Proximal and resolvent averages

Heinz H. Bauschke
Mathematics, University of British Columbia
Kelowna, B.C., Canada
Research supported by NSERC and by the CRC program

Optimization, Games, and Dynamics

Institut Henri Poincaré, Paris, France

November 28, 2011

$$
9: 50-10: 40
$$

Table of contents

Introduction

The proximal average

The resolvent average

Current/future work and open problems

Bibliographical starting points

Introduction

The feasibility problem and projection methods

Let $C_{1}, C_{2}, \ldots, C_{m}$ be sets in a Hilbert space X, which we assume to be closed, convex, $\neq \varnothing$. The convex feasibility problem asks to

$$
\text { find } \quad x \in C:=C_{1} \cap C_{2} \cap \cdots \cap C_{m} \text {. }
$$

We assume that the sets C_{i} are "simple" in the sense that the nearest point mappings (projection operators) P_{i} or

$$
P_{C_{i}}: x \mapsto \underset{c_{i} \in C_{i}}{\operatorname{argmin}}\left\|x-c_{i}\right\|
$$

are easy to compute.
A projection method combines the projectors in some algorithmic fashion to generate a sequence converging to a solution of the feasibility problem.

Cyclic/alternating projections

The method of cyclic projections generates a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ via

$$
x_{0} \stackrel{P_{1}}{\longmapsto} x_{1} \stackrel{P_{2}}{\longmapsto} x_{2} \cdots x_{m-1} \stackrel{P_{m}}{\longmapsto} x_{m} \stackrel{P_{1}}{\longmapsto} x_{m+1} \stackrel{P_{2}}{\longmapsto} x_{m+2} \cdots
$$

Cyclic/alternating projections

The method of cyclic projections generates a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ via

$$
x_{0} \stackrel{P_{1}}{\longmapsto} x_{1} \stackrel{P_{2}}{\longmapsto} x_{2} \cdots x_{m-1} \stackrel{P_{m}}{\longmapsto} x_{m} \stackrel{P_{1}}{\longmapsto} x_{m+1} \stackrel{P_{2}}{\longmapsto} x_{m+2} \cdots
$$

When $m=2$, this is also called alternating projections:

Method of alternating projections (for $m=2$ subspaces)

von Neumann's result for subspaces

Theorem. (von Neumann, 1935)
Suppose that C_{1} and C_{2} are subspaces. The sequence generated by the method of alternating projections converges strongly to the projection of the starting point onto the intersection.

von Neumann's result for subspaces

Theorem. (von Neumann, 1935)
Suppose that C_{1} and C_{2} are subspaces. The sequence generated by the method of alternating projections converges strongly to the projection of the starting point onto the intersection.

Remark. (Aronszajn, 1950)
If the angle

$$
\arccos \sup _{c_{i} \in C_{i} \cap\left(C_{1} \cap C_{2}\right)^{\perp},\left\|c_{i}\right\| \leq 1}\left\langle c_{1}, c_{2}\right\rangle
$$

between the subspaces is positive, then the rate of convergence is linear.

Bregman's weak convergence result for convex sets

Theorem. (Bregman, 1965)
Given a starting point $x_{0} \in X$, define $\left(x_{n}\right)_{n \in \mathbb{N}}$, the sequence of alternating projections, by

$$
x_{0} \stackrel{P_{1}}{\longmapsto} x_{1} \stackrel{P_{2}}{\longmapsto} x_{2} \stackrel{P_{1}}{\longmapsto} x_{3} \stackrel{P_{2}}{\longmapsto} x_{4} \stackrel{P_{1}}{\longmapsto} \cdots .
$$

Then

$$
x_{n} \rightharpoonup \bar{c} \in C .
$$

Regularity

Remark. (Gubin-Polyak-Raik, 1967)
If $\left(C_{1} \cap \operatorname{int}\left(C_{2}\right)\right) \cup\left(C_{2} \cap \operatorname{int}\left(C_{1}\right)\right) \neq \varnothing$, then $x_{n} \rightarrow \bar{c} \in C$ strongly (even linearly).

Remark. The results by Aronszajn and by Gubin-Polyak-Raik can be unified: indeed, either assumption implies the Attouch-Brezis constraint qualification

$$
\bigcup_{\rho>0} \rho\left(C_{1}-C_{2}\right) \text { is a closed subspace, }
$$

which in turn yields linear convergence (B-Borwein).

Hundal's counterexample

Hundal's counterexample, 2004.
In $X=\ell_{2}$, there exist two closed convex sets H and K, a vector
$f \in X$, and a starting point $y_{0} \in K$ so that:

- $\|f\|=1$;
- H is the hyperplane $\{f\}^{\perp}$;
- K is a closed convex cone with $\sup \langle f, K\rangle=0$;
- $H \cap K=\{0\}$.

Then the sequence of alternating projections converges weakly to 0 , but not strongly.

Random projections (for the consistent case)

Rather than projecting cyclically let us "roll a die" instead: let

$$
r: \mathbb{N} \rightarrow I=\{1, \ldots, m\}
$$

be a random map, i.e., $r^{-1}(i)$ is infinite for every $i \in I$, and $x_{0} \in X$. Consider the sequence of random projections

$$
x_{n+1}=P_{C_{r(n)}} x_{n} .
$$

Random projections (for the consistent case)

Rather than projecting cyclically let us "roll a die" instead: let

$$
r: \mathbb{N} \rightarrow I=\{1, \ldots, m\}
$$

be a random map, i.e., $r^{-1}(i)$ is infinite for every $i \in I$, and $x_{0} \in X$. Consider the sequence of random projections

$$
x_{n+1}=P_{C_{r(n)}} x_{n} .
$$

Open Problem:
If each C_{i} is a subspace, must $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge strongly?

Random projections (for the consistent case)

Rather than projecting cyclically let us"roll a die" instead: let

$$
r: \mathbb{N} \rightarrow I=\{1, \ldots, m\}
$$

be a random map, i.e., $r^{-1}(i)$ is infinite for every $i \in I$, and $x_{0} \in X$. Consider the sequence of random projections

$$
x_{n+1}=P_{C_{r(n)}} x_{n} .
$$

Open Problem:
If each C_{i} is a subspace, must $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge strongly?
(Weak convergence to $P_{C} x_{0}$ is due to Amemiya and Ando, 1965.
Works by Baillon and Bruck strongly suggest this is true.)

Random projections (for the consistent case)

Rather than projecting cyclically let us"roll a die" instead: let

$$
r: \mathbb{N} \rightarrow I=\{1, \ldots, m\}
$$

be a random map, i.e., $r^{-1}(i)$ is infinite for every $i \in I$, and $x_{0} \in X$. Consider the sequence of random projections

$$
x_{n+1}=P_{C_{r(n)}} x_{n} .
$$

Open Problem:
If each C_{i} is a subspace, must $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge strongly?
(Weak convergence to $P_{C} x_{0}$ is due to Amemiya and Ando, 1965.
Works by Baillon and Bruck strongly suggest this is true.)
Open Problem:
In the convex case, must $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge weakly to a point in C ?

Random projections (for the consistent case)

Rather than projecting cyclically let us"roll a die" instead: let

$$
r: \mathbb{N} \rightarrow I=\{1, \ldots, m\}
$$

be a random map, i.e., $r^{-1}(i)$ is infinite for every $i \in I$, and $x_{0} \in X$. Consider the sequence of random projections

$$
x_{n+1}=P_{C_{r(n)}} x_{n} .
$$

Open Problem:
If each C_{i} is a subspace, must $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge strongly?
(Weak convergence to $P_{C} x_{0}$ is due to Amemiya and Ando, 1965.
Works by Baillon and Bruck strongly suggest this is true.)
Open Problem:
In the convex case, must $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge weakly to a point in C ?
(OK if $m=2$; also OK if $m=3$ by Dye and Reich, 1992.)

The inconsistent case when $m=2$

Define the gap vector

$$
v:=P_{\overline{C_{2}-C_{1}}} 0
$$

and the "generalized solution sets"

$$
E_{1}:=C_{1} \cap\left(C_{2}-v\right) \text { and } E_{2}:=\left(C_{1}+v\right) \cap C_{2}
$$

(If $C_{1} \cap C_{2} \neq \varnothing$, then $v=0$ and $E_{1}=E_{2}=C_{1} \cap C_{2}$.)
Then $E_{1}=\operatorname{Fix}\left(P_{1} \circ P_{2}\right), E_{2}=\operatorname{Fix}\left(P_{2} \circ P_{1}\right)$, and

$$
x_{2 n+2}-x_{2 n+1} \rightarrow v, \quad x_{2 n+1}-x_{2 n} \rightarrow-v
$$

Furthermore: Either: $E_{1}=E_{2}=\varnothing$ and $\left\|x_{n}\right\| \rightarrow+\infty$;
Or: $x_{2 n+1} \rightharpoonup e_{1} \in E_{1}$ and $x_{2 n} \rightharpoonup e_{2} \in E_{2}$,

$$
\left(e_{1}, e_{2}\right) \text { is a minimizer for } \min _{\left(y_{1}, y_{2}\right) \in C_{1} \times C_{2}}\left\|y_{1}-y_{2}\right\|
$$

as well as a cycle: $e_{2}=P_{2} e_{1}$ and $e_{1}=P_{1} e_{2}$.

The inconsistent case when $m \geq 3$

In striking contrast, Baillon-Combettes-Cominetti (2011) proved:
There exists no function F on X^{m} such that cycles $\left(e_{1}, \ldots, e_{m}\right)$ correspond to minimizers for the problem

$$
\min _{\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in C_{1} \times C_{2} \times \cdots \times C_{m}} F\left(y_{1}, \ldots, y_{m}\right) \text {. }
$$

Underrelaxed projections for the general case

For $\lambda \in] 0,1]$, consider the composition of underrelaxed projections:

$$
Q_{\lambda}:=\left((1-\lambda) \mathrm{Id}+\lambda P_{m}\right) \circ \cdots \circ\left((1-\lambda) \mathrm{ld}+\lambda P_{1}\right) .
$$

Suppose that each Fix $Q_{\lambda} \neq \varnothing$, and let

$$
\mathcal{L}:=\operatorname{Fix}\left(\sum_{i=1}^{m} \frac{1}{m} P_{i}\right)
$$

be the set of least squares solutions, i.e., the minimizers of the function

$$
x \mapsto \sum_{i=1}^{m} d_{C_{i}}^{2}(x)
$$

De Pierro's Conjecture

Theory of strongly/averaged nonexpansive mappings implies that

$$
x_{\lambda}:=\text { weak } \lim _{n \rightarrow+\infty} Q_{\lambda}^{n} x
$$

exists, for every $x \in X$.
Open Problem: De Pierro's Conjecture Does the curve $\left(x_{\lambda}\right)_{\lambda \in] 0,1]}$ converge to $P_{\mathcal{L}^{x}}$?

Remark. Censor-Eggermont-Gordon (1984) proved this for subspaces in Euclidean space; for further supporting results of this conjecture, see De Pierro (2001) (and also B-Edwards).

Experimental evidence for De Pierro's Conjecture

```
4 + C Hettps://people.ok.ubc.ca/bauschke/Proj/
```


https://people.ok.ubc.ca/bauschke/Proj/

The arithmetic average

$$
\frac{P_{1}+P_{2}+\cdots+P_{m}}{m}
$$

is a much better behaved object than the composition

$$
P_{m} \circ \cdots \circ P_{2} \circ P_{1} .
$$

\ominus The composition is not firmly nonexpansive.
\oplus The average is not a projection; however, it is still a proximal map (Moreau).

In the following, I will advocate the proximal average in the proximal mapping setting and the resolvent average in the general firmly nonexpansive setting (via Minty's correspondence).

The proximal average

Monotone operators

Recall that a set-valued operator $A: X \rightrightarrows X$ is monotone if

$$
\left.\begin{array}{l}
(x, u) \in \operatorname{gra} A \\
(y, v) \in \operatorname{gra} A
\end{array}\right\} \quad \Rightarrow \quad\langle x-y, u-v\rangle \geq 0
$$

where gra A is the graph of A, and that A is maximally monotone if A cannot be properly extended without destroying monotonicity.

Basic examples are the subdifferential operator ∂f of $f: X \rightarrow]-\infty,+\infty]$, where f is convex, lower semicontinuous, and proper; any bounded linear operator $A: X \rightarrow X$ with a positive symmetric part.

Firmly nonexpansive mappings

Recall that $T: X \rightarrow X$ is firmly nonexpansive if

$$
(\forall x \in X)(\forall y \in X) \quad\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle
$$

Thanks to work by Minty (1962), Reich (1977), and Eckstein and Bertsekas (1992), we have for $T: X \rightarrow X$ and $A: X \rightrightarrows X$:

Firmly nonexpansive mappings

Recall that $T: X \rightarrow X$ is firmly nonexpansive if

$$
(\forall x \in X)(\forall y \in X) \quad\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle
$$

Thanks to work by Minty (1962), Reich (1977), and Eckstein and Bertsekas (1992), we have for $T: X \rightarrow X$ and $A: X \rightrightarrows X$:

- T is firmly nonexpansive
$\Leftrightarrow T^{-1}$ - Id is maximally monotone;

Firmly nonexpansive mappings

Recall that $T: X \rightarrow X$ is firmly nonexpansive if

$$
(\forall x \in X)(\forall y \in X) \quad\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle
$$

Thanks to work by Minty (1962), Reich (1977), and Eckstein and Bertsekas (1992), we have for $T: X \rightarrow X$ and $A: X \rightrightarrows X$:

- T is firmly nonexpansive
$\Leftrightarrow T^{-1}$ - Id is maximally monotone;
- A is maximally monotone
$\Leftrightarrow \mathrm{Id}+A$ is onto and the resolvent

$$
J_{A}:=(\operatorname{ld}+A)^{-1}
$$

is firmly nonexpansive.

Firmly nonexpansive mappings

Recall that $T: X \rightarrow X$ is firmly nonexpansive if

$$
(\forall x \in X)(\forall y \in X) \quad\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle
$$

Thanks to work by Minty (1962), Reich (1977), and Eckstein and Bertsekas (1992), we have for $T: X \rightarrow X$ and $A: X \rightrightarrows X$:

- T is firmly nonexpansive
$\Leftrightarrow T^{-1}$ - Id is maximally monotone;
- A is maximally monotone
$\Leftrightarrow \mathrm{Id}+A$ is onto and the resolvent

$$
J_{A}:=(\operatorname{ld}+A)^{-1}
$$

is firmly nonexpansive.

- Critical vs fixed points: $0 \in A x \Leftrightarrow x=J_{A} x$, i.e., $x \in \operatorname{Fix} J_{A}$.

Proximal mappings

We also have the equivalence

$$
\begin{aligned}
& T \text { is firmly nonexpansive } \\
\Leftrightarrow & 2 T \text { - Id is nonexpansive (Lipschitz-1). }
\end{aligned}
$$

Moreau's proximal map (or proximity operator, early 1960s) is

$$
J_{\partial f} x=\operatorname{Prox}_{f} x
$$

in fact, $\operatorname{Prox}_{f} x$ is the unique minimizer of $y \mapsto f(y)+\frac{1}{2}\|x-y\|^{2}$.

Proximal mappings

We also have the equivalence

$$
\begin{aligned}
& T \text { is firmly nonexpansive } \\
\Leftrightarrow & 2 T \text { - Id is nonexpansive (Lipschitz-1). }
\end{aligned}
$$

Moreau's proximal map (or proximity operator, early 1960s) is

$$
J_{\partial f} x=\operatorname{Prox}_{f} x
$$

in fact, $\operatorname{Prox}_{f} X$ is the unique minimizer of $y \mapsto f(y)+\frac{1}{2}\|x-y\|^{2}$.
(If A is the rotator by $\pi / 2$ in \mathbb{R}^{2}, then J_{A} is not a proximal map.)

Proximal mappings

We also have the equivalence

$$
\begin{aligned}
& T \text { is firmly nonexpansive } \\
\Leftrightarrow & 2 T-\text { Id is nonexpansive (Lipschitz-1). }
\end{aligned}
$$

Moreau's proximal map (or proximity operator, early 1960s) is

$$
J_{\partial f} x=\operatorname{Prox}_{f} x
$$

in fact, $\operatorname{Prox}_{f} x$ is the unique minimizer of $y \mapsto f(y)+\frac{1}{2}\|x-y\|^{2}$. (If A is the rotator by $\pi / 2$ in \mathbb{R}^{2}, then J_{A} is not a proximal map.)

Suppose each $\left(T_{i}\right)_{i \in I}$ is firmly nonexpansive and $\left(\lambda_{i}\right)_{i \in I}$ are convex coefficients (weights): each $\lambda_{i}>0$ and $\sum_{i \in I} \lambda_{i}=1$. Set

$$
T:=\sum_{i \in I} \lambda_{i} T_{i}
$$

Then T is firmly nonexpansive

Proximal mappings

We also have the equivalence

$$
\begin{align*}
& T \text { is firmly nonexpansive } \\
\Leftrightarrow & 2 T-\text { Id is nonexpansive (Lipschitz-1). } \tag{*}
\end{align*}
$$

Moreau's proximal map (or proximity operator, early 1960s) is

$$
J_{\partial f} x=\operatorname{Prox}_{f} x
$$

in fact, $\operatorname{Prox}_{f} x$ is the unique minimizer of $y \mapsto f(y)+\frac{1}{2}\|x-y\|^{2}$. (If A is the rotator by $\pi / 2$ in \mathbb{R}^{2}, then J_{A} is not a proximal map.)

Suppose each $\left(T_{i}\right)_{i \in I}$ is firmly nonexpansive and $\left(\lambda_{i}\right)_{i \in I}$ are convex coefficients (weights): each $\lambda_{i}>0$ and $\sum_{i \in I} \lambda_{i}=1$. Set

$$
T:=\sum_{i \in I} \lambda_{i} T_{i}
$$

Then T is firmly nonexpansive since $2 T$ - Id is nonexpansive:

$$
2 T-\mathrm{Id}=2 \sum_{i \in I} \lambda_{i} T_{i}-\mathrm{Id}=\sum_{i \in I} \lambda_{i}\left(2 T_{i}-\mathrm{Id}\right)
$$

Proximal mappings form a convex set

Moreau showed that if each T_{i} is even a proximal map, then so is the average T.

Proximal mappings form a convex set

Moreau showed that if each T_{i} is even a proximal map, then so is the average T.

Put differently, given functions $\left(f_{i}\right)_{i \in I}$ in Γ, there exists $f \in \Gamma$ such that

$$
\operatorname{Prox}_{f}=\sum_{i \in I} \lambda_{i} \operatorname{Prox}_{f_{i}}
$$

The function f is unique up to an additive constant; among all these functions, the proximal average that we shall formally define does have beautiful and useful properties.

Handy notation

- $\mathfrak{q}: x \mapsto \frac{1}{2}\langle x, x\rangle$ quadratic energy function
- $\Gamma=$ functions from X to $]-\infty,+\infty]$ that are convex, lower semicontinuous, and proper
- $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \Gamma^{m}$
- $\mathbf{f}^{*}=\left(f_{1}^{*}, \ldots, f_{m}^{*}\right)$
- $\mathbf{f}^{* *}=\left(f_{1}^{* *}, \ldots, f_{m}^{* *}\right)=\mathbf{f}$
- $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m}$
- $\lambda_{1}+\cdots+\lambda_{m}=1$
- $\mu>0$

Definition of the proximal average

Definition. (B-Goebel-Lucet-Wang) The $\boldsymbol{\lambda}$-weighted proximal average of \mathbf{f} with parameter μ is defined by

$$
p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\lambda_{1} \bullet\left(f_{1}+\mu \bullet \mathfrak{q}\right) \square \cdots \square \lambda_{m} \bullet\left(f_{m}+\mu \bullet \mathfrak{q}\right)-\mu \bullet \mathfrak{q},
$$

where epi-addition and epi-multiplication are

$$
(f \square g)(x)=\inf _{y+z=x}(f(y)+g(z)) ;
$$

and $\alpha \bullet f=\alpha f(\cdot / \alpha)$, if $\alpha>0 ; \alpha \bullet f=\iota_{\{0\}}$, if $\alpha=0$.

Reformulations

$$
\begin{aligned}
& \text { If } I=\left\{i \in\{1, \ldots, m\} \mid \lambda_{i}>0\right\} \text {, then } \\
& \qquad p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x)= \\
& \quad \frac{1}{\mu}\left(-\frac{1}{2}\|x\|^{2}+\inf _{\sum_{i \in I} x_{i}=x} \sum_{i \in I} \lambda_{i}\left(\mu f_{i}\left(x_{i} / \lambda_{i}\right)+\frac{1}{2}\left\|x_{i} / \lambda_{i}\right\|^{2}\right)\right) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) & =\left(\lambda_{1}\left(f_{1}^{*} \square \mu \mathfrak{q}\right)+\cdots+\lambda_{m}\left(f_{m}^{*} \square \mu \mathfrak{q}\right)\right)^{*}-\mu^{-1} \mathfrak{q} \\
& =\left(\lambda_{1}\left(f_{1}+\mu^{-1} \mathfrak{q}\right)^{*}+\cdots+\lambda_{m}\left(f_{m}+\mu^{-1} \mathfrak{q}\right)^{*}\right)^{*}-\mu^{-1} \mathfrak{q}
\end{aligned}
$$

Remark. This was first studied explicitly (for $m=2$ and $\mu=1$) by B-Matoušková-Reich to obtain a Güler-like counterexample for the proximal point algorithm - based on Hundal's counterexample!

Visualizing the arithmetic average from $2 x+2$ to x^{2}

Visualizing the proximal average from $2 x+2$ to x^{2}

From $-\ln (-x)$ to $-\ln (x)$

Basic results - a selection

Theorem. $\operatorname{dom} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\lambda_{1} \operatorname{dom} f_{1}+\cdots+\lambda_{m} \operatorname{dom} f_{m}$, and the epi-sum for $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ is always exact (i.e., the infimum is attained).

Basic results - a selection

Theorem. $\operatorname{dom} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\lambda_{1} \operatorname{dom} f_{1}+\cdots+\lambda_{m} \operatorname{dom} f_{m}$, and the epi-sum for $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ is always exact (i.e., the infimum is attained).

Corollary. If some f_{i} has full domain and $\lambda_{i}>0$, then $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ has full domain as well.

Basic results - a selection

Theorem. $\operatorname{dom} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\lambda_{1} \operatorname{dom} f_{1}+\cdots+\lambda_{m} \operatorname{dom} f_{m}$, and the epi-sum for $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ is always exact (i.e., the infimum is attained).

Corollary. If some f_{i} has full domain and $\lambda_{i}>0$, then $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ has full domain as well.

Theorem. $\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)^{*}=p_{\mu^{-1}}\left(\mathbf{f}^{*}, \boldsymbol{\lambda}\right)$.
Corollary. $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ is convex, lower semicontinuous, and proper.
Proof. Applying the last theorem twice, we deduce that

$$
\begin{aligned}
\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)^{* *} & =\left(p_{\mu^{-1}}\left(\mathbf{f}^{*}, \boldsymbol{\lambda}\right)\right)^{*}=p_{\left(\mu^{-1}\right)^{-1}}\left(\mathbf{f}^{* *}, \boldsymbol{\lambda}\right) \\
& =p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})
\end{aligned}
$$

Basic results - a selection

Theorem. $\operatorname{dom} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\lambda_{1} \operatorname{dom} f_{1}+\cdots+\lambda_{m} \operatorname{dom} f_{m}$, and the epi-sum for $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ is always exact (i.e., the infimum is attained).

Corollary. If some f_{i} has full domain and $\lambda_{i}>0$, then $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ has full domain as well.

Theorem. $\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)^{*}=p_{\mu^{-1}}\left(\mathbf{f}^{*}, \boldsymbol{\lambda}\right)$.
Corollary. $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ is convex, lower semicontinuous, and proper.
Proof. Applying the last theorem twice, we deduce that

$$
\begin{aligned}
\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)^{* *} & =\left(p_{\mu^{-1}}\left(\mathbf{f}^{*}, \boldsymbol{\lambda}\right)\right)^{*}=p_{\left(\mu^{-1}\right)^{-1}}\left(\mathbf{f}^{* *}, \boldsymbol{\lambda}\right) \\
& =p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})
\end{aligned}
$$

Example. $p_{1}\left(\mathbf{f}, \mathbf{f}^{*}, 1 /(2 m)\right)=\mathfrak{q}$.

Moreau envelope

Recall that the Moreau envelope of f with parameter μ is

$$
e_{\mu} f=f \square \mu \bullet \mathfrak{q}=\left(f^{*}+\mu \mathfrak{q}\right)^{*}
$$

Theorem. $e_{\mu} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\lambda_{1} e_{\mu} f_{1}+\cdots+\lambda_{m} e_{\mu} f_{m}$.

Moreau envelope

Recall that the Moreau envelope of f with parameter μ is

$$
e_{\mu} f=f \square \mu \bullet \mathfrak{q}=\left(f^{*}+\mu \mathfrak{q}\right)^{*}
$$

Theorem. $e_{\mu} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\lambda_{1} e_{\mu} f_{1}+\cdots+\lambda_{m} e_{\mu} f_{m}$.
Corollary.

$$
\operatorname{argmin} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\operatorname{argmin}\left(\lambda_{1} e_{\mu} f_{1}+\cdots+\lambda_{m} e_{\mu} f_{m}\right) .
$$

Example. (least squares solutions revisited)
If each $f_{i}=\iota c_{i}$, where C_{i} is closed, convex, nonempty, then

$$
\operatorname{argmin} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\operatorname{argmin}\left(\lambda_{1} d_{C_{1}}^{2}+\cdots+\lambda_{m} d_{C_{m}}^{2}\right) .
$$

Proximal mapping

Recall that the proximal mapping of f with parameter μ is

$$
P_{\mu} f:=\operatorname{Prox}_{\mu f}=(\operatorname{Id}+\mu \partial f)^{-1}
$$

it satisfies

$$
\left(P_{\mu} f\right) \circ(\mu \mathrm{Id})=\nabla\left(e_{\mu^{-1}}\left(f^{*}\right)\right)
$$

Finally, we are able to motivate the term "proximal average":
Theorem.

$$
P_{\mu}\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)=\lambda_{1} P_{\mu} f_{1}+\cdots+\lambda_{m} P_{\mu} f_{m}
$$

Proof.

We have

$$
\begin{aligned}
e_{\mu^{-1}}\left(\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)^{*}\right) & =e_{\mu^{-1}}\left(p_{\mu^{-1}}\left(\mathbf{f}^{*}, \boldsymbol{\lambda}\right)\right) \\
& =\lambda_{1} e_{\mu^{-1}}\left(f_{1}^{*}\right)+\cdots+\lambda_{m} e_{\mu^{-1}}\left(f_{m}^{*}\right)
\end{aligned}
$$

Taking gradients yields

$$
\nabla\left(e_{\mu^{-1}}\left(\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)^{*}\right)\right)=\lambda_{1} \nabla\left(e_{\mu^{-1}}\left(f_{1}^{*}\right)\right)+\cdots+\lambda_{m} \nabla\left(e_{\mu^{-1}}\left(f_{m}^{*}\right)\right)
$$

in turn, this is equivalent to
$\left(P_{\mu}\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)\right) \circ(\mu \mathrm{Id})=\lambda_{1}\left(P_{\mu} f_{1}\right) \circ(\mu \mathrm{ld})+\cdots+\lambda_{m}\left(P_{\mu} f_{m}\right) \circ(\mu \mathrm{Id})$,
i.e., to

$$
P_{\mu}\left(p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})\right)=\lambda_{1}\left(P_{\mu} f_{1}\right)+\cdots+\lambda_{m}\left(P_{\mu} f_{m}\right)
$$

Cones

Example. Let K_{1}, \ldots, K_{m} be closed subspaces that are pairwise orthogonal and such that $K_{1} \oplus \cdots \oplus K_{m}=X$, and suppose that each $f_{i}=\iota_{K_{i}}$ and $\lambda_{i}>0$. Then

$$
p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\mu^{-1} \sum_{i=1}^{m}\left(\lambda_{i}^{-1}-1\right)\left(\mathfrak{q} \circ P_{K_{i}}\right)
$$

Example. Let K be a nonempty closed convex cone in X and let $\lambda \in] 0,1[$. Then

$$
p_{1}\left(\left(\iota_{K}, \iota_{K} \ominus\right),(1-\lambda, \lambda)\right)(x)=\frac{\lambda^{2}\left\|P_{K} x\right\|^{2}+(1-\lambda)^{2}\left\|P_{K \ominus x}\right\|^{2}}{2(1-\lambda) \lambda}
$$

where $K^{\ominus}=\{u \in X \mid \sup \langle u, K\rangle \leq 0\}$ is the polar cone of K.

Legendre functions

Let $g \in \Gamma$. The following generalizes classical notions in \mathbb{R}^{N} :

- g is essentially smooth if ∂g is at most single-valued and int dom g is nonempty;
- g is essentially strictly convex if g^{*} is essentially smooth;
- g is Legendre if g is both essentially smooth and essentially strictly convex.

Legendre functions

Let $g \in \Gamma$. The following generalizes classical notions in \mathbb{R}^{N} :

- g is essentially smooth if ∂g is at most single-valued and int dom g is nonempty;
- g is essentially strictly convex if g^{*} is essentially smooth;
- g is Legendre if g is both essentially smooth and essentially strictly convex.

Corollary. (Inheritance) Suppose each $\lambda_{i}>0$.

- If some f_{i} is essentially smooth, then so is $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$.
- If some f_{j} is essentially strictly convex, then so is $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$.
- If some f_{i} is essentially smooth and some f_{j} is essentially strictly convex (where not necessarily $i=j$), then $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ is Legendre.

Varying the parameter μ

Theorem. (pointwise limits) Let $x \in X$. Then the function

$$
\left.\left.\mathbb{R}_{++} \rightarrow\right]-\infty,+\infty\right]: \mu \mapsto p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x) \quad \text { is decreasing. }
$$

In fact,

$$
\lim _{\mu \rightarrow 0^{+}} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x)=\left(\lambda_{1} f_{1}+\cdots+\lambda_{m} f_{m}\right)(x)
$$

and

$$
\lim _{\mu \rightarrow+\infty} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x)=\left(\lambda_{1} \bullet f_{1} \square \cdots \square \lambda_{m} \bullet f_{m}\right)(x)
$$

Antiderivatives

Recall that $f \in \Gamma$ is an antiderivative of A if gra $A \subseteq$ gra ∂f.
Fact. (Rockafellar, 1970) Let A be cyclically monotone, i.e., $\sum_{i=1}^{n}\left\langle a_{i+1}-a_{i}, a_{i}^{*}\right\rangle \leq 0$ for $n \geq 2,\left(a_{i}, a_{i}^{*}\right) \in \operatorname{gra} A$ and $a_{n+1}=a_{1}$. Then the following hold:

- The Rockafellar functions $R_{A,\left(a, a^{*}\right)}(x)$ defined by

$$
\sup _{2 \leq n,\left(a_{i}, a_{i}^{*}\right) \in \operatorname{gra} A}\left(\sum_{i=1}^{n-2}\left\langle a_{i+1}-a_{i}, a_{i}^{*}\right\rangle+\left\langle x-a_{n-1}, a_{n-1}^{*}\right\rangle\right)
$$

(with $\left(a, a^{*}\right)=\left(a_{1}, a_{1}^{*}\right) \in$ gra A fixed) are antiderivatives of A.

- Maximally cyclically monotone operators are precisely subdifferential operators of functions in Γ.
- If A is maximally cyclically monotone, then antiderivatives of A differ only by constants.

Rockafellar's question

In 2005, R.T. Rockafellar asked the following.
Given a cyclically monotone operator with finite graph, find a method that produces an antiderivative of A that preserves the "natural symmetry" induced by convex duality.

Neither Rockafellar's antiderivatives $R_{A,\left(a, a^{*}\right)}$ nor their pointwise maximum

$$
m_{A}(x):=\sup _{\left(a, a^{*}\right) \in \operatorname{gra} A} R_{A,\left(a, a^{*}\right)}(x)
$$

have this property.

An answer

Let \mathcal{A} be the set of cyclically monotone operators with finite graph.
Theorem. (B-Lucet-Wang) The method

$$
\mathfrak{m}: \mathcal{A} \rightarrow \Gamma: A \mapsto p_{1}\left(m_{A}, m_{A^{-1}}^{*}, \frac{1}{2}, \frac{1}{2}\right)
$$

produces primal-dual symmetric antiderivatives in the sense that

$$
\left(\mathfrak{m}_{A}\right)^{*}=\mathfrak{m}_{A^{-1}}
$$

In other words, the following is a commutative diagram.

\[

\]

An example - 5 points sampled from exp

thick black - exp; five circled points - the sample; dashed blue - m_{A}; dashed-dotted green - $m_{A^{-1}}^{*}$; thick red $-\mathfrak{m}_{A}$.

∂ (primal-dual symmetric extension)

Note the "slope one" property of $\partial \mathfrak{m}_{A}$ outside the rectangle conv $\operatorname{dom} A \times$ conv ran A.

The resolvent average

Near equality and near convexity

We now assume for a while that

$$
X \text { is finite-dimensional and that } I=\{1,2, \ldots, m\},
$$

because then the "relative interior" calculus works particularly well.
Definition. Let A and B be subsets of X. We say that A and B are nearly equal if

$$
A \approx B \quad: \Leftrightarrow \quad \bar{A}=\bar{B} \quad \text { and } \quad \text { ri } A=\text { ri } B
$$

Proposition. Let $A \subseteq X$. Then A is nearly convex (in the sense of Rockafellar and Wets), i.e., there exists a convex subset C of X such that $C \subseteq A \subseteq \bar{C}$ if and only if

$$
A \approx \operatorname{conv} A
$$

Calculus

Proposition. Assume that A, A_{1}, \ldots, A_{m} are nearly convex subsets of X and that B, B_{1}, \ldots, B_{m} are just subsets of X, all $\neq \varnothing$. Then:

- $A \approx \operatorname{conv} A \approx \bar{A} \approx \operatorname{ri} A$.
- If $A \approx B$, then B is nearly convex.
- If $(\forall i \in I) A_{i} \approx B_{i}$, then $\sum_{i \in I} A_{i}$ is nearly convex and

$$
\sum_{i \in I} A_{i} \approx \sum_{i \in I} B_{i}
$$

- If B is compact and $A_{1}+B \approx A_{2}+B$, then $A_{1} \approx A_{2}$.

Relevance for maximally monotone operators

Fact. Let $A: X \rightrightarrows X$ be maximally monotone. Then $\operatorname{dom} A$ and $\operatorname{ran} A$ are nearly convex.

Relevance for maximally monotone operators

Fact. Let $A: X \rightrightarrows X$ be maximally monotone. Then $\operatorname{dom} A$ and $\operatorname{ran} A$ are nearly convex.

Recall that $A: X \rightrightarrows X$ is rectangular (a.k.a. 3^{*} or star monotone; Brezis-Haraux 1976) if the Fitzpatrick function satisfies

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} A)\left(\forall x^{*} \in \operatorname{ran} A\right) \\
& \quad F_{A}\left(x, x^{*}\right):=\sup _{\left(a, a^{*}\right) \in \operatorname{gra} A}\left(\left\langle x, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle-\left\langle a, a^{*}\right\rangle\right)<+\infty .
\end{aligned}
$$

Relevance for maximally monotone operators

Fact. Let $A: X \rightrightarrows X$ be maximally monotone. Then $\operatorname{dom} A$ and $\operatorname{ran} A$ are nearly convex.

Recall that $A: X \rightrightarrows X$ is rectangular (a.k.a. 3* or star monotone; Brezis-Haraux 1976) if the Fitzpatrick function satisfies

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} A)\left(\forall x^{*} \in \operatorname{ran} A\right) \\
& \quad F_{A}\left(x, x^{*}\right):=\sup _{\left(a, a^{*}\right) \in \operatorname{gra} A}\left(\left\langle x, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle-\left\langle a, a^{*}\right\rangle\right)<+\infty .
\end{aligned}
$$

Examples.

Relevance for maximally monotone operators

Fact. Let $A: X \rightrightarrows X$ be maximally monotone. Then $\operatorname{dom} A$ and $\operatorname{ran} A$ are nearly convex.

Recall that $A: X \rightrightarrows X$ is rectangular (a.k.a. 3^{*} or star monotone; Brezis-Haraux 1976) if the Fitzpatrick function satisfies

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} A)\left(\forall x^{*} \in \operatorname{ran} A\right) \\
& \quad F_{A}\left(x, x^{*}\right):=\sup _{\left(a, a^{*}\right) \in \operatorname{gra} A}\left(\left\langle x, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle-\left\langle a, a^{*}\right\rangle\right)<+\infty .
\end{aligned}
$$

Examples.

- The skew rotator by $\pi / 2$ in the plane is not rectangular.

Relevance for maximally monotone operators

Fact. Let $A: X \rightrightarrows X$ be maximally monotone. Then $\operatorname{dom} A$ and $\operatorname{ran} A$ are nearly convex.

Recall that $A: X \rightrightarrows X$ is rectangular (a.k.a. 3^{*} or star monotone; Brezis-Haraux 1976) if the Fitzpatrick function satisfies

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} A)\left(\forall x^{*} \in \operatorname{ran} A\right) \\
& \quad F_{A}\left(x, x^{*}\right):=\sup _{\left(a, a^{*}\right) \in \operatorname{gra} A}\left(\left\langle x, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle-\left\langle a, a^{*}\right\rangle\right)<+\infty .
\end{aligned}
$$

Examples.

- The skew rotator by $\pi / 2$ in the plane is not rectangular.
- ∂f is rectangular.

Relevance for maximally monotone operators

Fact. Let $A: X \rightrightarrows X$ be maximally monotone. Then $\operatorname{dom} A$ and $\operatorname{ran} A$ are nearly convex.

Recall that $A: X \rightrightarrows X$ is rectangular (a.k.a. 3^{*} or star monotone; Brezis-Haraux 1976) if the Fitzpatrick function satisfies

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} A)\left(\forall x^{*} \in \operatorname{ran} A\right) \\
& \quad F_{A}\left(x, x^{*}\right):=\sup _{\left(a, a^{*}\right) \in \operatorname{gra} A}\left(\left\langle x, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle-\left\langle a, a^{*}\right\rangle\right)<+\infty .
\end{aligned}
$$

Examples.

- The skew rotator by $\pi / 2$ in the plane is not rectangular.
- ∂f is rectangular.
- $J_{A}=(\mathrm{Id}+A)^{-1}$ is rectangular.

On the range

Theorem. Let $\left(A_{i}\right)_{i \in I}$ be a family of maximally monotone rectangular operators such that $\bigcap_{i \in I}$ ri dom $A_{i} \neq \varnothing$, let $\left(\lambda_{i}\right)_{i \in I}$ be a family in \mathbb{R}_{++}, and let $j \in I$. Then $A:=\sum_{i \in I} \lambda_{i} A_{i}$ is maximally monotone, rectangular,

$$
\operatorname{ran} A=\operatorname{ran} \sum_{i \in I} \lambda_{i} A_{i} \approx \sum_{i \in I} \lambda_{i} \operatorname{ran} A_{i} \quad \text { is nearly convex, }
$$

and the following hold:

- If $\sum_{i \in I} \lambda_{i} \operatorname{ran} A_{i}=X$, then A is surjective.
- If A_{j} is surjective, then A is surjective.
- If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran}} A_{i}$, then $0 \in \overline{\operatorname{ran}} A$.
- If $0 \in\left(\right.$ int ran $\left.A_{j}\right) \cap \bigcap_{i \in \Lambda \backslash j\}} \overline{\operatorname{ran}} A_{i}$, then $0 \in \operatorname{int} \operatorname{ran} A$.

Application to firmly nonexpansive mappings

Corollary. Let $\left(T_{i}\right)_{i \in I}$ be a family of firmly nonexpansive mappings on X, let $\left(\lambda_{i}\right)_{i \in I}$ be a family in \mathbb{R}_{++}such that $\sum_{i \in I} \lambda_{i}=1$, and let $j \in I$. Set

$$
T:=\sum_{i \in I} \lambda_{i} T_{i}
$$

Then the following hold.

Application to firmly nonexpansive mappings

Corollary. Let $\left(T_{i}\right)_{i \in I}$ be a family of firmly nonexpansive mappings on X, let $\left(\lambda_{i}\right)_{i \in I}$ be a family in \mathbb{R}_{++}such that $\sum_{i \in I} \lambda_{i}=1$, and let $j \in I$. Set

$$
T:=\sum_{i \in I} \lambda_{i} T_{i}
$$

Then the following hold.

- T is firmly nonexpansive and $\operatorname{ran} T \approx \sum_{i \in I} \lambda_{i} \operatorname{ran} T_{i}$ is nearly convex.
- If T_{j} is surjective, then T is surjective.
- If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran}} T_{i}$, then $0 \in \overline{\text { ran }} T$.
- If $0 \in\left(\operatorname{int} \operatorname{ran} T_{j}\right) \cap \bigcap_{i \in ハ \backslash\{j\}} \overline{\operatorname{ran}} T_{i}$, then $0 \in \operatorname{int} \operatorname{ran} T$.

Application to firmly nonexpansive mappings

Corollary. Let $\left(T_{i}\right)_{i \in I}$ be a family of firmly nonexpansive mappings on X, let $\left(\lambda_{i}\right)_{i \in I}$ be a family in \mathbb{R}_{++}such that $\sum_{i \in I} \lambda_{i}=1$, and let $j \in I$. Set

$$
T:=\sum_{i \in I} \lambda_{i} T_{i}
$$

Then the following hold.

- T is firmly nonexpansive and $\operatorname{ran} T \approx \sum_{i \in I} \lambda_{i}$ ran T_{i} is nearly convex.
- If T_{j} is surjective, then T is surjective.
- If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran}} T_{i}$, then $0 \in \overline{\text { ran }} T$.
- If $0 \in\left(\operatorname{int} \operatorname{ran} T_{j}\right) \cap \bigcap_{i \in ハ \backslash\{j\}} \overline{\operatorname{ran}} T_{i}$, then $0 \in \operatorname{intran} T$.

Proof. As a resolvent, each T_{i} is rectangular. Now apply the last result.

Back to projections

Example. Let $\left(C_{i}\right)_{i \in I}$ be a family of nonempty closed convex subsets of X with associated projection operators P_{i}, and let $\left(\lambda_{i}\right)_{i \in I}$ be a family of strictly positive real numbers such that $\sum_{i \in I} \lambda_{i}=1$. Then

$$
\operatorname{ran} \sum_{i \in I} \lambda_{i} P_{i} \approx \sum_{i \in I} \lambda_{i} C_{i}
$$

Back to projections

Example. Let $\left(C_{i}\right)_{i \in I}$ be a family of nonempty closed convex subsets of X with associated projection operators P_{i}, and let $\left(\lambda_{i}\right)_{i \in I}$ be a family of strictly positive real numbers such that $\sum_{i \in I} \lambda_{i}=1$. Then

$$
\operatorname{ran} \sum_{i \in I} \lambda_{i} P_{i} \approx \sum_{i \in I} \lambda_{i} C_{i}
$$

Example. Suppose that $X=\mathbb{R}^{2}, m=2, C_{1}=\mathbb{R} \times\{2\}$, and $C_{2}=$ unit ball centered at 0 of radius 1 . The composition $P_{2} \circ P_{1}$ is nonexpansive but ran $P_{2} \circ P_{1}$ is not even nearly convex:

Asymptotic regularity

Theorem. Let $\left(T_{i}\right)_{i \in I}$ be a family of firmly nonexpansive mappings on X, and let $\left(\lambda_{i}\right)_{i \in I}$ be a family of strictly positive real numbers such that $\sum_{i \in I} \lambda_{i}=1$. Suppose that each T_{i} is asymptotically regular, i.e., $0 \in \overline{\operatorname{ran}\left(I d-T_{i}\right)}$, i.e., T_{i} has-or "almost" has-a fixed point.

Asymptotic regularity

Theorem. Let $\left(T_{i}\right)_{i \in I}$ be a family of firmly nonexpansive mappings on X, and let $\left(\lambda_{i}\right)_{i \in I}$ be a family of strictly positive real numbers such that $\sum_{i \in I} \lambda_{i}=1$. Suppose that each T_{i} is asymptotically regular, i.e., $0 \in \overline{\operatorname{ran}\left(\mathrm{Id}-T_{i}\right)}$, i.e., T_{i} has-or "almost" has-a fixed point. Then

$$
\sum_{i \in I} \lambda_{i} T_{i}
$$

is asymptotically regular as well.

Asymptotic regularity

Theorem. Let $\left(T_{i}\right)_{i \in I}$ be a family of firmly nonexpansive mappings on X, and let $\left(\lambda_{i}\right)_{i \in I}$ be a family of strictly positive real numbers such that $\sum_{i \in I} \lambda_{i}=1$. Suppose that each T_{i} is asymptotically regular, i.e., $0 \in \overline{\operatorname{ran}\left(\mathrm{Id}-T_{i}\right)}$, i.e., T_{i} has-or "almost" has-a fixed point. Then

$$
\sum_{i \in I} \lambda_{i} T_{i}
$$

is asymptotically regular as well.
Example. Suppose that $X=\mathbb{R}^{2}, m=2, C_{1}=\mathbb{R} \times\{0\}$ and $C_{2}=$ epi exp, with corresponding projectors P_{1} and P_{2}. Then each $\operatorname{Fix} P_{i}=C_{i} \neq \varnothing$, yet $\operatorname{Fix}\left(\frac{1}{2} P_{1}+\frac{1}{2} P_{2}\right)=\varnothing$.

The resolvent average

Theorem. Let $\left(A_{i}\right)_{i \in I}$ be a family of maximally monotone-not necessarily rectangular-operators, let $\left(\lambda_{i}\right)_{i \in I}$ be in \mathbb{R}_{++}such that $\sum_{i \in I} \lambda_{i}=1$, let $j \in I$, and define the resolvent average by

$$
A:=\left(\sum_{i \in I} \lambda_{i}\left(\mathrm{Id}+A_{i}\right)^{-1}\right)^{-1}-\mathrm{Id} .
$$

Then the following hold.

The resolvent average
(i) A is maximally monotone and

$$
J_{A}=\sum_{i \in I} \lambda_{i} J_{A_{i}}
$$

The resolvent average
(i) A is maximally monotone and

$$
J_{A}=\sum_{i \in I} \lambda_{i} J_{A_{i}}
$$

(ii) $\operatorname{dom} A \approx \sum_{i \in I} \lambda_{i} \operatorname{dom} A_{i}$ and $\operatorname{ran} A \approx \sum_{i \in I} \lambda_{i} \operatorname{ran} A_{i}$.
(iii) If $\operatorname{dom} A_{j}=X$, then $\operatorname{dom} A=X$.
(iv) If $\operatorname{ran} A_{j}=X$, then $\operatorname{ran} A=X$.
(v) If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran} A_{i}}$, then $0 \in \overline{\operatorname{ran} A}$.
(vi) If $0 \in\left(\operatorname{int} \operatorname{ran} A_{j}\right) \cap \bigcap_{i \in ハ \backslash\{j\}} \overline{\operatorname{ran} A_{i}}$, then $0 \in \operatorname{int} \operatorname{ran} A$.

The resolvent average

(i) A is maximally monotone and

$$
J_{A}=\sum_{i \in I} \lambda_{i} J_{A_{i}}
$$

(ii) $\operatorname{dom} A \approx \sum_{i \in I} \lambda_{i} \operatorname{dom} A_{i}$ and $\operatorname{ran} A \approx \sum_{i \in I} \lambda_{i} \operatorname{ran} A_{i}$.
(iii) If $\operatorname{dom} A_{j}=X$, then $\operatorname{dom} A=X$.
(iv) If $\operatorname{ran} A_{j}=X$, then $\operatorname{ran} A=X$.
(v) If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran} A_{i}}$, then $0 \in \overline{\operatorname{ran} A}$.
(vi) If $0 \in\left(\operatorname{int} \operatorname{ran} A_{j}\right) \cap \bigcap_{i \in ハ \backslash\{j\}} \overline{\operatorname{ran} A_{i}}$, then $0 \in \operatorname{intran} A$.

Remark. If each $A_{i}=\partial f_{i}$, then \rightsquigarrow proximal average of $\left(f_{i}\right)_{i \in l}$;

The resolvent average

(i) A is maximally monotone and

$$
J_{A}=\sum_{i \in I} \lambda_{i} J_{A_{i}}
$$

(ii) $\operatorname{dom} A \approx \sum_{i \in I} \lambda_{i} \operatorname{dom} A_{i}$ and $\operatorname{ran} A \approx \sum_{i \in I} \lambda_{i} \operatorname{ran} A_{i}$.
(iii) If $\operatorname{dom} A_{j}=X$, then $\operatorname{dom} A=X$.
(iv) If $\operatorname{ran} A_{j}=X$, then $\operatorname{ran} A=X$.
(v) If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran} A_{i}}$, then $0 \in \overline{\operatorname{ran} A}$.
(vi) If $0 \in\left(\right.$ int $\left.\operatorname{ran} A_{j}\right) \cap \bigcap_{i \in ハ \backslash\{j\}} \overline{\operatorname{ran} A_{i}}$, then $0 \in \operatorname{int} \operatorname{ran} A$.

Remark. If each $A_{i}=\partial f_{i}$, then \rightsquigarrow proximal average of $\left(f_{i}\right)_{i \in I}$; item (iv) is abstract supercoercivity;

The resolvent average

(i) A is maximally monotone and

$$
J_{A}=\sum_{i \in I} \lambda_{i} J_{A_{i}}
$$

(ii) $\operatorname{dom} A \approx \sum_{i \in I} \lambda_{i} \operatorname{dom} A_{i}$ and $\operatorname{ran} A \approx \sum_{i \in I} \lambda_{i} \operatorname{ran} A_{i}$.
(iii) If $\operatorname{dom} A_{j}=X$, then $\operatorname{dom} A=X$.
(iv) If $\operatorname{ran} A_{j}=X$, then $\operatorname{ran} A=X$.
(v) If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran} A_{i}}$, then $0 \in \overline{\operatorname{ran} A}$.
(vi) If $0 \in\left(\right.$ int $\left.\operatorname{ran} A_{j}\right) \cap \bigcap_{i \in ハ \backslash\{j\}} \overline{\operatorname{ran} A_{i}}$, then $0 \in \operatorname{int} \operatorname{ran} A$.

Remark. If each $A_{i}=\partial f_{i}$, then \rightsquigarrow proximal average of $\left(f_{i}\right)_{i \in I}$; item (iv) is abstract supercoercivity;
item (vi) is abstract coercivity;

The resolvent average

(i) A is maximally monotone and

$$
J_{A}=\sum_{i \in I} \lambda_{i} J_{A_{i}}
$$

(ii) $\operatorname{dom} A \approx \sum_{i \in I} \lambda_{i} \operatorname{dom} A_{i}$ and $\operatorname{ran} A \approx \sum_{i \in I} \lambda_{i} \operatorname{ran} A_{i}$.
(iii) If $\operatorname{dom} A_{j}=X$, then $\operatorname{dom} A=X$.
(iv) If $\operatorname{ran} A_{j}=X$, then $\operatorname{ran} A=X$.
(v) If $0 \in \bigcap_{i \in I} \overline{\operatorname{ran} A_{i}}$, then $0 \in \overline{\operatorname{ran} A}$.
(vi) If $0 \in\left(\right.$ int $\left.\operatorname{ran} A_{j}\right) \cap \bigcap_{i \in ハ \backslash\{j\}} \overline{\operatorname{ran} A_{i}}$, then $0 \in \operatorname{int} \operatorname{ran} A$.

Remark. If each $A_{i}=\partial f_{i}$, then \rightsquigarrow proximal average of $\left(f_{i}\right)_{i \in I}$; item (iv) is abstract supercoercivity;
item (vi) is abstract coercivity;
"if some A_{j} is good, then so is A " (B-Moffat-Wang, forthcoming).

Positive semidefinite matrices

As an illustration of both the proximal and the resolvent average, consider the following set up:

- $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right) \in\left(\mathbb{S}_{+}^{N}\right)^{m}$
- $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m}$
- $\lambda_{1}+\cdots+\lambda_{m}=1$
- $\mu>0$

Now set

$$
\begin{aligned}
& \mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda}):= \\
& \quad\left(\lambda_{1}\left(A_{1}+\mu^{-1} \mathrm{Id}\right)^{-1}+\cdots+\lambda_{m}\left(A_{m}+\mu^{-1} \mathrm{Id}\right)^{-1}\right)^{-1}-\mu^{-1} \mathrm{Id}
\end{aligned}
$$

so that

$$
J_{\mu \mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda})}=\lambda_{1} J_{\mu A_{1}}+\cdots+\lambda_{m} J_{\mu A_{m}}
$$

The bridge to the proximal average

For $B \in \mathbb{S}^{N}$, set

$$
q_{B}: x \mapsto \frac{1}{2}\langle x, B x\rangle
$$

If each $f_{i}=q_{A_{i}}$, then

$$
p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=q_{\mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda})}
$$

and hence

$$
\nabla p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})=\mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda})
$$

Thus the results on the proximal average are applicable!

Averages: harmonic vs resolvent vs arithmetic

Recall that the harmonic and arithmetic averages are defined by

$$
\mathcal{H}(\mathbf{A}, \boldsymbol{\lambda})=\left(\lambda_{1} A_{1}^{-1}+\cdots+\lambda_{m} A_{m}^{-1}\right)^{-1}
$$

and

$$
\mathcal{A}(\mathbf{A}, \boldsymbol{\lambda})=\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}
$$

respectively.

Averages: harmonic vs resolvent vs arithmetic

Recall that the harmonic and arithmetic averages are defined by

$$
\mathcal{H}(\mathbf{A}, \boldsymbol{\lambda})=\left(\lambda_{1} A_{1}^{-1}+\cdots+\lambda_{m} A_{m}^{-1}\right)^{-1}
$$

and

$$
\mathcal{A}(\mathbf{A}, \boldsymbol{\lambda})=\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}
$$

respectively.
Theorem. We have

$$
\mathcal{H}(\mathbf{A}, \boldsymbol{\lambda}) \preceq \mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda}) \preceq \mathcal{A}(\mathbf{A}, \boldsymbol{\lambda}),
$$

$$
\lim _{\mu \rightarrow 0^{+}} \mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda})=\mathcal{A}(\mathbf{A}, \boldsymbol{\lambda}), \quad \lim _{\mu \rightarrow+\infty} \mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda})=\mathcal{H}(\mathbf{A}, \boldsymbol{\lambda})
$$

and

$$
\left(\mathcal{R}_{\mu}(\mathbf{A}, \boldsymbol{\lambda})\right)^{-1}=\mathcal{R}_{\mu^{-1}}\left(\mathbf{A}^{-1}, \boldsymbol{\lambda}\right)
$$

Back to the general setting

We now let X be possibly infinite-dimensional again. Let

$$
A
$$

be a-not necessarily maximally-monotone operator on X.
Our aim is to find an explicit maximally monotone extension of A.
Recall the corresponding Fitzpatrick function is

$$
F_{A}:\left(x, x^{*}\right) \mapsto \sup _{\left(a, a^{*}\right) \in \operatorname{gra} A}\left(\left\langle x, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle-\left\langle a, a^{*}\right\rangle\right)
$$

Given $F \in \Gamma(X \times X)$, it will be convenient to define

$$
F^{\top}\left(x^{*}, x\right)=F\left(x, x^{*}\right)
$$

and also to define $G(F): X \rightrightarrows X$ via

$$
x^{*} \in G(F) x \quad \Leftrightarrow \quad\left(x^{*}, x\right) \in \partial F\left(x, x^{*}\right) .
$$

Explicit maximally monotone extension

Theorem. Let $A: X \rightrightarrows X$ be monotone and set

$$
E_{A}:=p_{1}\left(F_{A}, F_{A}^{* \top}, \frac{1}{2}, \frac{1}{2}\right)
$$

Then $E_{A}^{*}=E_{A}^{\top}, G\left(E_{A}\right)$ is a maximally monotone extension of A that is primal-dual symmetric in the sense that

$$
\left(G\left(E_{A}\right)\right)^{-1}=G\left(E_{A^{-1}}\right)
$$

Explicit maximally monotone extension

Theorem. Let $A: X \rightrightarrows X$ be monotone and set

$$
E_{A}:=p_{1}\left(F_{A}, F_{A}^{* \top}, \frac{1}{2}, \frac{1}{2}\right)
$$

Then $E_{A}^{*}=E_{A}^{\top}, G\left(E_{A}\right)$ is a maximally monotone extension of A that is primal-dual symmetric in the sense that

$$
\left(G\left(E_{A}\right)\right)^{-1}=G\left(E_{A^{-1}}\right)
$$

Remark.

This provided an answer to a problem of Fitzpatrick from 1988 (and it also works in reflexive spaces).
Note that this construction does not require Zorn's Lemma!
Similarly, via Minty, we also obtain Zorn's-Lemma-free extensions of (firmly) nonexpansive mappings in the spirit of Kirszbraun-Valentine!

Current/future work and open problems

Current/future work

- More basic theory for the resolvent average \checkmark
- Asymptotic regularity of compositions of resolvents \checkmark
- Extend resolvent average to nonreflexive Banach spaces and Bregman-distance like settings ?
- Numerical convex analysis (Lucet et al., on-going) ...
- Numerical monotone operator theory ?

Open problems

- Strong convergence of random projections for subspaces ?
- Weak convergence of random projections ?
- De Pierro's conjecture ?

Bibliographical starting points

For further information. . .

- Please email me at heinz.bauschke@ubc.ca if you wish to obtain detailed pointers to specific results.
- The interplay of maximally monotone operators and firmly nonexpansive mappings is a central theme in
Convex Analysis
and Monotone
Operator Theory
in Hilbert Spaces
Qspringe

Some classical references...

- H. Brézis and A. Haraux: "Image d'une somme d'opérateurs monotones et applications", Israel J. Math. 23 (1976), 165-186.
- G.J. Minty, "Monotone (nonlinear) operators in Hilbert spaces", Duke Math. J. 29 (1962), 341-346.
- J.-J. Moreau, "Proximité et dualité dan un espace hilbertien", Bull. Soc. Math. France 93 (1965), 273-299.
- R.T. Rockafellar, "On the maximal monotonicity of subdifferential mappings", Pacific J. Math. 33 (1970), 209-216.
- R.T. Rockafellar and R.J-B Wets, Variational Analysis, Springer-Verlag, 1998.

Some recent starting points. . .

- HHB, R. Goebel, Y. Lucet, and X. Wang: "The proximal average: basic theory", SIAM J. Optim. 19 (2008), 766-785.
- HHB, Y. Lucet, and X. Wang: "Primal-dual symmetric intrinsic methods for finding antiderivatives for cyclically monotone operators", SIAM J. Control Optim. 46 (2007), 2031-2051.
- HHB, S.M. Moffat, and X. Wang: "Near equality, near convexity, sums of maximally monotone operators, and averages of firmly nonexpansive mappings",
Math. Programming in press. http://arxiv.org/abs/1105.0029
- HHB, S.M. Moffat, and X. Wang: "The resolvent average for positive semidefinite matrices", Linear Algebra App. 432 (2010), 1757-1771.
- HHB and X. Wang: "The kernel average for two convex functions and its applications to the extension and representation of monotone operators", Trans. Amer. Math. Soc. 361 (2009), 5947-5965.

Merci beaucoup!

