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Introduction



The feasibility problem and projection methods

Let C1,C2, . . . ,Cm be sets in a Hilbert space X , which we assume
to be closed, convex, 6= ∅. The convex feasibility problem asks to

find x ∈ C := C1 ∩ C2 ∩ · · · ∩ Cm.

We assume that the sets Ci are “simple” in the sense that the
nearest point mappings (projection operators) Pi or

PCi
: x 7→ argmin

ci∈Ci

‖x − ci‖

are easy to compute.

A projection method combines the projectors in some algorithmic
fashion to generate a sequence converging to a solution of the
feasibility problem.



Cyclic/alternating projections

The method of cyclic projections generates a sequence (xn)n∈N via

x0
P17−→ x1

P27−→ x2 · · · xm−1
Pm7−→ xm

P17−→ xm+1
P27−→ xm+2 · · ·
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Method of alternating projections (for m = 2 subspaces)



von Neumann’s result for subspaces

Theorem. (von Neumann, 1935)
Suppose that C1 and C2 are subspaces. The sequence generated by
the method of alternating projections converges strongly to the
projection of the starting point onto the intersection.



von Neumann’s result for subspaces

Theorem. (von Neumann, 1935)
Suppose that C1 and C2 are subspaces. The sequence generated by
the method of alternating projections converges strongly to the
projection of the starting point onto the intersection.

Remark. (Aronszajn, 1950)
If the angle

arccos sup
ci∈Ci∩(C1∩C2)⊥,‖ci‖≤1

〈c1, c2〉

between the subspaces is positive, then the rate of convergence is
linear.



Bregman’s weak convergence result for convex sets

Theorem. (Bregman, 1965)
Given a starting point x0 ∈ X , define (xn)n∈N, the sequence of
alternating projections, by

x0
P17−→ x1

P27−→ x2
P17−→ x3

P27−→ x4
P17−→ · · · .

Then
xn ⇀ c̄ ∈ C .



Regularity

Remark. (Gubin-Polyak-Raik, 1967)
If
(

C1 ∩ int(C2)
)

∪ (C2 ∩ int(C1)
)

6= ∅, then xn → c̄ ∈ C strongly
(even linearly).

Remark. The results by Aronszajn and by Gubin-Polyak-Raik can
be unified: indeed, either assumption implies the Attouch-Brezis
constraint qualification

⋃

ρ>0

ρ(C1 − C2) is a closed subspace,

which in turn yields linear convergence (B-Borwein).



Hundal’s counterexample

Hundal’s counterexample, 2004.
In X = ℓ2, there exist two closed convex sets H and K , a vector
f ∈ X , and a starting point y0 ∈ K so that:

◮ ‖f ‖ = 1;

◮ H is the hyperplane {f }⊥;

◮ K is a closed convex cone with sup〈f ,K 〉 = 0;

◮ H ∩ K = {0}.

Then the sequence of alternating projections

converges weakly to 0, but not strongly.



Random projections (for the consistent case)

Rather than projecting cyclically let us“roll a die” instead: let

r : N → I = {1, . . . ,m}

be a random map, i.e., r−1(i) is infinite for every i ∈ I , and
x0 ∈ X . Consider the sequence of random projections

xn+1 = PCr(n)
xn.
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Random projections (for the consistent case)

Rather than projecting cyclically let us“roll a die” instead: let

r : N → I = {1, . . . ,m}

be a random map, i.e., r−1(i) is infinite for every i ∈ I , and
x0 ∈ X . Consider the sequence of random projections

xn+1 = PCr(n)
xn.

Open Problem:
If each Ci is a subspace, must (xn)n∈N converge strongly?
(Weak convergence to PC x0 is due to Amemiya and Ando, 1965.
Works by Baillon and Bruck strongly suggest this is true.)

Open Problem:
In the convex case, must (xn)n∈N converge weakly to a point in C?
(OK if m = 2; also OK if m = 3 by Dye and Reich, 1992.)



The inconsistent case when m = 2

Define the gap vector
v := PC2−C1

0,

and the “generalized solution sets”

E1 := C1 ∩ (C2 − v) and E2 := (C1 + v) ∩ C2.

(If C1 ∩ C2 6= ∅, then v = 0 and E1 = E2 = C1 ∩ C2.)
Then E1 = Fix(P1 ◦ P2), E2 = Fix(P2 ◦ P1), and

x2n+2 − x2n+1 → v , x2n+1 − x2n → −v .

Furthermore: Either: E1 = E2 = ∅ and ‖xn‖ → +∞;
Or: x2n+1 ⇀ e1 ∈ E1 and x2n ⇀ e2 ∈ E2,

(e1, e2) is a minimizer for min
(y1,y2)∈C1×C2

‖y1 − y2‖

as well as a cycle: e2 = P2e1 and e1 = P1e2.



The inconsistent case when m ≥ 3

In striking contrast, Baillon-Combettes-Cominetti (2011) proved:

There exists no function F on Xm such that cycles (e1, . . . , em)
correspond to minimizers for the problem

min
(y1,y2,...,ym)∈C1×C2×···×Cm

F (y1, . . . , ym).



Underrelaxed projections for the general case

For λ ∈ ]0, 1], consider the composition of underrelaxed
projections:

Qλ :=
(

(1− λ) Id+λPm

)

◦ · · · ◦
(

(1− λ) Id+λP1

)

.

Suppose that each FixQλ 6= ∅, and let

L := Fix
(

m
∑

i=1

1
m
Pi

)

be the set of least squares solutions, i.e., the minimizers of the
function

x 7→
m
∑

i=1

d2
Ci
(x).



De Pierro’s Conjecture

Theory of strongly/averaged nonexpansive mappings implies that

xλ := weak lim
n→+∞

Qn
λx

exists, for every x ∈ X .

Open Problem: De Pierro’s Conjecture
Does the curve (xλ)λ∈]0,1] converge to PLx?

Remark. Censor-Eggermont-Gordon (1984) proved this for
subspaces in Euclidean space; for further supporting results of this
conjecture, see De Pierro (2001) (and also B-Edwards).



Experimental evidence for De Pierro’s Conjecture

https://people.ok.ubc.ca/bauschke/Proj/



The arithmetic average

P1 + P2 + · · ·+ Pm

m

is a much better behaved object than the composition

Pm ◦ · · · ◦ P2 ◦ P1.

⊖ The composition is not firmly nonexpansive.
⊕ The average is not a projection; however, it is still a proximal
map (Moreau).

In the following, I will advocate the proximal average in the
proximal mapping setting and the resolvent average in the general
firmly nonexpansive setting (via Minty’s correspondence).



The proximal average



Monotone operators

Recall that a set-valued operator A : X ⇉ X is monotone if

(x , u) ∈ graA
(y , v) ∈ graA

}

⇒ 〈x − y , u − v〉 ≥ 0,

where graA is the graph of A, and that A is maximally monotone
if A cannot be properly extended without destroying monotonicity.

Basic examples are the subdifferential operator ∂f of
f : X → ]−∞,+∞], where f is convex, lower semicontinuous, and
proper; any bounded linear operator A : X → X with a positive
symmetric part.



Firmly nonexpansive mappings

Recall that T : X → X is firmly nonexpansive if

(∀x ∈ X )(∀y ∈ X ) ‖Tx − Ty‖2 ≤ 〈x − y ,Tx − Ty〉.

Thanks to work by Minty (1962), Reich (1977), and Eckstein and
Bertsekas (1992), we have for T : X → X and A : X ⇉ X :
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Recall that T : X → X is firmly nonexpansive if

(∀x ∈ X )(∀y ∈ X ) ‖Tx − Ty‖2 ≤ 〈x − y ,Tx − Ty〉.

Thanks to work by Minty (1962), Reich (1977), and Eckstein and
Bertsekas (1992), we have for T : X → X and A : X ⇉ X :

◮ T is firmly nonexpansive
⇔ T−1 − Id is maximally monotone;

◮ A is maximally monotone
⇔ Id +A is onto and the resolvent

JA := (Id+A)−1

is firmly nonexpansive.

◮ Critical vs fixed points: 0 ∈ Ax ⇔ x = JAx , i.e., x ∈ Fix JA.



Proximal mappings
We also have the equivalence

T is firmly nonexpansive

⇔ 2T − Id is nonexpansive (Lipschitz-1). (∗)

Moreau’s proximal map (or proximity operator, early 1960s) is

J∂f x = Proxf x ;

in fact, Proxf x is the unique minimizer of y 7→ f (y) + 1
2‖x − y‖2.
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Proximal mappings
We also have the equivalence

T is firmly nonexpansive

⇔ 2T − Id is nonexpansive (Lipschitz-1). (∗)

Moreau’s proximal map (or proximity operator, early 1960s) is

J∂f x = Proxf x ;

in fact, Proxf x is the unique minimizer of y 7→ f (y) + 1
2‖x − y‖2.

(If A is the rotator by π/2 in R
2, then JA is not a proximal map.)

Suppose each (Ti )i∈I is firmly nonexpansive and (λi )i∈I are convex
coefficients (weights): each λi > 0 and

∑

i∈I λi = 1. Set

T :=
∑

i∈I λiTi .

Then T is firmly nonexpansive since 2T − Id is nonexpansive:
2T − Id = 2

∑

i∈I λiTi − Id =
∑

i∈I λi (2Ti − Id).



Proximal mappings form a convex set

Moreau showed that if each Ti is even a proximal map, then so is
the average T .



Proximal mappings form a convex set

Moreau showed that if each Ti is even a proximal map, then so is
the average T .

Put differently, given functions (fi )i∈I in Γ, there exists f ∈ Γ such
that

Proxf =
∑

i∈I

λi Proxfi .

The function f is unique up to an additive constant; among all
these functions, the proximal average that we shall formally define
does have beautiful and useful properties.



Handy notation

◮ q : x 7→ 1
2〈x , x〉 quadratic energy function

◮ Γ = functions from X to ]−∞,+∞] that are convex, lower
semicontinuous, and proper

◮ f = (f1, . . . , fm) ∈ Γm

◮ f∗ = (f ∗1 , . . . , f
∗
m)

◮ f∗∗ = (f ∗∗1 , . . . , f ∗∗m ) = f

◮ λ = (λ1, . . . , λm) ∈ R
m
+

◮ λ1 + · · ·+ λm = 1

◮ µ > 0



Definition of the proximal average

Definition. (B-Goebel-Lucet-Wang) The λ-weighted proximal
average of f with parameter µ is defined by

pµ(f,λ) = λ1 • (f1 + µ • q) @ · · · @ λm • (fm + µ • q)− µ • q,

where epi-addition and epi-multiplication are

(

f @ g
)

(x) = inf
y+z=x

(

f (y) + g(z)
)

;

and α • f = αf (·/α), if α > 0; α • f = ι{0}, if α = 0.



Reformulations

If I =
{

i ∈ {1, . . . ,m}
∣

∣ λi > 0
}

, then

pµ(f,λ)(x) =

1

µ

(

− 1
2‖x‖

2 + inf∑
i∈I xi=x

∑

i∈I

λi

(

µfi(xi/λi ) +
1
2‖xi/λi‖

2
)

)

.

Furthermore,

pµ(f,λ) =
(

λ1(f
∗
1 @ µ q) + · · ·+ λm(f

∗
m @ µ q)

)∗
− µ−1

q

=
(

λ1(f1 + µ−1
q)∗ + · · ·+ λm(fm + µ−1

q)∗
)∗

− µ−1
q.

Remark. This was first studied explicitly (for m = 2 and µ = 1) by
B-Matoušková-Reich to obtain a Güler-like counterexample for the
proximal point algorithm — based on Hundal’s counterexample!



Visualizing the arithmetic average from 2x + 2 to x2
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Visualizing the proximal average from 2x + 2 to x2
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From − ln(−x) to − ln(x)
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Basic results — a selection

Theorem. dom pµ(f,λ) = λ1 dom f1 + · · ·+ λm dom fm, and the
epi-sum for pµ(f,λ) is always exact (i.e., the infimum is attained).
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(

pµ(f,λ)
)∗

= pµ−1(f∗,λ).

Corollary. pµ(f,λ) is convex, lower semicontinuous, and proper.

Proof. Applying the last theorem twice, we deduce that

(

pµ(f,λ)
)∗∗

=
(

pµ−1(f∗,λ)
)∗

= p(µ−1)−1(f∗∗,λ)

= pµ(f,λ). �



Basic results — a selection

Theorem. dom pµ(f,λ) = λ1 dom f1 + · · ·+ λm dom fm, and the
epi-sum for pµ(f,λ) is always exact (i.e., the infimum is attained).

Corollary. If some fi has full domain and λi > 0, then pµ(f,λ) has
full domain as well.

Theorem.
(

pµ(f,λ)
)∗

= pµ−1(f∗,λ).

Corollary. pµ(f,λ) is convex, lower semicontinuous, and proper.

Proof. Applying the last theorem twice, we deduce that

(

pµ(f,λ)
)∗∗

=
(

pµ−1(f∗,λ)
)∗

= p(µ−1)−1(f∗∗,λ)

= pµ(f,λ). �

Example. p1
(

f, f∗, 1/(2m)
)

= q.



Moreau envelope

Recall that the Moreau envelope of f with parameter µ is

eµf = f @ µ • q = (f ∗ + µ q)∗.

Theorem. eµpµ(f,λ) = λ1eµf1 + · · ·+ λmeµfm.



Moreau envelope

Recall that the Moreau envelope of f with parameter µ is

eµf = f @ µ • q = (f ∗ + µ q)∗.

Theorem. eµpµ(f,λ) = λ1eµf1 + · · ·+ λmeµfm.

Corollary.

argmin pµ(f,λ) = argmin
(

λ1eµf1 + · · ·+ λmeµfm
)

.

Example. (least squares solutions revisited)
If each fi = ιCi

, where Ci is closed, convex, nonempty, then

argmin pµ(f,λ) = argmin(λ1d
2
C1

+ · · · + λmd
2
Cm

).



Proximal mapping

Recall that the proximal mapping of f with parameter µ is

Pµf := Proxµf =
(

Id+µ∂f
)−1

;

it satisfies
(Pµf ) ◦ (µ Id) = ∇(eµ−1(f ∗)).

Finally, we are able to motivate the term “proximal average”:

Theorem.

Pµ

(

pµ(f,λ)
)

= λ1Pµf1 + · · · + λmPµfm.



Proof.

We have

eµ−1

(

(pµ(f,λ))
∗
)

= eµ−1

(

pµ−1(f∗,λ)
)

= λ1eµ−1(f ∗1 ) + · · ·+ λmeµ−1(f ∗m).

Taking gradients yields

∇
(

eµ−1

(

(pµ(f,λ))
∗
))

= λ1∇(eµ−1(f ∗1 )) + · · ·+ λm∇
(

eµ−1(f ∗m)
)

;

in turn, this is equivalent to

(

Pµ

(

pµ(f,λ)
))

◦(µ Id) = λ1(Pµf1)◦(µ Id)+ · · ·+λm(Pµfm)◦(µ Id),

i.e., to

Pµ

(

pµ(f,λ)
)

= λ1(Pµf1) + · · ·+ λm(Pµfm). �



Cones

Example. Let K1, . . . ,Km be closed subspaces that are pairwise
orthogonal and such that K1 ⊕ · · · ⊕ Km = X , and suppose that
each fi = ιKi

and λi > 0. Then

pµ(f,λ) = µ−1
m
∑

i=1

(λ−1
i − 1)( q ◦ PKi

).

Example. Let K be a nonempty closed convex cone in X and let
λ ∈ ]0, 1[. Then

p1
(

(ιK , ιK⊖), (1 − λ, λ)
)

(x) =
λ2‖PK x‖

2 + (1− λ)2‖PK⊖x‖2

2(1− λ)λ
,

where K⊖ =
{

u ∈ X
∣

∣ sup〈u,K 〉 ≤ 0
}

is the polar cone of K .



Legendre functions

Let g ∈ Γ. The following generalizes classical notions in RN :

◮ g is essentially smooth if ∂g is at most single-valued and
int dom g is nonempty;

◮ g is essentially strictly convex if g∗ is essentially smooth;

◮ g is Legendre if g is both essentially smooth and essentially
strictly convex.



Legendre functions

Let g ∈ Γ. The following generalizes classical notions in RN :

◮ g is essentially smooth if ∂g is at most single-valued and
int dom g is nonempty;

◮ g is essentially strictly convex if g∗ is essentially smooth;

◮ g is Legendre if g is both essentially smooth and essentially
strictly convex.

Corollary. (Inheritance) Suppose each λi > 0.

◮ If some fi is essentially smooth, then so is pµ(f,λ).

◮ If some fj is essentially strictly convex, then so is pµ(f,λ).

◮ If some fi is essentially smooth and some fj is essentially
strictly convex (where not necessarily i = j), then pµ(f,λ) is
Legendre.



Varying the parameter µ

Theorem. (pointwise limits) Let x ∈ X . Then the function

R++ → ]−∞,+∞] : µ 7→ pµ(f,λ)(x) is decreasing.

In fact,

lim
µ→0+

pµ(f,λ)(x) =
(

λ1f1 + · · · + λmfm
)

(x)

and
lim

µ→+∞
pµ(f,λ)(x) =

(

λ1 • f1 @ · · · @ λm • fm
)

(x).



Antiderivatives

Recall that f ∈ Γ is an antiderivative of A if graA ⊆ gra ∂f .

Fact. (Rockafellar, 1970) Let A be cyclically monotone, i.e.,
∑n

i=1〈ai+1 − ai , a
∗
i 〉 ≤ 0 for n ≥ 2, (ai , a

∗
i ) ∈ graA and an+1 = a1.

Then the following hold:

◮ The Rockafellar functions RA,(a,a∗)(x) defined by

sup
2≤n, (ai ,a

∗
i
)∈graA

(

n−2
∑

i=1

〈ai+1 − ai , a
∗
i 〉+ 〈x − an−1, a

∗
n−1〉

)

(with (a, a∗) = (a1, a
∗
1) ∈ graA fixed) are antiderivatives of A.

◮ Maximally cyclically monotone operators are precisely
subdifferential operators of functions in Γ.

◮ If A is maximally cyclically monotone, then antiderivatives of
A differ only by constants.



Rockafellar’s question

In 2005, R.T. Rockafellar asked the following.

Given a cyclically monotone operator with finite graph,
find a method that produces an antiderivative of A that
preserves the “natural symmetry” induced by convex
duality.

Neither Rockafellar’s antiderivatives RA,(a,a∗) nor their pointwise
maximum

mA(x) := sup
(a,a∗)∈graA

RA,(a,a∗)(x)

have this property.



An answer

Let A be the set of cyclically monotone operators with finite graph.

Theorem. (B-Lucet-Wang) The method

m : A → Γ: A 7→ p1
(

mA,m
∗
A−1 ,

1
2 ,

1
2

)

produces primal-dual symmetric antiderivatives in the sense that

(mA)
∗ = mA−1.

In other words, the following is a commutative diagram.

A
∗

−−−−→ A−1

m





y

m





y

mA
∗

−−−−→ mA−1



An example - 5 points sampled from exp
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thick black — exp; five circled points — the sample;
dashed blue — mA; dashed-dotted green — m∗

A−1 ;
thick red — mA.



∂(primal-dual symmetric extension)
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Note the “slope one” property of ∂mA outside the rectangle
conv domA× conv ranA.



The resolvent average



Near equality and near convexity

We now assume for a while that

X is finite-dimensional and that I = {1, 2, . . . ,m},

because then the “relative interior” calculus works particularly well.

Definition. Let A and B be subsets of X . We say that A and B
are nearly equal if

A ≈ B :⇔ A = B and riA = riB .

Proposition. Let A ⊆ X . Then A is nearly convex (in the sense of
Rockafellar and Wets), i.e., there exists a convex subset C of X
such that C ⊆ A ⊆ C if and only if

A ≈ convA.



Calculus

Proposition. Assume that A,A1, . . . ,Am are nearly convex subsets
of X and that B ,B1, . . . ,Bm are just subsets of X , all 6= ∅. Then:

◮ A ≈ convA ≈ A ≈ riA.

◮ If A ≈ B , then B is nearly convex.

◮ If (∀i ∈ I ) Ai ≈ Bi , then
∑

i∈I Ai is nearly convex and

∑

i∈I

Ai ≈
∑

i∈I

Bi .

◮ If B is compact and A1 + B ≈ A2 + B , then A1 ≈ A2.



Relevance for maximally monotone operators

Fact. Let A : X ⇉ X be maximally monotone. Then

domA and ranA are nearly convex.
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Relevance for maximally monotone operators

Fact. Let A : X ⇉ X be maximally monotone. Then

domA and ranA are nearly convex.

Recall that A : X ⇉ X is rectangular (a.k.a. 3∗ or star monotone;
Brezis-Haraux 1976) if the Fitzpatrick function satisfies

(

∀x ∈ domA
)(

∀x∗ ∈ ranA
)

FA(x , x
∗) := sup

(a,a∗)∈graA

(

〈x , a∗〉+ 〈a, x∗〉 − 〈a, a∗〉
)

< +∞.

Examples.

◮ The skew rotator by π/2 in the plane is not rectangular.

◮ ∂f is rectangular.

◮ JA = (Id+A)−1 is rectangular.



On the range

Theorem. Let (Ai)i∈I be a family of maximally monotone
rectangular operators such that

⋂

i∈I ri domAi 6= ∅, let (λi )i∈I be
a family in R++, and let j ∈ I . Then A :=

∑

i∈I λiAi is maximally
monotone, rectangular,

ranA = ran
∑

i∈I

λiAi ≈
∑

i∈I

λi ranAi is nearly convex,

and the following hold:

◮ If
∑

i∈I λi ranAi = X , then A is surjective.

◮ If Aj is surjective, then A is surjective.

◮ If 0 ∈
⋂

i∈I ranAi , then 0 ∈ ranA.

◮ If 0 ∈ (int ranAj) ∩
⋂

i∈Ir{j} ranAi , then 0 ∈ int ranA.



Application to firmly nonexpansive mappings

Corollary. Let (Ti )i∈I be a family of firmly nonexpansive mappings
on X , let (λi)i∈I be a family in R++ such that

∑

i∈I λi = 1, and
let j ∈ I . Set

T :=
∑

i∈I

λiTi .

Then the following hold.
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Application to firmly nonexpansive mappings

Corollary. Let (Ti )i∈I be a family of firmly nonexpansive mappings
on X , let (λi)i∈I be a family in R++ such that

∑

i∈I λi = 1, and
let j ∈ I . Set

T :=
∑

i∈I

λiTi .

Then the following hold.

◮ T is firmly nonexpansive and ranT ≈
∑

i∈I λi ranTi is nearly
convex.

◮ If Tj is surjective, then T is surjective.

◮ If 0 ∈
⋂

i∈I ranTi , then 0 ∈ ranT .

◮ If 0 ∈ (int ranTj) ∩
⋂

i∈Ir{j} ranTi , then 0 ∈ int ranT .

Proof. As a resolvent, each Ti is rectangular. Now apply the last
result. �



Back to projections
Example. Let (Ci )i∈I be a family of nonempty closed convex
subsets of X with associated projection operators Pi , and let
(λi )i∈I be a family of strictly positive real numbers such that
∑

i∈I λi = 1. Then

ran
∑

i∈I

λiPi ≈
∑

i∈I

λiCi .



Back to projections
Example. Let (Ci )i∈I be a family of nonempty closed convex
subsets of X with associated projection operators Pi , and let
(λi )i∈I be a family of strictly positive real numbers such that
∑

i∈I λi = 1. Then

ran
∑

i∈I

λiPi ≈
∑

i∈I

λiCi .

Example. Suppose that X = R2, m = 2, C1 = R× {2}, and C2 =
unit ball centered at 0 of radius 1. The composition P2 ◦ P1 is
nonexpansive but ranP2 ◦ P1 is not even nearly convex:



Asymptotic regularity

Theorem. Let (Ti)i∈I be a family of firmly nonexpansive
mappings on X , and let (λi )i∈I be a family of strictly positive real
numbers such that

∑

i∈I λi = 1. Suppose that each Ti is

asymptotically regular, i.e., 0 ∈ ran(Id−Ti), i.e., Ti has—or
“almost” has—a fixed point.
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Asymptotic regularity

Theorem. Let (Ti)i∈I be a family of firmly nonexpansive
mappings on X , and let (λi )i∈I be a family of strictly positive real
numbers such that

∑

i∈I λi = 1. Suppose that each Ti is

asymptotically regular, i.e., 0 ∈ ran(Id−Ti), i.e., Ti has—or
“almost” has—a fixed point. Then

∑

i∈I

λiTi

is asymptotically regular as well.

Example. Suppose that X = R2, m = 2, C1 = R× {0} and
C2 = epi exp, with corresponding projectors P1 and P2.

Then each FixPi = Ci 6= ∅, yet Fix
(

1
2P1 +

1
2P2

)

= ∅.



The resolvent average

Theorem. Let (Ai)i∈I be a family of maximally monotone—not
necessarily rectangular—operators, let (λi )i∈I be in R++ such that
∑

i∈I λi = 1, let j ∈ I , and define the resolvent average by

A :=

(

∑

i∈I

λi

(

Id+Ai

)−1
)−1

− Id .

Then the following hold.
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The resolvent average

(i) A is maximally monotone and

JA =
∑

i∈I

λiJAi

(ii) domA ≈
∑

i∈I λi domAi and ranA ≈
∑

i∈I λi ranAi .

(iii) If domAj = X , then domA = X .

(iv) If ranAj = X , then ranA = X .

(v) If 0 ∈
⋂

i∈I ranAi , then 0 ∈ ranA.

(vi) If 0 ∈ (int ranAj) ∩
⋂

i∈Ir{j} ranAi , then 0 ∈ int ranA.

Remark. If each Ai = ∂fi , then  proximal average of (fi )i∈I ;
item (iv) is abstract supercoercivity;
item (vi) is abstract coercivity;
“if some Aj is good, then so is A” (B-Moffat-Wang, forthcoming).



Positive semidefinite matrices

As an illustration of both the proximal and the resolvent average,
consider the following set up:

◮ A = (A1, . . . ,Am) ∈ (SN+)
m

◮ λ = (λ1, . . . , λm) ∈ R
m
+

◮ λ1 + · · ·+ λm = 1

◮ µ > 0

Now set

Rµ(A,λ) :=
(

λ1(A1 + µ−1 Id)−1 + · · ·+ λm(Am + µ−1 Id)−1
)−1

− µ−1 Id,

so that
JµRµ(A,λ) = λ1JµA1

+ · · ·+ λmJµAm
.



The bridge to the proximal average

For B ∈ SN , set
qB : x 7→ 1

2〈x ,Bx〉.

If each fi = qAi
, then

pµ(f,λ) = qRµ(A,λ)

and hence
∇pµ(f,λ) = Rµ(A,λ).

Thus the results on the proximal average are applicable!



Averages: harmonic vs resolvent vs arithmetic

Recall that the harmonic and arithmetic averages are defined by

H(A,λ) =
(

λ1A
−1
1 + · · ·+ λmA

−1
m

)−1
,

and
A(A,λ) = λ1A1 + · · ·+ λmAm,

respectively.



Averages: harmonic vs resolvent vs arithmetic

Recall that the harmonic and arithmetic averages are defined by

H(A,λ) =
(

λ1A
−1
1 + · · ·+ λmA

−1
m

)−1
,

and
A(A,λ) = λ1A1 + · · ·+ λmAm,

respectively.

Theorem. We have

H(A,λ) � Rµ(A,λ) � A(A,λ),

lim
µ→0+

Rµ(A,λ) = A(A,λ), lim
µ→+∞

Rµ(A,λ) = H(A,λ),

and
(

Rµ(A,λ)
)−1

= Rµ−1(A−1,λ).



Back to the general setting

We now let X be possibly infinite-dimensional again. Let

A

be a—not necessarily maximally—monotone operator on X .
Our aim is to find an explicit maximally monotone extension of A.
Recall the corresponding Fitzpatrick function is

FA : (x , x
∗) 7→ sup

(a,a∗)∈graA

(

〈x , a∗〉+ 〈a, x∗〉 − 〈a, a∗〉
)

.

Given F ∈ Γ(X × X ), it will be convenient to define

F ⊺(x∗, x) = F (x , x∗)

and also to define G (F ) : X ⇉ X via

x∗ ∈ G (F )x ⇔ (x∗, x) ∈ ∂F (x , x∗).



Explicit maximally monotone extension

Theorem. Let A : X ⇉ X be monotone and set

EA := p1
(

FA,F
∗⊺
A , 12 ,

1
2

)

.

Then E ∗
A = E⊺A, G (EA) is a maximally monotone extension of A

that is primal-dual symmetric in the sense that

(

G (EA)
)−1

= G (EA−1).



Explicit maximally monotone extension

Theorem. Let A : X ⇉ X be monotone and set

EA := p1
(

FA,F
∗⊺
A , 12 ,

1
2

)

.

Then E ∗
A = E⊺A, G (EA) is a maximally monotone extension of A

that is primal-dual symmetric in the sense that

(

G (EA)
)−1

= G (EA−1).

Remark.
This provided an answer to a problem of Fitzpatrick from 1988
(and it also works in reflexive spaces).
Note that this construction does not require Zorn’s Lemma!
Similarly, via Minty, we also obtain Zorn’s-Lemma-free extensions
of (firmly) nonexpansive mappings in the spirit of
Kirszbraun-Valentine!



Current/future work
and open problems



Current/future work

◮ More basic theory for the resolvent average X

◮ Asymptotic regularity of compositions of resolvents X

◮ Extend resolvent average to nonreflexive Banach spaces and
Bregman-distance like settings ?

◮ Numerical convex analysis (Lucet et al., on-going) . . .

◮ Numerical monotone operator theory ?



Open problems

◮ Strong convergence of random projections for subspaces ?

◮ Weak convergence of random projections ?

◮ De Pierro’s conjecture ?



Bibliographical starting points



For further information. . .

◮ Please email me at heinz.bauschke@ubc.ca if you wish to
obtain detailed pointers to specific results.

◮ The interplay of maximally monotone operators and firmly
nonexpansive mappings is a central theme in
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Merci beaucoup!
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