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1 Introduction

1.1 The Image Recovery Problem

Image recovery is a broad discipline that encompasses the large body of inverse problems
in which an image h is to be inferred from the observation of data x consisting of sig-
nals physically or mathematically related to it. The importance of image recovery stems
from the growing need for visual information in a wide spectrum of environmental, med-
ical, military, industrial, and artistic fields. More specifically, we can mention scientific
applications in astronomy, bioengineering, electron microscopy, interferometry, ultrasonic
imaging, flow imaging, radiology, surveillance, nondestructive testing, seismology, and
satellite imaging. General references on image recovery and its applications are [5], [53],
[98], [156], and [159].

Image restoration and image reconstruction are the two main sub-branches of image re-
covery. The term image restoration usually applies to the problem of estimating the origi-
nal form h of a degraded image x. Hence, in image restoration the data consist of measure-
ments taken directly on the image to be estimated, x being a blurred and noise-corrupted
version of h. The blurring operation can be induced by the image transmission medium,
e.g., the atmosphere in astronomy, or by the recording device, e.g., an out-of-focus or
moving camera. On the other hand, image reconstruction refers to problems in which the
data x are indirectly related to the form of the original image h. For example, the term
reconstruction would apply to the problem of estimating an image given measurement of
its line integrals in tomography or given partial diffraction data in extrapolation problems.

Four basic elements are required to solve an image recovery problem.

1. A data formation model.

2. A priori information.

3. A recovery criterion.

4. A solution method.

The data formation model is essentially a model of the imaging system, i.e., a mathemati-
cal description of the relation between the original image h and the recorded data x. One
of the most common data formation models in image restoration is

x = T (h) + u, (1.1)

where the operator T represents the blurring process and u an additive noise component.
Within this generic model, various subcategories can be distinguished, according as T is
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linear or nonlinear, deterministic or stochastic, or according as the noise depends on T (h)
or not, etc. Different models can also be considered to reflect situations when the noise is
multiplicative, or when several noise sources are present, etc. The basic model (1.1) is also
appropriate in a number of image reconstruction problems. For instance, T (h) will stand
for a low-passed Fourier transform in band-limited extrapolation and a Radon transform
in tomography.

A data formation model is always accompanied by some a priori knowledge. Thus, in
(1.1), information may be available to describe the original image h, the operator T , or
the noise u. As emphasized in [170], a priori information is an essential ingredient in
recovery problems, even if it is often exploited only partially.

The recovery criterion defines the class of images that are acceptable as solutions to the
problem. It is chosen by the user on grounds that may include experience, compatibility
with the available a priori knowledge, personal convictions on the best way to solve the
problem, and ease of implementation. The traditional approach has been to use a criterion
of optimality, which usually leads to a single “best” solution. An alternative approach is to
use a criterion of feasibility, in which consistency with all prior information and the data
defines a set of equally acceptable solutions. This will be the framework discussed in this
survey.

The solution method is a numerical algorithm that will produce a solution to the recovery
problem, i.e., an image that satisfies the recovery criterion. This computational aspect of
image recovery is critical, as it restricts the choice of recovery criteria. Indeed, a physi-
cally founded criterion may yield a numerical problem for which no solution technique is
available and it can therefore not be adopted.

A conceptual formulation of recovery problems in a Hilbert image space Ξ is

min
a∈Ξ

Θ(a) subject to constraints (Ψi)i∈I , (1.2)

where the functional Θ represents the cost to be minimized1 and where the constraints
(Ψi)i∈I arise from a priori knowledge and the observed data. A collection of property sets
can be defined in Ξ by

(∀i ∈ I) Si = {a ∈ Ξ | a satisfies Ψi}. (1.3)

The feasibility set for the problem is the class of all images that are consistent with all the
constraints, that is

S =
⋂

i∈I

Si = {a ∈ Ξ | (∀i ∈ I) a satisfies Ψi}. (1.4)

1If a cost Θ is to be maximized, we shall simply minimize −Θ.
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Therefore, (1.2) takes the form

min
a∈Ξ

Θ(a) subject to a ∈
⋂

i∈I

Si. (1.5)

This quite general constrained programming problem can usually not be solved and it
must therefore be modified. Modification can be made in two directions: in the conven-
tional image recovery framework, one seeks to preserve the notion of an optimal solution
whereas in the set theoretic framework the emphasis is placed on feasibility.

1.2 Optimal Solutions and Point Estimates

In most enginering problems the criterion of optimality with respect to a unimodal cost
function Θ has been used to define unique solutions. The systematic quest for optimal so-
lutions, which is now well rooted in the scientific culture, originated in the late 1940’s. It
has been fueled to a large extent by the conjunction of technological advances in comput-
ing machinery as well as progress in branches of applied mathematics such as optimization
theory, numerical analysis, and statistics.

Naturally, optimal estimators have also ruled in image recovery and there is no short-
age of definitions for optimality. Thus, researchers have proposed criteria such as min-
imum cross-entropy [23], regularized least-squares residual [53], maximum likelihood
[70], [104], [142], least-squares error [5], maximum a posteriori [166], [167], and other
Bayesian techniques [71], [87], [90], maximum entropy [70], [119], [177], and maxi-
mum power [168].

Optimal procedures have undoubtedly provided satisfactory solutions in numerous appli-
cations. However, certain reservations can be formulated vis-à-vis such approaches. First,
the criterion of optimality is inherently subjective and different criteria may yield differ-
ent solutions. Thus, some will argue that a maximum likelihood estimate is desirable
while others will discount it on account of its many pathologies. Others will argue that
the Bayesian framework is better suited to incorporate a priori information. However, it
requires a probabilistic model for the original image, a highly debatable issue. Moreover,
not all a priori information can be easily described in probabilistic terms and the resulting
prior distribution is usually too complex to yield a tractable minimization of the resulting
conditional expectation. In fact, such pathologies exist for almost every type of estimation
procedure and have given rise to many controversies [52], [63], [64], [80], [86], [186].
A second concern with optimal formulations is computational tractability, which requires
that (1.5) be simplified by choosing a workable cost function Θ and getting rid of some, if
not all, of the constraints (Ψi)i∈I . For that reason, one tends to select Θ on grounds which
are seldom related to rational and practical goals reflecting the specificities of the problem
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at hand. For instance, the least-squares error criterion, which usually yields tractable prob-
lems, has been used in countless recovery algorithms although its inadequacy in imaging
sciences has long been recognized [7]. In addition, the necessity of ignoring constraints
leads to solutions which violate known facts about the original image.

In short, optimal procedures often amount in practice to finding an image which is optimal
with respect to a standard cost function and likely to be outside of the feasibility set S.

1.3 Feasible Solutions and Set Theoretic Estimates

The set theoretic approach in estimation is governed by the notion of feasibility [38]. In
other words, one recognizes the importance of the constraints in (1.5) and, at the same
time, the inherent arbitrariness that surrounds the choice of a relevant cost function Θ. As
a result, the recovery problem is posed as a feasibility problem, namely

Find a⋆ ∈ S =
⋂

i∈I

Si. (1.6)

The restoration criterion thus defined is clear: any image which is consistent with all the
information available about the problem and the data is acceptable. The solution to the
problem is therefore the set S of feasible images.

The main asset of the set theoretic approach is to allow the incorporation of a broad range
of statistical as well as nonstatistical information in the definition of a solution. In the
engineering literature, this approach seems to have been first applied to systems theory
as a nonstatistical way to incorporate uncertainty in modeling, analysis, estimation, and
control problems [38]. In this context, the basic idea of an estimation scheme which
yields a set based on available information, rather than a single point, can be traced back
to [150]. To this day, image recovery remains the most active field of application of set
theoretic estimation. This popularity can be explained by two main factors. First, image
recovery problems are typically accompanied by a great deal of qualitative information
about the original image that is not easily expressed in purely statistical terms, which is
the only form that conventional estimation methods can exploit. The second factor is that
in most cases, a human observer will judge the quality of the recovered image. Since the
human eye is not sensitive to standard mathematical goodness measures, the importance
of an optimal recovery, in one sense or another, is significantly diminished.

Set theoretic image recovery departs radically from the conventional framework of Sec-
tion 1.2, in which the primary criterion of acceptability of a solution was its optimality
with respect to some cost and where feasibility was of secondary importance. In this re-
gard, a common criticism against the set theoretic approach is that it does not produce a
unique solution. First, as we have just seen, although it may be gratifying to have obtained
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the “best” image, optimality claims often have little practical value. At best, if an optimal
solution does land in the feasibility set, it can be regarded as a qualitative selection of a
feasible solution. Moreover, from a philosophical standpoint, demanding that one, and
only one, image be acceptable as a solution in problems which are notoriously affected by
uncontrollable factors (e.g., noise, uncertain image formation models) may appear some-
what unwise. Finally, it should be noted that methods which yield unique solutions are
usually iterative and their solution depends on a stopping rule. Since there is a whole col-
lection of images that satisfy any given stopping rule, a set of solutions is thus implicitly
defined, not a single point. All in all, uniqueness of a solution is merely a conservative
postulate in the tradition of a certain scientific culture, not a universal, philosophically
correct, and rational requirement.

1.4 The Convex Feasibility Problem

So far, we have not put any restrictions on the set theoretic recovery problem (1.6). How-
ever, due to the lack of numerical methods for solving feasibility problems in their full
generality, we must restrict ourselves to problems yielding closed and convex sets in the
Hilbert space Ξ. In this case (1.6) is called a convex feasibility problem and efficient
techniques are available to solve it.

Requiring convexity is certainly a limitation since, as will be seen in Section 3.4, important
constraints are not convex in the selected solution space. Fortunately, in many problems,
convex constraints will suffice to define meaningful feasibility sets. For instance, all lin-
ear and affine constraints lead to convex sets as well as linear inequality constraints. In
addition, a large corpus of nonlinear constraints are of the convex type.

A convex set theoretic image recovery problem involves three steps.

1. Selecting a hilbertian solution space Ξ.

2. Selecting the constraints that yield closed and convex property sets (Si)i∈I in Ξ and
constructing these sets.

3. Solving the convex feasibility problem (1.6).

The selection of a solution space is discussed in Section 3, where we provide a general
overview of set theoretic image recovery. The construction of convex property sets from
various properties of the image to be estimated and of the imaging system is then dis-
cussed in Section 4. Section 5 is devoted to the question of solving convex feasibility
problems. Numerical simulations are presented in Section 6 to illustrate various theoret-
ical and practical aspects of convex image recovery. The survey is concluded by a brief
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summary in Section 7. For the convenience of the reader, we have listed some frequently
used acronyms in Appendix A. We shall now start with a review of the necessary mathe-
matical background.
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2 Mathematical Foundations

We review here the essential elements of analysis that constitute the mathematical foun-
dation of convex set theoretic image recovery. Notations are definitions used throughout
the survey are also introduced.

Complements and background on general mathematical analysis will be found in [57].
More specialized references are: on weak convergence [16] and [189]; on convex analysis
[8], [65], [111], and [190]; on projections [8], [16], [17], and [187]; on nonlinear
operators [75], [111], and [188].

2.1 General Notations

C is the set of complex numbers, R the set of reals, R+ the set of nonnegative reals, R∗
+

the set of positive reals, Z the set of integers, N the set of nonnegative integers, and N∗

the set of positive integers. The complex conjugate of z ∈ C is denoted by z.

The family of all subsets of a set S is denoted by P(S). Moreover, the cardinality of S is
denoted by cardS, its complement by ∁S, and its indicator function by 1S , i.e.,

1S(a) =

{
1 if a ∈ S
0 if a ∈ ∁S.

(2.1)

Ξ is a real Hilbert space with scalar product 〈· | ·〉. Its norm is given by (∀a ∈ Ξ) ‖a‖ =√
〈a | a〉 and its distance by (∀(a, b) ∈ Ξ2) d(a, b) = ‖a − b‖. The dimension of Ξ is

denoted by dimΞ, the zero vector in Ξ by 0, and the identity operator on Ξ by Id. The
boundary of a set S is denoted by ∂S. If S ⊂ Ξ is an affine subspace, the vector space S⊥

is its orthogonal complement. Finally, tM denotes the transpose of a matrix M .

2.2 Geometrical Properties of Sets

A vector subspace is any nonempty subset S of Ξ such that

(∀α ∈ R)(∀(a, b) ∈ S2) αa+ b ∈ S, (2.2)

and an affine subspace is any set S = {a + b | a ∈ V }, where V is a vector subspace and
b ∈ Ξ. Now let b be a nonzero vector in Ξ and (η, κ) a pair of real numbers. The set

H = {a ∈ Ξ | 〈a | b〉 = κ} (2.3)
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is a (closed) affine hyperplane, the set

Q = {a ∈ Ξ | 〈a | b〉 ≤ κ} (2.4)

a closed affine half-space, and the set

R = {a ∈ Ξ | η ≤ 〈a | b〉 ≤ κ} (2.5)

a closed affine hyperslab. The closed ball of center r ∈ Ξ and radius γ ∈ R∗
+ is defined as

B(r, γ) = {a ∈ Ξ | ‖a− r‖ ≤ γ}. (2.6)

Let f : R+ → R+ be a nondecreasing function that vanishes only at 0. Then S is f -
uniformly convex if

(∀(a, b) ∈ S2) B((a+ b)/2, f(‖a − b‖)) ⊂ S, (2.7)

which implies that it is bounded, unless S = Ξ. All of the above sets are convex, that is

(∀α ∈ [0, 1])(∀(a, b) ∈ S2) αa+ (1 − α)b ∈ S. (2.8)

The convex hull of a set S is the smallest convex set containing S. S is called a cone (of
vertex 0) if

(∀α ∈ R
∗
+)(∀a ∈ S) αa ∈ S. (2.9)

A cone S is convex if and only if

(∀(a, b) ∈ S2) a+ b ∈ S. (2.10)

One will often have to show that a set is convex. The following proposition gives sufficient
conditions for convexity.

Proposition 2.1 [16] A subset S of Ξ is convex if any of the following conditions holds.

(i) S is an arbitrary intersection of convex sets.

(ii) S = {a+ b | (a, b) ∈ C1 × C2}, where C1 and C2 are convex.

(iii) There exists a convex subset C of a vector space Ξ′ and

- either a linear operator T : Ξ → Ξ′ such that S = T−1(C) , {a ∈ Ξ | T (a) ∈ C},

- or a linear operator T : Ξ′ → Ξ such that S = T (C) , {a ∈ Ξ | (∃ a′ ∈ C) a =
T (a′)}.

A special case of interest is Ξ′ = R, where it is known that the intervals are the only

convex sets.

(iv) There exists a convex functional g : Ξ → R (i.e., (2.12) holds) and a real number η
such that either S = g−1(]−∞, η]) or S = g−1(]−∞, η[).
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2.3 Strong and Weak Topologies

A sequence (an)n≥0 ⊂ Ξ converges to a ∈ Ξ strongly if (‖an − a‖)n≥0 converges to 0 and
weakly if (〈an − a | b〉)n≥0 converges to 0, for every b in Ξ. We shall use the notations

an
n→ a and an

n
⇀ a to designate respectively the strong and weak convergence of

(an)n≥0 to a.

Let S be a subset of Ξ. Then S is (strongly) closed if for every sequence (an)n≥0 ⊂ S, we

have an
n→ a ⇒ a ∈ S. The closure of S is the smallest closed set S containing S.

S is open if ∁S is closed. The interior of S is the largest open set
◦
S contained in S. The

following Proposition gives sufficient conditions for closedness.

Proposition 2.2 [57] A subset S of Ξ is closed if any of the following conditions holds.

(i) S is a finite union or an arbitrary intersection of closed sets.

(ii) There exists a continuous functional g : Ξ → R and a closed set C ⊂ R such that

S = g−1(C).

(iii) There exists a lower semi-continuous functional g : Ξ → R and a real number η such

that S = g−1(]−∞, η]).

A point a ∈ Ξ is a strong cluster point of (an)n≥0 if there exists a subsequence (ank
)k≥0 of

(an)n≥0 converging strongly to a. S ⊂ Ξ is compact if every sequence with elements in S
admits at least one strong cluster point in S. Every compact set is closed and bounded. S
is boundedly compact if its intersection with any closed ball is compact.

Proposition 2.3 [57] A subset S of Ξ is compact if any of the following conditions holds.

(i) S is closed and bounded and dimΞ < +∞.

(ii) S is a finite union or an arbitrary intersection of compact sets.

(iii) S is a closed subset of a compact set.

(iv) There exists a compact subset K of a (topological) space Ξ′ and a continuous operator

T : Ξ′ → Ξ such that S = T (K).

(v) S = {a+ b | (a, b) ∈ C1 × C2}, where C1 and C2 are compact.
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S is weakly closed if for every sequence (an)n≥0 ⊂ S we have an
n
⇀ a ⇒ a ∈ S. Every

weakly closed set is closed and every closed and convex set is weakly closed. A point a ∈ Ξ
is called a weak cluster point of (an)n≥0 if there exists a subsequence (ank

)k≥0 of (an)n≥0

converging weakly to a.

Proposition 2.4 Take (an)n≥0 ⊂ Ξ and a ∈ Ξ. Then the following statements hold.

(i) If an
n
⇀ a, then (an)n≥0 is bounded and ‖a‖ ≤ lim infn→+∞ ‖an‖.

(ii) If (an)n≥0 is bounded, then it possesses a weak cluster point a.

(iii) If (an)n≥0 is bounded and possesses a unique weak cluster point a, then an
n
⇀ a.

(iv) If an
n
⇀ a and if (bn)n≥0 ⊂ Ξ satisfies bn

n
⇀ b, then (∀α ∈ R) αan + bn

n
⇀ αa+ b.

(v) an
n→ a ⇒ an

n
⇀ a.

(vi) If dimΞ < +∞, then an
n
⇀ a ⇒ an

n→ a.

(vii) If ‖an‖ n→ ‖a‖, then an
n
⇀ a ⇒ an

n→ a.

(viii) If (an)n≥0 ⊂ S, where S is boundedly compact, then an
n
⇀ a ⇒ an

n→ a.

(ix) If d(an, S)
n→ 0, where S is closed and uniformly convex, and if an

n
⇀ a ∈ ∂S then

an
n→ a.

Proof. (i)-(vii): see [189]. (viii): According to (i), (an)n≥0 lies in some closed ball B and
therefore in the compact set S

⋂
B. Therefore, it possesses at least one strong cluster point

b, say ank

k→ b. Then, by (v), ank

k
⇀ b and, since ank

k
⇀ a, we obtain a = b. Since

(an)n≥0 lies in a compact set and possesses a unique strong cluster point a, we conclude

an
n→ a [57]. (ix): see [110]. �

2.4 Convex Functionals

A functional on Ξ is an operator g : Ξ → R.2 Its sections are the sets

(∀η ∈ R) Sη = g−1(]−∞, η]) = {a ∈ Ξ | g(a) ≤ η}. (2.11)

The functional g is convex if

(∀α ∈ [0, 1])(∀(a, b) ∈ Ξ2) g(αa + (1− α)b) ≤ αg(a) + (1− α)g(b). (2.12)

If g is convex, then its sections (Sη)η∈R are convex sets. If the sections (Sη)η∈R are closed,
then g is lower semi-continuous (l.s.c.).

2As a reminder, this notation means that the domain of g is Ξ.
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Proposition 2.5 [8], [65] Let g : Ξ → R be a convex functional. Then g is continuous if

either of the following properties holds.

(i) dimΞ < +∞.

(ii) g is l.s.c.

In addition, in case (ii), g is also weak l.s.c. in the sense that

an
n
⇀ a ⇒ g(a) ≤ lim inf

n→+∞
g(an). (2.13)

As a corollary of (i) above, we obtain a useful sufficient condition for closedness and
convexity of a set in euclidean (finite dimensional real Hilbert) spaces.

Proposition 2.6 Let g : Ξ → R be a convex functional and suppose that dimΞ < +∞. Then,

for every η ∈ R, the set {a ∈ Ξ | g(a) ≤ η} is closed and convex.

We shall say that g is lower semi-boundedly-compact (l.s.b.co.) if for any closed ball B
the sets (Sη

⋂
B)η∈R are compact. Now assume that g is convex. The subdifferential of g

at a is the set of its subgradients, that is

∂g(a) = {t ∈ Ξ | (∀b ∈ Ξ) 〈b− a | t〉 ≤ g(b) − g(a)}. (2.14)

If g is continuous at a, then it is subdifferentiable at a, i.e., ∂g(a) 6= Ø. If g is Gâteaux
differentiable at a, then there is a unique subgradient, ∇g(a), called gradient: ∂g(a) =
{∇g(a)}.

2.5 Projections

S is a nonempty subset of Ξ.

2.5.1 Distance to a Set

The distance to S is the function d(·, S) defined as

(∀a ∈ Ξ) d(a, S) = inf{d(a, b) | b ∈ S}. (2.15)
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Theorem 2.1 [8], [187] Suppose that S is closed and convex. Then the functional d(·, S) :
Ξ → R+ is continuous, convex, and Fréchet differentiable. We have

(∀a ∈ Ξ) ∇d(a, S)2 = 2(a− PS(a)), (2.16)

and

(∀a ∈ ∁S) ∇d(a, S) =
a− PS(a)

‖a− PS(a)‖
. (2.17)

2.5.2 Projection Operators

The projection operator onto S is the set-valued map

ΠS : Ξ → P(S)
a 7→ {b ∈ S | d(a, b) = d(a, S)}. (2.18)

In general 0 ≤ cardΠS(a) ≤ +∞. S is proximinal if (∀a ∈ Ξ) ΠS(a) 6= Ø, i.e., every point
admits at least one projection onto S, and it is a Chebyshev set if (∀a ∈ Ξ) cardΠS(a) = 1,
i.e., every point admits one and only one projection onto S. In the standard euclidean
space, such properties were systematically investigated by Bouligand [15], who called
points with more than one projection onto a nonempty closed set the multifurcation points
of that set. Erdös later showed that the set of multifurcation points of a nonempty closed
set of the euclidean space has Lebesgue measure zero [66].

The set S is approximately compact if, for every a in Ξ, every sequence (bn)n≥0 ⊂ S such

that d(a, bn)
n→ d(a, S) possesses a strong cluster point in S.

Proposition 2.7 [17], [49] Each property in the following list implies the next.

(i) S is compact.

(ii) S is boundedly compact.

(iii) S is approximately compact.

(iv) S is proximinal.

(v) S is closed.

In addition, if dimΞ < +∞, properties (ii) through (v) are equivalent.

18



Theorem 2.2 [8], [16] Suppose that S is closed and convex. Then it is a Chebyshev set:

for every a ∈ Ξ there exists a unique point PS(a) ∈ S, called projection of a onto S, such

that d(a, PS(a)) = d(a, S). The projection operator PS is characterized by the variational

inequality

(∀a ∈ Ξ)(∀b ∈ S) 〈a− PS(a) | b− PS(a)〉 ≤ 0, (2.19)

which becomes

(∀a ∈ Ξ)(∀b ∈ S)

{
〈a− PS(a) | PS(a)〉 = 0
〈a− PS(a) | b〉 ≤ 0,

(2.20)

if S is a cone, and

(∀a ∈ Ξ)(∀b ∈ S)





〈a− PS(a) | b− PS(a)〉 = 0
or
〈a− PS(a) | b〉 = 0

(2.21)

according as S is an affine or a vector subspace.

In euclidean spaces, the class of Chebyshev sets coincides with the class of nonempty
closed and convex sets [94]. However, in infinite-dimensional Hilbert spaces, whether
every Chebyshev set must be convex is still an open question. A partial answer is that in
incomplete pre-Hilbert spaces, Chebyshev sets may not be convex [95], [96].

The projection operators onto the closed and convex sets (2.3)-(2.6) are respectively given
by

(∀a ∈ Ξ) PH(a) = a+
κ− 〈a | b〉

‖b‖2 b, (2.22)

(∀a ∈ Ξ) PQ(a) =





a+
κ− 〈a | b〉

‖b‖2 b if 〈a | b〉 > κ

a if 〈a | b〉 ≤ κ,
(2.23)

(∀a ∈ Ξ) PR(a) =





a+
κ− 〈a | b〉

‖b‖2 b if 〈a | b〉 > κ

a if η ≤ 〈a | b〉 ≤ κ

a+
η − 〈a | b〉

‖b‖2 b if 〈a | b〉 < η,

(2.24)

(∀a ∈ Ξ) PB(a) =





r + γ
a− r

‖a− r‖ if ‖a− r‖ > γ

a if ‖a− r‖ ≤ γ.
(2.25)
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2.5.3 Relaxed Convex Projections

Let λ ∈ [0, 2] and suppose that S is closed and convex. The relaxed operator of projection
onto S is defined as

(∀a ∈ Ξ) T λ
S (a) = a+ λ(PS(a)− a). (2.26)

For 0 ≤ λ ≤ 1, T λ
S (a) is an underrelaxed projection, or underprojection; for λ = 1, T λ

S (a)
is an unrelaxed projection, or projection; for 1 ≤ λ ≤ 2, T λ

S (a) is an overrelaxed projection
or overprojection; for λ = 2, T λ

S (a) is the reflection of a with respect to S and is denoted
by RS(a) (see Fig. 1).

2.6 Nonlinear Operators

Let T : Ξ → Ξ be an operator. The set of fixed points of T is

FixT = {a ∈ Ξ | T (a) = a}. (2.27)

T is contractive if

(∃k ∈ ]0, 1[)(∀(a, b) ∈ Ξ2) ‖T (a)− T (b)‖ ≤ k‖a− b‖, (2.28)

nonexpansive if

(∀(a, b) ∈ Ξ2) ‖T (a)− T (b)‖ ≤ ‖a− b‖, (2.29)

and firmly nonexpansive if

(∀(a, b) ∈ Ξ2) ||T (a)− T (b)||2 ≤ 〈a− b | T (a)− T (b)〉, (2.30)

or, equivalently, if

(∀(a, b) ∈ Ξ2) ‖T (a)− T (b)‖2 ≤ ‖a− b‖2 − ‖(Id− T )(a)− (Id− T )(b)‖2. (2.31)

T is demiclosed if for any sequence (an)n≥0 such that an
n
⇀ a and T (an)

n→ b, we
have T (a) = b. T is demicompact if any bounded sequence (an)n≥0 admits a strong cluster
point whenever the sequence (T (an)− an)n≥0 converges strongly.

Theorem 2.3 [188] If T is contractive, it admits one and only one fixed point. Now let C
be a nonempty, closed, bounded, and convex subset of Ξ and suppose that T : C → C is

nonexpansive. Then Fix T is nonempty, closed, and convex.

Proposition 2.8 Consider the properties:
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(a) T is the operator of projection onto a nonempty closed and convex subset F of Ξ.

(b) T is firmly nonexpansive.

(c) T is nonexpansive.

(d) Id− T is demiclosed.

Then:

(i) (a) ⇒ (b) ⇒ (c) ⇒ (d).

(ii) Suppose that F = FixT 6= Ø. Then (b) implies

(∀a ∈ Ξ) T (a) ∈ B

(
a+ PF (a)

2
,
‖a− PF (a)‖

2

)
. (2.32)

In addition, (b) ⇒ (a) if and only if (∀a ∈ Ξ) T (a) ∈ F .

(iii) Suppose that F = FixT 6= Ø. Then (c) implies

(∀a ∈ Ξ) T (a) ∈ B(PF (a), ‖a − PF (a)‖). (2.33)

(iv) (b) holds if and only if T = (T ′ + Id)/2, where T ′ : Ξ → Ξ is nonexpansive.

Proof. (i): (a) ⇒ (b) follows from (2.19) (e.g., [187]), (b) ⇒ (c) follows directly from
(2.31), and (c) ⇒ (d) is proved in [19]. (ii): Take any a ∈ Ξ and let b = PF (a). Then
T (b) = b and (2.30) gives

〈a− PF (a) | T (a)− PF (a)〉 ≥ ‖T (a)− PF (a)‖2, (2.34)

so that we obtain 〈a − T (a) | T (a) − PF (a)〉 ≥ 0. Hence, 〈T (a) − a | a − PF (a)〉 ≤
−‖a− T (a)‖2. Therefore

∥∥∥∥T (a)−
a+ PF (a)

2

∥∥∥∥
2

= ‖T (a) − a‖2 + 〈T (a)− a | a− PF (a)〉

+

∥∥∥∥
a− PF (a)

2

∥∥∥∥
2

(2.35)

≤
∥∥∥∥
a− PF (a)

2

∥∥∥∥
2

, (2.36)

which proves (2.32). To prove the second assertion, note that necessity is obvious. As to
sufficiency, take any a ∈ Ξ, suppose that T (a) ∈ F , and put b = T (a) in (2.19). Then we
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get 〈a− PF (a) | T (a) − PF (a)〉 ≤ 0 which, in view of (2.34), implies T (a) = PF (a). (iii):
Take any a ∈ Ξ. Then ‖T (a) − PF (a)‖ = ‖T (a) − T (PF (a))‖ ≤ ‖a − PF (a)‖. (iv): see
[141] or [187]. �

Proposition 2.9 Let S be a nonempty, closed, and convex subset of Ξ. Then for any λ ∈ [0, 2]
the relaxed projection operator T λ

S = Id + λ(PS − Id) is nonexpansive.

Proof. Let α = λ/2 ∈ [0, 1]. Then T λ
S = (1 − α)Id + α(2PS − Id). According to Propo-

sition 2.8(i)+(iv), RS = 2PS − Id is nonexpansive. Therefore T λ
S is nonexpansive, as a

convex combination of the two nonexpansive operators Id and RS . �

Proposition 2.10 Let PS be the operator of projection onto a nonempty, boundedly compact,

and convex subset S of Ξ. Then PS is demicompact.

Proof. Let (an)n≥0 be a bounded sequence. Then, thanks to Proposition 2.4(ii), it admits

a weak cluster point a, say ank

k
⇀ a. Now suppose PS(an) − an

n→ a′ ∈ Ξ. Then

PS(ank
) − ank

k
⇀ a′ and, thanks to Proposition 2.4(iv), PS(ank

)
k
⇀ a + a′. But

(PS(ank
))k≥0 ⊂ S. Therefore Proposition 2.4(viii) implies that PS(ank

)
k→ a + a′ and,

since PS(ank
)− ank

k→ a′, it follows that ank

k→ a. In words, (an)n≥0 admits a strong
cluster point. �

2.7 Fejér-Monotone Sequences

Let S be a nonempty, closed, and convex subset of Ξ. A sequence (an)n≥0 is Fejér-
monotone with respect to S if

(∀n ∈ N)(∀a ∈ S) ‖an+1 − a‖ ≤ ‖an − a‖. (2.37)

Proposition 2.11 [11], [19] Suppose that (an)n≥0 is Fej́er-monotone with respect to S.

Then the following properties hold.

(i) (an)n≥0 is bounded and admits at least one weak cluster point.

(ii) If all the weak cluster points of (an)n≥0 lie in S, then (∃ a ∈ S) an
n
⇀ a.

(iii) If (an)n≥0 admits a strong cluster point a in S, then an
n→ a.

(iv) If
◦
S 6= Ø, then (an)n≥0 converges strongly.
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2.8 Convex Feasibility in a Product Space

Consider the convex feasibility problem (1.6), and assume that the number of sets is finite,
say card I = m. Take a real m-tuple (wi)i∈I such that

∑

i∈I

wi = 1 and (∀i ∈ I) wi > 0, (2.38)

and let

Ξ = Ξ× · · · × Ξ︸ ︷︷ ︸
m times

(2.39)

be the m-fold cartesian product of the Hilbert space Ξ. We shall denote by a = (a1, · · · , am) =
(ai)i∈I an m-tuple in Ξ. Ξ can be made into a Hilbert space by endowing it with the scalar
product

(∀(a,b) ∈ Ξ
2) 〈〈a | b〉〉 =

∑

i∈I

wi〈ai | bi〉. (2.40)

The associated norm and distance are given by

(∀(a,b) ∈ Ξ
2)

{
|||a||| = (

∑
i∈I wi‖ai‖2)1/2

d(a,b) = (
∑

i∈I wid(ai, bi)
2)1/2.

(2.41)

Let S be the cartesian product of the sets (Si)i∈I , i.e., the closed and convex set

S = X
i∈I

Si = {a ∈ Ξ | (∀i ∈ I) ai ∈ Si}, (2.42)

and D be the diagonal vector subspace, i.e.,

D = {(a, · · · , a) ∈ Ξ | a ∈ Ξ}. (2.43)

Hence, to every point a ∈ Ξ there corresponds a unique point a = (a, · · · , a) ∈ D and
vice-versa. With these notations, observe that

(∀(a,b) ∈ D
2) 〈〈a | b〉〉 = 〈a | b〉 and |||a||| = ‖a‖. (2.44)

Whence, we obtain immediately the following result.

Proposition 2.12 Take (an)n≥0 ⊂ D and a ∈ D, in correspondence with (an)n≥0 ⊂ Ξ and

a ∈ Ξ. Then

(i) an
n→ a ⇔ an

n→ a.
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(ii) an
n
⇀ a ⇔ an

n
⇀ a.

It is also clear that (2.42) and (2.43) imply

S

⋂
D = {(a, · · · , a) ∈ Ξ | (∀i ∈ I) a ∈ Si} (2.45)

= {(a, · · · , a) ∈ Ξ | a ∈
⋂

i∈I

Si}. (2.46)

Therefore, in the product space Ξ, we can reformulate the feasibility problem (1.6) as

Find a
⋆ ∈ S

⋂
D. (2.47)

This product space characterization of (1.6) was developed by Pierra in [132]. It reduces
the m-set problem (1.6) to the simpler problem (2.47), which involves only a vector sub-
space and a convex set.

24



3 Overview of Convex Set Theoretic Image Recovery

In this section, we provide a general overview of convex set theoretic image recovery.
We discuss the mathematical formalization and the history of the field, as well as specific
applications. Finally, we discuss nonconvex problems.

3.1 Theoretical Framework

3.1.1 Basic Assumptions

Throughout this survey, the image space is a real Hilbert space Ξ with scalar product 〈· | ·〉,
norm ‖ · ‖, and distance d. The original image h is described by a family of constraints
(Ψi)i∈I , where Ø 6= I ⊂ N. A family (Si)i∈I of property sets is constructed in Ξ via (1.3).
Their intersection S is nonempty, unless otherwise stated.

3.1.2 The Image Space

3.1.2.1 General Model

Let (Υ,A, µ) be a measure space. For most of our purposes, it will be sufficient to take
Ξ as the Hilbert space L

2(Υ,A, µ) of (classes of equivalence of) square µ-integrable real-
valued functions of two variables on the domain Υ [59], [149]. In Ξ, the scalar product
is defined as

(∀(a, b) ∈ Ξ2) 〈a | b〉 =
∫

Υ
a(ς)b(ς)µ(dς). (3.1)

As we shall see, this representation has the advantage of encompassing analog, discrete,
and digital image models.

3.1.2.2 Analog Model

Here, Υ = R
2, A is the associated Borel σ-algebra, and µ is the two-dimensional Lebesgue

measure. Ξ then becomes the usual space L2 with scalar product

(∀(a, b) ∈ L2 × L2) 〈a | b〉 =
∫∫

R2

a(x, y)b(x, y)dxdy. (3.2)
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In L2, the Fourier transform operator F : a 7→ â is defined by

â : R2 → C

(ν1, ν2) 7→
∫∫

R2

a(x, y) exp(−ı2π(xν1 + yν2))dxdy.
(3.3)

3.1.2.3 Discrete Model

Here, Υ = Z
2, A = P(Υ), and µ is the counting measure (µ : A 7→ cardA). Ξ then

becomes the usual space ℓ2 with scalar product

(∀(a, b) ∈ ℓ2 × ℓ2) 〈a | b〉 =
∑

m∈Z

∑

n∈Z

a(m,n)b(m,n). (3.4)

In ℓ2, the Fourier transform operator F : a 7→ â is defined by

â : [−1/2, 1/2]2 → C

(ν1, ν2) 7→
∑

m∈Z

∑

n∈Z

a(m,n) exp(−ı2π(mν1 + nν2)). (3.5)

3.1.2.4 Digital Model

In digital image processing applications, we are dealing with finite extent, N × N dis-
cretized images [138]. Such an image can be represented by an N×N matrix [a(m,n)]0≤m,n≤N−1

whose entries are called pixels. The value of a pixel is called a gray level and represents
the brightness of the image at that point. It is usually more convenient to represent an
N ×N image by the N2-dimensional vector a obtained by stacking the rows of the image
matrix [a(m,n)]0≤m,n≤N−1 on top of each other [138]. In other words, the ith component
of the vector a is the pixel a(m,n), where i = mN + n. Consequently, Ξ can be taken
to be the standard N2-dimensional euclidean space EN2

, which is obtained by taking
Υ = {0, · · · , N2 − 1}, A = P(Υ), and µ as the counting measure in L

2(Υ,A, µ).

The Fourier transform F(a) = â of a stacked image a ∈ E
N2

is its two-dimensional discrete
Fourier transform (DFT), i.e.,

â : {0, · · · , N − 1}2 → C

(k, l) 7→
N−1∑

m=0

N−1∑

n=0

a(mN+n) exp(−ı
2π

N
(mk + nl)).

(3.6)
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3.1.3 Set Theoretic Formulation

A set theoretic image recovery problem is entirely specified by its set theoretic formulation,
i.e., the pair (Ξ, (Si)i∈I). The solution, or feasibility, set is S =

⋂
i∈I Si. All the images in

S are equally acceptable solutions to the problem. The set theoretic formulation is said
to be finite if card I < +∞ and countable if card I = +∞ (recall that I ⊂ N). It is said
to be ideal if S = {h}, meaning that the constraints uniquely define h; unfair if h /∈ S,
meaning that h fails to satisfy at least one of the specified constraints; inconsistent if
S = Ø, meaning that at least two of the constraints are incompatible [38] (see Figs. 2-5).

Unfair formulations and, a fortiori, inconsistent ones arise when inaccurate or imprecise
constraints are present. For instance, most of the sets that will be described in Section 4.2
depend on attributes of the original image that may not be known exactly. The same
remark also applies to the attributes of the uncertainty process that will be required to
construct the sets of Section 4.3. In addition, such sets based on stochastic information
will be seen to be confidence regions whose construction depends on the specification of
a confidence level. If the confidence level is unrealistically low, the sets may not intersect.
Inconsistencies may also be due to inadequate data modeling, for instance when random
variations in the point spread function of an imaging system [48] or noise perturbations
in the data [84], [152] are not taken into account. A method for obtaining meaningful
solutions to inconsistent problems will be discussed in Section 5.3.

The degree of unfeasibility of an image a ∈ Ξ will be quantified via the proximity function

Φ : Ξ → R+

a 7→ 1

2

∑

i∈I

wid(a, Si)
2, (3.7)

where the weights (wi)i∈I are strictly convex, i.e.

∑

i∈I

wi = 1 and (∀i ∈ I) wi > 0. (3.8)

In other words, the smaller Φ(a), the more feasible a. Note that Φ(a) = 0 ⇔ a ∈ S.

3.2 Historical Developments

It is assumed here that the set theoretic formulation is finite and comprises m sets.
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3.2.1 Computerized Tomography

The field of computerized tomography can be regarded as the starting point of the set
theoretic approach in image recovery in the early 1970s. In computerized tomography,
measurements are made of the line integrals of a property of the cross-section of an object
(e.g., X-ray attenuation) along various straight lines by varying lateral displacements at a
given angle. The problem is then to reconstruct the image of the cross-section from these
measurements taken at various angles [85]. This problem is fundamental in diagnostic
medicine but also in an increasing number of nonmedical applications [28].

With proper discretization, the original image can be represented by a vector in E
N2

and
the reconstruction problem can be written as a system of m linear equations of the type
〈a | bi〉 = δi, for 1 ≤ i ≤ m. From a set theoretic standpoint, each of these constraints
restricts estimates to a hyperplane

Si = {a ∈ E
N2 | 〈a | bi〉 = δi}, (3.9)

and the problem is then to find a point in their intersection S. In [78], a so-called alge-
braic reconstruction technique (ART) was proposed to this end. It employs the periodic
recursion

(∀n ∈ N) an+1 = Pi(n)(an) with i(n) = n (modulom) + 1 (3.10)

to generate a feasible solution. In fact, this mathematical method was developed by Kacz-
marz in 1937 [97] to solve systems of linear equations. An alternative projection method
was then proposed in [74] under the name simultaneous iterative reconstruction tech-
nique (SIRT). In this parallel method, the projections onto all the sets are averaged to
form the update, namely

(∀n ∈ N) an+1 =
1

m

∑

i∈I

Pi(an). (3.11)

SIRT is similar to the algorithm devised by Cimmino in 1938 [35] to solve linear systems
of equations by successive averaging of reflections onto the sets.

A problem with the set theoretic formulation (3.9), is that noise and other uncertainty
sources are ignored. As a result, it may be unfair or even inconsistent. In order to in-
corporate these disturbances, the hyperplanes were replaced in [84] by the hyperslabs

Si = {a ∈ E
N2 | δi − ǫi ≤ 〈a | bi〉 ≤ δi + ǫi}, (3.12)

where ǫi is a tolerance factor. This feasibility problem was solved by the Agmon-Motzkin-
Schoenberg algorithm for affine inequalities [1], [122]

(∀n ∈ N) an+1 = an+λ(Pi(n)(an)−an) with

{
i(n) = n (modulom) + 1
0 < λ < 2.

(3.13)

28



Simply stated, this algorithm proceeds as follows: starting with an initial estimate a0,
a sequence is generated, where the new iterate an+1 lies on the segment between the
current iterate an and its reflection 2Pi(n)(an) − an with respect to the set Si(n). The
position of an+1 on this segment depends on the value of the relaxation parameter λ,
which determines the step size ‖an+1 − an‖. This framework is discussed furtherin [88].

3.2.2 The Gerchberg-Papoulis Algorithm

The fundamental problem of estimating an image from partial spatial and spectral infor-
mation has been the focus of a lot of research in various disciplines ranging from crystal-
lography to astronomy. In the absence of any additional information, it can be formalized
as the problem of finding an image in S1

⋂
S2, where S1 is the subset of Ξ of all im-

ages consistent with the spatial information and S2 that of all images consistent with the
spectral information.

Although not formulated explicitly in set theoretic terms, the idea of constructing a se-
quence of points that would alternate between S1 and S2 in order to converge to their
intersection can be found in [102]. In [72], Gerchberg considered the problem of re-
covering a finite object from limited diffraction data, i.e., of reconstructing a spatially
limited image from partial knowledge of its Fourier transform. The proposed reconstruc-
tion method was to alternate resubstitutions of the known data in both domains. It can be
regarded as a method of alternating projections between the affine subspaces

{
S1 = {a ∈ Ξ | a = 0 outside K1}
S2 = {a ∈ Ξ | â = g on K2},

(3.14)

where â is the Fourier transform of a, g a known function, and K1 and K2 are neighbor-
hoods of the origin in the spatial and spectral domains, respectively. Almost at the same
time, Papoulis [128] proposed the same method to solve a dual problem, namely, to re-
construct a band-limited signal which is partially known in the time-domain. In this case,
the affine subspaces are of the form

{
S1 = {a ∈ Ξ | a = g on K1}
S2 = {a ∈ Ξ | â = 0 outside K2}.

(3.15)

In the early 1980s attempts were made to formalize the Gerchberg-Papoulis algorithm
into larger classes of successive approximation methods amenable to the incorporation of
certain types of a priori knowledge [145], [148], [165].
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3.2.3 Affine Constraints

One of the very first abstract set theoretic approaches to image recovery appeared in
[181]. The recovery problem considered in this paper was to find an image h known to
belong to a closed subspace S2 of Ξ given that the observed data consist of the projection
of h onto another closed subspace S1 of Ξ. Under certain conditions, a modified sequence
of alternated projections onto S2 and S⊥

1 (the orthogonal complement of S1) was shown
to converge to h. This framework encompasses several basic problems including that
considered by Gerchberg and Papoulis (as discussed in Section 3.2.2) and the various
extensions considered in [160]. Additional affinely constrained problems can be found in
[120].

The following theorem provides the mathematical foundation for such methods. It was
proved in [81] for vector subspaces but the proof can be extended routinely to affine
subspaces. In the case of two subspaces, it is known as the Alternating Projection Theorem
and is due to Von Neumann [176].

Theorem 3.1 Let (Si)i∈I be a finite family of m closed affine subspaces of Ξ with nonempty

intersection S. Then any sequence (an)n≥0 constructed as in (3.10) converges strongly to a

point in S.

3.2.4 Arbitrary Convex Constraints - The POCS Algorithm

Despite the apparent disparity in their original formulation, all the above methods share
the common objective of producing a solution consistent with a collection of affine or
affine inequality constraints. As a result, the associated set theoretic formulations com-
prise only affine subspaces or half-spaces. The scope of this framework is limited since
many useful constraints encountered in practice are nonaffine, as will be seen in Sec-
tion 4. Thus, the main motivation for the extension to convex set theoretic formulations
is to allow a much larger class of information to be exploited. This extension was made
possible by the availability of convex feasibility algorithms.

As appealing as it may seem, the set theoretic approach would be fairly futile if efficient
methods were not available to actually solve (1.6). The field of set theoretic image recov-
ery entered a new era when the image processing community became aware of one such
method called POCS, for projections onto convex sets. Although POCS had been used
in image reconstruction in [106], it is really [184] which popularized the method and
established a broad conceptual and computational basis for convex image recovery.

The method of POCS, which extends the Kaczmarz (3.10) and Agmon-Motzkin-Schoenberg
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(3.13) algorithms to arbitrary closed convex sets, is defined by the serial algorithm

(∀n ∈ N) an+1 = an + λn(Pn (modulo m)+1(an)− an), (3.16)

where the relaxation parameters (λn)n≥0 satisfy

(∀n ∈ N) ε ≤ λn ≤ 2− ε with 0 < ε < 1. (3.17)

The relaxation parameters provide the flexibility of under- or overprojecting at each iter-
ation. Figs 6-8 depict orbits generated by POCS for relaxations λn = 1.0, λn = 0.5, and
λn = 1.5, respectively.

Theorem 3.2 Let (Si)i∈I be a finite family of m closed and convex subsets of Ξ with nonempty

intersection S. Then every orbit (an)n≥0 of POCS converges weakly to a point in S. In addi-

tion, the convergence is strong if any of the following conditions holds.

(i) (∃j∈I) Sj
⋂
(
⋂

i∈Ir{j} Si)
◦ 6= Ø.

(ii) All but possibly one of the sets in (Si)i∈I are f -uniformly convex.

(iii) (Si)i∈I is a family of closed affine half-spaces.

(iv) One of the sets in (Si)i∈I is boundedly compact.

Proof. Weak convergence was proved in [18]. Assertions (i)-(iii) were proved in [79] and
assertion (iv) in [163].3 �

3.3 Applications

In this section, we briefly indicate some of the image recovery problems that have been
approached within the convex set theoretic framework. We somewhat arbitrarily classify
them into restoration problems, tomographic reconstruction problems, and other recovery
problems. Some of these studies involve only one-dimensional signals but they can also
be applied to images. It should also be mentioned that the majority of these problems
have been solved via the unrelaxed version of POCS. Comparative studies of conventional
versus set theoretic image recovery in specific problems can be found in [125] and [164].

3The results of [18] and [163] pertain only to the unrelaxed model (3.10) but they still hold true for
(3.16)-(3.17).
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3.3.1 Restoration Problems

The first application of set theoretic methods in image restoration was demonstrated in
[171] where various properties of the noise were shown to produce useful convex sets.
The stochastic nature of some blurring functions such as atmospheric turbulence and cam-
era vibration has also been addressed using set theoretic methods [48]. Set theoretic
restoration in the presence of bounded kernel disturbances and noise was considered in
[51]. Sets based on locally adaptive constraints [101] as well as on smoothness con-
straints [161] have also been proposed. In addition, set theoretic restoration has been
used with other statistically based methods, such as Wiener filtering [155], [157]. Other
studies have focused on the restoration of specific types of image, e.g., multi-band satellite
images [34], character images [103], echographic images [113], diffraction wave fields
[120], optical flow fields and electromagnetic fields [158]. In order to best exploit specific
a priori information, the set theoretic restoration problem of [146] was posed in a singu-
lar value space rather than in the natural image space. Restoration in the presence of an
inconsistent set of constraints was considered in [42]. Finally, set theoretic approaches to
regularized restoration were proposed in [99] and [144].

3.3.2 Tomographic Reconstruction Problems

In the early work discussed in Section 3.2.1, the chief objective was to generate an image
consistent with the (possibly noisy) projection data [85]. Various extensions of ART and
SIRT relevant to such set theoretic formulations are surveyed in [28] and [26].

More recent work has been geared towards the incorporation of additional constraints
relevant to specific situations. For instance, reconstructions must often be performed with
limited view data, i.e., with inaccurately measured projections and/or an insufficient num-
ber of projections, which will typically result in severe artifacts such as streaking and geo-
metric distortion [140]. In such instances, the set theoretic approach has proven particu-
larly well suited to incorporate a priori knowledge and thereby improve the reconstruction.
Thus, a convex set theoretic formulation was used to extrapolate tomographic images re-
constructed from a limited range of views in [106] and [151]. In [152], the formulation
of [151] was modified to account for noisy data. In [153], POCS was combined with the
method of direct Fourier tomography to reconstruct an image from limited-view projection
data. Strictly speaking, these approaches are not set theoretic reconstruction methods per

se but, rather, syntheses of a reconstruction method and a set theoretic restoration method.
In that sense, they should not be regarded as extensions of ART (or SIRT), where the prop-
erty sets simply translate the requirement that the reconstruction be consistent with the
observed projections. In [124], a more sophisticated convex set theoretic formulation was
developed by incorporating additional constraints such as known object support and en-
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ergy boundedness. Other types of constraints can also be imposed, such as consistency
of the error between the recorded projection data and the data obtained by reprojecting
the reconstructed image with the uncertainty caused by the numerical approximations of
the reprojection method [172]. Set theoretic methods have also been used in fan-beam
tomography [130].

In the above studies, the solution space is that of the reconstructed image. In [100], a
different set theoretic approach was proposed in which the solution space is the space
of Radon transforms of images. A complete set of line integrals consistent with a priori

knowledge and the measured line integrals was first obtained by POCS and then used to
reconstruct the image via ordinary convolution backprojection. In [178], POCS was used
to synthesize the projection matrix from noisy measurements made by a moving array of
detectors and the image was then reconstructed by filtered backprojection.

3.3.3 Other Image Recovery Problems

Applications of convex set theoretic image recovery can be found in such fields as electron
microscopy [24], speckle interferometry [62], halftone imaging [83], holography [116],
and biomagnetic imaging [123]. Other applications include image recovery from multiple
frames of sparse data [139], image recovery from nonuniform samples [147], [180], and
recovery of images remotely sensed by image-plane detector arrays [162].

3.4 The Issue of Convexity

The basic objective of the set theoretic approach is to provide a flexible framework for
the incorporation of a wide range of information in the recovery process. However, our
discussion in this survey is confined to problems in which the constraints yield closed and
convex sets in some Hilbert space Ξ. As mentioned in Section 1.4, the reason for this is
quite simple: there does not exist any method that is guaranteed to produce a point in the
intersection of sets when at least one of them is not convex.

The condition that the sets be closed should not cause concern since a property set Si can
always be replaced by its closure

Si = {a ∈ Ξ | d(a, Si) = 0}. (3.18)

In doing so, one merely adds points which are at distance zero from the points in Si,
which will have no significant effect on the solution of a practical problem. The issue of
convexity is a more serious one as many important constraints do not yield convex sets in
the desired solution space, which precludes their use. A classical example of nonconvex
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set is the set

Si = {a ∈ Ξ | |â1K | = |ĥ1K |}, (3.19)

based on the knowledge of the Fourier magnitude of the original image over some fre-
quency band K. It arises in various problems in which intensity measurements can be
made in the diffraction plane. It is in particular found in the Gerchberg-Saxton method
[73] as well as in phase recovery problems [91], [109].

We shall now describe the three main approaches that are presently available to deal with
nonconvex problems.

3.4.1 Convexification

Convexification is the process of partially enforcing constraints by replacing nonconvex
property sets by their convex hulls. This yields a larger set that can still be useful. An
example of useful convexification is the set S+

p of (4.41). Another example is found in
[184], where the set (3.19) is replaced by

Si = {a ∈ Ξ | |â1K | ≤ |ĥ1K |}. (3.20)

In somes cases, the convexification process may give trivial results. For instance [49],
consider the set of all digital images in EN2

whose maximum number of nonzero values is
known (e.g., star images in astronomy). It turns out that the convex hull of this set is EN2

itself, which means that the convexification process has eliminated the constraint.

3.4.2 New Solution Space

If the available information does not yield convex property sets in the selected Hilbert im-
age space Ξ, one may seek a new hilbertian solution space Ξ′. An option is to obtain Ξ′ via
a (nonlinear) transformation of Ξ. Another option is to redefine the vector space structure
of the space. Indeed, recall that the structure of a real vector space V is defined by a
so-called addition operation ⊕ : V 2 → V and a so-called scalar multiplication operation
⊙ : R × V → V which satisfy certain axioms [57]. Hence the definition of the convexity
of a set A ⊂ V , i.e.,

(∀α ∈]0, 1[)(∀(a, b) ∈ A2) (α⊙ a)⊕ ((1− α)⊙ b) ∈ A, (3.21)

depends on the choice of the operations ⊕ and ⊙. Therefore, by changing the vector
space structure, one can render some sets convex. Such a strategy was implemented
in [31] in connection with the reconstruction of square-summable discrete signals. The
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natural space ℓ2 with norm ‖a‖ = (
∑

i∈Z |a(i)|2)1/2 was replaced by the new space ℓ⋆

of absolutely summable sequences a whose Fourier transform F(a) = â satisfies (∀ν ∈
[−1/2, 1/2]) â(ν) 6= 0. In ℓ⋆, the operation ⊕ was taken to be convolution and the
operation ⊙ was defined as

(∀(α, a) ∈ R× ℓ⋆) α⊙ a = F−1(exp(α ln(â))). (3.22)

In addition, a prehilbertian structure was defined by the scalar product

(∀(a, b) ∈ ℓ⋆ × ℓ⋆) 〈a | b〉⋆ =
∫ 1/2

−1/2
ln(â(ν))ln(̂b(ν)) dν. (3.23)

It was shown that certain sets, in particular (3.19), that were not convex in ℓ2 became con-
vex in ℓ⋆. The space ℓ⋆ also proved useful for reconstruction from bispectral information
[30].

In general, a difficulty that arises in a change of solution space is to render the nonconvex
sets convex while preserving the convexity of the other sets in the set theoretic formula-
tion.

3.4.3 Feasibility with Nonconvex Sets

If the two above approaches turn out to be unsatisfactory, a third option is to try and
solve the nonconvex feasibility as is. Heuristic attempts have been made to use the peri-
odic projection algorithm (3.10) in the presence of nonconvex sets. This is essentially the
approach of [73] and [109]. A formal local convergence result for this method is the fol-
lowing theorem, in which (Πi)i∈I designates the family of set-valued projection operators
onto the sets (Si)i∈I , as defined in Section 2.5.2.

Theorem 3.3 [49] Let (Si)i∈I be a finite family of m approximately compact subsets of Ξ
with nonempty bounded intersection S and suppose that one of them, say S1, is boundedly

compact. Let (an)n≥0 be any sequence constructed according to the algorithm

(∀n ∈ N) an+1 ∈ Πi(n)(an) with i(n) = n (modulom) + 1, (3.24)

where a0 is a point of attraction of (Si)i∈I in the sense that

(∃ṅ ∈ N)(∀n ∈ N)

{
n ≥ ṅ
amn /∈ S

⇒ d(am(n+1), S) < d(amn, S). (3.25)

Then (amn)n≥0 admits at least one strong cluster point and all of its cluster points lie in S. In

addition, (amn)n≥0 converges strongly to a point in S if
∑

n≥0 d(amn, S) < +∞.
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An interpretation of the above result is that convergence takes place locally, i.e., when the
initial point a0 is suitably positioned with respect to the property sets. A possible candidate
for a starting point a0 is an image which is feasible with respect to all the convex sets (such
an image can be obtained by POCS or by any of the methods described in Section 5). Let us
also mention that according to Proposition 2.7, if dimΞ < +∞, the conditions on the sets
in Theorem 3.3 reduce to closedness of the Sis and boundedness of S. A theorem similar
to Theorem 3.3 can also be established for the set-valued version of the SIRT algorithm
(3.11).

Besides projection methods, another approach to nonconvex feasibility problems is via the
unconstrained minimization of a functional whose set of global minimizers is contained
in S, e.g., the proximity function Φ of (3.7). Note that Φ will no longer be convex and
that only local convergence results should be expected. In digital image recovery, certain
stochastic minimization procedures could be contemplated. However, given their pro-
hibitive computational cost in high dimensional spaces, this approach seems unrealistic at
the present time.
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4 Construction of Property Sets

4.1 Generalities

In this section we describe how a priori knowledge and data can be used to generate
constraints on the solution and construct property sets in Ξ. In general, information may
be known a priori or can be extracted a posteriori from the data. An example of possible
a priori knowledge is the range of intensity values of the original image. In a recovery
problem, a posteriori information can be obtained in various ways. For instance, if the
original scene to be restored contains a point source, the blur function can be estimated
from the degraded image; moreover, the statistics of flat regions in the degraded image
can be used to estimate pertinent noise properties.

In image recovery problems, the two main sources of constraints are the intrinsic proper-
ties of the original image h and the properties of the imaging system. As demonstrated by
the following examples, a lot of useful constraints give rise to closed and convex property
sets. These few examples are meant only to illustrate some commonly used constraints.
By no means do they exhaust the virtually unlimited list of sets that can be created.

4.2 Sets Based on Intrinsic Properties of the Image

The importance of spatial and spectral information in image recovery problems has been
recognized in countless studies, e.g., [9], [37], [82], [117], [159], and [160]. As we shall
now see, such information is to a large extent straightforward to incorporate in the form
of convex sets. Other types of constraints will also be considered.

4.2.1 Spatial Properties

We provide here examples of sets based on attributes describing the original image h itself
in the spatial domain. As a first example, suppose that lower and upper bounds on the
amplitude of the original image h are known. This knowledge can be associated with the
property set

Si = {a ∈ Ξ | range(a) ⊂ [γ, δ]}. (4.1)

Another common assumption is that the image has limited region of support K [72]. The
set associated with this information is

Si = {a ∈ Ξ | a = a1K}. (4.2)
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Next, suppose as in [173] that h is known over some domain K. Then the corresponding
property set is

Si = {a ∈ Ξ | a1K = h1K}. (4.3)

If a bound γ2 is available on the energy ‖h‖2 of the original image, one can define the set

Si = {a ∈ Ξ | ||a|| ≤ γ}. (4.4)

More generally, when a bound γ is available on the maximum deviation of h from a refer-
ence image r, as in [100], [124], and [157], the associated property set is the ball

Si = {a ∈ Ξ | ‖a− r‖ ≤ γ}. (4.5)

A further generalization of this type of closed and convex set is

Si = {a ∈ Ξ | ‖T(a)− r‖ ≤ γ}, (4.6)

where T : Ξ → Ξ is a bounded linear operator. For instance, if r = 0 and T is a differential
operator, (4.6) is a set of smooth images; if r = 0 and T = Id − T′, (4.6) is a set of
images that are nearly invariant under the operator T′. Moment constraints have also
been employed [154]. They yield property sets in the form of hyperslabs

Si = {a ∈ Ξ | γ ≤ 〈a | b〉 ≤ δ}. (4.7)

4.2.2 Spectral Properties

In many problems, certain attributes of the Fourier transform F(a) = â of the original
image are available. In optical experiments, they arise from partial measurements in the
diffraction plane. In the following, |â| is the Fourier magnitude of an image a and ∠â
its phase. The Fourier transform operator F is defined in accordance with the L2 space
selected in Section 3.1.2.

A common assumption in image recovery is that the original image is band-limited [184].
If we designate by K the corresponding low frequency band, we obtain the property set

Si = {a ∈ Ξ | â = â1K}. (4.8)

In [72] and [151], the stronger hypothesis that ĥ was known over some frequency band
K led to the set

Si = {a ∈ Ξ | â1K = ĥ1K}. (4.9)
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This constraint can be generalized by considering the set of images that match approxi-
mately a reference image r over some frequency band K, i.e., [152]

Si = {a ∈ Ξ | ‖(â− r̂) 1K‖ ≤ γ}. (4.10)

In particular, the set

Si = {a ∈ Ξ | ||â1K || ≤ γ} (4.11)

of images whose energy in a certain frequency band K is within some bound γ2 was
proposed in [184]. The same study also proposed the closed and convex cone

Si = {a ∈ Ξ | range(â) ⊂ R+} (4.12)

of images with nonnegative Fourier transform. The larger set of images with real Fourier
transforms had been used previously in [106]. In [42], [108], and [184] knowledge of
the phase of h was assumed to construct the set

Si = {a ∈ Ξ | ∠â = ∠ĥ}. (4.13)

4.2.3 Other Properties

In the previous section, we have seen how sets could be derived from attributes of the
Fourier transform F(h) of the original image. Sets can also be constructed from attributes
of other transforms T(h) of h. For instance, T can be the wavelet transform [32], [114],
the bispectral transform [30], the singular value decomposition [146], or a differential
operator [162].

4.3 Sets Based on Properties of the Imaging System

4.3.1 Overview

In this section, we describe how information pertaining to the imaging system can be
used to construct property sets. The basic principle is as follows. From the data and the
knowledge of the deterministic component of the imaging system, one forms an estima-
tion residual which is then constrained to be consistent with those known probabilistic
properties of the uncertain components in the system, i.e., measurement noise and, pos-
sibly, model uncertainty. As the estimation residual depends on the estimate, one thus
obtains property sets in the solution space. Pieces of information relative to quantities
such as range, moments, absolute moments, and second order probabilistic attributes are
considered.
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In image recovery, the idea of imposing noise-based constraints on the estimation residual
was first implemented in the constrained least-squares restoration problem of [89], where
the sample second moment of the residual was forced to match that of the noise. This
particular constraint has also been employed in other restoration techniques, e.g., [48],
[169], [171]. In the set theoretic deconvolution problem posed in [171], new constraints
were introduced by considering other pieces of noise information (mean, outliers, spec-
tral density) under the assumption that the noise was white and Gaussian. Work in this
direction was pursued by considering random convolution kernels [48] as well as more
general hypotheses on the noise and the imaging system [44], [50]. Some of the sets de-
veloped in [171] were re-examined via fuzzy set theory in [36]. In [51], the set theoretic
deconvolution problem was studied in the context of bounded-error models and the only
information available about the noise and the disturbances induced by random kernel per-
turbations consisted of amplitude bounds. Applications involving residual-based property
sets can be found in [42], [49], [99], [127], and [144].

The following presentation is a synthesis of the results of [44], [50], [51], and [171]
relevant to the construction of convex property sets.

4.3.2 Data Formation Model

In this section we introduce our mathematical model for the imaging system.

4.3.2.1 Notations

All the random elements are defined on a probability space (Ω,F,P). All r.v.s are real-
valued. The chi-square distribution with L degrees of freedom and mean L is denoted
by χ2

L. For every p ∈ R∗
+, Lp(P) denotes the vector space of r.v.s with finite pth absolute

moment. The abbreviations a.s. and i.i.d. stand, respectively, for P-almost surely and
independent and identically distributed.

4.3.2.2 General Model

The observed data are discrete and consist of a sequence of r.v.s. (Xn)n∈Z related to the
original image h via the model

(∀n ∈ Z) Xn = Tn(h) + Vn, (4.14)

where the random operators (Tn)n∈Z represent the imaging system and where the ran-
dom sequence (Vn)n∈Z represents measurement noise. Furthermore, these operators are
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decomposable as

(∀n ∈ Z) Tn = T n + T̃n, (4.15)

where T n denotes the known, deterministic component of Tn and T̃n its unknown com-
ponent, i.e., the component associated with model uncertainty. (T n)n∈Z and (T̃n)n∈Z are
taken to be sequences of a.s. bounded linear random functionals on Ξ.4 Moreover, the
processes (T̃n(h))n∈Z and (Vn)n∈Z are second-order, independent from each other, with
mean zero. It follows from the Riesz representation theorem that there exists a sequence
of Ξ-valued random elements (T̃n)n∈Z such that (4.14) can be expressed as

(∀n ∈ Z) Xn = T n(h) + Un, (4.16)

where

(∀n ∈ Z) Un = T̃n(h) + Vn = 〈h | T̃n〉+ Vn. (4.17)

The process (Un)n∈Z will be called the uncertainty process. It stands for the uncertainty
arising from the inaccurate model and the noise.

4.3.2.3 Digital Model

If a digital image model is assumed (see Section 3.1.2.4), then Xn may represent the
nth pixel of the degraded image in a restoration problem, or a point in a sinogram in
a tomographic reconstruction problem. In addition, the T̃ns in (4.17) are simply N2-
dimensional random vectors. Note that if the vectors (T̃n)n∈Z are identically distributed
with uncorrelated components of variance v1 and if the noise (Vn)n∈Z is white with power
v2, then the power of the uncertainty process reduces to

E|U0|2 = E|〈h | T̃0〉|2 + E|V0|2 = ‖h‖2v1 + v2. (4.18)

4.3.2.4 Remarks

The model (4.16)-(4.17) is far from universal as it covers only situations in which the
known component of the system is linear and the uncertainty is additive and affine.
Nonetheless, it adequately approximates many physical systems encountered in imaging
science and has the advantage of allowing unmodeled dynamics and random perturba-
tions. In general, the operators (T n)n∈Z will represent a known mean component of the
system and the operators (T̃n)n∈Z unknown variations about it. This level of generality is
required in various contexts. For instance, in atmospheric, imaging random fluctuations

4The T ns are therefore continuous. Linearity of the T ns will guarantee the convexity of the Sis while
continuity of the T ns will guarantee closedness of the Sis [50].
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of the index of refraction can seriously degrade the image and they must be accounted
for. Other examples are found in X-ray imaging, where the image formed by a phosphor
screen-film system results from the stochastic amplification and the random scattering of
quanta, and in applications where the recording device is subject to random motions. Per-
tinent statistical descriptions of various imaging systems can be found in [14], [69], [77],
and [185]. On the other hand, there also exists a vast body of problems for which the
noise-only model

(∀n ∈ Z) Xn = T n(h) + Vn, (4.19)

is adequate. This is actually the model considered in [50], which resulted in a somewhat
simpler analysis of the set construction process.

4.3.3 Set Construction Method

Given a proposed estimate a of h, the residual process (Yn(a))n∈Z is defined by

(∀n ∈ Z) Yn(a) = Xn − T n(a). (4.20)

According to (4.16), the processes (Yn(h))n∈Z and (Un)n∈Z are equivalent, i.e.

(∀n ∈ Z) Yn(h) = Un a.s. (4.21)

Therefore, they share the same probability theoretic property. Consequently, any known
probabilistic property Ψi of the uncertainty process (Un)n∈Z constrains estimates to lie in
the random set

Si = {a ∈ Ξ | (Yn(a))n∈Z satisfies Ψi} . (4.22)

Of course, this set cannot be utilized directly since only a finite segment Y (a) = (Xn −
T n(a))1≤n≤L of the residual process is observable in practice. We therefore replace (4.22)
by the property set

Si = {a ∈ Ξ | Y (a) is consistent with Ψi} . (4.23)

The above consistency statement can be formulated explicitly via statistical confidence
theory. To this end, Ψi is associated with a statistic Qi(h) of Y (h) whose distribution,
exact or asymptotic, is determined. The set (4.23) is then rewritten in the more practical
form

Si = {a ∈ Ξ | Qi(a) ∈ ri}, (4.24)

where the confidence region ri is based on the distribution of Qi(h) and some confidence
coefficient 1− ǫi ∈ ]0, 1], i.e.,

1− ǫi = P{ω ∈ Ω | h ∈ Si(ω)} = P{ω ∈ Ω | Qi(h, ω) ∈ ri}. (4.25)

Henceforth, L will designate the length of the sample path.
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4.3.4 Sets Based on Range Information

The L property sets arising from bounds on the amplitude range of the random variables
(Un)n∈Z are

Sn = {a ∈ Ξ | |Xn − T n(a)| ≤ δn} for 1 ≤ n ≤ L. (4.26)

Proposition 4.1 [50] The sets (Sn)1≤n≤L are closed and convex.

We shall now see how the parameters (δn)1≤n≤L can be determined from information on

(〈h | T̃n〉)n∈Z and (Vn)n∈Z. The energy ‖h‖2 of the original image is assumed to be known.

4.3.4.1 Bounded Error Model

Suppose that the random sequences (‖T̃n‖)n∈Z and (Vn)n∈Z are a.s. uniformly bounded,
say

(∀n ∈ Z) ‖T̃n‖ ≤ κ1 and |Vn| ≤ κ2 a.s. (4.27)

Then, it follows from (4.17) and the Cauchy-Schwarz inequality that

(∀n ∈ Z) |Un| ≤ |〈h | T̃n〉|+ |Vn| (4.28)

≤ ‖h‖ · ‖T̃n‖+ |Vn| (4.29)

≤ ‖h‖κ1 + κ2 a.s. (4.30)

This property places estimates in the set (4.26) where δn , ‖h‖κ1 + κ2. Let us note that
h lies in each Sn almost surely. These sets can therefore be employed with a 100 percent
confidence coefficient.

4.3.4.2 I.I.D. Model

Suppose that the 〈h | T̃n〉s and the Vns are i.i.d. and that the distribution functions of ‖T̃0‖
and V0 are known. Then, by virtue of (4.29), we can find δ ∈ R such that

P{ω ∈ Ω | |U0(ω)| ≤ δ} = 1− ǫn, (4.31)

where 1− ǫn is our preset confidence coefficient defined in (4.25). Since the Uns are also
i.i.d., all the points in the residual path should lie in the confidence interval [−δ, δ] with
probability 1− ǫn. Therefore, the L sets of images that satisfy this constraint are given in
(4.26), where (∀n ∈ {1, · · · , L}) δn = δ.
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4.3.4.3 General Model

Let us assume that the distribution functions of the r.v.s (‖T̃n‖)1≤n≤L are known as well as
those of the r.v.s (Vn)1≤n≤L. Then, thanks to (4.29), we can find parameters (δn)1≤n≤L for
the sets (4.26) such that

P{ω ∈ Ω | |Un(ω)| ≤ δn} = 1− ǫn. (4.32)

4.3.5 Sets Based on Moment Information

It is assumed that the uncertainty process (Un)n∈Z consists of i.i.d.r.v.s. Extensions of the
following results to dependent variables are possible thanks to the various Central Limit
Theorems that exist for mixing processes (see, e.g., [13]).

4.3.5.1 Mean

The sample mean of the uncertainty process is the statistic

M =
1

L

L∑

n=1

Un. (4.33)

A straightforward application of the standard Central Limit Theorem shows that under
our assumptions M is asymptotically normal with mean zero and variance σ2 = E|U0|2/L
[67]. The same property should therefore be satisfied by the residual process. Whence, for
a given confidence coefficient, a confidence interval [−α,α] for M/σ is determined from
the tables of the standard normal distribution by making the normal approximation. The
set of images that yield a residual sample mean within this confidence interval is

Sm = {a ∈ Ξ |
∣∣∣∣∣

L∑

n=1

Xn − T n(a)

∣∣∣∣∣ ≤ α
√

LE|U0|2}. (4.34)

The second moment E|U0|2 can be obtained from (4.18) if the required conditions are met.
In general, note that the above assumptions on (Un)n∈Z are satisfied when the 〈h | T̃n〉s
and the Vns are i.i.d. and that v1 , E‖T̃0‖2 and v2 , E|V0|2 are known. Thanks to our
hypotheses, the variance of U0 can then be majorized by

E|U0|2 = E|〈h | T̃0〉|2 + E|V0|2 ≤ ‖h‖2v1 + v2 (4.35)

to produce a useful bound in (4.34).

Proposition 4.2 [50] Sm is closed and convex.

44



4.3.5.2 Absolute Moments

Suppose that, for a fixed p ∈ [1,+∞[, U0 ∈ L
2p(P) and that the pth and 2pth absolute

moments of U0 are known. The pth sample absolute moment of the uncertainty process is
the statistic

Mp =
1

L

L∑

n=1

|Un|p. (4.36)

Under the above hypotheses, as the sample size L tends to infinity, Mp is asymptotically
normal with mean E|U0|p and variance σ2

p = (E|U0|2p − E2|U0|p)/L [67]. Therefore, by
invoking the limiting distribution, one can compute a confidence interval [−α,α] for (Mp−
E|U0|p)/σp based on some confidence coefficient. Hence, the subset of Ξ of images which
yield a residual sample absolute moment within the desired confidence interval is

Sp = {a ∈ Ξ | ηp ≤
L∑

n=1

|Xn − T n(a)|p ≤ ζp}, (4.37)

where

ηp =

{
L(E|U0|p − ασp) if E|U0|p > ασp
0 otherwise

(4.38)

and

ζp = L(E|U0|p + ασp). (4.39)

Let

S−
p = {a ∈ Ξ |

L∑

n=1

|Xn − T n(a)|p < ηp} (4.40)

denote the convex deficiency of Sp and

S+
p = {a ∈ Ξ |

L∑

n=1

|Xn − T n(a)|p ≤ ζp} (4.41)

its convex hull. Then Sp = S+
p r S−

p .

Proposition 4.3 [50] S+
p is closed and convex.

In the particular case when p = 2 and U0 is zero mean Gaussian, the exact distribution of
LMp/E|U0|2 is a χ2

L [67]. Thus, from the tables of the χ2
L, one can obtain a value of ζ2

which is more accurate than that resulting from the normal approximation.

45



As an example of computation of the parameter ζp, consider the case when the 〈h | T̃n〉s
and the Vns are i.i.d. and E‖T̃0‖2p, E‖T̃0‖p, E|V0|2p, and E|V0|p are known. Then the Uns
are also i.i.d. and their pth absolute moment can be majorized as

E|U0|p ≤ E

(
|〈h | T̃0〉|+ |V0|

)p
(4.42)

≤ 2p−1
(
E|〈h | T̃0〉|p + E|V0|p

)
(4.43)

≤ 2p−1
(
‖h‖pE‖T̃0‖p + E|V0|p

)
. (4.44)

On the other hand, we can majorize σ2
p by E|U0|2p, which can itself be approximated as

above.

4.3.6 Sets Based on Second Order Information

Since the processes are real-valued, the spectral distributions are defined on [0, 1/2] (see
[58] for details). It is assumed that L is even (if not, L/2 should be replaced by (L− 1)/2
thereafter).

4.3.6.1 Gaussian White Uncertainty Process

Theorem 4.1 [143] Let (Un)n∈Z be a zero mean Gaussian discrete white noise process with

power σ2. Define

(∀k ∈ {0, · · · , L/2}) Ik =
2

L

∣∣∣∣∣
L∑

n=1

Un exp(−ı
2π

L
kn)

∣∣∣∣∣

2

. (4.45)

Then

(i) The statistics (Ik)0≤k≤L/2 are independent.

(ii) The statistics I0/2σ
2 and IL/2/2σ

2 have a χ2
1 distribution.

(iii) The statistics (Ik/σ
2)1≤k≤L/2−1 have a χ2

2 distribution.

Now, suppose that (Un)n∈Z satisfies the assumptions of Theorem 4.1. Then, from The-
orem 4.1 and the tables of the χ2

1 and χ2
2 distributions, one can determine confidence

intervals [0, β1] and [0, β2] for the r.v.s in (ii) and (iii) respectively. Consequently, the sets
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of images that produce a residual path consistent, to within a desired confidence coeffi-
cient 1− ǫk, with the whiteness and normality of the uncertainty process are

Sk = {a ∈ Ξ |
∣∣∣∣∣

L∑

n=1

(Xn − T n(a)) exp(−ı
2π

L
kn)

∣∣∣∣∣

2

≤ ξk} for 0 ≤ k ≤ L/2, (4.46)

where

(∀k ∈ {0, · · · , L/2}) ξk =

{
Lσ2β1 if k = 0 or L/2
Lσ2β2/2 if 0 < k < L/2.

(4.47)

Proposition 4.4 [50] The sets (Sk)0≤k≤L/2 are closed and convex.

Note that since the χ2
2 distribution is simply an exponential distribution with parameter

1/2, (4.47) reduces to

(∀k ∈ {0, · · · , L/2}) ξk =

{
Lσ2β1 if k = 0 or L/2
−Lσ2 ln(ǫk) if 0 < k < L/2.

(4.48)

In addition, it should be observed that, for k = 0, Sk is essentially the same set as the
mean set (4.34).

4.3.6.2 Non-Gaussian White Uncertainty Process

Suppose that (Un)n∈Z is a discrete white noise process consisting of i.i.d.r.v.s all distributed
as a zero mean r.v. U0 ∈ L

4(P), with variance σ2. Then the r.v.s in (ii) and (iii) of
Theorem 4.1 are asymptotically distributed as a χ2

1 and a χ2
2 respectively [93]. Thus,

under relatively mild conditions, the conclusions of Theorem 4.1 hold in an asymptotic
sense. Consequently, since in image processing applications L is typically large, the sets
(Sk)0≤k≤L/2 of (4.46) can be used.

4.3.6.3 Correlated Uncertainty Process

In this section, we further generalize the analysis by dropping the whiteness assumption.
We shall base the construction of a spectral set in this case on the following theorem.

Theorem 4.2 [143] Let (Un)n∈Z be a zero mean strictly stationary strongly mixing process

with summable second and fourth order cumulant functions and spectral density g. Let 0 =
ν0 < ν1 < · · · < νm = 1/2 and

(∀k ∈ {0, · · · ,m}) Ik =
2

L

∣∣∣∣∣
L∑

n=1

Un exp(−ı2πνkn)

∣∣∣∣∣

2

. (4.49)
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Then

(i) The statistics (Ik)0≤k≤m are asymptotically independent.

(ii) The statistics I0/g(0) and Im/g(1/2) are asymptotically distributed as a χ2
1.

(iii) The statistics (2Ik/g(νk))1≤k≤m−1 are asymptotically distributed as a χ2
2.

Loosely speaking, Theorem 4.2 states that if the span of dependence of the process is small
enough, the results of Theorem 4.1 can be generalized for large L. Now suppose that
(Un)n∈Z satisfies the hypotheses of Theorem 4.2 and that its spectral density g is known at
points 0 ≤ ν0 < ν1 < · · · < νm ≤ 1/2. Then, given a confidence coefficient 1− ǫk, one can
compute the confidence intervals [0, β1] and [0, β2] for the r.v.s in (ii) and (iii) respectively
by invoking their asymptotic properties (as before, note that β2 = −2 ln(ǫk)). (Un)n∈Z and
(Yn(h))n∈Z being equivalent, this leads to the sets

Sk = {a ∈ Ξ |
∣∣∣∣∣

L∑

n=1

(Xn − T n(a)) exp(−ı2πνkn)

∣∣∣∣∣

2

≤ ξk} for 0 ≤ k ≤ m, (4.50)

where

ξ0 =

{
Lg(0)β1/2 if ν0 = 0
Lg(ν0)β2/4 if ν0 > 0,

(4.51)

(∀k ∈ {1, · · · ,m− 1}) ξk = Lg(νk)β2/4, (4.52)

ξm =

{
Lg(νm)β2/4 if νm < 1/2
Lg(1/2)β1/2 if νm = 1/2.

(4.53)

Naturally, Proposition 4.4 still holds.

The processes (〈h | T̃n〉)n∈Z and (Vn)n∈Z have mean zero and are independent from each
other. Therefore, if they possess respectively spectral densities g1 and g2, the spectral
density of (Un)n∈Z will be g = g1 + g2. In particular, if the T̃ns are i.i.d. and if (Vn)n∈Z is
white with power v2, g will be defined as

(∀ν ∈ [0, 1/2]) g(ν) = 2
(
E|〈h | T̃0〉|2 + v2

)
. (4.54)

This expression will be evaluated as in (4.18) under suitable hypotheses or majorized as
in (4.35) in general.
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4.4 Information Management

In order to produce the most accurate set theoretic estimates, one should exploit all the
information available in a given problem. Indeed, the larger the number of sets intersected
in (1.6), the smaller the resulting feasibility set S. This statement, however, should be
tempered by the requirement that the information be utilized efficiently and reliably.

To process the available information efficiently, all the constraints that do not contribute
to a significantly smaller feasibility set should be discarded, especially if their processing
cost is high (meaning, for instance, that a projection method is employed to find a feasible
solution and that the projections onto the associated sets are computationally involved).

The issue of reliability comes into play when statistical constraints are present, as in Sec-
tion 4.3. In that case, the feasibility set depends on a realization of the stochastic data
process (4.16) and one will obtain a reliable set theoretic formulation only if the confi-
dence level

c = P{ω ∈ Ω | h ∈ S(ω)} (4.55)

on the solution set is sufficiently large, say c ≥ 0.90. In the jargon of Section 3.1.3, c is the
probability of obtaining a fair set theoretic formulation. Of course, one has control only
over the confidence coefficient 1 − ǫi placed on each property set in (4.25). It should be
borne in mind that the value of these coefficients should be determined in terms of the sets
used and not preset to some ad hoc value. To illustrate this point, consider the scenario of
Section 4.3.4.2 and suppose that the L sets (4.26) are to be used. If, as suggested in certain
digital image recovery studies, one took 1 − ǫ = 0.99 as a confidence coefficient on each
set, one would arrive at an overall confidence of c = 0.99L = 0.99N

2 ≈ 0. Consequently,
such a set theoretic formulation would be unlikely to be fair or even consistent, and would
fail to represent reliably the original image. A 99 percent confidence on each set might be
acceptable when just a few sets are used, e.g., mean and second moment, but not in large
scale problems. In general, the statistics (Qi)i∈I defining the property sets (4.26), (4.34),
(4.37), (4.46), and (4.50) may be dependent and the relation between c and 1− ǫ may be
difficult to establish when joint distribution functions are not available. Such simultaneous
inference problems are discussed in [118].

Coming back to the problem of using information efficiently, let us stress that in the pres-
ence of statistical constraints, a trade-off arises in the selection of property sets. Indeed,
the confidence coefficient on each set must increase with the number of sets selected in
order to maintain a fixed overall confidence in (4.55). Consequently, one ends up in-
tersecting a larger number of larger sets. This certainly increases the complexity of the
resulting feasibility problem while possibly having little effect on reducing the feasibility
set. For instance, the information that the uncertainty process is white and gaussian with
mean zero and known power leads to an infinite number of sets of type (4.37) since all the
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absolute moments are then known. Of course, not all of them should be used. Thus, effi-
ciency and reliability appear as two intertwined factors that should be carefully considered
in selecting property sets.
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5 Solving the Convex Feasibility Problem

5.1 Introduction

The goal of this section is to describe methods to solve the convex feasibility problem
(1.6). Recall that, unless otherwise stated, (Si)i∈I is a countable family of closed and
convex subsets of Ξ with nonempty intersection S.

The convex feasibility problem is a central problem in applied mathematics [11], [25],
[38], [56], [111], [141], which can be formulated in various ways, such as:

1. Finding a common point of closed and convex sets.

2. Finding a common fixed-point of nonexpansive operators.

3. Finding a common minimum of convex functionals.

4. Finding a common zero of maximal monotone operators.

5. Solving a system of variational inequalities.

6. Solving a system of convex inequalities.

Surveys of methods for solving such problems can be found in [25] and [38]. Since these
surveys were written, the convex feasibility problem has been the focus of a significant
research effort. As a result, a good part of the material presented here will be new. It
should also be mentioned that two very important papers in this area were published in
1967 by Browder [19] and Gubin et al. [79]. The importance of fundamental concepts
such as Fejér-monotonicity, admissibility, and bounded regularity was stressed in these
papers and basic proof techniques were established. More recent work has mainly been
geared towards various generalizations, especially in the direction of parallel algorithms.

In Section 5.2, we shall first discuss the limitations of the popular POCS algorithm, which
will motivate the subsequent developments on alternative algorithms to solve the convex
feasibility problem. In Section 5.3, we discuss a parallel projection method for solving
in a least-squares sense inconsistent image feasibility problems. We then go back to con-
sistent problems and discuss successively projection methods in Section 5.4, approximate
projection methods in Section 5.5, subgradient projection methods in Section 5.6, and
finally fixed-point methods in Section 5.7. These various approaches are considered from
a higher perspective in Section 5.8.

For the sake of completeness, we shall maintain the discussion at a fairly general theo-
retical level. We are nontheless aware of the more practical concerns of practicing engi-
neers and scientists who are interested mainly in digital image processing applications, in
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which recovery is performed on a digital computer with a finite number of constraints.
Section 5.9 will be devoted to this framework and a number of practical issues will be
discussed there. A few proofs have been included to illustrate the relevance of certain
assumptions and give more theoretical insight into convergence issues.

5.2 The Limitations of the POCS Method

Let us recall that the POCS algorithm is defined by the iteration process

(∀n ∈ N) an+1 = an + λn(Pi(n)(an)− an), (5.1)

where the control is periodic, i.e.,

(∀n ∈ N) i(n) = n (modulom) + 1 with m = card I < +∞, (5.2)

and where the relaxation parameters satisfy

(∀n ∈ N) ε ≤ λn ≤ 2− ε with 0 < ε < 1. (5.3)

As mentioned in Section 3.3, POCS has been the prevalent solution method in convex set
theoretic image recovery. It is nonetheless limited in several respects.

5.2.1 Serial Structure

A salient feature of POCS is its serial algorithmic structure: at each iteration only one of
the property sets can be activated. Clearly, such a structure does not lend itself naturally
to implementations on architectures with parallel processors.

5.2.2 Slow Convergence

A problem with POCS which has long been recognized is its slow convergence. Conceptu-
ally, the algorithm can be accelerated by properly relaxing the projections at each iteration.
Unfortunately, even for simple set theoretic formulations, there is no systematic method
for determining (λn)n≥0 so as to speed up the iterations. For instance, when all the Sis are
affine half-spaces, there is no systematic answer as to whether underrelaxations are faster
than overrelaxations or vice-versa [85], [115]. Likewise, in the studies reported in [159],
only heuristic rules for specific problems are given.
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5.2.3 Inconsistent Problems

The convergence properties of the unrelaxed version of POCS, that is

(∀n ∈ N) an+1 = Pn (modulom)+1(an), (5.4)

in inconsistent problems were studied in [79] (additional convergence results were re-
cently established in [12]).

Theorem 5.1 [79] Let (an)n≥0 be any sequence generated by (5.4) and suppose that one of

the sets in (Si)1≤i≤m is bounded. Then there exist points (ai)1≤i≤m such that P1(am) = a1
and Pi(ai−1) = ai for every i ∈ {2, · · · ,m}. Moreover, for every i ∈ {1, · · · ,m}, the periodic

subsequence (amn+i)n≥0 converges weakly to such a point ai ∈ Si.

In the particular case when m = 2, this theorem simply states that the sequence (a2n+1)n≥0

converges weakly to a point a1 ∈ S1 such that P1(P2(a1)) = a1, i.e., to an image that
satisfies property Ψ1 and which is closest to satisfying Ψ2 (this result is also discussed
in [33], [76], and [183]). Beyond two sets, however, the above result has no useful
interpretation and little practical value. It merely indicates that the limit image ai lies
in Si and, thereby, satisfies Ψi. Aside from Ψi, however, the properties of ai are totally
unknown and there is no guarantee that any of the remaining constraints will be satisfied,
even in an approximate sense. Such a solution clearly constitutes a poor approximation
of a feasible image. Thus, the convergence behavior of POCS in the inconsistent case is
generally unsatisfactory.

5.2.4 Countable Set Theoretic Formulations

Countable set theoretic formulations are of great theoretical interest and they are also en-
countered in certain analog problems. POCS is limited to finite set theoretic formulations
and it cannot be used in such problems.

5.3 Inconsistent Problems

In this section, (Si)i∈I is a finite family of m sets whose intersection may be empty and
the strictly convex weights (wi)i∈I are those of (3.7)/(3.8). Following [42], we present
parallel projection methods to find least-squares solutions to inconsistent convex image
feasibility problems. The problem of finding an image that minimizes a weighted average
of the squares of the distances to the property sets is reformulated in the product space
Ξ of Section 2.8, where it is equivalent to that of finding a point that lies in the diagonal
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subspace D and at minimum distance from the cartesian product S of the original sets. A
solution is obtained in Ξ via methods of alternating projections which lead naturally to
methods of parallel projections in the original space Ξ.

5.3.1 Least-Squares Solutions

In inconsistent problems, there exists no image possessing exactly all the properties (Ψi)i∈I
but one can look for an image that satisfies them in some approximate sense. Let us con-
sider the basic feasibility problem of solving a system of m linear equations in Rk. If
the system is overdetermined, it is customary to look for a least-squares solution. In set
theoretic terms, if (Si)i∈I represents the family of hyperplanes of Rk associated with the
equations, this is equivalent to looking for a point a∗ which minimizes

∑
i∈I d(a, Si)

2, the
sum of the squares of the distances to the Sis. Along the same lines, the exact feasi-
bility problem (1.6) can be replaced by the weighted least-squares feasibility problem of
minimizing the proximity function (3.7), that is

Find a⋆ ∈ G = {a ∈ Ξ | (∀b ∈ Ξ) Φ(a) ≤ Φ(b)}. (5.5)

Of course, if
⋂

i∈I Si 6= Ø, the minimum value of the proximity function is 0 which is
attained only on G =

⋂
i∈I Si, so that (1.6) and (5.5) coincide. In general, (5.5) can be

viewed as an extension of (1.6) and G is the set of least-squares solutions of the (possibly
inconsistent) image feasibility problem. From an image processing point of view, such
solutions are clearly more acceptable and useful than those generated by POCS, whose
properties were seen to be elusive.

It should be noted that in finite dimensional spaces, and under certain conditions on
the problem, (5.1) can solve (5.5) if the sequence of relaxation parameters (λn)n≥0 ap-
proaches zero [27], [133]. Experimental evidence first suggested this property in the
inconsistent tomographic reconstruction problems of [85], where POCS was reported to
provide better results with strong underrelaxations than without relaxations, as in (5.4).
From a practical viewpoint, however, strong underrelaxations are not desirable as they
impose very small step sizes (‖an+1 − an‖)n≥0 and, overall, excessively slow convergence.

5.3.2 Alternating Projections in a Product Space

As shown in Section 2.8, the original convex feasibility problem (1.6) can be recast in
the m-fold product space Ξ as the new feasibility problem (2.47) of finding a point a

∗

common to the product S of the property sets and the diagonal subspace D of Ξ. When⋂
i∈I Si = Ø, then S

⋂
D = Ø and the best approximate solution will be to find a point
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a
∗ in D which is at minimum distance from S. This statement can be formalized by

introducing the functional

Φ : D → R+

a 7→ 1

2
d(a,S)2,

(5.6)

and calling G its set of minimizers.

Proposition 5.1 [42] In the product space Ξ, the weighted least-squares problem (5.5) is

equivalent to minimizing Φ, i.e., to solving

Find a
⋆ ∈ G. (5.7)

Now let PD and PS be the operators of projection onto the sets D and S. Then G =
FixPD ◦PS [33] and the following Theorem provides an alternating projection method to
solve (5.7).

Theorem 5.2 Suppose that G 6= Ø. Then, for any a0 in D, every sequence of iterates (an)n≥0

defined by

(∀n ∈ N) an+1 = an + λn(PD ◦ PS(an)− an), (5.8)

where the relaxation parameters (λn)n≥0 satisfy (5.3) converges weakly to a point in G.

Proof. Let (an)n≥0 be any sequence generated by the algorithm. Let T = PD ◦ PS and fix
c ∈ G = Fix T , n ∈ N. Then T : D → D is firmly nonexpansive, as shown by the relations

(∀(a,b) ∈ D
2) |||T (a)− T (b)|||2 ≤ |||PS(a)− PS(b)|||2

≤ 〈〈a− b | PS(a)− PS(b)〉〉
= 〈〈a− b | PD(PS(a)− PS(b))〉〉
= 〈〈a− b | T (a)− T (b)〉〉, (5.9)

where we have used successively the nonexpansivity of PD, then the firm nonexpansivity
of PS (see Proposition 2.8(i)), and then (2.21) since PD is linear and a − b ∈ D. As
c ∈ Fix T , (5.9) yields 〈〈an − c | T (an)− c〉〉 ≥ |||T (an)− c|||2 and therefore

〈〈T (an)− c | T (an)− an〉〉 ≤ 0. (5.10)

Whence,

〈〈an − c | T (an)− an〉〉 = −|||T (an)− an|||2 + 〈〈T (an)− c | T (an)− an〉〉
≤ −|||T (an)− an|||2. (5.11)
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Then (5.8), (5.11), and (5.3) imply

|||an+1 − c|||2 = |||an − c|||2 + 2〈〈an − c | an+1 − an〉〉+ |||an+1 − an|||2

= |||an − c|||2 + 2λn〈〈an − c | T (an)− an〉〉+ λ2
n|||T (an)− an|||2

≤ |||an − c|||2 − λn(2− λn)|||T (an)− an|||2 (5.12)

≤ ||||an − c|||2 − ε2|||T (an)− an|||2 (5.13)

≤ |||an − c|||2. (5.14)

Hence, (an)n≥0 is Fejér-monotone with respect to G. According to Proposition 2.11, it

possesses a weak cluster point a, say ank

k
⇀ a, and it remains to show a ∈ G. In view of

(5.13), we have

|||an − T (an)|||2 ≤ ε−2
(
|||an − c|||2 − |||an+1 − c|||2

)
. (5.15)

But since the nonnegative sequence (|||an − c|||)n≥0 is nonincreasing, it converges and

therefore an − T (an)
n→ 0. According to Proposition 2.8(i), Id − T is demiclosed and

therefore (Id−T )(a) = 0 since ank

k
⇀ a and (Id−T )(ank

)
k→ 0. Whence a ∈ FixT = G.

�

A pictorial description of (5.8) is given in Fig. 9: sn = PS(an) and dn = PD(sn) =
PD ◦ PS(an) are first computed and an+1 is then positioned on the segment between an

and dn or between dn and 2dn − an according as ε ≤ λ ≤ 1 or 1 ≤ λn ≤ 2 − ε. As
discussed in Section 5.2.3, in the unrelaxed case Theorem 5.2 follows from Theorem 5.1.
A noteworthy property of (5.8) is that it can be viewed as a gradient method, as stated in
the following proposition.

Proposition 5.2 [42] Let (an)n≥0 be any sequence of iterates in Theorem 5.2. Then (Φ(an))n≥0

decreases until convergence and

(∀n ∈ N) an+1 = an − λn∇DΦ(an), (5.16)

where ∇D is the gradient operator in the Hilbert space D. Moreover, at iteration n, the

relaxation parameter which is optimal in terms of bringing an+1 closest to an arbitrary point

a
∗ in G is

λ∗
n =

〈〈PD ◦ PS(an)− an | a∗ − an〉〉
|||PD ◦ PS(an)− an|||2

≥ 1. (5.17)

We observe that the optimal relaxation parameter λ∗
n depends on a solution point a

∗,
which of course is not known. Hence, optimal relaxations cannot be achieved. However,
the above proposition indicates that they are always overrelaxations.

56



Strong convergence of the unrelaxed version of (5.8) can be proved if one makes addi-
tional assumptions on S, such as compactness [33], finite dimensionality [33], or uniform
convexity [79]. The next theorem presents a strong convergence result for a variant of
(5.8) which does not require special conditions.

Theorem 5.3 Suppose that G 6= Ø. Then, for any a0 in D, every sequence of iterates (an)n≥0

defined by

(∀n ∈ N) an+1 = (1− αn)a0 + αn(λPD ◦ PS(an) + (1− λ)an), (5.18)

where 0 < λ ≤ 2 and where (αn)n≥0 ⊂ [0, 1[ satisfies





limn→+∞ αn = 1∑
n≥0(1− αn) = +∞∑
n≥0 |αn+1 − αn| < +∞,

(5.19)

converges strongly to PG(a0).

Proof. Similar to that found in [42], except that we now use the more general conditions
(5.19) allowed by a fixed-point theorem of [179]. �

Note that, as n increases, (5.18) tends to behave like a constant-relaxation version of
(5.8). Moreover, a simple example of sequence (αn)n≥0 that satisfies (5.19) is

(∀n ∈ N) αn =
n

n+ 1
. (5.20)

5.3.3 Simultaneous Projection Methods

In the previous section we have solved the least-squares feasibility problem (5.5) in the
product space Ξ. It remains to reformulate the solution methods in the original signal
space Ξ, where they will actually be employed. First, we must secure conditions under
which (5.5) admits solutions.

Proposition 5.3 [42], [55] Suppose that either of the following conditions holds.

(i) One of the Sis is bounded.

(ii) All of the Sis are closed affine half-spaces.

Then G 6= Ø.
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Next, we need a point of passage from Ξ to Ξ.

Proposition 5.4 [132] We have

{
(∀ a ∈ D) PS(a) = (Pi(a))i∈I
(∀ a ∈ S) PD(a) = (

∑
i∈I wia

(i), · · · ,∑i∈I wia
(i)).

(5.21)

It follows from this proposition that

(∀a ∈ D) PD ◦ PS(a) = (
∑

i∈I

wiPi(a), · · · ,
∑

i∈I

wiPi(a)). (5.22)

Therefore the alternating projection method (5.8) in Ξ yields the simultaneous projection
method

(∀n ∈ N) an+1 = an + λn(
∑

i∈I

wiPi(an)− an), (5.23)

in Ξ. We shall call the algorithm (5.23) with relaxation scheme (5.3) the parallel pro-
jection method (PPM). A salient feature of PPM is its parallelism: at every iteration the
projections can be computed simultaneously on concurrent processors. Thus, the first
phase of an iteration of PPM consists of projecting the current signal an onto all the sets,
a task which can be distributed among m parallel processors. The second phase is a com-
bination phase in which the projections computed by the m processors are averaged to
form dn =

∑
i∈I wiPi(an). The last phase consists of positioning the new iterate an+1 on

the segment between an and 2dn − an. This procedure is illustrated in Fig. 10. The weak
convergence of PPM is a direct consequence of Theorem 5.2 and Proposition 2.12.

Theorem 5.4 Suppose that G 6= Ø (see Proposition 5.3). Then every orbit of PPM converges

weakly to a point in G.

Special cases of PPM have already been studied in the literature via direct approaches in
the original space. Thus, Theorem 5.4 generalizes a result of [54], which was restricted
to half-spaces in finite dimensional spaces and could therefore be applied only to linear
inequality constraints. It also generalizes a result of [55], which assumed constant relax-
ations in (5.23). The following proposition is a consequence of (2.40) and Propositions 5.2
and 5.4.

Proposition 5.5 Let (an)n≥0 be any orbit of PPM. Then (Φ(an))n≥0 decreases until conver-

gence and

(∀n ∈ N) an+1 = an − λn∇Φ(an), (5.24)
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where ∇ is the gradient operator in Ξ. Moreover, at iteration n, the relaxation parameter

that will bring an+1 closest to a solution point a∗ in G is

λ∗
n =

〈∑i∈I wiPi(an)− an | a∗ − an〉
‖∑i∈I wiPi(an)− an‖2

≥ 1. (5.25)

Although the product space formalism is well suited to analyze and develop projection
methods, it is sometimes limited when it comes to strong convergence properties, as it
imposes conditions on the whole set S. For instance compactness of S guarantees strong
convergence of (5.8) in Ξ but it translates into compactness of all the sets (Si)i∈I in Ξ. As
we shall now see, much less restrictive conditions can be obtained via a direct approach
in Ξ.

Theorem 5.5 [46] Every orbit of PPM converges strongly to a point in G if any of the fol-

lowing conditions is satisfied.

(i) (Si)i∈I contains only closed affine half-spaces.

(ii) (Si)i∈I contains only uniformly convex sets.

(iii) (Si)i∈I contains a boundedly compact set and a bounded set.

An alternative strong convergence result which does not place any restriction on the sets
is the following.

Theorem 5.6 Suppose that G 6= Ø (see Proposition 5.3). Then, for any a0 in Ξ, every

sequence of iterates (an)n≥0 defined by

(∀n ∈ N) an+1 = (1− αn)a0 + αn(λ
∑

i∈I

wiPi(an) + (1− λ)an), (5.26)

where (αn)n≥0 is as in (5.19) and 0 < λ ≤ 2, converges strongly to the projection of a0 onto

G.

Proof. Thanks to (5.22), (5.18) in Ξ yields (5.26) in Ξ. It then follows from Proposi-
tion 2.12 that Theorem 5.6 is a corollary of Theorem 5.3. �

It is worth noting that (5.26) not only converges strongly to a least-squares-feasible so-
lution but also guarantees that this solution is the closest to the initial point a0. Even
in consistent problems, this property is very valuable in certain image recovery applica-
tions, when one seeks the best feasible approximation of a reference image a0 [39] (in
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comparison, the method developed in [105] is limited to the case m = 2 and is relatively
involved).5 As an example, one who adopts the aim of finding a least-squares-feasible
image with minimum energy can take a0 to be the zero image. It then follows from Theo-
rem 5.6 that the iterations

(∀n ∈ N) an+1 =
n

n+ 1
(λ
∑

i∈I

wiPi(an) + (1− λ)an), (5.27)

will converge strongly to the desired solution.

5.4 Projection Methods

5.4.1 Panorama

Although POCS has been the focus of most of the attention in image recovery, other pro-
jection methods have been available, some for almost three decades, that overcome some
of its shortcomings. We discuss here three frameworks that, in our opinion, contain inter-
esting features.

5.4.1.1 Framework 1: Browder’s Admissible Control

In POCS the control sequence (i(n))n≥0 imposes that the sets be activated in periodic
order. As mentioned in Section 5.2.4, this periodic control mode can be implemented
only when card I < +∞. An alternative way of defining the control sequence (i(n))n≥0 is
to require that each set Si be activated at least once within any cycle of Mi consecutive
iterations, that is

(∀i ∈ I)(∃Mi ∈ N
∗)(∀n ∈ N) i ∈ {i(n), · · · , i(n +Mi − 1)}. (5.28)

5In consistent problems (i.e, G = S), a slight extension of a result of [112] shows that (5.26) can be
replaced by

(∀n ∈ N) an+1 = (1− αn)a0 + αnP1 ◦ · · · ◦ Pm(an),

in Theorem 5.6. In addition, for both methods, strong convergence to the projection of a0 onto S remains
true if each Pi is replaced by any firmly nonexpansive operator Ti such that Fix Ti = Si [43], [112].
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For I = N
∗ and Mi = 2i, an example of admissible control sequence is

(i(n))n≥0 = ( 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4,

1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5,

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, (5.29)

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6,

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, · · · ).

It is noted that periodic control is a particular case of admissible control. Hence, the
following theorem due to Browder generalizes the weak convergence result of POCS found
in Theorem 3.2.

Theorem 5.7 [19] Suppose that I is any nonempty subset of N. Then every sequence gen-

erated by the serial algorithm (5.1) with relaxation strategy (5.3) and admissible control

scheme (5.28) converges weakly to a point in S.

An even more general control scheme is the so-called chaotic control scheme, which im-
poses only that every set be used infinitely often, i.e.,

(∀i ∈ I)(∀n ∈ N) i ∈ {i(n), i(n + 1), · · · }. (5.30)

This condition goes back to the work of Poincaré on boundary problems [134], who gave
the following example for I = N∗

(i(n))n≥0 = (1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, · · · ). (5.31)

However, the result of Theorem 5.7 no longer holds in this case (even in finite dimensional
spaces [40]) and some restrictions are needed.

Theorem 5.8 Every sequence generated by the unrelaxed version of the serial algorithm (5.1)

under chaotic control converges weakly to a point in S if any of the following conditions holds.

(i) (Si)i∈I is a finite family of closed vector subspaces [4].

(ii) (Si)i∈I is a finite family containing a weak interior point [61], i.e.,

(∃w ∈ S)(∀c ∈ S)(∃ρ ∈ R
∗
+) w + ρ(w − c) ∈ S. (5.32)

(iii) card I = 3 [61].
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A result similar to (ii) can also be found in [182]. If instead of merely a weak interior
point, we require the existence of an interior point for S, then strong convergence takes
place for countable families.

Theorem 5.9 Suppose that I is any nonempty subset of N and that
◦
S 6= Ø. Then every

sequence (an)n≥0 generated by the serial algorithm (5.1) with relaxation strategy (5.3) and

chaotic control scheme (5.30) converges strongly to a point in S.

Proof. First of all, (an)n≥0 is Fejér-monotone with respect to S. Indeed by fixing c ∈ S and
following a procedure similar to that of the proof of Theorem 5.2, we arrive at

(∀n ∈ N) ||an+1 − c||2 ≤ ||an − c||2 − ε2||Pi(n)(an)− an||2 (5.33)

≤ ||an − c||2. (5.34)

According to Proposition 2.11(iv), there exists a point a ∈ Ξ such that an
n→ a, and it

remains to show a ∈ S. Take an arbitrary i ∈ I. Since the control is chaotic, there exists
an increasing sequence (nk)k≥0 ⊂ N such that (∀k ∈ N) i = i(nk). Therefore (5.33) yields

(∀k ∈ N) ||Pi(ank
)− ank

||2 = ||Pi(nk)(ank
)− ank

||2 (5.35)

≤ ε−2
(
||ank

− c||2 − ||ank+1 − c||2
)
. (5.36)

As in the proof of Theorem 5.2, we obtain Pi(ank
) − ank

k→ 0. But since ank

k→ a, we

get Pi(ank
)

k→ a. However (Pi(ank
))k≥0 ⊂ Si and Si is closed. Therefore a ∈ Si. Since i

was arbitrary, we conclude a ∈ ⋂i∈I Si = S. �

5.4.1.2 Framework 2: Pierra’s Extrapolated Iterations

We have seen in Sections 5.2.1 and 5.2.2 that POCS suffered from slow convergence and
that it was not well suited to take advantage of parallel computing. It would be erroneous,
however, to conclude that a parallel projection method is always faster than a serial one
just because it can process projections simultaneously as opposed to sequentially. Thus, the
parallel algorithm SIRT (3.11) was found to be actually slower than the serial algorithm
ART (3.10) in tomographic image reconstruction [85]. In our numerical simulations, we
have also found that (3.11) is usually slower than unrelaxed POCS (5.4) in a number of
problems involving general convex constraints. This fact can be illustrated by comparing
Fig. 6 and Fig. 11.

An advantage of a parallel projection method such as PPM (5.23) is that it can be accel-
erated by overrelaxations, which is not true for serial algorithms. In fact, overrelaxations
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have been reported to accelerate parallel projection methods in a number of studies, e.g.,
[21], [46], [60], and [92]. To explain this, note that the efficient progression of a general
relaxed algorithm of the type (∀n ∈ N) an+1 = an + λn(dn − an) towards a solution
depends on two factors at every iteration n:

1) Centering: in order to avoid “zigzagging”, the iterations should remain centered
with respect to the sets so that the directions taken by the algorithm keep pointing
to the solution set S.

2) Relaxation: at every iteration, λn should place an+1 close to S on the ray emanating
from an and going through dn.

In the case of a serial algorithm such as (5.1), dn is the projection onto a single set Si(n) and
therefore the algorithm will keep moving in different directions and will tend to zigzag.
By contrast, since PPM averages the projections its centering is much better, which takes
care of condition 1) above. On the other hand, Proposition 5.2 takes care of condition
2), as it indicates that overrelaxations will bring the update closer to S. In PPM, how-
ever, overrelaxations were limited to 2 in order to guarantee convergence in inconsistent
problems. We shall now follow the work of Pierra [132], who showed that in consistent
problems this condition can be bypassed and much larger relaxations can be obtained.

In order to define an alternative relaxation strategy, let us return to the product space
formalism of Section 2.8, in which the convex feasibility problem was seen to reduce to
(2.47). Now consider Fig. 12, where an ∈ D

⋂
∁S, sn = PS(an) and dn = PD(sn) =

PD ◦ PS(an). Let Hn be the affine hyperplane supporting S at sn. Then Hn separates an

from S and intersects D at a point en. Note that

|||en − an|||
|||sn − an|||

=
|||sn − an|||
|||dn − an|||

. (5.37)

Hence, returning to the alternating projection method (5.8), an update an+1 on the seg-
ment between an and en will be obtained by taking relaxations up to

Ln =
|||en − an|||
|||dn − an|||

=
|||sn − an|||2
|||dn − an|||2

=
|||PS(an)− an|||2

|||PD ◦ PS(an)− an|||2
. (5.38)

Note that we always have Ln ≥ 1. Indeed, since an ∈ D, the nonexpansivity of PD yields

|||PD ◦ PS(an)− an||| = |||PD(PS(an))− PD(an)||| (5.39)

≤ |||PS(an)− an|||. (5.40)
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Proposition 5.6 [132] Every sequence (an)n≥0 ⊂ D constructed as in (5.8) with relaxation

strategy

(∀n ∈ N) ε ≤ λn ≤ Ln, where 0 < ε < 1, (5.41)

converges weakly to a point in S
⋂

D.

We can recast this result in the original image space Ξ via Proposition 5.4 to obtain
Pierra’s extrapolated parallel projection method (EPPM), which is described by the al-
gorithm (5.23) with relaxation range

(∀n ∈ N) ε ≤ λn ≤ Ln where Ln =





∑
i∈I wi‖Pi(an)− an‖2

‖∑i∈I wiPi(an)− an‖2
if an /∈ S

1 otherwise.

(5.42)

The weak convergence of PPM follows immediately from Propositions 5.6 and 2.12.

Theorem 5.10 [132] Every orbit of EPPM converges weakly to a point in S.

It was observed in [132] that the fast convergence of EPPM was due to the large overrelax-
ations allowed by (5.42). In fact, Ln can attain values much larger than 2 and eliminate
the “angle problem” of conventional methods: one can see in Figs. 6 and 11 that the iter-
ations will slow down as the angle between the two sets diminishes. On the other hand,
EPPM is not sensitive to this problem, as seen in Fig. 12. Fig. 13 shows a realization of
EPPM with equal weights on the projections and (∀n ∈ N) λn = Ln. It compares favorably
with POCS (Fig. 6) and SIRT (Fig. 11).

In order to mitigate the possible zigzagging that could take place with large relaxations
and could reduce the effectiveness of the algorithm, it was suggested in [132] to re-center
the orbit every 3 iterations by halving the extrapolations, namely

(∀n ∈ N) λn =

{
Ln/2 if n = 2 modulo 3
Ln otherwise.

(5.43)

We saw in Proposition 5.5, that PPM was a steepest-descent method for the proximity
function of (3.7). By invoking (2.16), EPPM can be written in the form

(∀n ∈ N) an+1 = an − αnΦ(an)

‖∇Φ(an)‖2
∇Φ(an) with ε ≤ αn ≤ 2− ε, (5.44)

which was shown in [40] to be a particular case of the Gauss-Newton method studied
in [136]. In that paper the Gauss-Newton approach was reported to converge more effi-
ciently than the standard steepest-descent approach (5.24). This furnishes another justifi-
cation for the superiority of EPPM over PPM.6

6This statement applies only to consistent problems. PPM was developed for inconsistent problems, where
relaxations cannot be extended beyond 2 (see Fig. 9).
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It should be noted that EPPM does not generalize PPM for the relaxation ranges (5.42) are
not necessarily wider than (5.3). Indeed, we have seen that the extrapolation parameter
Ln was at least equal to 1 but it may not necessarily be greater than 2.7 Therefore to unify
and extend both PPM and EPPM, we shall now consider relaxations up to 2Ln, i.e.

(∀n ∈ N) ε ≤ λn ≤ (2 − ε)Ln. (5.45)

This extension will also allow faster convergence in certain problems through the use of
larger overrelaxations than those allowed by PPM and EPPM. To justify this extension
more rigorously, let us go back to Proposition 5.2. In the consistent case, it states that at
iteration n the relaxation parameter which brings an+1 closest to an arbitrary point a∗ in
S
⋂

D is

λ∗
n =

〈〈PD ◦ PS(an)− an | a∗ − an〉〉
|||PD ◦ PS(an)− an|||2

. (5.46)

Using the linearity of PD, (2.21), and (2.19), we obtain

λ∗
n =

〈〈PD(PS(an)− an) | a∗ − an〉〉
|||PD ◦ PS(an)− an|||2

(5.47)

=
〈〈PS(an)− an | a∗ − an〉〉
|||PD ◦ PS(an)− an|||2

(5.48)

=
|||PS(an)− an|||2

|||PD ◦ PS(an)− an|||2
+

〈〈PS(an)− an | a∗ − PS(an)〉〉
|||PD ◦ PS(an)− an|||2

(5.49)

≥ Ln. (5.50)

Thus, extending the relaxation range to ]0, 2Ln[ opens the possibility of getting closer to
the optimal relaxation parameter, which lies in [Ln,+∞[. Let us also note that, according
to (2.21), 〈〈PS(an) − an | a∗ − PS(an)〉〉 = 0 if S is a closed affine subspace. Whence,
(5.49) shows that λ∗

n = Ln in this case. These results can be routinely transferred to the
original space Ξ as follows.

Proposition 5.7 At iteration n, the relaxation parameter that will bring an+1 closest to a

solution point a∗ in S is

λ∗
n =

〈∑i∈I wiPi(an)− an | a∗ − an〉
‖∑i∈I wiPi(an)− an‖2

≥ Ln. (5.51)

In addition, if (Si)i∈I is a finite family of closed affine subspaces, then

λ∗
n = Ln. (5.52)

We shall call EPPM2 the algorithm obtained by combining (5.23) and (5.45).

Theorem 5.11 [41] Every orbit of EPPM2 converges weakly to a point in S.

7Cases when Ln ≤ 2 can easily be constructed, e.g., [22].
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5.4.1.3 Framework 3: Block-Parallel Methods

A limitation of parallel methods such as EPPM2 is that all the sets must be acted upon at
each iteration. If the number of sets is larger than the number of concurrent processors
available, the implementation of the algorithm will not be fully parallel. At iteration n,
a flexible adaptation of the computational load to the parallel computing architecture at
hand can be obtained by activating only a subfamily (Si)i∈In⊂I of property sets. If, in
addition, we allow the weights on the projections to vary at each iteration, we obtain an
iterative method of the form

(∀n ∈ N) an+1 = an + λn(
∑

i∈In

wi,nPi(an)− an), (5.53)

where (In)n≥0 is a sequence of subsets of I and ((wi,n)i∈In)n≥0 a sequence of convex
weights. Let us observe that if only one set is processed at each iteration, say (∀n ∈
N) In = {i(n)}, then (5.53) reverts to the serial method (5.1). On the other hand,
if all the sets are processed at each iteration, i.e., (∀n ∈ N) In = I, we obtain the
simultaneous projection method (5.23). Algorithms of the general form (5.53) have been
proposed with various assumptions on the dimension of Ξ, the sets (Si)i∈I , the relaxation
parameters (λn)n≥0, the weights ((wi,n)i∈In)n≥0, and the control sequence (In)n≥0 [3],
[21], [22], [26], [46], and [126]. In the next section we present a projection method
based on (5.53) which encompasses and generalizes these approaches.

5.4.2 Extrapolated Method of Parallel Projections (EMOPP)

Each of the three frameworks discussed in the previous section has an attractive feature.
Framework 1 provides flexible control schemes that can handle an infinite number of
sets; Framework 2 provides extrapolated iterations that converge efficiently; Framework
3 provides a flexible management of the property sets that can easily be adapted to the
configuration of a parallel computer. These attractive features can be combined into a
single algorithm, the extrapolated method of parallel projections (EMOPP), which we
now describe.

Given an initial point a0 ∈ Ξ and numbers C ∈ N∗, δ ∈ ]0, 1/C[, and ε ∈ ]0, 1[, EMOPP is
defined by the iterative process

(∀n ∈ N) an+1 = an + λn(
∑

i∈In

wi,nPi(an)− an), (5.54)

where at each iteration n:

a) The family In of indices of selected sets satisfies

Ø 6= In ⊂ I and card {i ∈ In | an /∈ Si} ≤ C. (5.55)
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b) The weights on the projections satisfy
∑

i∈In

wi,n = 1 and (∀i ∈ In) wi,n ≥ δ1∁Si
(an). (5.56)

c) The relaxation parameter λn lies in [ε, (2 − ε)Ln], where

Ln =





∑
i∈In

wi,n‖Pi(an)− an‖2
‖
∑

i∈In
wi,nPi(an)− an‖2

if an /∈ ⋂i∈In
Si

1 otherwise.

(5.57)

Practically, iteration n of EMOPP is performed as follows. First, one selects the sets to
be activated; In contains the indices of these sets. One then computes the projections
(Pi(an))i∈In of the current iterate an onto the selected sets and determines a convex com-
bination dn =

∑
i∈In

wi,nPi(an) of these projections as well as the extrapolation parameter
Ln. The position of the new iterate an+1 on the segment between an and an+2Ln(dn−an)
is determined by the relaxation parameter λn.

EMOPP features doubly extrapolated relaxation ranges as EPPM2, it can process variable
blocks of sets as (5.53), and it can be driven by flexible control schemes that extend in
particular the admissible and chaotic control schemes of the serial algorithm (5.1). The
condition (5.56) imposes that the weights be bounded away from 0 on violated sets and
add up to 1. This, in turn, implies that the number of violated sets processed at each
iteration must be bounded, whence condition (5.55). It can always be assumed that
nonviolated sets are selected since they can be assigned a 0 weight. Finally, let us observe
that Ln ≥ 1 (since the function ‖ · ‖2 is convex) and that Ln = 1 when less than two
violated sets are used (card{i ∈ In | an /∈ Si} < 2). In this case, the relaxation range
reduces to the usual interval [ε, 2 − ε] and no extrapolation takes place.

5.4.3 Control

We shall consider the following control strategies for EMOPP. They constitute extensions
to parallel projection methods of schemes which have been proposed for serial ones.

We shall say that the control is:

(i) Static if all the sets are activated at each iteration, i.e.,

(∀n ∈ N) In = I. (5.58)

This control condition goes back to Cimmino’s algorithm [35]. It was used in SIRT,
PPM, EPPM, and EPPM2.
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(ii) Cyclic if there exists a positive integer M such that

(∀n ∈ N) I =
n+M−1⋃

k=n

Ik. (5.59)

Thus, if the control is M -cyclic, all the sets must be activated at least once within
any M consecutive iterations. This condition was utilized in [46] and [126].

(iii) Quasi-cyclic if there exists an increasing sequence (Mm)m≥0 ⊂ N such that





M0 = 0∑
m≥0(Mm+1 −Mm)−1 = +∞

(∀m ∈ N) I =
⋃Mm+1−1

k=Mm
Ik.

(5.60)

In words, if the control is (Mm)m≥0-quasi-cyclic, all the sets are activated at least
once within each quasi-cycle of iterations {Mm, · · · ,Mm+1 − 1}. The nonsumma-
bility condition imposes that the lengths (Mm+1 − Mm)m≥0 of the quasi-cycles do
not increase too fast eventually. For instance the linear growth condition (∀m ∈
N) Mm+1 − Mm = αm + 1 is acceptable. Quasi-cyclic control was introduced in
[175] for a serial method.

(iv) Admissible if there exist positive integers (Mi)i∈I such that

(∀(i, n) ∈ I × N) i ∈
n+Mi−1⋃

k=n

Ik (5.61)

Hence, the set Si is activated at least once within any Mi consecutive iterations,
which extends Browder’s definition (5.28) to the parallel case. Of course, if card I <
+∞, this control mode coincides with the cyclic mode (5.59) for M = maxi∈I Mi.

(v) Chaotic if each set is activated infinitely often in the iteration process, i.e.

(∀n ∈ N) I =
⋃

k≥n

Ik. (5.62)

This is a direct generalization of (5.30), which was used in the parallel method of
[126]. Clearly, static ⇒ cyclic ⇒ quasi-cyclic ⇒ chaotic, and cyclic ⇒ admissible
⇒ chaotic.

(vi) Coercive if

(∃(i(n))n≥0 ∈ X
n≥0

In) d(an, Si(n))
n→ 0 ⇒ sup

i∈I
d(an, Si)

n→ 0. (5.63)
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In the serial case, this control mode was proposed in [79] as a generalization of the
most-remote set control scheme

(∀n ∈ N)(∃i(n) ∈ In) d(an, Si(n)) = sup
i∈I

d(an, Si), (5.64)

which is not always applicable when card I = +∞.

(vii) Chaotically coercive if (In)n≥0 contains a subsequence (Ink
)k≥0 such that

(∃(i(k))k≥0 ∈ X
k≥0

Ink
) d(ank

, Si(k))
k→ 0 ⇒ sup

i∈I
d(ank

, Si)
k→ 0. (5.65)

This condition generalizes (5.63) as well as the control strategy consisting in acti-
vating one of the most remote sets infinitely often in the course of the iterations.

5.4.4 Convergence Results

In this section we present results on the convergence of EMOPP. As usual, a key step in
proving the convergence to a feasible image is (2.37).

Proposition 5.8 [40] Every orbit of EMOPP is Fej́er-monotone with respect to S.

The next step is then to determine suitable conditions on the control and the sets so that
weak or strong convergence to a point in S is actually achieved by every orbit. Let us
note that, since the sequence (card {i ∈ In | an /∈ Si})n≥0 is bounded, quasi-cyclic control
cannot be applied to countable set theoretic formulations in general as it requires that all
the sets be activated over a finite number of iterations.

5.4.4.1 Weak Convergence

The following theorem, which generalizes results of [46] as well as Theorems 5.7 and 5.11,
appears to be the most general result available on the weak convergence of projection
methods.

Theorem 5.12 [40] Under coercive or admissible control, every orbit of EMOPP converges

weakly to a point in S.

The next theorem does not guarantee weak convergence as weak cluster points could exist
outside of S but it is nonetheless of interest.
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Theorem 5.13 [40] Each orbit of EMOPP possesses one and only one weak cluster point in

S if either of the following conditions holds.

(i) The control is chaotically coercive.

(ii) card I < +∞ and the control is quasi-cyclic.

In the special case of algorithm (5.1), Theorem 5.13(ii) was obtained in [174].

5.4.4.2 Strong Convergence

Following the terminology of [10], (Si)i∈I is boundedly regular if for any bounded se-
quence (an)n≥0 we have

sup
i∈I

d(an, Si)
n→ 0 ⇒ d(an, S)

n→ 0. (5.66)

The concept of bounded regularity was first used extensively in [79] to prove the strong
convergence of several serial projections algorithms. Conditions for bounded regularity
were previously discussed in [110] in the case of two sets. The importance of this notion
stems from the following fact.

Proposition 5.9 [79] Let (an)n≥0 be a Fej́er-monotone sequence with respect to S and sup-

pose that (Si)i∈I is boundedly regular. Then

sup
i∈I

d(an, Si)
n→ 0 ⇒ (∃ a ∈ S) an

n→ a. (5.67)

Since under chaotically coercive or quasi-cyclic control each orbit (an)n≥0 contains a sub-

orbit (ank
)k≥0 such that supi∈I d(ank

, Si)
k→ 0 [40], Propositions 5.8, 5.9, and 2.11(iii)

lead to the following result, which generalizes results of [46] and [132], as well as Theo-
rem 3.2.

Theorem 5.14 [40] Suppose that (Si)i∈I is boundedly regular. Then every orbit of EMOPP

converges strongly to a point in S if either of the following conditions holds.

(i) The control is chaotically coercive.

(ii) card I < +∞ and the control is quasi-cyclic.
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We now give specific conditions when this theorem can be applied. The following defi-
nition is motivated by [110] (see also Proposition 2.4(ix)). We shall say that a set Si is
a Levitin-Polyak set if, for every sequence (an)n≥0 ⊂ Ξ such that d(an, Si)

n→ 0, the

following property holds: if an
n
⇀ a and a ∈ ∂Si, then an

n→ a. Locally uniformly
convex sets, and a fortiori uniformly convex sets, are Levitin-Polyak sets. However, unlike
uniformly convex sets, locally uniformly convex sets need not be bounded [110].8

Proposition 5.10 [11], [40], [79] (Si)i∈I is boundedly regular if any of the following con-

ditions is satisfied.

(i) (∃j∈I) Sj
⋂
(
⋂

i∈Ir{j} Si)
◦ 6= Ø.

(ii) All, except possibly one, of the sets in (Si)i∈I are f -uniformly convex.

(iii) One of the sets in (Si)i∈I is boundedly compact. In particular:

• One of the sets in (Si)i∈I is compact.

• One of the sets in (Si)i∈I is contained in a finite dimensional affine subspace.

• dimΞ < +∞.

(iv) (Si)i∈I is a finite family and all, except possibly one, of its sets are Levitin-Polyak sets.

In particular:

• (Si)i∈I is a finite family and all, except possibly one, of its sets are locally uniformly

convex.

• (Si)i∈I is a finite family and all, except possibly one, of its sets are uniformly

convex.

(v) (Si)i∈I is a finite family of closed affine subspaces such that
∑

i∈I S
⊥
i is closed. In

particular:

• (Si)i∈I is a finite family of closed affine subspaces, all of which, except possibly

one, have finite codimension.

• (Si)i∈I is a finite family of closed affine subspaces, all of which, except possibly

one, are affine hyperplanes.

8The fact that a locally uniformly convex set Si is a Levitin-Polyak set can be proved as follows. Take a
sequence (an)n≥0 such that d(an, Si)

n
→ 0 and an

n
⇀ a ∈ ∂Si. Then Pi(an)

n
⇀ a. Now take a point

b /∈ Si such that Pi(b) = a and consider the half-space {h ∈ Ξ | 〈h − a | b − a〉 ≤ 0} containing Si and
whose boundary supports Si at a. Since Si is locally uniformly convex, there exists a nondecreasing function
f : R+ → R+ that vanishes only at 0 such that (∀h ∈ Si) 〈h − a | b − a〉 ≤ −f(‖h − a‖). Whence,
(∀n ∈ N) 〈Pi(an) − a | a − b〉 ≥ f(‖Pi(an) − a‖). But since Pi(an)

n
⇀ a, we get f(‖Pi(an) − a‖)

n
→ 0

and therefore Pi(an)
n
→ a. As d(an, Si)

n
→ 0, we conclude an

n
→ a.

We also note that (ii) in Theorem 5.5 can be generalized to: (Si)i∈I contains only Levitin-Polyak sets, one
of which is bounded.
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(vi) (Si)i∈I is a finite family of closed polyhedrons (finite intersections of closed affine half-

spaces).

We now move to the most general type of control, namely chaotic control. To obtain
strong convergence in that case, the hypotheses on the sets will have to be strengthened.

A point c ∈ S is a strongly regular point of (Si)i∈I if [126]

(∀(ρ1, ρ2) ∈ R
∗2
+ )(∃ρ ∈ R+)(∀(i, a, b) ∈ I × Ξ× Ξ)

{
‖Pi(a)− c‖ ≥ ρ1
‖b− c‖ ≤ ρ2

⇒ d(b,Hi(a)) ≤ ρd(c,Hi(a)), (5.68)

where Hi(a) = {h ∈ Ξ | 〈h− Pi(a) | a− Pi(a)〉 = 0}.

Theorem 5.15 [40] Under chaotic control, every orbit of EMOPP converges strongly to a

point in S if any of the following conditions is satisfied.

(i) (Si)i∈I has a strongly regular point. In particular:

•
◦
S 6= Ø.

• (Si)i∈I is a family of f -uniformly convex sets.

(ii) (Si)i∈I is a finite family and one of its sets is boundedly compact. In particular:

• (Si)i∈I is a finite family and one of its sets is compact.

• (Si)i∈I is a finite family and one of its sets is contained in a finite dimensional

affine subspace.

• (Si)i∈I is a finite family and dimΞ < +∞.

(iii) (Si)i∈I is a finite family of closed affine subspaces with finite codimensions. In particu-

lar, (Si)i∈I is a finite family of affine hyperplanes.

(iv) (Si)i∈I is a finite family of closed polyhedrons. In particular, (Si)i∈I is a finite family

of closed affine half-spaces.

For relaxations only up to Ln, Theorem 5.15(i) was established in [126]; in the special
case of the unrelaxed version of algorithm (5.1)+(5.30), Theorem 5.15(ii) was proved in
[20] with the compactness condition. A related result is the following.

Theorem 5.16 [10] Suppose that (Si)i∈I is a finite family and that any of its nonvoid sub-

families (Si)i∈J⊂I is boundedly regular, in particular:
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(i) (∃j∈I) Sj
⋂
(
⋂

i∈Ir{j}

◦
Si) 6= Ø.

(ii) All, except possibly one, of the sets in (Si)i∈I are boundedly compact.

(iii) Each set in (Si)i∈I is a closed affine subspace and
∑

i∈J S
⊥
i is closed for every Ø 6= J ⊂

I.

(iv) (Si)i∈I is a family of closed polyhedrons.

Then every sequence generated by the unrelaxed version of the serial algorithm (5.1) under

chaotic control (5.30) converges strongly to a point in S.

5.5 Extrapolated Method of Parallel Approximate Projections (EMOPAP)

5.5.1 Problem Statement

In Section 2.5.2 we have given examples of sets whose projection operators admit closed-
form expressions. There are many cases, however, when projection operators are not
so easy to determine, which constitutes a serious obstacle in the implementation of a
projection algorithm. To illustrate this point, consider the problem of projecting a digital
image a onto the set

Si = {b ∈ E
N2 | gi(b) ≤ 0}, (5.69)

where gi is a convex functional (in digital image processing, this is typically how sets are
specified). The projection Pi(a) is obtained by solving the constrained quadratic mini-
mization problem

min
1

2
‖b− a‖2 subject to gi(b) = 0, (5.70)

which can be recast as the problem of minimizing

Θ(b) =
1

2
‖b− a‖2 + µgi(b), (5.71)

where µ is a Lagrange multiplier to be adjusted so that gi(Pi(a)) = 0. Assuming that gi is
differentiable, Pi(a) should therefore satisfy

{
Pi(a) = a+ µ∇gi(Pi(a))
gi(Pi(a)) = 0.

(5.72)
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If gi is an affine or quadratic functional, as in the examples (2.3)-(2.6), this system is
easily solved. Otherwise, it may require a costly solution method to adjust µ iteratively.
For instance, consider the second moment set

Si = {a ∈ E
N2 | ‖x− Ta‖2 ≤ ζ2} (5.73)

of (4.41), where T is an N2 × N2 matrix.9 In this case, (5.72) was solved in [171] via
a Newton method initialized at µ0 = 0. Another example is the minimum entropy set
proposed in [47] for images that exhibit a low level of structure. If we denote by ln(a) the
vector t[ln(a(i))]0≤i≤N2−1, this set takes the form10

Si = {a ∈ ∆ | −〈a | ln(a)〉 ≥ η}, (5.74)

where ∆ = {a ∈ E
N2 |

∑N2−1
i=0 a(i) = 1 and (∀i ∈ {0, · · · , N2− 1}) a(i) ≥ τ > 0}, τ being a

lower bound on the pixel values. The closedness and convexity of this set follow from the
convexity of the functional a 7→ 〈a | ln(a)〉 on ∆ (see Proposition 2.6). There too, (5.72)
must be solved via iterative methods similar to those proposed in [70] and [167] for the
maximum entropy method.

A way to circumvent the sometimes tedious computation of projections is to replace them
by approximate ones. By an approximate projection of an ∈ ∁Si onto Si, we shall mean
the projection of an onto any closed and convex superset Si,n of Si which does not contain
an.11 A natural candidate for Si,n is a closed affine half-space whose boundary hyperplane
Hi,n separates an from Si (see Fig. 14). The approximate projection is then simply given
by (2.22), meaning that the nonlinear constraint defining Si has been “affinized”. More
formally, we shall say that ((Si,n)i∈In)n≥0 are approximating sets if they are closed and
convex and satisfy

(∃η ∈ ]0, 1[)(∀n ∈ N)(∀i ∈ In) Si ⊂ Si,n and d(an, Si,n) ≥ ηd(an, Si). (5.75)

This condition has been used in [2], [11], [45], and [68].

5.5.2 Algorithm

Given an initial point a0 ∈ Ξ and numbers C ∈ N∗, δ ∈ ]0, 1/C[, η ∈ ]0, 1[, and ε ∈ ]0, 1[,
EMOPAP is defined by the iterative process [40]

(∀n ∈ N) an+1 = an + λn(
∑

i∈In

wi,nPi,n(an)− an), (5.76)

9Note that the set (5.73) has the same analytic expression as (4.6).
10In this context, each gray level a(i) is viewed as a probability and

∑N2−1
i=0 a(i) = 1.

11The idea of replacing exact projections by approximate ones was actually suggested in [132]. Naturally,
this approach will be numerically advantageous if the determination of this superset is less costly than the
computation of the exact projection.
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where at each iteration n:

a) The family In of indices of selected sets satisfies

Ø 6= In ⊂ I and card {i ∈ In | an /∈ Si} ≤ C. (5.77)

b) (Pi,n(an))i∈In are the projections of an onto the approximating sets (Si,n)i∈In defined
by (5.75).

c) The weights (wi,n)i∈In conform to (5.56).

d) The relaxation parameter λn lies in [ε, (2 − ε)Ln], where

Ln =





∑
i∈In

wi,n‖Pi,n(an)− an‖2
‖∑i∈In

wi,nPi,n(an)− an‖2
if an /∈ ⋂i∈In

Si

1 otherwise.

(5.78)

Methods involving projections onto separating hyperplanes have been proposed previously
for less general projection algorithms in [2] and [68].

5.5.3 Convergence Results

Theorem 5.17 [40] Theorems 5.12, 5.13, and 5.14 remain true for EMOPAP. In addition,

under chaotic control, every orbit of EMOPAP converges strongly to a point in S if any of the

following conditions holds.

(i)
◦
S 6= Ø.

(ii) (Si)i∈I is a finite family and one of its sets is boundedly compact. In particular:

- (Si)i∈I is a finite family and one of its sets is compact.

- (Si)i∈I is a finite family and one of its sets is contained in a finite dimensional

affine subspace.

- (Si)i∈I is a finite family and dimΞ < +∞.

(iii) (Si)i∈I is a finite family of closed affine subspaces with finite codimensions. In particu-

lar, (Si)i∈I is a finite family of affine hyperplanes.

(iv) (Si)i∈I is a finite family of closed affine half-spaces.

In the finite dimensional case, part (ii) of this theorem was established in [45] and gener-
alizes results of [2] and [68] which considered (λn)n≥0 ⊂ [ε, 2− ε].
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5.6 Extrapolated Method of Parallel Subgradient Projections (EMOPSP)

5.6.1 Problem Statement

The previous framework gives of lot of latitude in the choice of the approximating super-
sets. In practice, however, it is often convenient to have at hand a systematic method for
determining the separating hyperplanes ((Hi,n)i∈In)n≥0 in Fig 14.12 In this section, we
follow [41] and define one such method.

First of all, let us observe that a closed and convex property set Si can always be expressed
as the 0-section

Si = {a ∈ Ξ | gi(a) ≤ 0} (5.79)

of a convex, (lower semi-)continuous functional gi : Ξ → R. This representation is quite
general since (3.18) indicates that one can always take gi = d(·, Si). More practically,
let us note that a convex constraint Ψi is usually formulated through a convex inequality,
which leads directly to (5.79). Now suppose an ∈ ∁Si. Then the closed affine half-space

Si,n = {a ∈ Ξ | 〈an − a | ti,n〉 ≥ gi(an)} where ti,n ∈ ∂gi(an), (5.80)

is a valid outer approximation of Si at iteration n. Indeed, an ∈ Si,n would imply 0 ≥
gi(an), which is impossible since an /∈ Si. Moreover, take any a ∈ Si. Then gi(a) ≤ 0. But
according to (2.14)

gi(an) ≤ gi(a) + 〈an − a | ti,n〉 (5.81)

≤ 〈an − a | ti,n〉. (5.82)

Therefore a ∈ Si,n and Si ⊂ Si,n. Note that we have

Si,n = {a ∈ Ξ | 〈a | ti,n〉 ≤ 〈an | ti,n〉 − gi(an)} (5.83)

Therefore, the projection of an onto Si,n is given by (2.23) and reads

Pi,n(an) = an − gi(an)

‖ti,n‖2
ti,n. (5.84)

This projection is called a subgradient projection. With such projections, only the compu-
tation of a subgradient ti,n (of the gradient ∇gi(an) if gi is differentiable at an) is needed
to process the set Si at iteration n as opposed to the potentially involved exact projection

12This is essentially the same problem that arises in cutting plane methods in nonlinear programming [107].
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Pi(an). It is important to note that subgradient projections generalize the notion of pro-
jections. Indeed, if we let gi = d(·, Si), then (5.84) yields the exact projections thanks to
(2.17). In general, for an arbitrary an ∈ Ξ, the subgradient projection of an onto Si in
(5.79) will be defined by

Pi,n(an) =





an − gi(an)

‖ti,n‖2
ti,n if an ∈ ∁Si

an otherwise
where ti,n ∈ ∂gi(an), (5.85)

and it can be taken as the conventional projection Pi(an) whenever this exact projection
is easy to compute.

5.6.2 Examples of Subgradient Projections

We have seen that the projections onto the sets (5.73) and (5.74) needed to be computed
iteratively. By contrast the subgradient projection of an image an onto (5.73) is simply
obtained via (5.85) as

Pi,n(an) =





an +
‖y(an)‖2 − ζ2

2 ‖ t Ty(an)‖2
t Ty(an) if ‖y(an)‖2 > ζ2

an otherwise,
(5.86)

where y(an) = x− Tan and where we have used the identity

∇gi(an) = ∇(‖x− Tan‖2 − ζ2) = −2 t T (x− Tan). (5.87)

Likewise, subgradient projection of an image an onto (5.74) is obtained via

Pi,n(an) =





an − 〈an | ln(an)〉+ η

‖ ln(an) +~1‖2
(ln(an) +~1) if − 〈an | ln(an)〉 < η

an otherwise,
(5.88)

where ~1 denotes the vector of ones in EN2
and where we have used the identity

∇gi(an) = ∇(〈an | ln(an)〉+ η) = ln(an) +~1. (5.89)

5.6.3 Algorithm

Given an initial point a0 ∈ Ξ and numbers C ∈ N
∗, δ ∈ ]0, 1/C[, and ε ∈ ]0, 1[, EMOPSP is

defined by the iterative process [41]

(∀n ∈ N) an+1 = an + λn(
∑

i∈In

wi,nPi,n(an)− an), (5.90)

where at each iteration n:
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a) The family In of indices of selected sets satisfies

Ø 6= In ⊂ I and card {i ∈ In | an /∈ Si} ≤ C. (5.91)

b) The subgradient projections (Pi,n(an))i∈In are defined by (5.85).

c) The weights (wi,n)i∈In conform to (5.56).

d) The relaxation parameter λn lies in [ε, (2 − ε)Ln], where Ln is as in (5.78).

5.6.4 Convergence Results

Recall that, for every i ∈ I, Si is defined in (5.79) via a (lower semi-)continuous convex
functional gi : Ξ → R. We shall say that the subdifferentials of (gi)i∈I are locally uniformly
bounded if

(∀γ ∈ R
∗
+)(∃ ζ ∈ R

∗
+)(∀i ∈ I)(∀a ∈ B(0, γ)) ∂gi(a) ⊂ B(0, ζ). (5.92)

Theorem 5.18 [41] Suppose that the subdifferentials of (gi)i∈I are locally uniformly bounded.

Then, under admissible control, every orbit of EMOPSP converges weakly to a point in S.

The next theorem pertains to strong convergence under chaotic control. Naturally, addi-
tional hypotheses are required.

Theorem 5.19 [41] Suppose that the subdifferentials of (gi)i∈I are locally uniformly bounded.

Then, under chaotic control, every orbit of EMOPSP converges strongly to a point in S if either

of the following conditions is satisfied.

(i)
◦
S 6= Ø;

(ii) The family (gi)i∈I is finite and contains a lower semi-boundedly-compact functional.

To our knowledge, these results are the most general ones available for the subgradient
methods governed by (5.90). In particular, the following corollary of Theorem 5.19(ii)
generalizes results of [29], which considered serial, cyclic control, as well as results of
[60], which considered static control.

Proposition 5.11 Suppose that dimΞ < +∞ and card I < +∞. Then, under chaotic

control, every orbit of EMOPSP converges (strongly) to a point in S.

Proof. If dimΞ < +∞ and card I < +∞, then (gi)i∈I satisfies (5.92) [137]. In addition,
each gi is l.s.b.co. by virtue of Proposition 2.3(i). �
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5.7 Extrapolated Method of Parallel Nonexpansive Operators (EMOPNO)

5.7.1 Problem Statement

Another generalization of the projection framework of Section 5.4 can be obtained by re-
placing the projection operators (Pi)i∈I by arbitrary firmly nonexpansive operators (Ti)i∈I
such that

(∀i ∈ I) Si = Fix Ti. (5.93)

This framework is of interest when constraints are specified as invariance properties, say
h = Ti(h), where Ti is nonexpansive.13 For instance, Ti may be a local rotation or reflec-
tion operator to model local symmetries in the image, or a translation operator to model
certain periodicities, etc. In such cases, activating the property set Si = FixTi through the
projection operator Pi may be difficult, whereas activating it through the readily available
operator Ti is straightforward. In this regard, it should be noted that, by virtue of (2.32),
the elementary update an+1 = Ti(an) is still a step in the direction of Si.

5.7.2 Algorithm

Given an initial point a0 ∈ Ξ and numbers C ∈ N
∗, δ ∈ ]0, 1/C[, and ε ∈ ]0, 1/2[, EMOPNO

is defined by the recursion [43]

(∀n ∈ N) an+1 = an + λn(
∑

i∈In

wi,nTi(an)− an), (5.94)

where

a) The family In of indices of selected operators satisfies

Ø 6= In ⊂ I and card {i ∈ In | an /∈ Si} ≤ C. (5.95)

b) The weights (wi,n)i∈In conform to (5.56).

c) ε ≤ λn ≤ (2− ε)Ln with Ln =





∑
i∈In

wi,n‖Ti(an)− an‖2
‖∑i∈In

wi,nTi(an)− an‖2
if an /∈ ⋂i∈In

Si

1 otherwise.

13We actually address the problem of finding a common fixed-point of firmly nonexpansive operators but
it is closely related to that of finding a common fixed-point of nonexpansive operators. Indeed, Proposi-
tion 2.8(iv) indicates that a nonexpansive operator T ′

i can be associated with a firmly nonexpansive operator
Ti = (T ′

i + Id)/2 where, by construction, Fix Ti = Fix T ′
i .
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5.7.3 Convergence Results

Theorem 5.20 [43] Under admissible control, every orbit of EMOPNO converges weakly to

a point in S. The convergence is strong if (Ti)i∈I contains a demicompact mapping.

Theorem 5.21 [43] Under chaotic control, every orbit of EMOPNO converges strongly to a

point in S if either of the following conditions is satisfied.

(i)
◦
S 6= Ø.

(ii) The family (Ti)i∈I is finite and contains a demicompact mapping.

Theorem 5.20 improves upon results of [19], which considered a serial scheme. Theo-
rem 5.20 and Theorem 5.21(i) improve, respectively, upon results of [131] and [121],
which both considered the successive approximation scheme an+1 = T (an). The above
theorems also generalize certain results of Section 5.4.4, which were restricted to projec-
tion operators. In particular, thanks to Proposition 2.10, condition (ii) above generalizes
condition (ii) in Theorem 5.15. Finally, since in finite dimensional spaces any operator
is demicompact, we obtain the following corollary of Theorem 5.21(ii). It generalizes a
result of [174], which considered card In = 1 in (5.95).

Proposition 5.12 Suppose card I < +∞ and dimΞ < +∞. Then, under chaotic control,

every orbit of EMOPNO converges (strongly) to a point in S.

5.8 Towards Unification

EMOPAP, EMOPSP, and EMOPNO are three separate generalizations of EMOPP which are
not related in general. However, given their similar structure, it is natural to contemplate
the possibility of unifying them in a single framework.

An important step towards unification was made in [11] where, under the more restrictive
assumptions card I < +∞ and (λn)n≥0 ⊂ [ε, 2− ε], some of the results of Sections 5.4-5.7
were obtained by investigating a general iterative method for solving convex feasibility
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problems. The algorithm proposed there was of the form14

(∀n ∈ N) an+1 = an + λn(
∑

i∈In

wi,nTi,n(an)− an), (5.96)

where at each iteration n:

a) The family In of indices of selected sets satisfies

Ø 6= In ⊂ I. (5.97)

b) (Ti,n)i∈In is a family of firmly nonexpansive operators such that

(∀i ∈ In) Si ⊂ Fix Ti,n. (5.98)

c) The weights (wi,n)i∈In satisfy a condition similar to (5.56).

d) The relaxation parameter λn lies in [ε, 2 − ε].

In addition, a so-called focusing condition was introduced to study convergence. It re-
quires that for every i ∈ I and every subsequence (ank

)k≥0 of an orbit of the algorithm,
we have





ank

k
⇀ a

ank
− Ti,nk

(ank
)

k→ 0
(wi,nk

)k≥0 ⊂ ]0, 1[

⇒ a ∈ Si. (5.99)

This study also contains a number of results on geometrical convergence rates.

It appears reasonable to investigate the algorithms presented above in a single framework
described by the recursion (5.96) with a)-c) but that would allow, as in Sections 5.4-5.7,
countable families of property sets under suitable control modes, as well as extrapolated
relaxations, i.e.,

d) ε ≤ λn ≤ (2− ε)Ln with Ln =





∑
i∈In

wi,n‖Ti,n(an)− an‖2
‖
∑

i∈In
wi,nTi,n(an)− an‖2

if an /∈ ⋂i∈In
Si

1 otherwise.

14Actually, the algorithm of [11] proceeds by averaging relaxed operators, i.e.,

(∀n ∈ N) an+1 =
∑

i∈In

wi,n((1− λi,n)an + λi,nTi,n(an)).

But this is equivalent to relaxing averaged operators, as in (5.96).
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5.9 Practical Considerations for Digital Image Processing

In this section, we discuss the practical issues pertaining to the numerical realization of the
proposed methods on a digital computer. This places us in the context of a finite number
of sets (Si)i∈I in the euclidean space EN2

. In other words, all the above results should
now be viewed from the perspective card I < +∞ and dimΞ < +∞. Fortunately, this is
the context in which the most powerful convergence results were obtained.

Inconsistent problems will be considered first.

5.9.1 Inconsistent Problems

When the property sets do not intersect POCS has been seen to be inadequate15 and
two parallel methods producing weighted least-squares solutions were developed in Sec-
tion 5.3. The method (5.26) is intersting theoretically for it converges strongly and it
provides the closest least-squares solution from a starting point a0. The first aspect is ir-
relevant in digital processing since weak and strong convergence modes coincide. As to
the second, it may be of interest in certain best approximation problems, but since our
chief interest here is just feasibility, we shall discuss only the second method, namely PPM
(5.23)+(5.3).

First of all, it follows from Theorem 5.4 that any sequence generated by PPM converges to
a solution of the weighted least-squares problem (5.5). In practice, PPM will provide an
approximate minimum of the proximity function Φ in a finite number of steps. According
to Proposition 5.5, the proximity function decreases at every iteration. Hence, the algo-
rithm can be stopped when negligible improvement in the decrease of Φ is observed, i.e.,
whenever the stopping criterion

Φ(an)− Φ(an+1) ≤ ǫ, (5.100)

is met for a suitably small positive number ǫ. An alternative way of determining the near
convergence of the algorithm is to measure the norm of the gradient, which leads to the
stopping rule

‖∇Φ(an)‖ = ‖an −
∑

i∈I

wiPi(an)‖ ≤ ǫ. (5.101)

In implementing PPM, one should also be aware of the influence of the weights (wi)i∈I on
solutions. The larger a particular weight wi, the closer the solution to the corresponding
set Si. Hence, if some constraints are judged to be more critical than others in defining

15It goes without saying that the same is true of any serial method of type (5.1).
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a least-squares-feasible solution, they should be assigned larger weights. For problems in
which no particular group of constraints should be privileged, the weights should be taken
to be equal, that is, wi = 1/card I.

We have seen that overrelaxations had an accelerating effect on the algorithm. One could
therefore blindly choose relaxations in [1, 2 − ε]. However, an explicit relaxation rule can
be determined by going back to Proposition 5.5. Since PPM behaves as a steepest-descent
method, we can use the relaxation scheme devised by Armijo [6] which consists in suc-
cessively reducing the relaxation parameter λn until the inequality Φ(an) − Φ(an+1) ≥
αλn‖∇Φ(an)‖2 is satisfied. In our applications, this adaptation scheme yielded overrelax-
ations that converged efficiently.

Based on numerical experience and the recommendations of [135] regarding Armijo’s
relaxation scheme, we propose the following algorithm as an efficient practical implemen-
tation of PPM.

1. Choose an initial guess a0 ∈ Ξ, strictly convex weights (wi)i∈I , and ǫ ∈ ]0,+∞[. Set
n = 0.

2. Set ∇Φ(an) = an −∑i∈I wiPi(an) and λn = 1.999.

3. Set an+1 = an − λn∇Φ(an).

4. If Φ(an)− Φ(an+1) < λn‖∇Φ(an)‖2/2, set λn = 0.75λn, and return to 3.

5. If Φ(an)− Φ(an+1) > ǫ, set n = n+ 1, and return to 2.

6. Stop.

5.9.2 Consistent Problems

In consistent problems, we highly recommend that the extrapolated parallel methods of
Section 5.4-5.7 be used. We shall discuss EMOPSP here since in practice sets are most
frequently specified in the format (5.79). The convergence of EMOPSP is guaranteed by
Proposition 5.11, which indicates that the sets can be activated in any order so long as
every set is used repeatedly in the course of the iterations.

EMOPSP is superior to the widely used POCS algorithm on three counts.

1. It is straightforward to implement on any parallel machine, as the number of acti-
vated sets is variable.

2. It converges very efficiently thanks to its extrapolated relaxations.
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3. It does not rely on the often cumbersome computation of exact projections and in-
volves only the evaluation of subgradients.

EMOPSP is faster than POCS in that each iteration has a lower computational cost (item 3)
and the whole iterative process converges in a smaller number of steps (item 2). EMOPSP
is also very versatile as all of its parameters can be changed at each iteration (sets selected,
approximating supersets, weights on the projections, relaxations). However, a standard
implementation can be obtained with the following guidelines [41].

5.9.2.1 Control

If the number P of parallel processors is at least equal to the number m of sets, one
can implement the algorithm with static control. It may not be worth activating only the
violated sets since checking for membership in a set is usually done before projecting and
there will be no savings in terms of computation. When m > P , then only violated sets
should be activated. The chaotic control mode does not impose any specific scheduling for
the processing of the sets but, for the sake of simplicity, one may want to sweep through
the constraints circularly and activate blocks of P consecutive violated sets.

5.9.2.2 Weights

Although the weights can be defined in a number of ways and may have some influence
on the centering of the algorithm, it is usually best to keep them uniform, that is

(∀n ∈ N)(∀i ∈ In) wi,n = 1/card In. (5.102)

5.9.2.3 Relaxations

Although no general conclusion is intended, our intensive simulations with EMOPSP in
various problems has revealed the following behavior. When a small number of sets is
used, very large extrapolations (say 1.5Ln ≤ λn ≤ 1.99Ln) often create a lot of zigzagging
and are not as effective as the centered extrapolations (5.43). On the other hand, large
extrapolations accelerate the iterations significantly in more sizable problems.

5.9.2.4 Stopping Rule

If static control is used with exact projections (in which case EMOPSP reduces to EPPM2),
a stopping rule involving Φ, such as (5.100), can be used. In other cases, the exact projec-
tions (Pi(an))i∈I will not be available at iteration n and alternative stopping criteria must
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be considered, e.g., ‖an+1 − an‖ ≤ ǫ,
∑M

k=0

∑
i∈In−k

‖Pi,n−k(an−k) − an−k‖2 ≤ ǫ for some
M ∈ N, etc.
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6 Numerical Examples

This section is devoted to concrete numerical examples of convex set theoretic digital
signal and image recoveries. The results of previous sections will therefore be applied in
the context described in Sections 3.1.2.4 and 5.9.

6.1 Recovery with Inconsistent Constraints

This example is taken from [42] and illustrates an application of PPM to the set theo-
retic restoration of a one-dimensional signal in the presence of an inconsistent family of
constraints.

6.1.1 Experiment

The problem is to deconvolve a noisy discrete-time N -point signal, i.e., to estimate the
original form of a signal h which has been passed through a linear shift-invariant system
and further degraded by addition of noise. The length of the signals is N = 64 and the
solution space is the N -dimensional euclidean space E

N . The original signal h is shown
in Fig. 15. The recorded signal x of Fig. 16 was obtained via the standard convolutional
model

x = Th+ u, (6.1)

in which the N ×N Tœplitz matrix T models a shift-invariant linear blur and u is a vector
of noise samples uniformly distributed in [−δ, δ], with δ = 0.15. The blurring kernel is a
Gaussian function with a variance of 2 samples2. If Tn designates the nth row of T and xn
the nth component of the data vector x, (6.1) can be written as

(∀n ∈ {0, · · · , N − 1}) xn = 〈Tn | h〉+ un, (6.2)

which is a special case of (4.16).

6.1.2 Set Theoretic Formulation

The set theoretic formulation for the problem consists of m = 66 closed and convex sets.
The sets (Sn)0≤n≤N−1 are based on the knowledge of the blurring operator T and the
information that the noise samples are distributed in [−δ, δ]. According to the analysis of
Section 4.3.4, they take the form of hyperslabs defined by (4.26), namely

Sn = {a ∈ E
N | xn − δ ≤ 〈Tn | a〉 ≤ xn + δ}, for 0 ≤ n ≤ N − 1. (6.3)
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Therefore, the projection Pn(a) of a signal a onto Sn is given by (2.24) and reads





a+ [(xn + δ − 〈Tn | a〉)/‖Tn‖2]Tn if 〈Tn | a〉 > xn + δ
a+ [(xn − δ − 〈Tn | a〉)/‖Tn‖2]Tn if 〈Tn | a〉 < xn − δ
a otherwise.

(6.4)

The next set is constructed by assuming knowledge of the phase of h. From (4.13), we
obtain

Sm−1 = {a ∈ E
N | (∀k ∈ {0, · · · , N − 1}) ∠â(k) = ∠ĥ(k)}, (6.5)

where ĥ is the N -point DFT of h. Since the DFT operator is an isometry (up to a factor
N), the projection onto Sm−1 can be performed in the DFT domain for each frequency
individually. It is then easy to show that the projection of a signal a onto Sm−1 is the
signal Pm−1(a) = b, where for every k in {0, · · · , N − 1}

b̂(k) =

{
0 if cos(∠â(k)− ∠ĥ(k)) ≤ 0

|â(k)| cos(∠â(k)− ∠ĥ(k)) exp(ı∠ĥ(k)) otherwise.
(6.6)

The last set arises from the prior knowledge that the components of h are nonnegative
and bounded by ‖h‖∞ = 12. This leads to the bounded set (4.1) defined by

Sm = {a ∈ E
N | (∀i ∈ {0, · · · , N − 1}) 0 ≤ a(i) ≤ ‖h‖∞}. (6.7)

The projection of a signal a onto Sm is given by Pm(a) = b, where

(∀i ∈ {0, · · · , N − 1}) b(i) =





0 if a(i) < 0

‖h‖∞ if a(i) > ‖h‖∞
a(i) otherwise.

(6.8)

6.1.3 Results

All the algorithms are initialized with the degraded signal, i.e., a0 = x. The feasible signal
of Fig. 17 is obtained by POCS. It is seen that most features of h have been fairly well re-
covered. Next, we introduce inaccuracies in the specifications of the a priori information
that will induce an inconsistent set theoretic formulation: the variance of the Gaussian
impulse response of the system is taken to be 2.5 samples2 instead of 2, the bound on the
noise is taken to be 0.1 instead of 0.15, and the phase of h is recorded in 10dB of back-
ground noise. The limiting signal of the subsequence (anm)n≥0 generated by POCS in this
case is depicted in Fig. 18. As discussed in Section 5.2.3, the only definite property of this
signal is to lie in Sm and, thereby, to satisfy the amplitude constraints. The convergence
behavior of POCS in the inconsistent case is shown in Fig. 19, where the values taken by
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the proximity function (Φ(anm))n≥0 are plotted. The limiting value of the proximity func-
tion (degree of unfeasibility) achieved by POCS is about 0.136. PPM is then employed
to produce the restored signal shown in Fig. 20. This least-squares solution to the incon-
sistent feasibility problem has fewer artifacts than the solution generated by POCS. The
sequence (Φ(an))n≥0 produced by PPM is shown in Fig. 21. PPM achieves a much lower
asymptotic degree of unfeasibility than POCS of Φ(a∞) = 0.035.

6.1.4 Numerical Performance

Fig. 22 depicts the convergence behavior of PPM subjected to various relaxations schemes.
In the underrelaxed case A, (λn)n≥0 is drawn randomly from the interval [0, 1]; in the un-
relaxed case B the relaxations are equal to 1; in the overrelaxed case C, (λn)n≥0 is drawn
randomly from the interval [1, 2]; in the adapted case D, (λn)n≥0 is obtained as in Sec-
tion 5.9.1. These plots support the claims of Section 5.9.1 to the effect that overrelaxations
are more effective than underrelaxations and that Armijo’s adapted relaxation scheme is
preferable. In all cases, (Φ(an))n≥0 is decreasing, in conformity with Proposition 5.5.

6.2 Deconvolution with Bounded Uncertainty

We demonstrate an example of deconvolution with bounded kernel disturbances and
bounded measurement noise along the lines of [51].

6.2.1 Experiment

In this experiment, the length of the signals is set to N = 512. We consider the problem of
recovering the original signal h of Fig. 23 from the data signal

x = Th+ T̃ h+ v, (6.9)

where T is an N × N Tœplitz matrix representing a known shift-invariant linear blur
with kernel b, T̃ an N ×N matrix representing an unknown shift-variant linear blur with
kernel b̃, and v a vector of bounded noise samples. We note that (6.9) is a special case of
(4.16)-(4.17) which can be written component-wise as

(∀n ∈ {0, · · · , N − 1}) xn = 〈T n | h〉+ 〈T̃n | h〉+ vn , 〈T n | h〉+ un, (6.10)

where T n and T̃n denote, respectively, the nth rows of T and T̃ . The known convolutional
kernel b which makes up the rows of T is uniform and has length l = 16 points, i.e.,

(∀i ∈ {0, · · · , N − 1}) b
(i)

=

{
1/l if 0 ≤ i ≤ l − 1,
0 otherwise.

(6.11)
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The unknown blurring kernel b̃ which makes up the rows of T̃ is shift-variant and has the
same l-point region of support as b. Furthermore, for every n, a bound on the ℓ1-norm
of each T̃n is available, say ‖T̃n‖1 ≤ αn a.s. It is also assumed that h is nonnegative
with maximum value ‖h‖∞ = 7.4. Finally, the absolute bound on the noise samples
(vn)0≤n≤N−1 is β = 0.1.

6.2.2 Set Theoretic Formulation

From the above information, a bound on the uncertainty signal samples can be derived
as16

(∀n ∈ {0, · · · , N − 1}) |un| ≤ αn · ‖h‖∞ + β , δn. (6.12)

As seen in Section 6.1.2, we obtain from (4.26) the sets

Sn = {a ∈ E
N | xn − δn ≤ 〈T n | a〉 ≤ xn + δn}, for 0 ≤ n ≤ N − 1. (6.13)

The projection of a signal a onto Sn is

Pn(a) =





a+ [(xn + δn − 〈T n | a〉)/‖T n‖2]T n if 〈T n | a〉 > xn + δn
a+ [(xn − δn − 〈T n | a〉)/‖T n‖2]T n if 〈T n | a〉 < xn − δn
a otherwise.

(6.14)

The last set SN is based on the information on the amplitude of h, which yields the same
set as in (6.7). The feasibility set is S =

⋂N
i=0 Si.

6.2.3 Results

As all the projections are easy to evaluate, EMOPP is used with a0 = x to obtain feasible
solutions. First, we simulate an instance when the blur is known exactly, i.e., αn = 0. The
degraded signal is shown in Fig. 24 and the set theoretic deconvolution in Fig. 25. Then,
we introduce shift-varying perturbations in the blurring kernel, with αn = 0.04, to obtain
the degraded signal of Fig. 26, whose restoration is shown in Fig. 27. Clearly, the added
uncertainty has increased the bounds (δn)0≤n≤N−1 and therefore the feasibility set, which
results in a poorer restoration.

Besides the knowledge of the component T of the system, the information used in this ex-
periment is limited to upper and lower bounds on the input signal and the noise, and upper

16In general, such a bound can be obtained via Hölder’s inequality as long as the ℓp-norm of h is known
as well as bounds (αn)0≤n≤N−1 for the ℓq-norms of the random vectors (T̃n)0≤n≤N−1 where p ∈ [1,+∞]
and 1/p + 1/q = 1. For instance, p = 2 was chosen to derive (4.29), which assumed prior knowledge of the
energy of h.
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bounds on the ℓ1-norm of the shift-variant disturbances affecting the blurring kernel. Let
us emphasize that no statistical assumption has been made and that the only conventional
deconvolution method that could be implemented with such little information would be
inverse filtering, which is known to give unacceptable results [5].

6.3 Image Restoration with Bounded Noise

In this section, a two-dimensional version of the previous experiment is investigated. It
leads to a set theoretic formulation with m = 16385 sets, which will allow us to demon-
strate the flexibility of EMOPP in large scale problems. Such large set theoretic formula-
tions have also been encountered in other studies, e.g., [127], [157], [171], where they
were solved using POCS.

6.3.1 Preliminaries

All images have N × N pixels (N = 128) and will be represented using stacked-vector
notations as in Section 3.1.2.4. Ξ is the usual N2-dimensional euclidean space EN2

.
Every algorithm will be initialized with the degraded image, i.e., a0 = x, and the pro-
gression of its orbit (an)n≥0 will be tracked by plotting the normalized decibel values
(10 log10(Φ(an)/Φ(a0)))n≥0 of the proximity function (3.7), where

(∀i ∈ I) wi = 1/(card I). (6.15)

As a practical stopping rule to compare performance, we shall use the criterion

Φ(an) ≤
‖h‖2∞

1300 card I
. (6.16)

As seen in Section 5.9.2.4, the sequence (Φ(an))n≥0 will usually not be computed in actual
applications, but we use it here as we need a pertinent and uniform quantification of the
notion of unfeasibility to compare accurately the performance of the algorithms.

6.3.2 Experiment

The original image h of Fig. 28 is degraded by convolutional blur with a uniform 7 × 7
kernel b and addition of noise. The noise samples are distributed in the interval [0, R]
and the resulting blurred image-to-noise ratio is 32dB. The degraded image x is shown in
Fig. 29. It can be written as

x = Th+ u, (6.17)
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where T is the N2 ×N2 block-Tœplitz matrix associated with the point spread function b

[5] and u is a noise vector.

6.3.3 Set Theoretic Formulation

First, we assume that the point spread function b (or equivalently T ) is known. No proba-
bilistic information is available about the noise vector u, except that its components lie in
[0, R]. As before, this information leads to the N2 hyperslabs

Sn = {a ∈ E
N2 | 0 ≤ xn − 〈Tn | a〉 ≤ R} for 0 ≤ n ≤ N2 − 1, (6.18)

where Tn is the nth row of T . Then, by using the fact that the pixel values are nonnegative,
the last property set we obtain is the nonnegative orthant

SN2 = (R+)
N2

. (6.19)

The projection of an image a onto SN2 is simply

PN2(a) = a+ = t[max{0, a(i)}]0≤i≤N2−1. (6.20)

The set theoretic formulation is (EN2
, (Si)0≤i≤N2) and it comprises m = N2 + 1 = 16385

sets. Since all the projections are easily computed, EMOPP will be used to solve the
feasibility problem.

6.3.4 Numerical Performance

POCS (5.4) is implemented by skipping the nonviolated sets so that each iteration ac-
tually produces an update. The convergence pattern of POCS is shown in Fig. 30. To
implement EMOPP, computer architectures with P = 8 and 64 parallel processors are
considered.17 At each iteration, the control selects P sets as follows: SN2, if it is violated,
and a block of consecutive violated sets in (6.18). In addition, over the iterations, the
sets (Sn)0≤n≤N2−1 are swept through in a circular fashion. Three values of λn are con-
sidered: 1, Ln, and 1.9Ln. In Figs. 31 and 32, the corresponding algorithms are labeled
as EMOPP(1), EMOPP(L), and EMOPP(1.9L), respectively. These plots clearly show the
numerical superiority of EMOPP and the remarkable acceleration provided by extrapo-
lated overrelaxations. Thus, the −55dB mark corresponding to the stopping rule (6.16)
was reached by POCS in 44700 iterations. By contrast, it took EMOPP(1.9L) only 5346
iterations to reach this point with 8 processors and 1168 iterations with 64 processors.

17Our AT&T Pixel Machines have 64 parallel processors.
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6.3.5 Results

The restored image obtained by EMOPP is shown in Fig. 33. Again, it is important to
stress that the only information available about the noise consists of amplitude bounds
and that no probabilistic assumption whatsoever has been made. None of the conven-
tional methods could operate with such little information (except inverse filtering, but it
is unacceptable in the presence of noise).

6.3.6 Bounded versus Unbounded Noise

As was mentioned in Section 4.3.4.1, in the presence of bounded noise, the confidence
coefficient c on the solution set defined in (4.55) is 100%. A question that naturally
arises is what happens when the noise is unbounded. To answer this question, let us
assume that the components of the noise vector u in (6.17) are i.i.d. and distributed as a
zero mean normal r.v. U0 with known second moment σ2 = E|U0|2, adjusted so that the
blurred image-to-noise ratio is again 32dB. The degraded image x thus obtained is shown
in Fig. 34. According to the results of Section 4.3.4.2, the sets (Sn)0≤n≤N2−1 take the form

Sn = {a ∈ E
N2 | xn − ασ ≤ 〈Tn | a〉 ≤ xn + ασ} for 0 ≤ n ≤ N2 − 1, (6.21)

where α is to be determined from the tables of the standard normal distribution in terms
of the confidence coefficient 1− ǫ placed on each set. Now suppose that we fix the global
confidence coefficient at c = 95% in (4.55). Then, since the noise samples are indepen-
dent, we must have

1− ǫ = c1/N
2
= 99.999687%, (6.22)

which gives α = 4.662. Of course, these sets are “wider” than those obtained in the case
of bounded noise. For instance, assume that in the experiment of Section 6.3.2 the noise
samples were i.i.d. and distributed uniformly in [0, R] as a r.v. V0 of same power as U0,
i.e., E|V0|2 = σ2. Then the residual samples were constrained in (6.18) to fall in the
interval [0, R] which has length R = 1.732σ. In comparison, for gaussian noise, they were
constrained in (6.21) to fall in a wider interval of length 2ασ = 9.324σ. As a result, the
restoration obtained in this case with the sets of (6.19) and (6.21) is seen in Fig. 35 to be
very poor.

We conclude that in the presence of bounded noise the sets (4.26) are quite effective and
require minimal information to be constructed. On the other hand, when the noise is un-
bounded, they must be made large in order to secure a reasonable confidence coefficient
c on their intersection. Consequently, they usually fail to describe the original image accu-
rately and must be accompanied by other sets. It should also be noted that a substantial
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amount of information is required to construct these sets in the case of unbounded noise.
For instance, in the above example, the i.i.d. assumption was used and knowledge of the
distribution of U0 was assumed. Fortunately, when such information is available, all the
sets described in Section 4.3 can be constructed to refine the set theoretic formulation, as
we shall see in the next section.

6.4 Image Restoration via Subgradient Projections

We consider here an application of EMOPSP to set theoretic image restoration. A similar
example was presented in [41]. F is the two-dimensional DFT operator defined in (3.6)
and the basic setup is as in Section 6.3.1.

6.4.1 Experiment

The experiment is the same as in Section 6.3.6: the degraded image x of Fig. 34 is obtained
by convolving the original image h of Fig. 28 with a known uniform 7 × 7 kernel b and
addition of zero mean white gaussian noise with power σ2. The blurred image-to-noise
ratio is 32 dB.

The number of parallel processors is P = 4.

6.4.2 Set Theoretic Formulation

We first assume that the maximum intensity value ‖h‖∞ of h is known to obtain the set

S1 = {a ∈ E
N2 | (∀i ∈ {0, · · · , N2 − 1}) 0 ≤ a(i) ≤ ‖h‖∞}. (6.23)

The projection operator P1 is described in (6.8). Next, we assume that the discrete Fourier
transform of h is known over the low frequency region

K ′ = {(k, l) ∈ {0, · · · , N − 1}2 | 0 ≤ k, l ≤ M}, (6.24)

where M = 21. Recall that the two-dimensional DFT of real images possesses the conjugate-
symmetry properties

(∀(k, l) ∈ {0, · · · , N − 1}2)





ĥ(k, 0) = ĥ(N − k, 0) if k 6= 0

ĥ(0, l) = ĥ(0, N − l) if l 6= 0

ĥ(k, l) = ĥ(N − k,N − l) if kl 6= 0.

(6.25)
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The set K ′ must therefore be extended accordingly to a set K including all the symmetric
pairs. The associated property set is then given by (4.9) as

S2 = {a ∈ E
N2 | â1K = ĥ1K}. (6.26)

Note that we have â = â1K + â1∁K . Hence, the projection of a onto S2 is given by

P2(a) = F−1
(
ĥ1K + â1∁K

)
. (6.27)

The information that the noise is zero mean white and gaussian with power σ2 provides
a complete description of its probabilistic structure. Hence, all the sets described in Sec-
tion 4.3 can be constructed. For instance, since the noise samples are i.i.d. with second
and fourth moments given, respectively, by σ2 and 3σ4, the second moment set (4.41)
becomes

S3 = {a ∈ E
N2 | ‖x− Ta‖2 ≤ ζ2} where ζ2 = N(N + α

√
2)σ2. (6.28)

This set has proven quite useful in several applications, e.g., [48], [171]. Unfortunately,
we have seen in Section 5.5.1 that its projection operator must be determined iteratively
via a costly procedure, which precludes its use in certain applications [127]. However,
with EMOPSP, S3 can simply be activated via (5.86), where the subgradient projection of
an image a onto S3 was seen to be

P̃3(a) =





a+
‖y(a)‖2 − ζ2

2 ‖ t Ty(a)‖2
t Ty(a) if ‖y(a)‖2 > ζ2

a otherwise,
(6.29)

where y(a) = x − Ta is the residual image. Upon making the standard block-circulant

approximation on the matrix T [5], we obtain ŷ(a) = â − b̂â. Whence, the upper line in
(6.29) can be computed efficiently via the Fast Fourier Transform (FFT) as

P̃3(a) = F−1

(
â+

‖ŷ(a)‖2 −N2ζ2

2‖b̂ ŷ(a)‖2
b̂ ŷ(a)

)
, (6.30)

where we have kept the notation ‖ · ‖ to designate the norm in the Fourier space, i.e.,

(∀a ∈ E
N2

) ‖â‖2 =

N−1∑

k=0

N−1∑

l=0

|â(k, l)|2. (6.31)

The exact computation of P3(a) proposed in [171] typically requires 10 to 20 iterations
of much higher complexity than (6.30). Consequently the subgradient projection reduces
the cost of processing S3 by at least an order of magnitude. To define the last set based on
the spectral properties of the noise, let

D = {1, · · · , N/2 − 1} × {1, · · · , N − 1}. (6.32)
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Then we can define

S4 =
⋂

(k,l)∈D

{a ∈ E
N2 |

∣∣∣ŷ(a) (k, l)
∣∣∣
2
≤ ξ} where ξ = −N2σ2 ln(ǫ). (6.33)

We observe that this is not exactly the form in which the sets were given in Section 4.3.6.1.
Indeed, it is more convenient here to replace (4.45) by the two-dimensional periodogram

(∀(k, l) ∈ D) Ik,l =
2

N2

∣∣∣∣∣
N−1∑

m=0

N−1∑

n=0

UmN+n exp(−ı
2π

N
(mk + nl))

∣∣∣∣∣

2

, (6.34)

where (Un)n∈Z is the noise process. It can be shown that Theorem 4.1(i)+(iii) remains
true for the statistics of (6.34), which leads to the above definition of S4. As was done for
(6.5), the projection P4(a) of an image a onto S4 can be performed in the Fourier domain
for every frequency pair (k, l) individually. Note that, for any frequencies (k, l) ∈ D such
that b̂(k, l) 6= 0, the constraint on the residual can be written as

â(k, l) ∈ B

(
x̂(k, l)

b̂(k, l)
,

√
ξ

|b̂(k, l)|

)
. (6.35)

The projection onto this ball is given by (2.25). Consequently, by taking (6.25) into ac-
count, we obtain

P4(a) = F−1

((
x̂−√

ξ ŷ(a)/|ŷ(a)|
b̂

)
1E + â1∁E

)
, (6.36)

where

E =




(k, l) ∈ {0, · · · , N − 1}2 |





|ŷ(a) (k, l)|2 > ξ

b̂(k, l) 6= 0
(k, l) ∈ D or (N − k,N − l) ∈ D





. (6.37)

To fully specify the sets S3 and S4 it remains to choose the confidence parameters α and ǫ.
To this end, let us impose a global confidence coefficient of c = 95% on the feasibility set
in (4.55) and let us call p the confidence coefficient to be placed on S3 and S4. Consider
the events{

A3 = {ω ∈ Ω | h ∈ S3(ω)}
A4 = {ω ∈ Ω | h ∈ S4(ω)}.

(6.38)

Note that since the statistics (4.36) and (6.34) are not mutually independent we cannot
take p =

√
c. We can nonetheless derive the value of p from the relations

c = PA3 ∩A4 (6.39)

= 1− P∁A3 ∪ ∁A4 (6.40)

≥ 1− P∁A3 − P∁A4 (6.41)

= 2p− 1. (6.42)
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Hence, we should take p = 97.5%, which yields α = 2.241 in (6.28). Moreover, since the
statistics (Ik,l)(k,l)∈D are independent, the confidence coefficient 1−ǫ on the (N−1)(N/2−
1) sets defining S4 should satisfy (1− ǫ)(N−1)(N/2−1) = p, which yields ǫ = 3.164× 10−6 in
(6.33).

We have now completely defined the set theoretic formulation (EN2
, (Si)1≤i≤4) for this

problem.

6.4.3 Numerical Performance

Various subgradient projection methods are compared here. The exact projection opera-
tors will be used for the sets S1, S2, and S4 for they admit closed-form expressions. On the
other hand, S3 will be activated through its subgradient projection. We shall call subgra-
dient POCS (SPOCS) the subgradient version of (5.4) thus obtained. Since we have P = 4
processors and m = 4 sets, EMOPSP is implemented with static control. Several relax-
ation schemes are considered. We shall call EMOPSP(1), EMOPSP(1.9), and EMOPSP(L)
the algorithms obtained by taking at each iteration n relaxations λn = 1, λn = 1.9, and
λn = Ln, respectively. Finally, EMOPSP(C) designates the algorithm obtained with the
centering technique (5.43). Since the control is static, EMOPSP(1) can be regarded as the
subgradient version of SIRT (3.11), EMOPSP(1.9) as an overrelaxed subgradient version
of PPM (5.23), and EMOPSP(L) as the fully extrapolated subgradient version of EPPM.

The convergence patterns are shown in Fig. 36. We notice, that the unrelaxed EMOPSP(1)
algorithm is slower than SPOCS and that overrelaxations in EMOPSP(1.9) have an accel-
erating effect. However, the extrapolated algorithm EMOPSP(L) is much faster and center-
ing in EMOPSP(C) further accelerates the progression of the iterates towards a solution.
Thus, the −51 dB mark corresponding to the stopping rule (6.16) was reached by SPOCS
in 64 iterations and by EMOPSP(C) in only 14 iterations.

6.4.4 Results

Fig. 37 shows the image restored by EMOPSP. To give a more complete demonstration of
the effectiveness of this particular set theoretic formulation, the same experiment was re-
peated on the image of Fig. 38. The degraded image appears in Fig. 39 and its restoration
in Fig. 40.
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7 Summary

Every image recovery problem is accompanied by some a priori knowledge. Together
with the observed data, this a priori knowledge defines constraints on the solutions to the
problem. In the conventional approach, an optimality criterion is introduced to define a
unique solution and computational tractability imposes that many constraints be left out
of the recovery process. As a result, the end product may violate known properties of the
image being estimated.

In the set theoretic approach, the notion of feasibility prevails: any image which satisfies
all the constraints arising from the data and a priori knowledge is an acceptable solution.
A set of solutions is thus defined, whose elements are equally likely to have generated the
observed data in the light of the available information. The main asset of this framework
is to provide great flexibility in the incorporation of statistical as well as nonstatistical
constraints. In addition, the recovered images thus obtained have - by construction - well
defined, tangible and meaningful properties, which is often more valuable than satisfying
some conceptual optimality criterion.

The focus of this survey has been placed on problems in which the property sets associated
with the constraints are closed and convex in some Hilbert image space. In this context,
the set theoretic image recovery problem can be abstracted into the problem of finding a
common point of convex sets, i.e., into a convex feasibility problem. This framework is
certainly limited by the restriction to convex constraints. However, this limitation is ad-
vantageously counterbalanced by the existence of efficient algorithms that are guaranteed
to find feasible solutions. In addition, a wide range of useful constraints was seen to yield
convex property sets.

The field originated in the early 1970’s with the formulation of tomographic reconstruc-
tion and band-limited extrapolation problems as affine feasibility problems. Because these
approaches lacked a general abstract formalism and powerful analytical tools, their scope
remained limited both in the nature of the problems and in the amount of information
that could be used. As convex feasibility algorithms entered the image recovery toolbox
in the early 1980’s, the restriction to subspace and half-space property sets disappeared,
and a much wider range of information became exploitable. As a result, the set theoretic
approach soon gained widespread recognition and found applications in numerous image
recovery problems. Very recently, the field has benefited from a regained interest in the
convex feasibility problem on the part of several groups of researchers, and efficient par-
allel alternatives to the rudimentary POCS algorithm have been proposed. We expect such
developments to further broaden the scope of set theoretic image recovery by making it
less involved computationally and therefore more widely applicable.

Naturally, the next logical extension would be to relax the convexity requirement on the
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property sets. In this regard, the lack of a general-purpose, globally convergent method for
solving nonconvex feasibility problems seems to be an unsurmountable obstacle. On the
other hand, it is quite conceivable that suitable methods could be developed for specific
problems.

Before closing this survey, the unavoidable question should be posed: when should an
image recovery problem be formulated as a feasibility problem rather than an optimization
problem? A complete and systematic answer is of course not possible and it would set the
stage for endless philosophical discussions. In addition, some methods are simply known
to work better in certain problems, which makes such a debate a rather academic one.
Nonetheless, our view is that any optimization approach is acceptable as long as it yields
a feasible image. If not, it simply produces a solution which is inconsistent with known
facts about the image being estimated.

Appendix A - Acronyms

ART: algebraic reconstruction technique (Section 3.2.1)

EMOPP: extrapolated method of parallel projections (Section 5.4.2)

EMOPAP: extrapolated method of parallel approximate projections (Section 5.5)

EMOPNO: extrapolated method of parallel nonexpansive operators (Section 5.7)

EMOPSP: extrapolated method of parallel subgradient projections (Section 5.6)

EPPM: extrapolated parallel projection method (Section 5.4.1.2)

EPPM2: (generalized) extrapolated parallel projection method (Section 5.4.1.2)

POCS: projection onto convex sets (Section 3.2.4)

PPM: parallel projection method (Section 5.3.3)

SIRT: simultaneous iterative reconstruction technique (Section 3.2.1)
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[127] M. K. Özkan, A. M. Tekalp, and M. I. Sezan, “POCS-based restoration of space-varying
blurred images,” IEEE Transactions on Image Processing, vol. 3, no. 4, pp. 450-454, July
1994.

[128] A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE

Transactions on Circuits and Systems, vol. 22, no. 9, pp. 735-742, September 1975.

[129] H. Peng and H. Stark, “Signal recovery with similarity constraints,” Journal of the Optical

Society of America A, vol. 6, no. 6, pp. 844-851, June 1989.

[130] H. Peng and H. Stark, “Image recovery in computer tomography from partial fan-beam data
by convex projections,” IEEE Transactions on Medical Imaging, vol. 11, no. 4, pp. 470-478,
December 1992.

[131] W. V. Petryshyn, “Construction of fixed points of demicompact mappings in Hilbert space,”
Journal of Mathematical Analysis and Applications, vol. 14, no. 2, pp. 276-284, May 1966.
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Figure 5: Inconsistent set theoretic formulation.
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Figure 15: Original signal. c©1994 IEEE.
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Figure 16: Degraded signal. c©1994 IEEE.

128



0 10 20 30 40 50 60
-2

0

2

4

6

8

10

12

samples

am
pl

itu
de

Figure 17: Consistent case - Deconvolution by POCS. c©1994 IEEE.
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Figure 18: Inconsistent case - Deconvolution by POCS. c©1994 IEEE.
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Figure 19: Inconsistent case - Convergence of POCS. c©1994 IEEE.
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Figure 20: Consistent case - Deconvolution by PPM. c©1994 IEEE.
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Figure 21: Inconsistent case - Convergence of PPM. c©1994 IEEE.
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Figure 23: Original signal.
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Figure 24: Degraded signal - Known blur.
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Figure 25: Deconvolved signal - Known blur.
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Figure 26: Degraded signal - Perturbed blur.
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Figure 27: Deconvolved signal - Perturbed blur.
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Figure 28: Original image.
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Figure 29: Degraded image - Bounded noise.
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Figure 30: Convergence of POCS.
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Figure 31: Convergence of EMOPP - 8 parallel processsors.
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Figure 32: Convergence of EMOPP - 64 parallel processsors.
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Figure 33: Restored image - Bounded noise.
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Figure 34: Degraded image - Gaussian noise.
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Figure 35: Restored image - Gaussian noise.
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Figure 36: Convergence of subgradient methods.
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Figure 37: Restored image.
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Figure 38: Original image.
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Figure 39: Degraded image.
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Figure 40: Restored image.
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