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INCOMPRESSIBLE FLUID MOTION

One can describe the motion of an incompressible fluid inside a
bounded domain D in Rd by a time-dependent family t→ Mt of
maps, in the Hilbert space H = L2(D,Rd), valued in the subset
VPM(D) of all Lebesgue measure-preserving maps

VPM(D) = {M ∈ H,
∫

D
q(M(x))dx =

∫
D

q(x)dx, ∀q ∈ C(Rd)}

Conventional fluid mechanics further requires these maps to
belong to SDiff(D), the subset of all orientation preserving
diffeomorphisms in VPM(D). However, as will be shown later, it is
useful to give up this additional requirement.
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THE EULER EQUATIONS:

Solutions of the Euler equations, introduced in 1755, correspond
to those curves t→ Mt ∈ VPM(D) for which there exists a time
dependent scalar function pt, called ’pressure field’, defined on D,
such that

d2Mt

dt2 + (∇pt) ◦Mt = 0

where ∇ is the gradient operator on Rd (with respect to the
Euclidean norm | · |).
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THE PRINCIPLE OF LEAST ACTION: OPTIMAL
INCOMPRESSIBLE TRANSPORT
THEOREM Assume D to be convex. Let (Mt,pt) a solution of the
Euler equations, with a constant λ such that

d∑
i,j=1

∂2pt(x)
∂xi∂xj

ξiξj ≤ λ|ξ|2, ∀ξ ∈ Rd, ∀x ∈ D, ∀t

Then, for every t0 < t1 so that (t1 − t0)
2λ < π2, Mt is the unique

minimizer, among all curves along VPM(D) that coincide with Mt
at t = t0, t = t1, of the following ACTION

1
2

∫ t1

t0

∫
D
|dMt(x)

dt
|2 dxdt

In geometric words, such a curve is nothing but a (constant
speed) geodesic along VPM(D) , with respect to the metric
induced by H = L2(D,Rd), cf. Arnold 1966
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THE PRINCIPLE OF LEAST ACTION IN EULER’S PAPER
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THE DUAL ACTION

Minimizing the action can be written as a saddle point problem,
just by using a time-dependent Lagrange multiplier to relax the
constraint for Mt to belong to VPM(D)

inf
M

sup
p

∫ t1

t0

∫
D
{1

2
|dMt(x)

dt
|2 − pt(Mt(x)) + pt(x)}dxdt

This is trivially bounded from below by

sup
p

inf
M

∫ t1

t0

∫
D
{1

2
|dMt(x)

dt
|2 − pt(Mt(x)) + pt(x)}dxdt

which naturally leads to a dual least action principle
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THE DUAL LEAST ACTION PRINCIPLE

THEOREM Under exactly the same conditions (D convex and
(t1 − t0)

2λ < π2), the pressure p is the unique maximizer of the
CONCAVE DUAL ACTION

I[p] =
∫

D
Jp(Mt0(x),Mt1(x))dx +

∫ t1

t0

∫
D

pt(x)dxdt

Jp(y, z) = inf
∫ t1

t0

(
1
2
|dξt

dt
|2 − pt(ξt)) dt

where the infimum is taken over all curves ξt ∈ D such that
ξt0 = y ∈ D, ξt1 = z ∈ D
As for the previous theorem, the proof is elementary and directly follows from
the 1D Poincaré inequality, which explains the role of constant π. Notice that Mt

is never assumed to be smooth or one-to-one and the case d = 1 is fine.
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SHNIRELMAN’S DENSITY RESULT
It is customary to consider the subset SDiff(D) of VPM(D) made
of Lebesgue-measure preserving maps that are, in addition,
orientation preserving diffeomorphisms. For d ≥ 2, VPM(D) is
precisely the L2 closure of SDiff(D). This is a relatively easy
result.

The identification of the closure of SDiff(D) for the a priori finer
geodesic distance induced by L2 is a much more difficult issue.
For simple (say contractile) domains D, this closure is still
VPM(D) for d ≥ 3 (but definitely not for d = 2) as shown by
Shnirelman in his landmark paper (Math USSR Sb 1985).
These results have striking consequences: in particular maps of
form

M(x) = (h(x1),x2,x3)

where h is any Lebesgue-measure preserving map of the unit
interval, are in the closure of SDiff([0,1]3).
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EXISTENCE OF OPTIMAL INCOMPRESSIBLE
TRANSPORT?

MINIMIZING GEODESICS AND OPTIMAL INCOMPRESSIBLE
TRANSPORT Shnirelman has proven (Math USSR Sb 1986) that
existence of an optimal transport (i.e. a minimizing geodesics)
along SDiff(D) may fail when d ≥ 3. Remarkably enough, as we
will see, the case d ≥ 3 turns out to be "easy", with a crucial use
of the convex structure of the dual problem. The case d = 2 is
clearly linked to symplectic geometry and seems extremely
difficult: a fascinating strategy has been developed by
Shnirelman, by adding braid constraints to the minimization
problem, which certainly deserves further investigations.
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APPROXIMATELY OPTIMAL INCOMPRESSIBLE
TRANSPORT
DEFINITION Let us assume D to be convex, fix t0 = 0, t1 = 1 and
consider two maps M0,M1 ∈ VPM(D). We say that (Mε

t) ∈ SDiff(D)
is an ε-optimal incompressible transport if

∫
D

∫ t1

t0

|
dMε

t(x)
dt

|2 dtdx ≤ d(M0,M1)
2 + ε

∫
D
|Mε

1(x)−M1(x)|2dx +

∫
D
|Mε

0(x)−M0(x)|2dx ≤ ε

where 1
2d(M0,M1)

2 denotes the maximal dual action. The
existence of such approximations is in no way trivial and is a
consequence of the key density results due to Shnirelman (GAFA
1994).
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OPTIMAL INCOMPRESSIBLE TRANSPORT:
EXISTENCE OF A UNIQUE PRESSURE GRADIENT

MAIN THEOREM Let us assume D to be convex, with d ≥ 3, fix
t0 = 0, t1 = 1 and consider two maps M0,M1 ∈ VPM(D). Then,
there is a UNIQUE pressure-gradient ∇pt such that for all (Mε

t)
ε-optimal incompressible transport, we have in the sense of
distributions

d2Mε
t

dt2 ◦ (M
ε
t)

−1 +∇pt → 0, ε→ 0

In addition p belongs to the functional space L2
t (BVx)loc

This result essentially goes back to YB CPAM 1999, with important
improvements in Ambrosio-Figalli ARMA 2008. It is a combination of solving the
dual least action problem and using Shnirelman’s density result for
"generalized flows", GAFA 1994.
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QUALITATIVE RESULTS
1) UNIQUENESS OF THE PRESSURE GRADIENT This is a
remarkable feature of the theory. There is no equivalent result for
finite dimensional configuration spaces such as SO(3), on which
geodesic curves (for appropriate metrics) correspond to the
motion of solid bodies in classical mechanics. We believe this
strange phenomenon to be the consequence of the "hidden
convexity" of the problem in dimension 3 and more.

2) LIMITED REGULARITY OF THE PRESSURE GRADIENT The
pressure gradient was proven first (YB CPAM 1999) to be a locally
bounded measure. Later, Ambrosio and Figalli have shown a
better L2 integrability with respect to the time variable (with
measure values in space). Recently, I found an explicit example
(that goes back to Duchon and Robert) of solutions with a
pressure field semi-concave in the space variable and not more.
The optimal regularity, and its dependence on the data, are clearly
challenging analytic issues.
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QUALITATIVE RESULTS

3) COMPARISON WITH "CLASSICAL" OPTIMAL TRANSPORT
Classical optimal transport ignores compressibility effects and
the resulting optimality equations just describe the motion of a
pressure-less potential flow. In the incompressible version, the
pressure field plays the role of the "Kantorovich" potential in the
classical theory.The existence and uniqueness of the pressure
field is a natural counterpart of the classical theory. However,
there is a definite lack of both existence and uniqueness for the
transport part. Finally, classical optimal transport has turned out
to be a powerful tool for functional inequalities and geometric
analysis (cf. Villani’s books). Nothing similar is known about the
potential applications of incompressible optimal transport.
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DENSITY OF PERMUTATIONS IN VPM(D)

Another interesting subset of VPM([0,1]3) is made of all
"permutations" of all dyadic divisions of the unit cube in
sub-cubes of equal volumes.

The set of all such permutations, denoted P(D) turns out to be L2

dense in VPM([0,1]3) for all dimensions.
Combined with the previous result, this justifies the use of 1D
calculations by (simple) combinatorial optimization methods to
understand the geometry of 3D volume preserving maps. They
actually give useful insights.
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