈N,06 96= is an array in [0, +∞[ satisfying
certain properties. This setting led to deterministic block-iterative implementations
of the forward-backward algorithm [139, Proposition 4.9] in the spirit of methods
found in [287, 289] in the minimization case.

The hybrid proximal-extragradient/projection methods of [357, 358, 359, 361]
revolve around a variant of Proposition 4.10 in which, at iteration =, (<=, <∗

=) is
merely required to be in the graph of a perturbed version of " , which permits us
to recover certain iterative methods beyond the proximal point algorithm. See also
[367] for more recent work along these lines, where approximate resolvents are
used to recover an instance of the forward-backward algorithm.

As is apparent from (11.1), many convergence results we have discussed follow
from Theorem 4.12. We now present a perturbed extension of it in which, at itera-
tion =, the warped resolvent is applied at a point G̃= and not necessarily at the current
iterate G=. The special case when� = 0, (@=)=∈N = (F=)=∈N, and conditions (ii)(b)
and (ii)(c) of Theorem 4.12 are fulfilled appears in [95, Theorem 4.2].

Theorem 11.1 Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H , and
let (_=)=∈N be a sequence in ]0, 2[. Further, for every = ∈ N, let G̃= ∈ H and let
*= : H → H be an operator such that ran*= ⊂ ran(*= +, +�) and*= +, +�
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is injective. Iterate

for = = 0, 1, . . .


F= = �
*=

,+� G̃=
F∗
= = *=G̃= −*=F= − �F=

@= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @= ‖2/(4U)

3= =




X=

‖C∗=‖2
C∗=, if X= > 0;

0, otherwise
G=+1 = G= − _=3= .

(11.5)

Suppose that G̃= − G= → 0. Then the conclusions of Theorem 4.12 remain valid if
the condition *=F= −*=G= → 0 in (ii)(c) is replaced by *=F= −*=G̃= → 0.

Proof. Adapt the pattern of the proof of Theorem 4.12.

Remark 11.2 The auxiliary sequence (G̃=)=∈N in Theorem 11.1 adds considerable
breadth to the scope of the algorithm, compared to that of Theorem 4.12. Here are
some illustrations of the condition G̃=−G= → 0, where we assume that inf =∈N _= > 0
and sup=∈N _= < 2.

(i) At iteration =, G̃= can model an additive perturbation of G=, say G̃= = G= + 4=.
Here, the error sequence (4=)=∈N need only satisfy ‖4=‖ → 0 and not the
usual summability condition

∑
=∈N ‖4=‖ < +∞ required in the quasi-Fejérian

splitting methods of [61, 126, 127, 130, 145, 387].

(ii) In the spirit of inertial methods [20, 43, 112, 137, 317], let (U=)=∈N be a
sequence in R and set (∀= ∈ N r {0}) G̃= = G= + U= (G= − G=−1). In these
methods, U= (G= − G=−1) → 0, which guarantees that ‖G̃= − G=‖ → 0, as
required.

(iii) More generally, weak convergence results can be derived from Theorem 11.1
for iterations with memory, that is,

(∀= ∈ N) G̃= =

=∑

9=0

`=, 9G 9 , where

(`=, 9 )06 96= ∈ R=+1 and
=∑

9=0

`=, 9 = 1. (11.6)

Here we have G̃= − G= → 0 if (1 − `=,=)G= −
∑=−1
9=0 `=, 9G 9 → 0. In the

case of standard inertial methods, weak convergence requires more stringent
conditions on the weights (`=, 9 )=∈N,06 96= [137].
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(iv) As indicated in (11.1), Theorem 9.14 on the Kuhn–Tucker projective splitting
algorithm was derived from Proposition 4.10, hence from Theorem 4.8, and it
does not appear possible to derive it from Theorem 4.12. However, as shown
in [93, Corollary 4], Theorem 9.14 follows from Theorem 11.1 (implemented
with � = 0 and @= = F=) through a suitable choice of the auxiliary sequence
(G̃=)=∈N. This last example provides further confirmation of the effectiveness
of warped resolvents.

Acknowledgment. The author thanks Minh N. Bùi for his careful proofreading
of the paper and his suggestions.
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[151] P. L. Combettes and B. C. Vũ, Variable metric forward-backward splitting with
applications to monotone inclusions in duality, Optimization, vol. 63, pp. 1289–
1318, 2014.

[152] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward
splitting, Multiscale Model. Simul., vol. 4, pp. 1168–1200, 2005.

[153] P. L. Combettes and Z. C. Woodstock, A variational inequality model for the
construction of signals from inconsistent nonlinear equations, SIAM J. Imaging
Sci., vol. 15, pp. 84–109, 2022.

[154] P. L. Combettes and I. Yamada, Compositions and convex combinations of averaged
nonexpansive operators, J. Math. Anal. Appl., vol. 425, pp. 55–70, 2015.

[155] L. Condat, A primal-dual splitting method for convex optimization involving
Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl., vol.
158, pp. 460–479, 2013.

[156] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, Proximal splitting al-
gorithms for convex optimization: A tour of recent advances, with new twists, SIAM
Rev., vol. 65, pp. 375–435, 2023.

[157] H. B. Curry, The method of steepest descent for non-linear minimization problems,
Quart. Appl. Math., vol. 2, pp. 258–261, 1944.

[158] S. Dafermos, Traffic equilibrium and variational inequalities, Transport. Sci., vol.
14, pp. 42–54, 1980.

[159] G. Darboux, Mémoire sur les fonctions discontinues, Ann. Sci. École Normale Sup.,
Sér. 2, vo. 4, pp. 57–112, 1875.

[160] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., vol.
57, pp. 1413–1457, 2004.

[161] D. Davis and W. Yin, A three-operator splitting scheme and its optimization applic-
ations, Set-Valued Var. Anal., vol. 25, pp. 829–858, 2017.

[162] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties.
Academic, New York, 1975.

[163] C. A. Desoer and F. F. Wu, Nonlinear monotone networks, SIAM J. Appl. Math.,
vol. 26, pp. 315–333, 1974.

147



[164] N. Dexter, H. Tran, and C. G. Webster, On the strong convergence of forward-
backward splitting in reconstructing jointly sparse signals, Set-Valued Var. Anal.,
vol. 30, pp. 543–557, 2022.

[165] V. Doležal, Feedback systems described by monotone operators, SIAM J. Control
Optim., vol. 17, pp. 339–364, 1979.

[166] V. Doležal, Monotone Operators and Applications in Control and Network Theory.
Elsevier, New York, 1979.

[167] Y. Dong, An LS-free splitting method for composite mappings, Appl. Math. Lett.,
vol. 18, pp. 843–848, 2005.

[168] Q.-L. Dong, Y. J. Cho, S. He, P. M. Pardalos, and T. M. Rassias, The Krasnosel’skiı̆–
Mann Iterative Method – Recent Progress and Applications. Springer, New York,
2022.

[169] J. Douglas, On the numerical integration of m2D/mG2+m2D/mH2 = mD/mC by implicit
methods, J. Soc. Indust. Appl. Math., vol. 3, pp. 42–65, 1955.

[170] J. Douglas and H. H. Rachford, On the numerical solution of heat conduction
problems in two or three space variables, Trans. Amer. Math. Soc., vol. 82, pp.
421–439, 1956.

[171] R. J. Duffin, Nonlinear networks I, Bull. Amer. Math. Soc., vol. 52, pp. 833–838,
1946.

[172] R. J. Duffin, Nonlinear networks IIa, Bull. Amer. Math. Soc., vol. 53, pp. 963–971,
1947.

[173] R. J. Duffin, Nonlinear networks IIb, Bull. Amer. Math. Soc., vol. 54, pp. 119–127,
1948.

[174] R. L. Dykstra, An algorithm for restricted least squares regression, J. Amer. Stat.
Assoc., vol. 78, pp. 837–842, 1983.

[175] B. C. Eaves, Subdivisions from primal and dual cones and polytopes,Linear Algebra
and Its Applications, vol. 62, pp. 277–285, 1984.

[176] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with
applications to convex programming, Math. Oper. Res., vol. 18, pp. 202–226, 1993.

[177] J. Eckstein, Some saddle-function splitting methods for convex programming, Op-
tim. Methods Softw., vol. 4, pp. 75–83, 1994.

[178] J. Eckstein, A simplified form of block-iterative operator splitting and an asyn-
chronous algorithm resembling the multi-block alternating direction method of
multipliers, J. Optim. Theory Appl., vol. 173, pp. 155–182, 2017.

[179] J. Eckstein and D. P. Bertsekas, On the Douglas–Rachford splitting method and the
proximal point algorithm for maximal monotone operators, Math. Program., vol.
55, pp. 293–318, 1992.

[180] J. Eckstein and M. C. Ferris, Smooth methods of multipliers for complementarity
problems, Math. Program., vol. A86, pp. 65–90, 1999.

[181] J. Eckstein and B. F. Svaiter, A family of projective splitting methods for the sum of
two maximal monotone operators, Math. Program., vol. 111, pp. 173–199, 2008.

148



[182] J. Eckstein and B. F. Svaiter, General projective splitting methods for sums of
maximal monotone operators, SIAM J. Control Optim., vol. 48, pp. 787–811, 2009.

[183] J. Eckstein, J.-P. Watson, and D. L. Woodruff, Projective hedging algorithms for
multistage stochastic programming, supporting distributed and asynchronous im-
plementation, Oper. Res., published online 2023-07-17.

[184] B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert
space, Numer. Funct. Anal. Optim., vol. 13, pp. 413–429, 1992.

[185] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels. Dunod,
Paris, 1974. English translation: Convex Analysis and Variational Problems. SIAM,
Philadelphia, PA, 1999.

[186] I. I. Eremin, Methods of Fejér approximations in convex programming, Mat.
Zametki, vol. 3, pp. 217–234, 1968.

[187] I. I. Eremin, On the speed of convergence in the method of Fejér approximations,
Mat. Zametki, vol. 4, pp. 53–62, 1968.

[188] Yu. M. Ermol’ev and A. D. Tuniev, Random Fejér and quasi-Fejér sequences,
Theory of Optimal Solutions – Akad. Nauk Ukrainskoı̆ SSR Kiev, vol. 2, pp. 76–83,
1968.

[189] F. Facchinei, A. Fischer, and V. Piccialli, On generalized Nash games and variational
inequalities, Oper. Res. Lett., vol. 35, pp. 159–164, 2007.

[190] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Com-
plementarity Problems. Springer, New York, 2003.

[191] L. Fejér, Über die Lage der Nullstellen von Polynomen, die aus Minimumforder-
ungen gewisser Art entspringen, Math. Ann., vol. 85, pp. 41–48, 1922.

[192] G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al
contorno, Atti Accad. Naz. Lincei Rend. Ser. VIII, vol. 34, pp. 138–142, 1963.

[193] M. A. T. Figueiredo and R. D. Nowak, An EM algorithm for wavelet-based image
restoration, IEEE Trans. Image Process., vol. 12, pp. 906–916, 2003.

[194] M. Fortin and R. Glowinski (eds.), Augmented Lagrangian Methods: Applications
to the Numerical Solution of Boundary-Value Problems. North-Holland, Amster-
dam, 1983.

[195] A. Froda, Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables
Réelles. Hermann, Paris, 1929.

[196] M. Fukushima, The primal Douglas–Rachford splitting algorithm for a class of
monotone mappings with application to the traffic equilibrium problem, Math.
Program., vol. 72, pp. 1–15, 1996.

[197] D. Gabay, Applications of the method of multipliers to variational inequalities, in:
[194], pp. 299–331. North-Holland, Amsterdam, 1983.

[198] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational
problems via finite elements approximations, Comput. Math. Appl., vol. 2, pp.
17–40, 1976.

149



[199] N. Gaffke and R. Mathar, A cyclic projection algorithm via duality, Metrika, vol.
36, pp. 29–54, 1989.

[200] S. Gandy, B. Recht, and I. Yamada, Tensor completion and low-n-rank tensor
recovery via convex optimization, Inverse Problems, vol. 27, art. 025010, 2011.

[201] G. Garrigos, L. Rosasco, and S. Villa, Convergence of the forward-backward al-
gorithm: Beyond the worst-case with the help of geometry, Math. Program., vol.
A198, pp. 937–996, 2023.

[202] C. F. Gauss, Theoria Motus Corporum Coelestium. Perthes and Besser, Hamburg,
1809.

[203] P. Gautam, D. R. Sahu, A. Dixit, and T. Som, Forward-backward-half forward
dynamical systems for monotone inclusion problems with application to v-GNE, J.
Optim. Theory Appl., vol. 190, pp. 491–523, 2021.

[204] A. Genel and J. Lindenstrauss, An example concerning fixed points, Israel J. Math.,
vol. 22, pp. 81–86, 1975.

[205] A. Ghizzetti (ed.), Theory and Applications of Monotone Operators, Proceedings of
a NATO Advanced Study Institute held in Venice, Italy, June 17–30, 1968. Edizioni
Oderisi, Gubbio, 1969.

[206] N. Ghoussoub, Self-Dual Partial Differential Systems and Their Variational Prin-
ciples. Springer, New York, 2009.

[207] P. Giselsson, Nonlinear forward-backward splitting with projection correction,
SIAM J. Optim., vol. 31, pp. 2199–2226, 2021.

[208] R. Glowinski and A. Marrocco, Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet
non linéaires, C. R. Acad. Sci. Paris, vol. A278, 1649–1652, 1974; see also RAIRO
Anal. Numer., vol. 9, pp. 41–76, 1975.

[209] R. Glowinski and P. Le Tallec (eds.), AugmentedLagrangian and Operator-Splitting
Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA, 1989.

[210] R. Glowinski, S. J. Osher, and W. Yin (eds.), Splitting Methods in Communication,
Imaging, Science, and Engineering. Springer, New York, 2016.

[211] D. Goeleven, Complementarity and Variational Inequalities in Electronics. Aca-
demic, London, 2017.

[212] M. Goldburg and R. J. Marks II, Signal synthesis in the presence of an inconsistent
set of constraints, IEEE Trans. Circuits Syst., vol. 32, pp. 647–663, 1985.

[213] A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc.,
vol. 70, pp. 709–710, 1964.

[214] E. G. Gol’shtein and N. V. Tret’yakov, Modified Lagrangians in convex program-
ming and their generalizations, Math. Program. Studies, vol. 10, pp. 86–97, 1979.

[215] E. G. Golshtein and N. V. Tretyakov, Modified Lagrangians and Monotone Maps in
Optimization. Wiley, New York, 1996.

150



[216] M. Golomb, Zur Theorie der nichtlinearen Integralgleichungen, Integ-
ralgleichungssysteme und allgemeinen Funktionalgleichungen, Math. Z., vol. 39,
pp. 45–75, 1935.

[217] M. Golomb, Über Systeme von nichtlinearen Integralgleichungen, Publ. Math.
Univ. Belgrade, vol. 5, pp. 52–83, 1936.

[218] E. G. Gol’shtein, A general approach to decomposition of optimization systems,
Sov. J. Comput. Syst. Sci., vol. 25, pp. 105–114, 1987.

[219] C. W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl., vol. 40,
pp. 369–372, 1972.

[220] L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding the
common point of convex sets, Comput. Math. Math. Phys., vol. 7, pp. 1–24, 1967.

[221] O. Güler, On the convergence of the proximal point algorithm for convex minimiz-
ation, SIAM J. Control Optim., vol. 29, pp. 403–419, 1991.

[222] H. Hahn, Theorie der reellen Funktionen. Springer, Berlin, 1921.

[223] S. P. Han, A successive projection method, Math. Program., vol. 40, pp. 1–14,
1988.

[224] Y. Haugazeau, Sur la minimisation de formes quadratiques avec contraintes, C. R.
Acad. Sci. Paris, vol. A264, pp. 322–324, 1967.

[225] Y. Haugazeau, Sur les Inéquations Variationnelles et la Minimisation de Fonction-
nelles Convexes. Thèse, Université de Paris, Paris, France, 1968.

[226] Y. He and R. D. C. Monteiro, Accelerating block-decompositionfirst-order methods
for solving composite saddle-point and two-player Nash equilibrium problems,
SIAM J. Optim., vol. 25, pp. 2182–2211, 2015.

[227] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-
point problem: from contraction perspective, SIAM J. Imaging Sci., vol. 5, pp.
119–149, 2012.

[228] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., vol. 4,
pp. 303–320, 1969.

[229] H. Hu, R. Sotirov, and H. Wolkowicz, Facial reduction for symmetry reduced
semidefinite and doubly nonnegative programs, Math. Program., vol. A200, pp.
475–529, 2023.

[230] H. S. Hundal, An alternating projection that does not converge in norm, Nonlinear
Anal., vol. 57, pp. 35–61, 2004.

[231] H. Idrissi, O. Lefebvre, and C. Michelot, Applications and numerical convergence
of the partial inverse method, Lecture Notes in Math., vol. 1405, pp. 39–54, 1989.

[232] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal methods for hierarchical
sparse coding, J. Machine Learn. Res., vol. 12, pp. 2297–2334, 2011.

[233] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs
moyennes, Acta Math., vol. 30, pp. 175–193, 1906.

151



[234] P. R. Johnstone and J. Eckstein, Convergence rates for projective splitting, SIAM J.
Optim., vol. 29, pp. 1931–1957, 2019.

[235] P. R. Johnstone and J. Eckstein, Projective splitting with forward steps only requires
continuity, Optim. Lett., vol. 14, pp. 229–247, 2020.

[236] P. R. Johnstone and J. Eckstein, Single-forward-stepprojective splitting: Exploiting
cocoercivity, Comput. Optim. Appl., vol. 78, pp. 125–166, 2021.

[237] P. R. Johnstone and J. Eckstein, Projective splitting with forward steps, Math.
Program., vol. A191, pp. 631–670, 2022.

[238] J. L. Joly and P. J. Laurent, Stability and duality in convex minimization problems,
Rev. Française Informat. Recherche Opérationnelle, sér. R2, vol. 5, pp. 3–42, 1971.

[239] R. I. Kačurovskiı̆, Monotone operators and convex functionals, Uspekhi Mat. Nauk,
vol. 15, pp. 213–215, 1960.

[240] R. I. Kačurovskiı̆, Non-linear monotone operators in Banach spaces, Russian Math.
Surveys, vol. 23, pp. 117–165, 1968.

[241] T. Kato, Perturbation Theory for Linear Operators, 2nd ed. Springer, New York,
1980.

[242] R. B. Kellogg, A nonlinear alternating direction method, Math. Comp., vol. 23, pp.
23–27, 1969.

[243] J. E. Kelley, The cutting-plane method for solving convex programs, J. SIAM, vol.
8, pp. 703–712, 1960.

[244] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities
and Their Applications. Academic, New York, 1980.
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