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Abstract. The classical problem of finding a point in the intersection of countably
many closed and convex sets in a Hilbert space is considered. Extrapolated iterations
of convex combinations of approximate projections onto subfamilies of sets are
investigated to solve this problem. General hypotheses are made on the regularity
of the sets and various strategies are considered to control the order in which the
sets are selected. Weak and strong convergence results are established within this
broad framework, which provides a unified view of projection methods for solving
hilbertian convex feasibility problems.
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1. Introduction

Numerous problems in applied mathematics, science, and engineering can be reduced
to finding a common point of a family of closed and convex sets in a Hilbert space. This
abstract formulation, known as the hilbertian convex feasibility problem, captures prob-
lems in disciplines as diverse as approximation theory, integral equations, control theory,
signal and image processing, biomedical engineering, communications, and geophysics.

∗ This work was supported by the National Science Foundation under Grant MIP-9308609.
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For detailed accounts of concrete applications, the reader is referred to [20], [22], and
[29].

In Hilbert spaces, the use of projection methods to solve convex feasibility problems
goes back at least to 1933. LetPi (a) denote the projection of a pointa ontoSi , i.e., the
unique point inSi such that‖a− Pi (a)‖ = inf{‖a−b‖ | b ∈ Si }. In [54] Von Neumann
showed that a point in the intersection of two closed vector subspaces(S0, S1) could be
obtained as the strong limit of any sequence of iterates

(∀n ∈ N) an+1 = Pi (n)(an), (1.1)

wherei (n) = n modulo 2. This result was extended to finite families of closed subspaces
(Si )0≤i≤M−1 in [34] by considering the periodic control schemei (n) = n modulo M .
For more general control strategies, weak convergence results were established in [12]
and [49]. These efforts culminated with a result of Amemiya and Ando [5], who showed
that under the chaotic control rule

(∀i ∈ {0, . . . ,M − 1}) i (n) = i infinitely often, (1.2)

the iterated projections (1.1) converge weakly to a point in the intersection of theM
subspaces. For more restrictive control rules, nonlinear versions of this result were given
in [10] and [13], where arbitrary convex sets were considered. Methods such as (1.1) are
serial in the sense that a single set is selected at each iteration. Their counterparts are
methods of parallel projections such as the barycentric method

(∀n ∈ N) an+1 = (1/M)
M−1∑
i=0

Pi (an), (1.3)

which was shown in [6] to converge weakly to a point in the intersection of the closed
and convex sets(Si )0≤i≤M−1. For both (1.1) and (1.3), strong convergence results have
also been established under certain regularity conditions on the sets [33], [44].

The goal of this paper is to study the convergence of a broad class of projection
methods for solving hilbertian convex feasibility problems with a countable number
of sets. A general algorithm is proposed which provides a unifying formulation for
projection-based methods. It proceeds by extrapolated iterations of convex combina-
tions of approximate projections onto subfamilies of sets. This formulation includes in
particular serial methods, simultaneous methods, extrapolated relaxation method, and,
under suitable assumptions, subgradient methods. In addition, general regularity condi-
tions on the sets are used and various strategies are considered to control the order in
which they are selected. The results presented herein extend and improve most known
results on the weak and strong convergence of projection methods.

The following two definitions describe the framework of this study.

Definition 1.1. Let4 be a real Hilbert space with scalar product〈· | ·〉, norm‖ · ‖, and
distanced. Let (Si )i∈I be a countable (finite or countably infinite) family of closed and
convex subsets of4 with nonempty intersectionSand such that(∀i ∈ I ) Si 6= 4. The
hilbertian convex feasibility problemis to find a point inS.
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Definition 1.2. Fix a0 ∈ 4, C ∈ N∗, δ ∈ ]0, 1/C[, and(ε, η) ∈ ]0, 1]2. Let

(∀n ∈ N) an+1 = an + λn

(∑
i∈In

wi,n Pi,n(an)− an

)
, (1.4)

where at each iterationn:

(a) The familyIn of indices of selected sets satisfies

In⊂ I and 1≤ cardIn ≤ C. (1.5)

(b) For everyi in In, Pi,n is the projection operator onto any closed and convex
supersetSi,n of Si such that

d(an, Si,n) ≥ ηd(an, Si ). (1.6)

(c) The weights(wi,n)i∈In are convex and bounded away from zero on active sets,
i.e.,

(∀i ∈ In)

{
wi,n ≥ δ if an /∈ Si

wi,n ≥ 0 otherwise,
and

∑
i∈In

wi,n = 1. (1.7)

(d) The relaxation parameterλn varies over an iteration-dependent interval

ε ≤ λn ≤ (2− ε)Ln, (1.8)

with

Ln =


∑

i∈In
wi,n‖Pi,n(an)− an‖2

‖∑i∈In
wi,n Pi,n(an)− an‖2 if an /∈

⋂
i∈In

Si ,

1 otherwise.

(1.9)

The iterative scheme (1.4)–(1.9) is called theextrapolated method of parallel projections
(EMOPP).

EMOPP unifies and extends existing projection methods in several respects:

(a) The total number of sets may be countably infinite. In addition, the sets acted
upon may vary at each iteration according to various control strategies defined
by the sequence(In)n≥0. Such flexibility is very valuable in practice as it allows
us to match the computational load of each iteration to the power of the concur-
rent processors available. It also brings together serial methods, e.g., (1.1), and
barycentric methods, e.g., (1.3).

(b) If exact projections are used, i.e.,Pi,n = Pi in (1.4), conventional projection
methods are obtained. Otherwise, the approximate projection operatorPi,n can
be regarded as the projection onto an affine hyperplaneHi (an) separatingan

from Si , as in [2] and [32]. WhenS◦ 6= ∅, this framework also includes the
subgradient projection methods of [17], [28], and [36] where the sets take the
form Si = {a ∈ 4 | gi (a) ≤ 0} in the euclidean space4, gi : 4 → R being
a convex functional. In this case,Hi (an) = {a∈4 | 〈an−a | ti,n〉 = gi (an)},
whereti,n is a subgradient ofgi atan.



314 P. L. Combettes

(c) The weights on the projections may vary at each iteration, unlike in the parallel
projections methods of [6], [19], [26], [27], [44], [45], and [50]. Note that if the
current iteratean belongs to a selected setSi , the corresponding weightwi,n can
be set to zero.

(d) In the vast majority of projection methods, the sequence of relaxations param-
eters must satisfy

(∀n ∈ N) ε ≤ λn ≤ 2− ε. (1.10)

The exceptions are the extrapolated projection methods presented in [43]–[46]
where

(∀n ∈ N) ε ≤ λn ≤ Ln. (1.11)

Since the extrapolation parameterLn in (1.9) is never less than 1, the relaxation
range (1.8) encompasses both (1.10) and (1.11). In numerical applications, the
large overrelaxations allowed by (1.8) have been shown to accelerate signifi-
cantly the convergence of parallel projection methods [22].

Remark 1.1. Projection methods similar to (1.4) have already been studied in the
literature under more restrictive assumptions than those of Definitions 1.1 and 1.2. Thus,
(1.4) was proposed in [43] with exact projections and relaxation scheme (1.11). For
relaxations as in (1.10) andI finite, (1.4) was proposed in [8] (and previously in [32] for
euclidean spaces) in the equivalent form

(∀n ∈ N) an+1 =
∑
i∈In

wi,n((1− λi,n)an + λi,n Pi,n(an)). (1.12)

Finally, EMOPP was proposed in [23] forI finite and4 euclidean. Since the present
paper was submitted (Spring 1994), it has come to our attention that a similar method
was independently studied in that particular context in [38]. Relaxations of type (1.8)
were apparently first proposed in the parallel projection method of [40] to solve systems
of linear inequalities inRn.

Remark 1.2. In the special case when only one set is selected at each iteration, EMOPP
is underserial controland reduces to

(∀n ∈ N)
an+1 = an + λn(Pi (n),n(an)− an),

ε ≤ λn ≤ 2− ε,
i (n) ∈ I .

(1.13)

Such methods are also known as methods of successive projections or “row-action”
methods [16].

Remark 1.3. Less general projection methods have been proposed to solve problems
which extend the convex feasibility framework of Definition 1.1 in certain directions.
Thus, problems with uncountably many sets are addressed in [15] and [42], while the
inconsistent case, i.e.,S= ∅, is discussed in [9], [24], and [33]. Feasibility problems
outside Hilbert spaces are considered in [4], [25], and [50].
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The remainder of the paper is organized as follows. In Section 2 some general
properties of EMOPP are presented. In Section 3 several control schemes are introduced
and preliminary convergence results are proved. The convergence of EMOPP to a feasible
point in the weak topology is then studied in Section 4 for various control strategies.
In Section 5 regularity conditions on the sets are discussed and convergence results are
established in the strong topology. Unless otherwise stated, the notations and assumptions
introduced in Definitions 1.1 and 1.2 are used throughout the paper.

2. General Propositions

Notations. N is the set of nonnegative integers,N∗ = N\{0},R+ is the set of nonneg-
ative real numbers, andR∗+ = R+\{0}. The closed ball of centera and radiusγ in 4
is denoted byB(a, γ ). The cardinal of a setA is denoted by cardA. The expressions

an
n
⇀ a andan

n→ a denote respectively the weak and strong convergence toa of a
sequence(an)n≥0. The sets of weak and strong cluster points of(an)n≥0 are denoted by
W(an)n≥0 andS(an)n≥0, respectively.∂Si is the boundary ofSi andS◦i its interior. If
Si is an affine subspace (a translation of a vector subspace), the vector spaceS⊥i is its
orthogonal complement. The expressiona ∝ b indicates that the vectorsa andb are
collinear.

In this section(an)n≥0 is a fixed, but otherwise arbitrary, orbit of EMOPP.

Remark 2.1. The convexity of‖ · ‖2 yields∥∥∥∥∥∑
i∈In

wi,n Pi,n(an)− an

∥∥∥∥∥
2

≤
∑
i∈In

wi,n‖Pi,n(an)− an‖2. (2.1)

Now, fix (c, n) ∈ S× N. Then we have [55]

(∀i ∈ In) 〈Pi,n(an)− c | Pi,n(an)− an〉 ≤ 0. (2.2)

Whence〈
an − c

∣∣∣∣∣∑
i∈In

wi,n Pi,n(an)− an

〉
≤ −

∑
i∈In

wi,n‖Pi,n(an)− an‖2, (2.3)

and, thanks to Definition 1.2(b), we easily get

an ∈
⋂
i∈In

Si ⇔
∑
i∈In

wi,n‖Pi,n(an)− an‖2 = 0

⇔
∥∥∥∥∥∑

i∈In

wi,n Pi,n(an)− an

∥∥∥∥∥
2

= 0. (2.4)

ThereforeLn is well defined in (1.9) and in view of (2.1) we always haveLn ≥ 1.
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Proposition 2.1. For every c in S and every n inN, we have

‖an+1− c‖2 ≤ ‖an − c‖2− λn(2− λn/Ln)
∑
i∈In

wi,n‖Pi,n(an)− an‖2.

Proof. Take any(c, n) ∈ S× N. Then (1.4), (1.9), and (2.3) give

‖an+1− c‖2 =
∥∥∥∥∥an − c+ λn

(∑
i∈In

wi,n Pi,n(an)− an

)∥∥∥∥∥
2

= ‖an − c‖2+ 2λn

〈
an − c

∣∣∣∣∣∑
i∈In

wi,n Pi,n(an)− an

〉
+(λ2

n/Ln)
∑
i∈In

wi,n‖Pi,n(an)− an‖2

≤ ‖an − c‖2−λn(2−λn/Ln)
∑
i∈In

wi,n‖Pi,n(an)−an‖2, (2.5)

which proves the assertion.

Proposition 2.2. The following results hold:

(i) Fejér-monotonicity[41]: (∀(c, n) ∈ S× N) ‖an+1− c‖ ≤ ‖an − c‖;
(ii) cardW(an)n≥0 ≥ 1;
(iii) cardW(an)n≥0 ∩ S≤ 1;
(iv) if W(an)n≥0 ⊂ S, then(an)n≥0 converges weakly to a point in S.

Proof. (i) follows from Proposition 2.1 and (1.8).
(ii) Fix c ∈ S. Then (i)⇒ (an)n≥0 ⊂ B(c, ‖a0 − c‖), whereB(c, ‖a0 − c‖) is

weakly compact.
(iii) The proof of (i)⇒ (iii) appears explicitly or implicitly in [8], [10], [13], and

[24].
(iv) In this case, (iii) implies that(an)n≥0 has a unique weak cluster point, which

must therefore be its weak limit.

We now fix an arbitrary pointc in Sand define

(∀n ∈ N) βn = ‖an − c‖2− ‖an+1− c‖2. (2.6)

Proposition 2.3. For every integer n, we have:

(i)
∑

i∈In
wi,n‖Pi,n(an)− an‖2 ≤ ε−2βn;

(ii) maxi∈In d(an, Si )
2 ≤ δ−1ε−2η−2βn;

(iii) ‖an+1− an‖2 ≤ (2ε−1− 1)βn;
(iv) 〈an − c | an − an+1〉 ≤ ε−1βn.

Proof. Since (1.8) implies thatλn(2− λn/Ln) ≥ ε2, (i) follows directly from Propo-
sition 2.1.
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(ii) Take anyi ∈ In. If an ∈ Si , d(an, Si ) = 0. Otherwise, using (1.6), (1.7), and (i),
we get

d(an, Si )
2 ≤ η−2‖Pi,n(an)− an‖2
≤ η−2

∑
j∈In

wj,n‖Pj,n(an)− an‖2/wi,n

≤ δ−1ε−2η−2βn, (2.7)

and obtain (ii).
To establish (iii), note that (1.4) and Proposition 2.1 entail

‖an+1− an‖2 = λ2
n

Ln

∑
i∈In

wi,n‖Pi,n(an)− an‖2

≤ λ2
n

Ln
· βn

λn(2− λn/Ln)

≤ (2ε−1− 1)βn, (2.8)

where we have used (1.8) to getλn/Ln ≤ 2− ε and 1/(2− λn/Ln) ≤ ε−1.
(iv) Note that‖an+1 − c‖2 = ‖an+1 − an‖2 + 2〈an+1 − an | an − c〉 + ‖an − c‖2.

Therefore, using (iii) and (2.6), we obtain the last assertion.

Proposition 2.4. (βn)n≥0 is summable.

Proof. According to Proposition 2.2(i),(βn)n≥0 ⊂ R+. Moreover, (2.6) implies
(∀n ∈ N)∑n

k=0 βk = ‖a0− c‖2− ‖an+1− c‖2 ≤ ‖a0− c‖2 and, therefore,
∑

n≥0 βn ≤
‖a0− c‖2.

3. Control Schemes

Several control strategies will be considered for EMOPP. They constitute extensions to
parallel projection methods of schemes which have been proposed for serial ones.

Definition 3.1. Assume that cardI < +∞. Then the control is:

• Staticif all the sets are selected at each iteration, i.e.,

(∀n ∈ N) In = I . (3.1)

This control condition goes back to Cimmino’s algorithm [19].
• Cyclic if there exists a positive integerM such that

(∀n ∈ N) I =
n+M−1⋃

k=n

Ik. (3.2)

In words, if the control isM-cyclic, all the sets must be selected at least once within
anyM consecutive iterations. This condition was utilized in [49] for the serial case
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and in [43] for the parallel case. In the serial case withM sets, say(Si )0≤i≤M−1,
an important example of cyclic control is theperiodiccontrol scheme

(∀n ∈ N) i (n) = n (moduloM), (3.3)

that was used in Kaczmarz’ algorithm [37]. For two vector subspaces, it yields
the alternating projection scheme of [54], which has been rediscovered in many
places [29].
• Quasi-cyclicif there exists an increasing sequence of integers(Mm)m≥0 such that

M0 = 0,∑
m≥0

(Mm+1− Mm)
−1 = +∞,

(∀m ∈ N) I =
Mm+1−1⋃
k=Mm

Ik.

(3.4)

Thus, under(Mm)m≥0-quasi-cyclic control, all the sets are selected at least once
within each variable cycle of iterations{Mm, . . . ,Mm+1−1}. The nonsummability
condition ensures that the lengths(Mm+1−Mm)m≥0 of the cycles do not eventually
increase too fast. This type of control was introduced in [53] for a serial method.

Remark 3.1. The above control modes are applicable only when(Si )i∈I is a finite
family because they impose that all the sets be selected over a finite number of itera-
tions. Henceforth, any statement pertaining to static, cyclic, or quasi-cyclic control will
implicitly carry the assumption cardI < +∞.

We now introduce control modes applicable to countable families.

Definition 3.2. The control is:

• Admissibleif there exist positive integers(Mi )i∈I such that

(∀(i, n) ∈ I × N) i ∈
n+Mi−1⋃

k=n

Ik. (3.5)

Hence, the setSi is selected at least once within anyMi consecutive iterations. Of
course, if cardI < +∞, this control mode coincides with the cyclic mode (3.2).
The admissible control condition was introduced in [12] for the serial method
(1.1) (we adopt the terminology of [13] here).
• Chaoticif each set is selected infinitely often in the iteration process, i.e.,

I = lim sup
n→+∞

In. (3.6)

This condition is an extension of (1.2), which goes back to Poincar´e’s balayage
(sweeping) method [47]. It was used in the serial method of [49] and in the parallel
method of [43]. Note that (3.6) generalizes (3.1)–(3.5).
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• Coerciveif(
∃(i (n))n≥0 ∈ X

n≥0
In

)
d(an, Si (n))

n→ 0 ⇒ sup
i∈I

d(an, Si )
n→ 0. (3.7)

In the serial case, this control mode was proposed in [33] as a generalization of
themost-remote setcontrol scheme

(∀n ∈ N)(∃i (n) ∈ In) d(an, Si (n)) = sup
i∈I

d(an, Si ), (3.8)

which is not always applicable when cardI = +∞. The most-remote set control
strategy was introduced in [1] and [41].
• Chaotically coerciveif (In)n≥0 contains a subsequence(Ink)k≥0 such that(
∃(i (k))k≥0 ∈ X

k≥0
Ink

)
d(ank , Si (k))

k→ 0 ⇒ sup
i∈I

d(ank , Si )
k→ 0. (3.9)

This condition generalizes (3.7) as well as the control strategy consisting in se-
lecting one of the most remote sets infinitely often in the course of the iterations.

The results of Section 2 have been obtained without making any assumption on the
control sequence(In)n≥0. We now establish convergence properties that depend on the
control.

Proposition 3.1. Let (an)n≥0 be an arbitrary orbit of EMOPP. If the control is:

(i) quasi-cyclic, then (an)n≥0 possesses a subsequence(ank)k≥0 such that

maxi∈I d(ank , Si )
k→ 0;

(ii) admissible, then(∀i ∈ I ) d(an, Si )
n→ 0;

(iii) chaotic, then, for every i in I, (an)n≥0 possesses a subsequence(ank)k≥0 such

that d(ank , Si )
k→ 0;

(iv) coercive, thensupi∈I d(an, Si )
n→ 0;

(v) chaotically coercive, then(an)n≥0 possesses a subsequence(ank)k≥0 such that

supi∈I d(ank , Si )
k→ 0.

Proof. To demonstrate (i) and (ii), fix(i, n) in I × N. Let K n,i ⊂ N be a set of
Kn,i consecutive integers containingn and some integerp such thati ∈ I p. Define
γn,i = Kn,i

∑
k∈K n,i

βk. Proposition 2.3(ii) yields

d(ap, Si )
2 ≤ δ−1ε−2η−2βp ≤ δ−1ε−2η−2γn,i . (3.10)

On the other hand, Proposition 2.3(iii) yields

‖ap − an‖2 ≤
( ∑

k∈K n,i

‖ak+1− ak‖
)2

≤ Kn,i

∑
k∈K n,i

‖ak+1− ak‖2

≤ (2ε−1− 1)γn,i . (3.11)
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Let ζ = 2(δ−1ε−2η−2+ 2ε−1− 1). By combining (3.10) and (3.11), we get

d(an, Si )
2 ≤ ‖Pi (ap)− an‖2
≤ (d(ap, Si )+ ‖ap − an‖

)2
≤ 2(d(ap, Si )

2+ ‖ap − an‖2)
≤ ζγn,i . (3.12)

(i) Suppose (3.4) holds and letm = m(n) be the largest integer such thatn ≥ Mm.
ThenK n,i = {Mm, . . . ,Mm+1 − 1} , Km will work for every i ∈ I . From (3.12), we
obtain

(∀m ∈ N)(∀n ∈ {Mm, . . . ,Mm+1− 1})

max
i∈I

d(an, Si )
2 ≤ ζ(Mm+1− Mm)

Mm+1−1∑
k=Mm

βk , ζγm. (3.13)

Hence, to prove assertion (i), it suffices to show 0∈S(γm)m≥0. Observe that, if we had
0 /∈ S(γm)m≥0, there would exist(µ, N) ∈ R∗+ × N such that(∀m ≥ N) γm ≥ µ. In
view of (3.13), this would yield

∑
m≥N

(Mm+1− Mm)
−1 ≤ µ−1

∑
m≥N

Mm+1−1∑
k=Mm

βk ≤ µ−1
∑
k≥0

βk. (3.14)

However, a contradiction would arise since the series in the left-hand side diverges by
(3.4) while the series in the right-hand side converges by Proposition 2.4. This establishes
(i).

(ii) If (3.5) holds, we can takeK n,i = {n, . . . ,n+ Mi − 1} and (3.12) leads to

(∀(n, i ) ∈ N× I ) d(an, Si )
2 ≤ ζMi

∑
k≥n

βk. (3.15)

However, by Proposition 2.4, the right-hand side is the tail of a convergent series and it
must converge to zero asn increases indefinitely. Thus, we obtain (ii).

(iii) Fix i ∈ I . If the control is chaotic, there exists an increasing sequence(nk)k≥0 ⊂
N such that(∀k ∈ N) i ∈ Ink . By Proposition 2.3(ii), we then get

(∀k ∈ N) d(ank , Si )
2 ≤ δ−1ε−2η−2βnk . (3.16)

Sinceβnk

k→ 0, the proof is complete.
(iv) Consider the coercive control scheme and define(i (n))n≥0 as in (3.7). Then

Proposition 2.3(ii) gives

(∀n ∈ N) d(an, Si (n))
2 ≤ max

i∈In

d(an, Si )
2 ≤ δ−1ε−2η−2βn. (3.17)

However, sinceβn
n→ 0, we haved(an, Si (n))

n→ 0 and therefore (3.7) completes the
proof. Note that (v) in the chaotically coercive case is proven in an analogous manner.
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4. Weak Convergence

4.1. Quasi-Cyclic and Chaotically Coercive Controls

We start with the following facts.

Lemma 4.1. For every sequence(an)n≥0 ⊂ 4 the following statements hold:

(i) Suppose(∃i ∈ I ) d(an, Si )
n→ 0. Then an

n
⇀ a⇔ Pi (an)

n
⇀ a.

(ii) Suppose(∃i ∈ I ) d(an, Si )
n→ 0. Then an

n→ a⇔ Pi (an)
n→ a.

(iii) Suppose(∃i ∈ I ) d(an, Si )
n→ 0, where Si is boundedly compact(its inter-

section with any closed ball is compact). Then an
n→ a⇔ an

n
⇀ a.

(iv) Suppose(∀i ∈ I ) d(an, Si )
n→ 0. ThenW(an)n≥0 ⊂ S.

Proof. (i) and (ii) are trivial.
(iii) The forward implication is obvious. To prove the reverse implication, sup-

posean
n
⇀ a. Then (i)⇒ Pi (an)

n
⇀ a ⇒ (Pi (an))n≥0 is bounded. However, since

(Pi (an))n≥0 lies in the boundedly compact setSi , we must haveS(Pi (an))n≥0 = {a}.
ThereforePi (an)

n→ a and (ii)⇒ an
n→ a.

(iv) If W(an)n≥0 = ∅, (iv) holds trivially. Otherwise, take anya ∈ W(an)n≥0,

sayank

k
⇀ a, and anyi ∈ I . Then (i)⇒ Pi (ank)

k
⇀ a, but (Pi (ank))k≥0 ⊂ Si andSi

is closed in the weak topology. Whence,a ∈ Si . Sincei was arbitrary, we conclude
a ∈ S.

Theorem 4.1. Under quasi-cyclic or chaotically coercive control, every orbit of
EMOPP possesses one and only one weak cluster point in S.

Proof. Let (an)n≥0 be an arbitrary orbit of EMOPP. By Proposition 3.1(i) and (v),

there exists a subsequence(ank)k≥0 of (an)n≥0 such that(∀i ∈ I ) d(ank , Si )
k→ 0.

Clearly, Proposition 2.2 applies to(ank)k≥0. Thus, by Proposition 2.2(ii), we can find
a ∈ W(ank)k≥0. Lemma 4.1(iv) then givesa ∈ S. Uniqueness follows from Proposi-
tion 2.2(iii).

Remark 4.1. Under quasi-cyclic control, Theorem 4.1 was obtained in Theorem 2
of [52] for a variant of the serial algorithm (1.13) in which exact firmly nonexpansive
operators(Ti )i∈I with sets of fixed points(Si )i∈I were considered in lieu of approximate
projections (projection operators are special cases of firmly nonexpansive mappings
[55]). As shown in [21], several of our results still hold true for the corresponding
variant of EMOPP, which provides a proper extension of results of [52].

Corollary 4.1. Under quasi-cyclic or chaotically coercive control, if an orbit of
EMOPP possesses no weak cluster point outside of S, then it converges weakly to a
point in S.
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4.2. Admissible and Coercive Controls

Theorem 4.2. Under admissible or coercive control, every orbit of EMOPP converges
weakly to a point in S.

Proof. The claim follows from Proposition 3.1(ii) and (iv), Lemma 4.1(iv), and Propo-
sition 2.2(iv).

Remark 4.2. In the special case of algorithm (1.1), Theorem 4.2 coincides with Theo-
rem 2 of [13] (Lemma 3 of [12] in the linear case) for admissible control and Theorem 2
of [10] for most-remote set control. Now suppose that cardI < +∞ and that the con-
stant relaxation range (1.10) is in force. Theorem 4.2 is established in this context in
Theorem 3.20(i) of [8] for cyclic control and in Theorem 4.26(ii) of [8] for most-remote
set control. It should be noted that these results assumed more general approximate pro-
jections than those of Definition 1.2(b). For exact projections, Theorem 3.20(i) of [8]
appears in Theorem 1 of [24], which contains results of [6], [10], [26], and [27], while
Theorem 4.26(ii) of [8] contains the finite-dimensional results of [1], [31], and [41].

Remark 4.3. Theorem 4.2 also generalizes Theorem 1.1(i) of [45], which considered
the static algorithm

(∀n ∈ N) an+1 = an + λn

(∑
i∈I

wi Pi (an)− an

)
, (4.1)

with (1.11),(∀i ∈ I ) wi > 0, and
∑

i∈I wi = 1. It is worth pointing out that this result
can also be deduced from Theorem 1 of [48], where the weak convergence of the convex
minimization algorithm

(∀n∈N)
{

an+1 = an − (αn(8(an)−8min)/‖∇8(an)‖2)∇8(an),

ε ≤ αn ≤ 2− ε (4.2)

to a minimizer of8 is demonstrated (take8: a 7→ ∑
i∈I wi d(a, Si )

2 and note that
(∀i ∈ I ) ∇d(a, Si )

2 = 2(a− Pi (a)) [55],8min = 0, andS= 8−1({8min})).

4.3. Chaotic Control

As shown below, without further assumptions on(Si )i∈I , EMOPP may fail to converge
weakly under chaotic control. However, some results are available for the special instance
(1.1)–(1.2). Weak convergence to a point inSof every orbit of this algorithm is proved
in [5] in the case of a finite family of closed vector subspaces. A nonlinear extension of
this result is proposed in Theorem 5 of [30], where it is shown to remain true for finitely
many closed and convex subsets sharing a “weak internal point” (WIP). It is also shown
in Theorem 2 of [30] that, in the presence of three sets, the assumption of a WIP is not
necessary to ensure weak convergence to a feasible point.

Example 4.1. Take(θi )i≥0 ⊂ R+ with θ0 = 0 and(∀i ∈ N) 0< θi+1 − θi < 1. In the
euclidean plane, letSi be the ray emanating from the origin at an angleθi with respect
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to S0. As shown in [14], the iterative processan+1 = Pn+1(an) with a0 = (1, 0) leads
to ‖an+1‖ =

∏n
i=0 cos(θi+1− θi ) ≥

∏n
i=0(1− (θi+1− θi )

2/2) , `n. Now, to make this
process chaotic, we choose the (modulo 2π ) dyadic sequence

(θi )i≥0 = (0, π/4, π/2, 3π/4, π,5π/4, 3π/2, 7π/4, 0, π/8, π/4, 3π/8, π/2, . . . ,
15π/8, 0, π/16, π/8, 3π/16, . . .). (4.3)

We obtain a countable family of distinct sets(Si )i∈I with
⋂

i∈I Si = {0}. However,∑
i≥0(θi+1− θi )

2 = π2 and therefore(∃` ∈ R∗+) `n
n→ `. We conclude‖an‖

n
6→ 0.

5. Strong Convergence

In Hilbert spaces, strong convergence of projection algorithms requires some regularity
conditions on(Si )i∈I . Thus, in the early serial-periodic projection methods, properties
such as linearity [34], [54], compactness [18], [51], uniform convexity, or Slater condition
[33] were imposed. In this section we establish strong convergence of EMOPP under
general regularity conditions and various control schemes.

5.1. Quasi-Cyclic and Chaotically Coercive Controls

Definition 5.1. The family(Si )i∈I isboundedly regularif, for every bounded sequence
(an)n≥0 in 4, supi∈I d(an, Si )

n→ 0 ⇒ d(an, S)
n→ 0.

Remark 5.1. The concept of bounded regularity was first used extensively in [33] to
prove the strong convergence of serial projections algorithms. Conditions for bounded
regularity were previously discussed in [39] in the case of two sets. We use the termi-
nology of [7] here.

Lemma 5.1 [33]. Let (an)n≥0 be a Fej́er-monotone sequence with respect to S. If
(supi∈I d(an, Si ))n≥0 converges to zero and(Si )i∈I is boundedly regular, then(an)n≥0

converges strongly to a point in S.

Theorem 5.1. Under quasi-cyclic or chaotically coercive control, every orbit of
EMOPP converges strongly to a point in S if(Si )i∈I is boundedly regular.

Proof. Take an arbitrary orbit(an)n≥0. According to Proposition 3.1(i) and (v), it

contains a subsequence(ank)k≥0 such that supi∈I d(ank , Si )
k→ 0. Moreover, Propo-

sition 2.2(i) indicates that(ank)k≥0 is Fejér-monotone with respect toS. Lemma 5.1

implies that there exists a pointa ∈ Ssuch thatank

k→ a. Proposition 2.2(i) then yields

an
n→ a.

Remark 5.2. The notion of bounded regularity appears explicitly or implicitly in the
proofs of strong convergence of several projection algorithms. Thus, for the serial algo-
rithm (1.13) with exact projections and either periodic or coercive control, Theorem 5.1
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was obtained in Theorem 1 of [33]. For the static algorithm (4.1), Theorem 5.1 is found
as Theorem 1.1(ii) of [45]. Finally, for cardI < +∞ and relaxation rule (1.10), related
results are Theorem 5.2 of [8] and Theorem 2 of [24] for cyclic control, and Theorem 5.3
of [8] for most-remote set control.

We now give more specific and conventional conditions for the strong convergence
of EMOPP under quasi-cyclic and chaotically coercive controls.

Definition 5.2 [39]. LetF be the class of all nondecreasing functions fromR+ toR+
that vanish only at zero. ThenSi is f -uniformly convexif (∃ f ∈ F)(∀(a, b) ∈ S2

i )

B((a+ b)/2, f (‖a− b‖)) ⊂ Si andlocally uniformly convexif (∀a ∈ Si )(∃ f ∈ F)
(∀b ∈ Si )B((a+ b)/2, f (‖a− b‖)) ⊂ Si .

Remark 5.3. Since we assumeSi 6= 4, if Si is uniformly convex, then it is necessarily
bounded [39]. However, locally uniformly convex sets need not be bounded.

The following definition is motivated by [39].

Definition 5.3. Si is aLevitin–Polyak setif, for every sequence(an)n≥0 ⊂ 4 such that

d(an, Si )
n→ 0, we havean

n
⇀ a ∈ ∂Si ⇒ an

n→ a.

Corollary 5.1. Under quasi-cyclic or chaotically coercive control, every orbit of
EMOPP converges strongly to a point in S if any of the following conditions is
satisfied:

(i) (∃ j ∈ I ) Sj ∩ (
⋂

i∈I \{ j } Si )
◦ 6= ∅.

(ii) All, except possibly one, of the sets in(Si )i∈I are f -uniformly convex.
(iii) One of the sets in(Si )i∈I is boundedly compact(in particular compact or

contained in a finite-dimensional affine subspace).
(iv) 4 has finite dimension.
(v) (Si )i∈I is a finite family and all, except possibly one, of its sets are Levitin–

Polyak sets.
(vi) (Si )i∈I is a finite family and all, except possibly one, of its sets are locally

uniformly convex.
(vii) (Si )i∈I is a finite family of closed affine subspaces such that

∑
i∈I S⊥i is closed.

(viii) (Si )i∈I is a finite family of closed affine subspaces, all of which, except possibly
one, have finite codimension.

(ix) (Si )i∈I is a finite family of closed affine subspaces, all of which, except possibly
one, are affine hyperplanes.

(x) (Si )i∈I is a finite family of closed polyhedrons(finite intersections of closed
affine half-spaces).

Proof. According to Theorem 5.1, it is enough to show that the families described in
(i)–(x) are boundedly regular. This was done in [33] for cases (i), (ii), and (iv), in [8] and
[11] for case (vii), and in [8] for case (x). Note that (iv) is a particular case of (iii), (vi) is
a particular case of (v) [39], and (viii) and (ix) are particular cases of (vii). It therefore
remains to prove (iii) and (v).
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Take any bounded sequence(an)n≥0 ⊂ 4 such that supi∈I d(an, Si )
n→ 0 and take

any ` ∈ S(d(an, S))n≥0, sayd(ank , S)
k→ `. Thanks to the boundedness assumption

and Lemma 4.1(iv), we can finda ∈ W(ank)k≥0 ∩ S. It is sufficient to show that
a ∈ S(ank)k≥0 for this will yield ` = 0.

(iii) Suppose that, for somei ∈ I , Si is boundedly compact. Then Lemma 4.1(iii)
entailsa ∈ S(ank)k≥0, as desired.

(v) Select j ∈ I such that(Si )i∈I \{ j } are Levitin–Polyak sets and note thatS =
Sj ∩ (

⋂
i∈I \{ j } S

◦
i ∪ ∂Si ). Now defineA = Sj ∩ (

⋂
i∈I \{ j } S

◦
i ). If a ∈ A, then (i) holds

and(Si )i∈I is boundedly regular [33]. Otherwise,a ∈ S\A and, for somei ∈ I \{ j },
a ∈ ∂Si . Thereforea ∈ W(ank)k≥0 ∩ ∂Si . Sinced(ank , Si )

k→ 0 andSi is a Levitin–
Polyak set, we concludea ∈ S(ank)k≥0.

Remark 5.4. Under cyclic or coercive control with exact projections and relaxation
rule (1.11), Corollary 5.1(i) and (ii) follows from Corollary 5.1(i) of [43]. Special cases
of Corollary 5.1 can also be found in [18], [27], [35], and [51].

5.2. Admissible Control

Theorem 5.2. Under admissible control, every orbit of EMOPP converges strongly to
a point in S if(Si )i∈I contains a boundedly compact set.

Proof. A direct consequence of Proposition 3.1(ii), Theorem 4.2, and Lemma
4.1(iii).

Corollary 5.2. If 4 has finite dimension, every orbit of EMOPP converges to a point
in S under admissible control.

5.3. Chaotic Control

Proposition 5.1. Let (an)n≥0 be an arbitrary orbit of EMOPP under chaotic control.
Then(an)n≥0 converges strongly to a point in S if either of the following conditions holds:

(i) (an)n≥0 converges strongly;
(ii) S(an)n≥0 6= ∅ andcardI < +∞.

Proof. (i) Suppose(∃a∈4) an
n→ a and fixi ∈ I . By Proposition 3.1(iii), there exists

a subsequence(ank)k≥0 of (an)n≥0 such thatd(ank , Si )
n→ 0. ThereforePi (ank)

k→ a
and, sinceSi is (strongly) closed,a ∈ Si . Since this argument is valid for anyi ∈ I ,
a ∈ S.

(ii) Fix a ∈ S(an)n≥0. According to Proposition 2.2(i) it suffices to show thata ∈ S.
Suppose to the contrary thata /∈ S and defineI + = {i ∈ I | a ∈ Si }, I − = I \I +,
µ = mini∈I − d(a, Si ), andν = δε2η2. A slight extension of Proposition 2.3(ii) yields

(∀n∈N)
(
∀e∈

⋂
i∈In

Si

)
‖an+1−e‖2 ≤ ‖an−e‖2−ν max

j∈In

d(an, Sj )
2. (5.1)
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Now fix j ∈ I −, c∈S, andγ ∈ ]0, µ[. As a ∈ S(an)n≥0, there exists an integerp such
thatap ∈ B(a, γ ). Note that‖ap − c‖ ≤ γ + ‖a− c‖ andd(ap, Sj ) ≥ d(a, Pj (ap))−
d(a,ap) ≥ d(a, Sj )− d(a,ap) ≥ µ− γ . Consequently, if we hadj ∈ I p, (5.1) would
imply

‖ap+1− c‖2 ≤ (γ + ‖a− c‖)2− ν(µ− γ )2 (5.2)

and, forγ sufficiently small, we would obtain‖ap+1−c‖ < ‖a−c‖. However, this would
contradict Proposition 2.2(i) which implies(∀n ∈ N) ‖a − c‖ ≤ ‖an − c‖. Therefore
j /∈ I p. Sincej is arbitrary, it follows thatI p∩ I − = ∅ andI p ⊂ I +. Hence,a∈⋂i∈I p

Si

and (5.1)⇒ ‖ap+1−a‖ ≤ ‖ap−a‖ ⇒ ap+1 ∈ B(a, γ ). Reiterating the same argument
for index p + 1, gives j 6∈ I p+1 andap+2 ∈ B(a, γ ). Thus, by induction, we obtain
(∀k ∈ N) j /∈ I p+k, which violates (3.6). We conclude thata ∈ S.

Proposition 5.2. Suppose that the control is chaotic and that(Si )i∈I is a finite family.
Then every orbit(an)n≥0 of EMOPP such that(an−a0)n≥0 ⊂ W,where W is a boundedly
compact subset of4, converges strongly to a point in S.

Proof. By Proposition 2.2(i),(an)n≥0 ⊂ B(c, ‖a0 − c‖) ∩ ({a0} +W) , K . SinceK
is compact, Proposition 5.1(ii) provides the announced result.

Definition 5.4 [43]. A point c ∈ S is astrongly regular pointof (Si )i∈I if

(∀(ρ1, ρ2) ∈ R∗2+ )(∃ρ ∈ R+)(∀(i,a, b) ∈ I ×4×4){‖Pi (a)− c‖ ≥ ρ1

‖b− c‖ ≤ ρ2
⇒ d(b, Hi (a)) ≤ ρd(c, Hi (a)), (5.3)

whereHi (a) = {h ∈ 4 | 〈h− Pi (a) | a− Pi (a)〉 = 0}.

Our main result on the strong convergence of chaotic projection methods can now
be stated.

Theorem 5.3. Under chaotic control, every orbit of EMOPP converges strongly to a
point in S if any of the following conditions is satisfied:

(i) (Si )i∈I is a Slater family: (
⋂

i∈I Si )
◦ 6= ∅.

(ii) (Si )i∈I has a strongly regular point and exact projections are used.
(iii) (Si )i∈I is a family of f -uniformly convex sets and exact projections are used.
(iv) (Si )i∈I is a finite family and one of its sets is boundedly compact(in particular

compact or contained in a finite-dimensional affine subspace).
(v) (Si )i∈I is a finite family and4 has finite dimension.
(vi) (Si )i∈I is a finite family of closed affine subspaces with finite codimensions

(in particular affine hyperplanes).
(vii) (Si )i∈I is a finite family of closed affine half-spaces.
(viii) (Si )i∈I is a finite family of closed polyhedrons and exact projections are used.

Proof. Let (an)n≥0 be an arbitrary orbit of EMOPP. (i) In4, any sequence which is
Fejér-monotone with respect to a closed and convex set with nonempty interior converges
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strongly [8, Theorem 2.16(iii)]. Hence, the result follows from Propositions 2.2(i) and
5.1(i).

(ii) From Propositions 2.3(ii) and 2.4, maxi∈In d(an, Si )
n→ 0. Therefore, following

the proof of Theorem 4.1(i) of [43], (5.3) implies that, forn large enough, we can find
ρ ∈ R+ such that(∀i ∈ In) d(an, Si ) ≤ (ρ + 1)〈an − c | an − Pi (an)〉. Hence, by
invoking Proposition 2.3(iv), we get, forn large enough,

‖an+1− an‖ ≤ λn

∑
i∈In

wi,nd(an, Si )

≤ (ρ + 1)〈an − c | an − an+1〉 ≤ (ρ + 1)ε−1βn. (5.4)

It then follows from Proposition 2.4 that(‖an+1−an‖)n≥0 is summable. Whence,(an)n≥0

is a Cauchy sequence and Proposition 5.1(i) gives the result.
(iii) is a special case of (ii) [43, Theorem 5.1(iii)].
(iv) Suppose thatSj is boundedly compact. By Proposition 3.1(iii), there exists a

subsequence(ank)k≥0 of (an)n≥0 such thatd(ank , Sj )
k→ 0 and, according to Propo-

sition 5.1(ii) and Lemma 4.1(ii), it is enough to show thatS(Pj (ank))k≥0 6= ∅. To
this end, takec ∈ S. Then c is a fixed point of the nonexpansive operatorPj and
Proposition 2.2(i) entails(∀k ∈ N) ‖Pj (ank) − c‖ ≤ ‖ank − c‖ ≤ ‖a0 − c‖. Hence
(Pj (ank))k≥0 ⊂ B(c, ‖a0− c‖) ∩ Sj , Kj . SinceKj is compact,S(Pj (ank))k≥0 6= ∅.

(v) is a special case of (iv).
(vi) Consider the finite-dimensional vector subspaceW =∑i∈I S⊥i and define

(∀n ∈ N) pn = λn

∑
i∈In

wi,n(Pi,n(an)− an). (5.5)

At every iterationn, the sets(Si,n)i∈In are supersets of the affine subspaces(Si )i∈In .
Whence

(∀n ∈ N)(∀i ∈ In) Pi,n(an)− an ∈ S⊥i . (5.6)

Consequently,(pn)n≥0 ⊂ W. Clearly,a0− a0 ∈ W. Now suppose that, for somen ∈ N,
an− a0 ∈ W. Then, sincean+1− a0 = (an− a0)+ pn, we obtainan+1− a0 ∈ W. Thus,
we have proved by induction that

(an − a0)n≥0 ⊂ W (5.7)

and Proposition 5.2 ends the proof sinceW is boundedly compact.
(vii) Let (∀i ∈ I ) Si = {a ∈ 4 | 〈a | bi 〉 ≤ κi } and defineW as the vector subspace

spanned by the finite family(bi )i∈I . Notice that

(∀n ∈ N)(∀i ∈ In)

{
Si,n = {a ∈ 4 | 〈a | bi 〉 ≤ κi,n},
Pi,n(an)− an ∝ bi .

(5.8)

Therefore, repeating the same argument as in (vi), we observe that (5.7) holds. Proposition
5.2 then gives the announced result.

(viii) Let (∀i ∈ I ) Si =
⋂Ji

j=1{a ∈ 4 | 〈a | bi, j 〉 ≤ κi, j } where(Ji )i∈I ⊂ N. Then
the proof is similar to that of (vii) since, with exact projections, we can takeW to be the
vector subspace spanned by the finite family((bi, j )1≤ j≤Ji )i∈I .
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Remark 5.5. For the relaxation rule (1.11) and exact projections, parts (i)–(iii) of Theo-
rem 5.3 were given in Corollary 5.1(iii) of [43]. Particular cases of Theorem 5.3(iv) appear
in Example 6.1 of [8], which considered the relaxation rule (1.10), and in Corollary 1.2
of [14], which considered (1.1)–(1.2) with a compact set. Theorem 5.3(v) improves upon
results of [2], [3], and [32].

Remark 5.6. Suppose that(Si )i∈I is a finite family whose nonvoid subfamilies are
all boundedly regular. Then strong convergence is achieved in the case of the chaotic
iteration process (1.1)–(1.2) [7].

Remark 5.7. Suppose that4 is a euclidean space. According to Corollary 5.1(iv) and
Corollary 5.2, EMOPP converges to a feasible point for any countable family of sets
under chaotically coercive and admissible controls. Theorem 5.3(v) states that under
chaotic control convergence holds for finite families of sets, while Example 4.1 shows
that the condition cardI < +∞ cannot be eliminated.
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