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1. Introduction

1.1. Classical Legendre functions (in Euclidean spaces)

We start by reviewing some of Rockafellar’s classical results on Legendre functions

[41, Sec. 26]: Suppose f : RM → ] −∞,+∞] is convex, lower semicontinuous, and

proper. Then f is called:

• essentially smooth, if it is differentiable on int dom f 6= ∅, and ‖∇f(xn)‖ → +∞
whenever xn → x ∈ bdry dom f ;

• essentially strictly convex, if it is strictly convex on every convex subset of dom∂f ;

• Legendre, if it is both essentially smooth and essentially strictly convex.

The corresponding theory is both very elegant and powerful: f is essentially

smooth if and only if its conjugate f∗ is essentially strictly convex. Consequently,

f is Legendre if and only if f∗ is, in which case ∇f is an isomorphism between

int dom f and int dom f∗. Many functions in convex optimization are Legendre [5];

perhaps most notably, the log barrier in Interior Point Methods [34].

1.2. An application: the method of cyclic Bregman projections

We now demonstrate the power of Legendre functions by studying a specific opti-

mization problem. Suppose C1, . . . , CN are closed convex sets (“the constraints”)

in RM with C =
⋂N
i=1Ci 6= ∅. The convex feasibility problem consists of finding a

point (“a solution”) in C. Suppose further that the orthogonal projection onto each

set Ci, which we denote by Pi, is readily computable. Then the method of cyclic

(orthogonal) projections operates as follows:

Given a starting point y0, generate a sequence (yn) by projecting cyclically onto

the constraints:

y0
P17−→ y1

P27−→ y2
P37−→ · · · PN7−→ yN

P17−→ yN+1
P27−→ · · · .

The sequence (yn) does indeed converge to a solution of the convex feasibility

problem [4].

In some applications, however, it is desirable to employ the method of cyclic

projections with (nonorthogonal) Bregman projections [16]. These are constructed

as follows. Given a “sufficiently nice” convex function f , the Bregman distance

between x and y is

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 ,

where y ∈ int dom f is a point of differentiability of f . Then the Bregman projection

of y onto the ith constraint Ci with respect to f is defined by

arginfx∈CiDf (x, y) .

Here we have implicitly assumed that y is a point of differentiability so that Df(x, y)

is well defined. More importantly, to define the sequence of cyclic projections

unambiguously, the following is required: • the arginf is nonempty (“existence of
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nearest points”), • the arginf is a singleton (“no selection necessary”), • the arginf

is contained in int dom f (in order to project the arginf onto the next constraint

Ci+1).

The punch-line is that if f is Legendre, then all these good properties hold [5]

— in the terminology of Censor and Lent [19], “every Legendre function is zone

consistent”. Moreover, the Legendre property is the most general condition known

to date [5] that guarantees zone consistency.

1.3. Objective in this paper

The objective in this paper is to extend the classical notions of essential smooth-

ness, essential strict convexity, and Legendreness from Euclidean to Banach spaces,

to furnish an elegant and effective concomitant theory, and to demonstrate the

applicability of these new notions.

1.4. Standing assumptions

Throughout the paper, we assume that

X is a real Banach space with norm ‖ · ‖

and that

f : X → ]−∞,+∞] is a proper convex lower semicontinuous function.

1.5. Summary of the main results

We say that f is:

• essentially smooth, if ∂f is both locally bounded and single-valued on its domain;

• essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f is

strictly convex on every convex subset of dom∂f ;

• Legendre, if it is both essentially smooth and essentially strictly convex.

The most important results are the following: (compatibility) the new no-

tions agree with the classical ones in Euclidean spaces (Theorem 5.11); (duality)

in reflexive spaces, f is Legendre if and only if f∗ is (Corollary 5.4); various

characterizations of essential smoothness in Banach spaces (Theorem 5.6);

a subdifferential formula that is particularly useful in weak Asplund spaces

(Theorem 4.5); Legendre functions are zone consistent in reflexive spaces

(Corollary 7.8).

Furthermore, we believe that the results gathered and refined during the course

of this study comprise a part of the theory on convex functions in Banach (especially

reflexive) spaces that is not only of great utility in optimization — as illustrated

by the applications in the later sections and in [6] — but also of significant value

in its own right.
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1.6. Organization of the paper

In Sec. 2, we review (and sometimes extend) basic facts from convex analysis.

Coercivity, supercoercivity, and cofiniteness are discussed in Sec. 3, where we also

characterize spaces in which every cofinite function is necessarily supercoercive

(Theorem 3.6). Section 4 contains crucial results on the more subtle properties

of directional derivatives and subgradients at boundary points of the domain. We

obtain a powerful subdifferential formula (Theorem 4.5) that becomes particularly

useful in weak Asplund spaces.

Essential smoothness, essential strict convexity, and Legendreness are intro-

duced in the fifth section. We present basic duality results, very useful character-

izations, and some examples. It is also shown that the new notions coincide with

the classical ones in Euclidean spaces. Section 6 is devoted to the discussion of

further examples. The final Sec. 7 contains useful properties of Bregman distances

and Bregman projections in reflexive spaces. We conclude with the striking result

that Legendre functions are zone consistent.

1.7. Notation

The notation we employ is for the most part standard (see [1] for details).

The topological dual of X is denoted by X∗. BX = {x ∈ X: ‖x‖ ≤ 1}
(respectively SX = {x ∈ X: ‖x‖ = 1}) is the unit ball (respectively unit sphere); if

x ∈ X and r ∈ R, then B(x; r) = x+ rBX .

A function g: X → [−∞,+∞] is convex if its epigraph epi g = {(x, r) ∈ X ×
R: g(x) ≤ r} is a convex set.

Suppose S is a set in X, and x ∈ X. The interior (closure, boundary, convex

hull, recession cone respectively) of S is denoted by intS (clS, bdryS, convS,

recS respectively). The indicator function of S is defined by ιS(x) = 0, if x ∈ S;

+∞, otherwise. The normal cone (respectively tangent cone) to S at a point x ∈ S
is denoted by NS(x) (respectively TS(x)). For convenience, we set NS(x) = ∅ if

x ∈ X\S. Given x, y ∈ X the set [x, y] = {(1 − t)x + ty: 0 ≤ t ≤ 1} (respectively

]x, y[= {(1 − t)x + ty: 0 < t < 1}) is the closed (respectively open) line segment

between x and y; half-open segments are defined analogously.

The domain (respectively range) of a set-valued map T from X to 2X
∗

is {x ∈
X: Tx 6= ∅} (respectively

⋃
x∈X Tx), written domT (respectively ranT ).

Finally, convergence with respect to the norm (respectively weak, weak∗) topol-

ogy of a sequence/net is indicated through → (respectively ⇀,
w∗
⇁).

2. Facts

Most of the following results are known, and their proofs can be pieced together

from various sources such as [1, 3, 27, 29, 36, 37, 43]. We restate them here for the

reader’s convenience.



November 12, 2001 14:11 WSPC/152-CCM 00052

Essential Smoothness, Essential Strict Convexity, and Legendre Functions 619

2.1. Convex sets

Fact 2.1 (Accessibility Lemma). Suppose C is a convex set in X, and 0 <

λ ≤ 1. Then λ int(C) + (1 − λ) cl(C) ⊆ int(C). Consequently, if intC 6= ∅, then

clC = cl intC.

Proof. See [29, Eq. 11.1 and Lemma 11.A on p. 59].

Fact 2.2. Suppose C is a convex set in X with intC 6= ∅ and x ∈ C. Then

(i) intTC(x) =
⋃
r>0 r(intC − x).

(ii) TC(x) + intTC(x) = intTC(x).

Proof. (i) See [1, Proposition 4.1.7]. (ii) Follows easily from (i) and Fact 2.0.

2.2. Continuity and properness

Fact 2.3. Suppose g: X → ] −∞,+∞] is proper and convex and let x ∈ dom g.

Then the following are equivalent.

(i) g is Lipschitz in a neighbourhood of x.

(ii) g is continuous at x.

(iii) g maps some neighbourhood of x to a bounded set.

(iv) g maps some neighbourhood x to a set that is bounded above.

If one of these conditions holds, then g is continuous throughout int dom g. Finally,

if g is also lower semicontinuous, then the above conditions are equivalent to

(v) x ∈ int dom g.

Proof. Combine [29, Theorem 14.A], [37, Proposition 1.6], and [37,

Proposition 3.3].

Fact 2.4. Suppose g: X → [−∞,+∞] is convex. If g is finite at some point in

int dom g, then g is proper.

Proof. The proof of [11, Lemma 3.2.6] works in our setting without change.

2.3. The directional derivative and subgradients

The following notions are fundamental in convex analysis. Fix x ∈ dom f . The direc-

tional derivative of f at x in direction h ∈ X is defined by f ′(x;h) = limt→0+(f(x+

th)− f(x))/t. The function f ′(x; ·) is convex and positively homogeneous, i.e. sub-

linear. The set ∂f(x) = {x∗ ∈ X∗: 〈x∗, h〉 ≤ f(x + h) − f(x),∀h ∈ X} is the

subdifferential of f at x and its elements are called subgradients.

We start with a simple yet useful observation.
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Fact 2.5. f ′ is finite and upper semicontinuous on int dom f ×X. If x ∈ int dom f ,

then f ′(x; ·) is continuous on X.

Proof. Fix x ∈ int dom f and h ∈ X. We clearly have f ′(x;h) < +∞. On the

other hand, using local Lipschitzness of f at x (Fact 2.3), it follows readily that

f ′(x;h) > −∞. Altogether, f ′ is finite on int dom f × X. Finally, for all ε > 0

sufficiently small, f ′(x;h) = inf0<t<ε(f(x+ th)− f(x))/t is the pointwise infimum

of continuous functions on int dom f ×X; therefore, f ′ is upper semicontinuous on

this set. For the “If” statement, see [37, Corollary 1.7].

The next few results are classical.

Fact 2.6. int dom f ⊆ dom ∂f .

Proof. Combine [37, Proposition 2.24] with [37, Proposition 3.3].

Fact 2.7 (Brøndsted–Rockafellar). cl dom∂f = cl dom f .

Proof. See [37, Theorem 3.17].

Fact 2.8 (Rockafellar). ∂f is a maximal monotone operator from X to 2X
∗
.

Proof. See, for instance, [37, Theorem 3.24].

Fact 2.9 (Moreau’s Classical Max Formula). Suppose x ∈ int dom f , and

h ∈ X. Then f ′(x;h) = max〈∂f(x), h〉.

Proof. See [36, Sec. 10, p. 65] or [37, Proposition 2.24].

Subsequently, we shall require the following generalization of the classical Max

Formula. (Note that Fact 2.5 shows that this result indeed generalizes Fact 2.0.)

Theorem 2.10 (Generalized Max Formula). Let x ∈ dom f and f ′(x; ·) be

continuous at h ∈ X. Then f ′(x;h) = max〈∂f(x), h〉. In particular, ∂f(x) 6= ∅.

Proof. Let p = f ′(x; ·). Then p is convex and, since h ∈ int dom p, pmust be proper

(Fact 2.4). By the classical max formula (Fact 2.0), p′(h; k) = max〈∂p(h), k〉, for

every k ∈ X. Fix x∗ ∈ ∂p(h) and k ∈ X. Then 〈x∗, k〉 ≤ p(h + k) − p(h) ≤
p(k) = f ′(x; k). Hence x∗ ∈ ∂f(x) and thus ∂p(h) ⊆ ∂f(x). It follows that ∂f(x)

is nonempty and sup〈∂f(x), h〉 ≤ f ′(x;h). Pick x∗ ∈ ∂p(h) such that p′(h;h) =

〈x∗, h〉. Then x∗ ∈ ∂f(x) and 〈x∗, h〉 = p′(h;h) = limt→0+(p(h + th) − p(h))/t =

p(h) = f ′(x;h).

The next example demonstrates that continuity at h in Theorem 2.10 is

important.
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Example 2.11. Let X be the Euclidean plane, f = ιBX , and x = (0,−1). It is not

hard to check that f ′(x; ·) is the indicator function of the open upper halfplane,

whereas sup〈∂f(x), ·〉 is the indicator function of the closed upper halfplane. Hence

the generalized max formula holds precisely at points where f ′(x; ·) is continuous.

2.4. Conjugates

The conjugate of a function g:X → [−∞,+∞] is the (lower semicontinuous convex)

function g∗: X∗ → [−∞,+∞]: x∗ 7→ supx∈X〈x∗, x〉 − g(x).

Fact 2.12. Suppose x ∈ X and x∗ ∈ X∗. Then f(x) + f∗(x∗) ≥ 〈x∗, x〉, and

equality holds if and only if x∗ ∈ ∂f(x).

Proof. See [1, Proposition 4.4.3] or [36, Sec. 10].

Fact 2.13. f∗∗|X = f .

Proof. See [3, Theorem 2.1.4, pp. 97–99] or [43, Remark 6.3].

2.5. Closures

The next three lemmata relate closure operations to conjugates.

Lemma 2.14. Suppose g: X∗ →]−∞,+∞] is convex, lower semicontinuous, and

proper. Then (g∗|X)∗ = g if and only if g is weak∗ lower semicontinuous.

Proof. Modify the standard proof of Fact 2.13, for instance, [3, Proof of

Theorem 2.1.4, pp. 97–99].

Lemma 2.15. Suppose S is a set in X∗. Then (ι∗S |X)∗ = ιclw∗convS .

Proof. Fix x∗ ∈ X∗. We discuss two cases. If x∗ ∈ clw∗convS, then both func-

tions evaluate to 0. Otherwise, x∗ 6∈ clw∗convS, in which ιclw∗convS(x∗) = +∞.

Separating weak∗ yields x1 ∈ X\{0} such that 〈x∗, x1〉 > sup〈S, x1〉 = (ι∗S |X)(x1).

By evaluating ι∗S |X at nx1, where n→ +∞, we readily deduce that (ι∗S |X)∗(x∗) =

+∞.

We define the closure of a convex function g via its epigraph, namely, epi(cl g) =

cl(epi g). This is in accordance with [11, Sec. 4.2], but it differs (for improper

functions) from Rockafellar’s definition in [41, Sec. 7].

Lemma 2.16. Suppose g: X → [−∞,+∞] is convex, positively homogeneous, and

g 6≡ +∞. Set S = {x∗ ∈ X∗: g∗(x∗) ≤ 0}. Then (cl g)∗ = g∗ = ιS and g∗∗ = ι∗S .

Consequently, if g is lower semicontinuous at some point where it is finite, then

cl g = g∗∗|X = ι∗S |X .
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Proof. This follows along familiar steps which we only sketch: (1) cl g is a well-

defined function, convex and lower semicontinuous. (2) The definitions easily yield

(cl g)∗ = g∗ = ιS . (3) Hence g∗∗ = (cl g)∗∗ = ι∗S and so g∗∗|X = (cl g)∗∗|X = ι∗S |X .

(4) If g(x) ∈ R, then: g is lower semicontinuous at x if and only if g(x) = (cl g)(x);

in this case, cl g is proper. (5) Assume now in addition that g is finite and lower

semicontinuous at some point. By (1) and (4), cl g is convex, lower semicontinuous,

and proper. It follows that cl g = (cl g)∗∗|X by Fact 2.13, and we are done.

2.6. Local boundedness

Recall that a set-valued map T from X to 2X
∗

is locally bounded at a point x ∈ X if

there exists ε > 0 such that sup ‖T (B(x; ε))‖ < +∞. (See [43, Sec. 17]. This differs

slightly from Phelps’s definition [37, Chap. 2] which requires x ∈ domT .)

Fact 2.17 (Rockafellar–Veselý). Suppose T is a maximal monotone operator

from X to 2X
∗
, and x ∈ cl domT .

(i) If x ∈ int domT , then T is locally bounded at x.

(ii) If cl domT is convex and T is locally bounded at x, then x ∈ int domT .

Proof. (i) this is Rockafellar’s [40, Theorem 1]; see also [37, Theorem 2.28]. (ii) is

due to Veselý — see [37, Remarks on Chap. 2].

Remark 2.18. It is unknown whether cl domT can fail to be convex [43,

Problem 18.9]. However, cl domT is convex in any of the following cases: (i) T

is a subdifferential (Fact 2.0); (ii) X is reflexive [43, Theorem 18.6]; (iii) T is of

type (FPV) [43, Theorem 26.3]; (iv) int conv domT 6= ∅ [40, Theorem 1] and also

[43, Theorems 18.3 and 18.4]. In fact, (iii) generalizes both (i) and (ii); see Simons’s

[43] for background and references.

Corollary 2.19. Suppose x ∈ dom ∂f. Then x ∈ int dom f if and only if ∂f is

locally bounded at x.

Proof. By Fact 2.0, cl dom ∂f = cl dom f . But the latter set is clearly convex. The

result now follows from Fact 2.10.

We conclude this section with a result which complements Corollary 2.19 in the

sense that it will tell us when to expect an unbounded subdifferential.

Lemma 2.20. Suppose T is a maximal monotone operator map from X to 2X
∗
.

Then NdomT = recT. In particular :

(i) Ndom f (x) = rec ∂f(x), for every x ∈ dom∂f.

(ii) If int dom f 6= ∅ and x ∈ dom∂f\int dom f, then ∂f(x) is unbounded.
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Proof. Fix x ∈ domT . “⊆”: Fix z∗ ∈ NdomT (x). Then 〈z∗, y−x〉 ≤ 0, ∀ y ∈ domT .

Pick x∗ ∈ Tx and p ≥ 0. Then 〈(x∗+pz∗)−y∗, x−y〉 = 〈x∗−y∗, x−y〉+p〈z∗, x−y〉 ≥
0, ∀ y ∈ domT , ∀ y∗ ∈ Ty. By maximal monotonicity, x∗ + pz∗ ∈ Tx, ∀ p ≥ 0.

Hence z∗ ∈ recTx. “⊇”: Now let z∗ ∈ recTx, y ∈ domT , y∗ ∈ Ty, and p ≥ 0. Then

x∗ + pz∗ ∈ Tx and so 0 ≤ 〈(x∗ + pz∗)− y∗, x− y〉 = 〈x∗ − y∗, x− y〉+ p〈z∗, x− y〉.
This is true for all p ≥ 0; thus, letting tend p to +∞, we learn that 〈z∗, x− y〉 ≥ 0.

Since y is arbitrary, we have z∗ ∈ NdomT (x), as required.

(i) is now clear: T = ∂f is maximal monotone (Fact 2.0), and Ndom f (x) =

Ndom ∂f (x), ∀x ∈ dom ∂f (by Fact 2.0).

(ii) we separate x from int dom f by, say, z∗ 6= 0: 〈z∗, x〉 ≥ sup〈z∗,dom f〉. It follows

that z∗ ∈ Ndom f (x). By (i), ∂f(x) is (even linearly) unbounded.

3. Coercivities and the Schur Property

3.1. Coercivity

Recall that f is coercive, if lim‖x‖→+∞ f(x) = +∞.

The following result is not as well known as it should be.

Fact 3.1 (Moreau–Rockafellar). Suppose y∗ ∈ X∗. Then f − y∗ is coercive if

and only if y∗ ∈ int dom f∗.

Proof. [35] and [39, Theorem 7A(a)].

3.2. Supercoercivity

Lemma 3.2. Suppose α > 0. Consider the following conditions :

(i) lim‖x‖→+∞f(x)/‖x‖ > α.

(ii) There exists β ∈ R such that f ≥ α‖ · ‖+ β.

(iii) There exists γ ∈ R such that f∗ ≤ γ on αBX∗ .

(iv) lim‖x‖→+∞f(x)/‖x‖ ≥ α.

Then: (i)⇒(ii)⇔(iii)⇒(iv).

Proof. (i)⇒(ii): There exists η > 0 such that:

‖x‖ > η ⇒ f(x) ≥ α‖x‖ .

On the other hand, the existence of subgradients (guaranteed by Fact 2.0) readily

yields −∞ < µ = inf f(ηBX). Thus if x ∈ ηBX , then α‖x‖ ≤ αη ≤ (αη−µ)+f(x).

Hence:

‖x‖ ≤ η ⇒ f(x) ≥ α‖x‖+ (µ− αη) .

Altogether, (ii) holds with β = min{0, µ− αη} ∈ R.
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(ii)⇔(iii): α‖ · ‖+ β ≤ f ⇔ f∗ ≤ (α‖ · ‖+ β)∗ ⇔ f∗ ≤ ιαBX∗ − β.

(ii)⇒(iv): lim‖x‖→+∞f(x)/‖x‖ ≥ α+ lim‖x‖→+∞β/‖x‖ = α.

The next result result defines and characterizes supercoercivity, a condition

much more restrictive than coercivity.

Theorem 3.3 (Supercoercivity). The following are equivalent :

(i) f is supercoercive: lim‖x‖→+∞ f(x)/‖x‖ = +∞.
(ii) f∗ is bounded above on bounded sets.

(iii) dom ∂f∗ = X∗ and ∂f∗ maps bounded sets to bounded sets.

Proof. (i)⇔(ii): See Lemma 3.2. (ii)⇔(iii): The proof of [4, Proposition 7.8] works

in our setting without change.

Theorem 3.4. Consider the following conditions :

(i) f is supercoercive.

(ii) f − y∗ is coercive, for every y∗ ∈ X∗.
(iii) f is cofinite: dom f∗ = X∗.

Then: (i)⇒(ii)⇔(iii). If X is finite-dimensional, then (i)⇐(ii).

Proof. (i)⇒(iii): See Theorem 3.3. (ii)⇔(iii): See Fact 3.0.

(i)⇐(ii) when X is finite-dimensional: We argue by contradiction. Let (xn) be

a sequence in X and η > 0 such that 0 < ‖xn‖ → +∞ and f(xn)/‖xn‖ ≤ η,

for every n. Abbreviate xn/‖xn‖ by qn. Passing to a subsequence if necessary,

we may assume that (qn) converges to some point q ∈ SX . Now pick q∗ ∈ J(q),

where J is the normalized duality map, and let y∗ = rq∗, where r = 2η > 0.

Since f − y∗ is coercive, we have f(xn) − r〈q∗, xn〉 → +∞. On the other hand,

〈q∗, qn〉 → 〈q∗, q〉 = ‖q‖2 = 1. Hence, for n sufficiently large, 〈q∗, qn〉 ≥ 1/2 and

therefore

+∞← f(xn)− r〈q∗, xn〉 = ‖xn‖
(
f(xn)

‖xn‖
− r〈q∗, qn〉

)
≤ ‖xn‖(η − r/2) .

Thus necessarily 2η > r = 2η, which is absurd.

Remark 3.5. In Example 7.0 below, we present an explicit function that is cofinite

but not supercoercive.

3.3. The Schur property

In finite-dimensional spaces, every cofinite convex function is necessarily superco-

ercive — this is essentially due to Rockafellar; see [5, Proposition 2.16]. Clearly, it

is interesting and useful to know in which spaces cofinite functions are necessarily

supercoercive. The following theorem provides a complete answer.
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Theorem 3.6. The following are equivalent :

(i) X has the Schur property: every weakly compact set in X is compact.

(ii) Every convex continuous everywhere finite weak∗ lower semicontinuous func-

tion on X∗ maps bounded sets to bounded sets.

(iii) Every proper convex lower semicontinuous cofinite function on X is

supercoercive.

Proof. (i)⇔(ii): See [7, Theorem 4.1].

(ii)⇒(iii): Suppose g is proper, convex, lower semicontinuous, and cofinite on

X. Then g∗ is convex continuous and weak∗ lower semicontinuous on X∗. Hence g∗

is bounded (above) on bounded sets. By Theorem 3.3, g is supercoercive.

(ii)⇐(iii): Suppose g is convex everywhere continuous and weak∗ lower semi-

continuous on X∗. Set h = g∗|X . By Lemma 2.14, h∗ = g. So h is cofinite, hence

supercoercive. By Theorem 3.3, g maps bounded sets to bounded sets.

We now digress briefly to discuss examples of spaces possessing the Schur

property. We require below the following:

Fact 3.7. Let X = C(K), where K is a compact Hausdorff space. Then the

following are equivalent.

(i) X does not contain an isomorphic copy of `1.

(ii) X is an Asplund space [37, Definition 1.22].

(iii) K is scattered [29, Sec. 25.C]: every closed nonempty subset of K contains an

isolated point.

(iv) X does not contain an isometric copy of C[0, 1].

Proof. (See also [8, Theorem 4.3].)

(ii)⇔(iii): [24, Lemma VI.8.3 on p. 258].

(ii)⇒(i): Otherwise, X does contain an isomorphic copy Y of `1. Then Y ∗ is

an isomorphic copy of `∞. Since `∞ is not separable, we have contradicted that

assumption that X is Asplund.

(i)⇒(iv): Otherwise X does contain an isometric copy of C[0, 1]. Now C[0, 1] is

universal for separable spaces [29, Theorem 25.B] and `1 is separable. Altogether,

X contains an isometric copy of `1, which is absurd.

(iv)⇒(iii): We prove the contrapositive, and thus assume thatK is not scattered.

By [31, Theorem 2 on p. 29] (see also [29, Lemma 25.C.2] when K is actually a metric

space), there exists a continuous map x from K onto [0, 1]. It is now straightforward

to verify that T :C[0, 1]→ C(K): y 7→ (y ◦x) is an isometry. So X = C(K) contains

an isometric copy of C[0, 1], hence (iv) does not hold.

Remark 3.8. Asplund C(K) spaces are well understood in the sense that they

are characterized by K being scattered (Fact 3.7) — the most basic example is

the Alexandrov compactification of a countable discrete metric space. (See also [24,
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Sec. VI.8].) However, they are sufficiently complex to host remarkable constructions

due to Haydon. In [28], he constructed a scattered set K so that • C(K) is Asplund,

but • C(K) has no smooth renorm, and • C(K) has no rotund renorm!

We are now ready to record examples of spaces with the Schur property.

Example 3.9. The following spaces possess the Schur property:

(i) finite-dimensional spaces,

(ii) `1, and

(iii) the dual of C(K), where K is compact, Hausdorff, and scattered.

Proof. (i) trivial. (ii) is well-known; see [2, Chap. 9, p. 137] or [26, Chap. 7, p. 85].

(iii): This is proven by combining the following results. • X∗ has the Schur

property ⇔ X has the Dunford–Pettis property and X does not contain `1 [26,

Exercise 4(ii) on p. 212]. • every C(K) space has the Dunford–Pettis property

[26, Exercise 1(ii) on p. 113]. • C(K) does not contain `1 ⇔ K is scattered

(Fact 3.7).

4. On Directional Derivatives and (sub) Gradients

The results in this section make the proofs in the next section considerably easier;

moreover, they are also of independent interest: for instance, the next theorem

extends [41, Theorem 23.3] to infinite-dimensional spaces and sharpens results in

[29, Sec. 14.C].

Theorem 4.1 (Dichotomy). Suppose int dom f 6= ∅ and x ∈ dom f. Set U =

int dom f. Then exactly one of the following two alternatives holds:

(i) ∂f(x) = ∅ and f ′(x;u− x) = −∞, for every u ∈ U.
(ii) ∂f(x) 6= ∅, the function y 7→ f ′(x; y − x) is continuous on U, and

f ′(x;h) = max〈∂f(x), h〉 , for every h ∈ cone (U − x) .

Proof. Case 1. f ′(x;u − x) = −∞, for every u ∈ U . We claim that ∂f(x) = ∅.
Otherwise, we fix ū ∈ int dom f and x∗ ∈ ∂f(x). Set u = (1 − t)x + tū, for t > 0.

Then t〈x∗, ū − x〉 ≤ f(x + t(ū − x)) − f(x). Divide by t and let t tend to 0 from

above to deduce the absurdity 〈x∗, ū − x〉 ≤ −∞. Hence we have ∂f(x) = ∅, and

Case 1 is thus dealt with.

Case 2. f ′(x;u0 − x) > −∞, for some u0 ∈ U .

Consider the sequence of functions (pn)n≥1 defined by

pn:X →]−∞,+∞]:y 7→
f(x+ 1

n
(y − x)) − f(x)

1
n

.

Clearly, each pn is convex, lower semicontinuous, proper, and continuous on U .

Let p = X → [−∞,+∞]: y 7→ f ′(x; y − x). Then p(y) = infn pn(y) = limn pn(y),



November 12, 2001 14:11 WSPC/152-CCM 00052

Essential Smoothness, Essential Strict Convexity, and Legendre Functions 627

∀ y ∈ X. Hence p is convex. Since dom p ⊇ dom p1, we deduce that U ⊆ dom p. Also,

p(u0) ∈ R. Fact 2.4 implies that p is proper. In particular, p is finite on U . Moreover,

p|U is the pointwise limit of (pn|U), a sequence of continuous functions. It follows

(see, e.g. [15, Exercice IX.5.20(b)]) that the set of points where p|U is not continuous

is meagre. Since U is a Baire space [15, Théorème IX.5.1 and Proposition IX.5.3],

we conclude that the set of points where p|U is continuous is dense and hence

nonempty. (This follows from [27, Theorem 3.1.7 on p. 109], too.) Consequently, by

Fact 2.3 (or by [27, Theorem 3.1.8 on p. 110]), p is continuous on U . Equivalently,

f ′(x; ·) is continuous on U−x. The result now follows from the positive homogeneity

of f ′(x; ·) and Theorem 2.10.

Lemma 4.2. Suppose {x, y} ⊆ dom f. Then limt→0+ f ′(x + t(y − x); y − x) =

f ′(x; y − x).

Proof. Let g: R → ] − ∞,+∞]: t 7→ f(x + t(y − x)). Then g is convex, lower

semicontinuous, proper on R, dom g ⊇ [0, 1], and g′+(t) = limh→0+
g(t+h)−g(t)

h =

f ′(x+ t(y − x); y − x), for all t ∈ [0, 1[. Hence

lim
t→0+

f ′(x+ t(y − x); y − x) = lim
t→0+

g′+(t) = g′+(0) = lim
t→0+

g(h)− g(0)

h

= f ′(x; y − x) ,

where we have used [41, Theorem 24.1] to arrive at the second equality.

The next result involves the gradient map ∇f , which is always meant in the

Gâteaux sense.

Lemma 4.3. Suppose int dom f 6= ∅, dom∇f is dense in dom∂f, x ∈ int dom f,

h ∈ X, and ε > 0. Then there exists y ∈ int dom f such that ‖y − x‖ ≤ ε, f is

differentiable at y, and |f ′(x;h)− 〈∇f(y), h〉| ≤ ε.

Proof. By the classical Max Formula (Fact 2.0), choose x∗ ∈ ∂f(x) such that

〈x∗, h〉 = f ′(x;h) , α. After decreasing ε if necessary, we may assume thatB(x; ε) ⊆
int dom f . By Fact 2.5, limδ→0+f ′(x+ δh;h) ≤ f ′(x;h). Fix δ > 0 sufficiently small

so that

B(x+ δh; ε/2) ⊆ B(x; ε) and f ′(x+ δh;h) < f ′(x;h) + ε .

Fix y∗ ∈ ∂f(x + δh). By monotonicity of ∂f , 0 ≤ 〈y∗ − x∗, (x + δh) − x〉. Hence

〈y∗, h〉 ≥ 〈x∗, h〉 = f ′(x;h) = α. Thus we obtain inf〈∂f(x + δh), h〉 ≥ α; equiva-

lently, −α ≥ sup〈∂f(x+ δh),−h〉 = f ′(x+ δh;−h). By assumption, there exists a

sequence (yn) in B(x+δh; ε/2)∩dom∇f such that yn → x+δh. The local bounded-

ness of ∂f at x+δh (Corollary 2.19) secures the boundedness of (∇f(yn)). Passing to

a subsequence if necessary, we assume that (〈∇f(yn), h〉) converges to λ ∈ R. Using
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Fact 2.5, we obtain −α ≥ f ′(x+ δh;−h) ≥ limnf
′(yn;−h) = limn〈∇f(yn),−h〉 =

−limn〈∇f(yn), h〉 = −λ, so

λ ≥ f ′(x;h) .

On the other hand, again by Fact 2.5, limnf
′(yn;h) ≤ f ′(x+ δh;h) and, therefore,

λ ≤ f ′(x+ δh;h). Altogether,

f ′(x;h) ≤ λ = lim
n
〈∇f(yn), h〉 ≤ f ′(x+ δh;h) < f ′(x;h) + ε .

Hence yn is as required, for all n sufficiently large.

Lemma 4.4. Suppose int dom f 6= ∅, x0 ∈ dom ∂f, and x1 ∈ int dom f. Then

sup ‖∂f(]x0, x1])‖ < +∞ and there exist x∗0 ∈ ∂f(x0) and bounded nets (xα) in

]x0, x1] ⊆ int dom f and (x∗α) in X∗, such that x∗α ∈ ∂f(xα), f ′(xα;x1 − x0) =

〈x∗α, x1−x0〉, x0 = limα xα, x
∗
0 = w∗ limα x

∗
α, f

′(x0;x1−x0) = limα f
′(xα;x1−x0),

and f(x0) = limα f(xα).

Furthermore, if dom∇f is dense in dom ∂f, then there exist y∗0 ∈ ∂f(x0) and a

bounded net (yα) in int dom f such that (∇f(yα)) is bounded, x0 = limα yα, y
∗
0 =

w∗ limα∇f(yα), f ′(x0;x1 − x0) = limα〈∇f(yα), x1 − x0〉, and f(x0) = limα f(yα).

Proof. In view of Fact 2.3, obtain δ > 0 such that η = sup f(B(x1; δ)) < +∞. Set

xt = (1− t)x0 + tx1, for every t ∈ ]0, 1[. Convexity of f yields

(∀ t ∈ ]0, 1[)(∀ b ∈ BX) f(xt + tδb) ≤ (1− t)f(x0) + tη .

Now fix t ∈ ]0, 1], x∗t ∈ ∂f(xt), and b ∈ BX . Then tδ〈x∗t , b〉 = 〈x∗t , (xt + tδb)−xt〉 ≤
f(xt + tδb)− f(xt) ≤ (1− t)f(x0)+ tη− f(xt). Taking the supremum over b ∈ BX ,

we conclude tδ‖x∗t ‖ ≤ (1− t)f(x0) + tη − f(xt). Dividing by t and then employing

Theorem 4.1 yields

δ‖x∗t ‖ ≤ η − f(x0)−
f(xt)− f(x0)

t

≤ η − f(x0)− f ′(x0;x1 − x0) < +∞ . (4.1)

Also, f(x0) ≤ limt→0+f(xt) ≤ limt→0+f(xt) ≤ limt→0+(1 − t)f(x0) + tf(x1) =

f(x0), so that

lim
t→0+

f(xt) = f(x0) .

Recall that xt ∈ int dom f (using Fact 2.0). By the classical Max Formula, we

are able to pick x∗t ∈ ∂f(xt) such that f ′(xt;x1 − x0) = 〈x∗t , x1 − x0〉, for all

0 < t ≤ 1. Lemma 4.2 implies f ′(x0;x1 − x0) = limt→0+ f ′(xt;x1 − x0). In view of

(4.1), the net (x∗t ) is bounded. Hence we can extract suitable convergent subnets,

i.e. xα → x0, x
∗
α

w∗
⇁ x∗0, for some x∗0 ∈ ∂f(x0).
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“Furthermore”: We keep (xt) and (x∗t ) as just found. For every t ∈ ]0, 1], there

exists (Lemma 4.3) yt ∈ X such that ‖yt − xt‖ ≤ tδ/2 and |f ′(xt, x1 − x0) −
〈∇f(yt), x1 − x0〉| ≤ t. Hence

lim
t→0+

yt = lim
t→0+

xt = x0

and

lim
t→0+

〈∇f(yt), x1 − x0〉 = lim
t→0+

f ′(xt, x1 − x0) = f ′(x0;x1 − x0) .

For every t ∈ ]0, 1[, yt ∈ B(xt; t) and therefore f(yt) ≤ (1 − t)f(x0) + tη. Thus

f(x0) ≤ limt→0+f(yt) ≤ limt→0+f(yt) ≤ limt→0+(1− t)f(x0) + tη = f(x0). Thus

lim
t→0+

f(yt) = f(x0) .

We now tackle the boundedness of (∇f(yt))t∈ ]0,1]. Write yt = xt + (tδ/2)bt, where

bt ∈ BX , for all t ∈ ]0, 1]. Fix b ∈ BX and set zt = yt + (tδ/2)b ∈ xt + tδBX . Then

1

2
tδ〈∇f(yt), b〉 = 〈∇f(yt), zt − yt〉 ≤ f(zt)− f(yt)

≤ (1− t)f(x0) + tη − f(yt)

≤ t(η − f(x0))− (f(xt)− f(x0))− (f(yt)− f(xt)) .

Dividing by t and taking the supremum over b ∈ BX results in

1

2
δ‖∇f(yt)‖ ≤ η − f(x0)−

f(xt)− f(x0)

t
− f(yt)− f(xt)

t

≤ η − f(x0)− f ′(x0, x1 − x0)−
f(yt)− f(xt)

t
.

On the other hand, (tδ/2)〈x∗t , bt〉 = 〈x∗t , yt − xt〉 ≤ f(yt)− f(xt), so that

−f(yt)− f(xt)

t
≤ 1

2
δ〈x∗t ,−bt〉 ≤

1

2
δ‖x∗t ‖ .

Using (∗) to estimate ‖x∗t ‖, we therefore conclude that

δ‖∇f(yt)‖ ≤ 2η − 2f(x0)− 2f ′(x0;x1 − x0) + δ‖x∗t ‖

≤ 3(η − f(x0)− f ′(x0;x1 − x0))

< +∞ .

We conclude by passing to a subnet (yα) of (yt) such that (∇f(yα)) is weak∗

convergent.

We now derive a powerful subdifferential formula. Note that the assumption on

denseness in the “Furthermore” part is always satisfied in weak Asplund spaces and

thus in Euclidean spaces; see also Observation 4.10 and Observation 4.13 below.
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Theorem 4.5 (Subdifferential Formula). Suppose int dom f 6= ∅ and x ∈ X.
Define a set S(x) in X∗ by requiring x∗ ∈ S(x) if and only if there exist bounded

nets (xα) in int dom f and (x∗α) in X∗ such that for every α, x∗α ∈ ∂f(xα), xα → x,

x∗α
w∗
⇁ x∗, and f(xα)→ f(x). Let N(x) = Ndom f (x). Then:

∂f(x) = clw∗(N(x) + clw∗convS(x)) .

Furthermore, if dom∇f is dense in dom ∂f, then define G(x) by y∗ ∈ G(x) precisely

when there exists a bounded net (yα) in dom∇f such that (∇f(yα)) is bounded,

yα → x, ∇f(yα)
w∗
⇁ y∗, f(yα)→ f(x). In this case,

∂f(x) = clw∗(N(x) + clw∗convG(x)) .

Proof. Clearly, S(x) ⊆ ∂f(x). For brevity, set C = dom f .

Case 1. x 6∈ dom∂f .

Then S(x) = ∅ and the formula holds trivially.

Case 2. x ∈ int dom f .

Fix x∗ ∈ ∂f(x) and set xα ≡ x and x∗α ≡ x∗. Then ∂f(x) ⊆ S(x), so that

∂f(x) = S(x) = {0}+ clw∗convS(x) = clw∗(N(x) + clw∗convS(x)), as announced.

Case 2 is isolated because it provides a very short proof when dom f is open.

In fact, the proof of Case 3 below requires only x ∈ dom∂f (and this is important

when proving the “Furthermore” part).

Case 3. x ∈ (dom ∂f)\(int dom f).

Lemma 4.4 results in S(x) 6= ∅. Let p be the closure of f ′(x; ·), i.e. epi p =

cl epi f ′(x; ·). Then p is lower semicontinuous, convex, positively homogeneous, and

p ≤ f ′(x; ·). Since f ′(x; ·) is continuous on intC − x (Theorem 4.1), we have p =

f ′(x; ·) on intC − x. By Fact 2.4, p is proper and so is f ′(x; ·). Hence Lemma 2.16

yields

p = ι∗∂f(x)|X = sup〈∂f(x), ·〉 .

Set

q = sup〈N(x) + S(x), ·〉 = ι∗N(x)+S(x)|X .

We always have N(x) + S(x) ⊆ N(x) + ∂f(x). Lemma 2.20(i) yields N(x) +

∂f(x) = ∂f(x). Altogether, this implies

q ≤ p .

We now show that p(h) ≤ q(h), for every h ∈ X, by discussing cases.

Case (i). h 6∈ TC(x).

Since TC(x) is the negative polar cone of NC(x) intersected with X, we obtain

sup〈NC(x), h〉 = +∞. But S(x) is nonempty and hence p(h) ≤ q(h) = +∞.

Case (ii). h ∈ intTC(x).

By Fact 2.2(i) and positive homogeneity of both p and q, we may assume that

h = x1 − x0, where x0 = x and x1 ∈ intC. Obtain nets (xα), (x∗α), and x∗0 as
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in Lemma 4.4. Hence x∗0 ∈ S(x) ⊆ N(x) + S(x), so that 〈x∗0, h〉 ≤ sup〈N(x) +

S(x), h〉 = q(h). Thus

p(h) ≤ f ′(x;h) = lim
α
f ′(xα;h) = lim

α
〈x∗α, x1 − x0〉 = 〈x∗0, h〉 ≤ q(h) .

Case (iii). h ∈ bdry TC(x).

Fix k ∈ intTC(x). By Fact 2.2(ii), h + tk ∈ intTC(x), for all t > 0. Now the

already verified Case (ii) results in p(h + tk) ≤ q(h + tk) ≤ q(h) + tq(k), for all

t > 0. Thus p(h) ≤ limt→0+p(h+ tk) ≤ limt→0+q(h) + tq(k) = q(h).

Altogether,

ι∗∂f(x)|X = p = q = ι∗N(x)+S(x)|X .

By Lemma 2.15, ∂f(x) = clw∗conv ∂f(x) = clw∗conv(N(x) + S(x)). It is not hard

to see that the last set equals clw∗(N(x) + clw∗convS(x)). The proof of the main

conclusion is complete.

The “Furthermore” part follows exactly the same lines — the only difference is

that we appeal to the “Furthermore” part of Lemma 4.4.

4.1. Sharper versions in Banach spaces with additional structure

The results proved in this section hold in general Banach spaces. The spaces en-

countered in applications, however, possess additional structure which sometimes

allows us to give precise answers to the following questions:

• When can we replace nets by sequences?

• When is dom∇f dense in dom f?

• What can we say in finite dimensions?

Let us now review the notions required to answer these questions.

Remark 4.6 (Weak Asplund Spaces). Recall that X is a weak Asplund space

if every continuous convex function defined on a convex nonempty open set is

differentiable at each point of some dense Gδ subset of its domain [37]. It is known

that X is a weak Asplund space if any of the following conditions holds:

• X is a quotient of a weak Asplund space [37, Theorem 4.24];

• X has a smooth renorm [37, Theorem 4.31];

• X is a subspace of a weakly compactly generated space (there is a weakly compact

subset in the space with norm dense span) [37, Theorem 2.45];

• X is reflexive or separable (hence weakly compactly generated) [37,

Example 2.42(a)].

Remark 4.7 (Gâteaux Differentiability Spaces). X is a Gâteaux differentia-

bility space, if every continuous convex function defined on a convex nonempty open

set is differentiable at each point of some dense subset of its domain. Clearly,

each weak Asplund space is a Gâteaux differentiability space.
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It is unknown whether the class of weak Asplund spaces actually coincides with the

class of Gâteaux differentiability spaces [24, Problem I.1 on p. 34].

The space `∞ is not a Gâteaux differentiability space and so not a weak Asplund

space: the map `∞ → R: (xn) 7→ limn|xn| is continuous but nowhere differentiable;

see [37, Example 1.21].

It is known that if X is a Gâteaux differentiability space, then so is the closure

of any continuous linear image of X: for this and further information, we refer the

reader to [37, Sec. 6]. (In fact, corresponding dense single-valuedness results hold

for maximal monotone operators [30] and USCOs [9]. See also [37, Sec. 7].)

Remark 4.8 (Weak∗ Sequential Compactness of the Dual Ball). A thor-

ough discussion of this property can be found in Diestel’s [26, Chap. XIII]. For our

purpose, it is enough to state the following sufficient condition [26, Chap. XIII,

Notes and Remarks, p. 239]:

if X is a weak Asplund space, then the dual ball BX∗ is weak∗ sequentially

compact.

(In fact, the dual ball BX∗ is weak∗ sequentially compact whenever X is a Gâteaux

differentiability space; see [32].)

We are now ready to formulate the announced sharpenings.

Observation 4.9. If X is a weak Asplund space, then “nets” can be replaced by

“sequences” in Lemma 4.4 and Theorem 4.5.

Proof. Modify the proof of Lemma 4.4 as follows: instead of working with the net

(xt), consider the sequence obtained by setting t = 1/n. Obtain the corresponding

dual sequence. In view of Remark 4.5, we can extract a weak∗ convergent subse-

quence and then complete the proof as before. The sharpened version of Lemma 4.4

then results in the desired sharpening of Theorem 4.5.

Observation 4.10. If X is a Gâteaux differentiability space, then dom∇f is dense

in dom∂f. Consequently, the “Furthermore” parts of Lemma 4.4 and Theorem 4.5

apply.

Proof. This is clear from the definition of Gâteaux differentiability space; see

Remark 4.5.

Observation 4.11. Suppose dom∇f is dense in dom f and let D be fixed dense

subset of dom∇f. Then the following sharpenings hold true:

(i) In Lemma 4.3, the point y can be taken from D;

(ii) In Lemma 4.4, the net (yα) can be taken from D;

(iii) In Theorem 4.5, the set G(x) can be defined by requiring that the net (yα) lie

in D as well.
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Proof. The original proofs work without change.

Remark 4.12. It is interesting to note that Observation 4.11 is similar to (but

significantly stronger than) the well-known “blindness of the Clarke subdifferential

to small sets”; see [23, p. 93 in Sec. 2.8] and [22, Theorem 2.5.1].

We conclude this section by discussing the finite-dimensional setting:

Observation 4.13. Suppose X is finite-dimensional. Then X is a weak Asplund

space (Remark 4.5) and hence a Gâteaux differentiability space (Remark 4.5). It

follows from Observation 4.10 that the “Furthermore” part of Theorem 4.5 applies.

Moreover, by employing a recession argument and Carathéodory’s Theorem, we are

able to “peel off” the outermost weak∗ closure. We skip the details, however, since

the resulting formula

∂f(x) = N(x) + cl convG(x) ,

is well-known and due to Rockafellar [41, Theorem 25.6].

5. Legendre Functions: Basic Properties

We begin with

Lemma 5.1. (i) ∂f is single-valued on its domain ⇔ f∗ is strictly convex on line

segments in ran∂f.

(ii) ((∀ (x, y) ∈ X2) x 6= y ⇒ ∂f(x) ∩ ∂f(y) = ∅)⇔ f is strictly convex on line

segments in dom ∂f.

Proof. (i) ⇒: By contradiction. Thus we assume there exist y∗1 , y
∗
2 in ran∂f such

that y∗1 6= y∗2 , [y∗1 , y
∗
2 ] ⊆ ran∂f , and {λ1, λ2} ⊆ ]0, 1[ with λ1 +λ2 = 1 and f∗(λ1y

∗
1 +

λ2y
∗
2) = λ1f

∗(y∗1) + λ2f
∗(y∗2). Now let y∗ = λ1y

∗
1 + λ2y

∗
2 . Then there exists x ∈ X

such that y∗ ∈ ∂f(x). Hence

0 = f(x) + f∗(y∗)− 〈y∗, x〉 =
2∑
i=1

λi(f(x) + f∗(y∗i )− 〈y∗i , x〉) ≥ 0 .

It follows that both y∗1 and y∗2 belong to ∂f(x), which is absurd.

⇐: Now pick y∗1 and y∗2 ∈ ∂f(x). Then f(x) + f∗(y∗i ) = 〈y∗i , x〉, for i = 1, 2. For

all nonnegative reals λ1, λ2 that add up to 1, we have:

f(x) + λ1f
∗(y∗1) + λ2f

∗(y∗2) = 〈λ1y
∗
1 + λ2y

∗
2 , x〉

≤ f(x) + f∗(λ1y
∗
1 + λ2y

∗
2)

≤ f(x) + λ1f
∗(y∗1) + λ2f

∗(y∗2) .

Hence equality holds throughout. It follows that x ∈ ∂f∗([y∗1 , y∗2 ]) and that f∗|[y∗1 ,y∗2 ]

is affine. Consequently, y∗1 = y∗2 .

(ii) is proved analogously.
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Definition 5.2. We say that f is

(i) essentially smooth, if ∂f is both locally bounded and single-valued on its

domain.

(ii) essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f is

strictly convex on every convex subset of dom∂f .

(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark 5.3. In Euclidean spaces, these notions agree with their well-established

classical counterparts; see the upcoming Theorem 5.11. However, as Example 5.11

will show, a strictly convex function may fail to be essentially strictly convex.

Theorem 5.4 (Duality). Suppose X is reflexive. Then f is essentially smooth if

and only if f∗ is essentially strictly convex.

Proof. Use the fact that (∂f)−1 = ∂f∗ in reflexive spaces, and Lemma 5.1.

Corollary 5.5 (Legendre Duality). Suppose X is reflexive. Then f is Legendre

if and only if f∗ is.

Proof. Clear from Theorem 5.4.

Theorem 5.6 (Essential Smoothness). The following are equivalent

(i) f is essentially smooth.

(ii) int dom f 6= ∅ and ∂f is single-valued on its domain.

(iii) dom ∂f = int dom f 6= ∅ and ∂f is single-valued on its domain.

(iv) int dom f 6= ∅, f is differentiable on int dom f, and limt→0+ f ′(x+ t(y−x); y−
x) = −∞, for every x ∈ (dom f)\(int dom f), y ∈ int dom f.

(v) int dom f 6= ∅, f is differentiable on int dom f, and ‖∇f(xn)‖ → +∞, for every

sequence (xn) in int dom f converging to some point in bdry dom f.

Proof. (i)⇒(ii): By Fact 2.0, dom ∂f 6= ∅. Pick x ∈ dom ∂f . By assumption, ∂f is

locally bounded at x. Hence, by Corollary 2.19, x ∈ int dom f . Thus int dom f 6= ∅.
(ii)⇒(iii): We always have int dom f ⊆ dom∂f (Fact 2.6). Fix x ∈ dom ∂f . By

Lemma 2.20(ii), x cannot be a boundary point of dom f . Hence x ∈ int dom f and

thus dom∂f = int dom f .

(i)⇐(iii): Corollary 2.19.

(ii)⇒(iv): By Fact 2.6, ∅ 6= int dom f ⊆ dom∂f . (ii) implies that ∂f(x) is

a singleton, ∀x ∈ int dom f . Altogether f is differentiable on int dom f (see, for

instance, [27, Theorem 4 on p. 122]). Now fix x ∈ (dom f)\(int dom f) and y ∈
int dom f . By the just established (iii), ∂f(x) = ∅. Theorem 4.1 yields f ′(x; y−x) =

−∞. (iv) thus follows from Lemma 4.2.

(ii)⇐(iv): Pick x ∈ dom ∂f . It suffices to show that ∂f(x) is a singleton.

We claim that x ∈ int dom f . Suppose to the contrary that the claim is

false: x ∈ (dom ∂f)\(int dom f) ⊆ (dom f)\(int dom f). Fix y ∈ int dom f . Then
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limt→0+ f ′(x + t(y − x); y − x) = −∞. By Lemma 4.2, f ′(x; y − x) = −∞. Theo-

rem 4.1 implies that ∂f(x) = ∅, the desired contradiction. The claim is verified.

As f is differentiable at x ∈ int dom f , the subdifferential ∂f(x) = {∇f(x)}
must be a singleton [27, Theorem 4 on p. 122]. (ii) thus holds.

(iv)⇒(v): (iv) implies the differentiability of f on int dom f 6= ∅. Now let

x ∈ bdry dom f and (xn) in int dom f such that xn → x. We need to show that

‖∇f(xn)‖ → +∞. Assume to the contrary that limn‖∇f(xn)‖ < +∞. Pass to a

subnet (xα) of (xn) such that ∇f(xα)
w∗
⇁ x∗. By maximal monotonicity of ∂f , we

conclude x∗ ∈ ∂f(x). Hence x ∈ (dom ∂f)∩ (bdry dom f). This contradicts (iii), as

well as the equivalent (iv). Consequently, (v) holds.

(ii)⇐(v): In view of Fact 2.6, it suffices to show that dom ∂f ⊆ int dom f . We

prove this by assuming the opposite: select x ∈ (dom∂f)\(int dom f) ⊆ dom f . Pick

y ∈ int dom f . By Lemma 4.4, K = sup ‖∇f(]x, y])‖ < +∞. Set xn = (1− 1
n )x+ 1

ny,

for all n ≥ 1. Then xn → x and ‖∇f(xn)‖ ≤ K, contradicting (v). The entire

theorem is proven.

Remark 5.7 (Convex Integral Functions). There is a very natural construc-

tion that takes us inevitably out of the class of essentially smooth functions: con-

vex integral functions. Suppose (S,Σ, µ) is a complete finite measure space (with

nonzero µ), and φ: R→ ]−∞,+∞] is convex, lower semicontinuous, proper, with

domφ containing more than one point. The mapping

Iφ: L1(S,Σ, µ)→ ]−∞,+∞]: x 7→
∫
S

(φ ◦ x)dµ

is well-defined and well-behaved [42]: (i) (Iφ)
∗ = Iφ∗ so that (ii) y ∈ ∂(Iφ)(x) if and

only if y ∈ L∞(S,Σ, µ) and y(s) ∈ ∂φ(x(s)), for almost every s ∈ S. Moreover, if

φ∗ is everywhere differentiable on R, then, by [10, Theorem 3.8], (iii) Iφ is strongly

rotund : it is strictly convex, has weakly compact lower level sets, and xn → x

whenever xn ⇀ x and Iφ(xn) → Iφ(x). The prime example is the following. Let

S = [0, 1] with Lebesgue measure, and set

ψ(r) =


+∞ , if r < 0 ;

0 , if r = 0 ;

r ln(r) − r , if r > 0 .

Then ψ∗ = exp and so domψ∗ = R. Now domψ = [0,+∞[; consequently, dom Iψ
equals L+

1 [0, 1], the nonnegative cone in L1[0, 1]. But this cone has empty interior!

Thus Iψ is nowhere continuous let alone differentiable. Despite this, (ii) shows that

a point x ∈ L1[0, 1] belongs to dom ∂Iψ precisely when x ∈ L+
∞[0, 1] and x is essen-

tially bounded away from 0; if this is the case, then ∂Iψ(x) has a unique subgradient,

namely ln(x). Incorporating such convex integral functions in our corpus represents

a significant challenge.

We now turn to essentially strictly convex functions.
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Lemma 5.8. Suppose both dom ∂f and dom f∗ are open. Then f is essentially

strictly convex if and only if f is strictly convex on int dom f.

Proof. By Fact 2.6, int dom f∗ ⊆ dom ∂f∗. By openness of dom f∗ and

Corollary 2.19, we deduce that ∂f∗ is locally bounded on its domain. In particular,

(∂f)−1 is locally bounded on its domain. Also, by Fact 2.6 and the assumption on

dom ∂f , we observe that dom∂f = int dom f , which is convex. The equivalence is

now clear.

Theorem 5.9 (Essential Strict Convexity). Suppose X is reflexive and f is

essentially strictly convex. Then:

(i) (∀ (x, y) ∈ X2) x 6= y ⇒ ∂f(x) ∩ ∂f(y) = ∅.
(ii) ran∂f = dom ∂f∗ = int dom f∗ = dom∇f∗.
(iii) (∀ y ∈ dom∂f) ∂f∗(∂f(y)) = {y}.

Proof. (i) Clear from Lemma 5.1(ii). (ii) The first equality is trivial, the others

follow with Theorem 5.4 and Theorem 5.6(iii) easy with (i).

Theorem 5.10. Suppose X is reflexive and f is Legendre. Then

∇f : int dom f → int dom f∗

is bijective, with inverse (∇f)−1 = ∇f∗: int dom f∗ → int dom f. Moreover, the

gradient mappings ∇f,∇f∗ are both norm-to-weak continuous and locally bounded

on their respective domains.

Proof. Since f is Legendre, it is both essentially smooth and essentially strictly

convex. Hence f is differentiable on int dom f 6= ∅ (Theorem 5.6) and ∂f is a

bijection between int domf and int dom f∗ (Theorem 5.9). It is known that ∂f

is both norm-to-weak continuous [37, Proposition 2.8] and locally bounded on its

domain [37, Theorem 2.28]. Now apply Corollary 5.4 to produce the dual statement

regarding f∗.

We now show, as previously announced, the compatibility of our new notions

with their classical counterparts as defined in [41, Sec. 26]:

Theorem 5.11 (Compatibility). Suppose X is a Euclidean space. Then

(i) f is essentially smooth if and only if f is essentially smooth in the classical

sense: f is differentiable on int dom f 6= ∅, and ‖∇f(xn)‖ → +∞, for every

sequence (xn) in int dom f converging to some point in bdry dom f.

(ii) f is essentially strictly convex if and only if f is essentially strictly convex in

the classical sense: f is strictly convex on every convex subset of dom∂f.

(iii) f is Legendre if and only if f is Legendre in the classical sense: f is both

essentially smooth and essentially strictly convex in the classical sense.
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Proof. (i) follows from Theorem 5.6.

(ii) f is essentially strictly convex ⇔ f∗ is essentially smooth (Theorem 5.4)

⇔ f∗ is essentially smooth in the classical sense (by (i)) ⇔ f is essentially strictly

convex in the classical sense [41, Theorem 26.3].

(iii) clear from (i) and (ii).

Remark 5.12. It is illuminating to consider the (sometimes subtle) difference

between strict convexity and essential strict convexity with the help of the following

three classical functions onR2 (see [41, Example before Theorem 23.5 and Examples

before Theorem 26.3]): let

f1(r, s) =

{
max{1− r1/2, |s|} , if r ≥ 0 ;

+∞ , otherwise .

Then dom∂f1 is not convex, and f1 is not strictly convex on int dom f . Clearly, f1

is not essentially strictly convex. Next, set

f2(r, s) =


s2/(2r)− 2s1/2 , if r > 0 and s ≥ 0 ;

0 , if r = s = 0 ;

+∞ , otherwise .

Then f2 is not strictly convex. However, dom∂f2 is convex, and f2 is essentially

strictly convex. Now define

f3(r, s) =


s2/(2r) + s2 , if r > 0 and s ≥ 0 ;

0 , if r = s = 0 ;

+∞ , otherwise .

Then dom f3 = dom ∂f3 is convex, f3 is strictly convex on int dom f3, but f3 is not

essentially strictly convex.

Finally, the function f4 defined below is perhaps more borderline than any of

the functions above:

f4(r, s) =

{
max{(r − 2)2 + s2 − 1,−(rs)1/4} , if r ≥ 0 and s ≥ 0 ;

+∞ , otherwise .

Then f4 is not strictly convex, dom ∂f4 is not convex, yet f4 is essentially strictly

convex! (Note that the conjugates of f1, . . . , f4 are interesting with respect to

essential smoothness.)

Remark 5.13. Another characterization of essential smoothness — provided that

X is Euclidean (or merely finite-dimensional) — is this: f is essentially smooth

⇔ f is differentiable on int dom f 6= ∅ and ‖∇f(xn)‖ → +∞ whenever (xn) is a

bounded sequence in int dom f with d(xn,bdry dom f) → 0. (This follows almost

instantly from Theorem 5.11(i) and a compactness argument.) Moreover: (i) the

boundedness of the sequence (xn) in the new equivalent condition is important —

consider the function (r1, r2) 7→ 1/(r1r2) defined on the positive orthant in R2.
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(ii) the characterization fails in infinite-dimensional spaces; see [14, Example 2.7],

which is based in c0.

Similar to Remark 5.13(ii), the last example in this section shows that the

classical notions do differ from the new ones (outside finite-dimensional spaces):

Example 5.14 (Strictly Convex 6⇒ Essentially Strictly Convex). InX = `2,

let (pn) be a sequence in [2,+∞[ converging to +∞. Define

f : X → R: x = (xn) 7→
∑
n

1

pn
|xn|pn .

It is easy to check that f is everywhere differentiable and strictly convex. It is

therefore Legendre in the classical sense. Hence, the function

f is essentially smooth .

Define the index conjugate to pn through 1
pn

+ 1
qn

= 1. Then 2 ≥ qn → 1+, and

f∗(y) =
∑
n

1
qn
|yn|qn .

We claim that 0 6∈ int dom f∗. Otherwise, obtain ε > 0 such that εBX∗ ⊆ dom f∗.

For 0 < δ < 1
2 and r > 0 specified below, consider the sequence defined by yn =

r

n
1
2

+δ
. Then y = (yn) ∈ `2 = X∗. Now choose 0 < r < 1 small enough so that

‖y‖ < ε. Since 1+ ← qn ≤ 2, we have 0 < n( 1
2 +δ)qn < n eventually, say for n ≥ n0,

and we obtain the absurdity:

+∞ > f∗(y) =
∑
n

1

qn

rqn

n( 1
2 +δ)qn

≥
∑
n

1

2

r2

n( 1
2 +δ)qn

≥ r2

2

∑
n≥n0

1

n
= +∞ .

The claim is thus proven. Since dom f∗ is symmetric, the Accessibility Lemma

(Fact 2.0) implies int domf∗ = ∅. In particular, f∗ is not essentially smooth in the

classical sense. Moreover, ∂f∗(y) = {(sign(yn)|yn|qn−1)}, provided this element lies

in `2. Consequently, ∂f∗ is single-valued on its domain but not locally bounded (by

Theorem 5.6). Thus the function

f is not essentially strictly convex .

The example thus shows that the following three implications, which are always

true in finite-dimensional spaces, each can fail in infinite dimensions:

• “f essentially strictly convex in the classical sense ⇒ int dom f∗ 6= ∅”;

• “∂f∗ is single-valued on its domain ⇒ f∗ is essentially smooth”.

• “f is strictly convex ⇒ f is essentially strictly convex (in our sense)”.

6. Legendre Functions: Further Examples

Example 6.1 (Spectral Functions). Suppose X is the real Hilbert space of

N × N Hermitian matrices, with 〈x, y〉 = trace(xy), for all x, y ∈ X. Suppose

g: RJ → ]−∞,+∞] is convex, lower semicontinuous, invariant under permutations,
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and proper. Let λ(x) ∈ RN denote the eigenvalues of x ∈ X ordered decreasingly.

Lewis [34] showed that

g ◦ λ is Legendre if and only if g is .

(For extensions of this framework to compact operators, see [13] and [12].) This con-

struction allows to build several interesting Legendre examples on X: for instance,

the log barrier x 7→ − ln detx is a Legendre function onX (with the positive definite

matrices as its domain) precisely because −ln is a Legendre function with domain

]0,+∞[.

Lemma 6.2. Set f = 1
p‖ · ‖p for 1 < p < +∞. Let q be given by 1

p + 1
q = 1. Then

f∗ = 1
q
‖ · ‖q,

∂f(x) =

{
‖x‖p−2Jx , if x 6= 0 ;

0 , if x = 0 ,

and

∂f∗(x∗) =

{
‖x∗‖q−2J∗x∗ , if x∗ 6= 0 ;

0 , if x∗ = 0 .

Hence

(i) X is smooth ⇔ f is essentially smooth;

(ii) X is rotund ⇔ f is essentially strictly convex ;

(iii) X is smooth and rotund ⇔ f is Legendre.

Proof. The formulae for the subdifferentials are immediate since ∂ 1
2‖ · ‖2 = J ; see

also [21, Sec. II.4].

(i) X is smooth⇔ J is single-valued on X ([3, Proposition I.2.16 on p. 49])⇔ ∂f

is single-valued on X ⇔ f is essentially smooth (Corollary 2.19).

(ii) X is rotund⇔ ‖·‖2 is strictly convex ([3, Proposition I.2.13 on p. 43])⇔ 1
p‖·‖p

is strictly convex (elementary) ⇔ f is essentially strictly convex (Lemma 5.8).

(iii) is clear from (i) and (ii).

Example 6.3 (A Legendre Function with Bounded Closed Domain).

Suppose X is reflexive, smooth, and rotund so that 1
2‖·‖2 is Legendre (Lemma 6.2).

Define

f(x) =

{
−
√

1− ‖x‖2 , if ‖x‖ ≤ 1 ;

+∞ , otherwise .

Then f is strictly convex, dom f = BX , and f∗(x∗) =
√
‖x∗‖2 + 1. Moreover,

∇f(x) =
Jx√

1− ‖x‖2
and ∇f∗(x∗) =

J∗x∗√
‖x∗‖2 + 1

,
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for every x ∈ dom∇ = dom ∂f = intBX , and every x∗ ∈ dom∇f∗ = X∗. It follows

that f is Legendre with dom f = BX .

Example 6.4 (A Legendre Function with Bounded Open Domain). Sup-

pose X is reflexive, smooth, and rotund so that 1
2‖ · ‖2 is Legendre (Lemma 6.2).

Define

f(x) =


1

1− ‖x‖2 , if ‖x‖ < 1 ;

+∞ , otherwise .

Hence f is strictly convex, ∇f(x) = −(2Jx)/(1 − ‖x‖2)2, for every x ∈ dom f =

dom∇f = intBX , and f is essentially smooth (Theorem 5.6). Since dom f ⊆ 1·BX ,

Rockafellar’s [39, Corollary 7.G and Remark on p. 62] implies that f∗ is 1-Lipschitz

on X∗. By Lemma 5.1(i) (applied to f∗), the function f∗ is differentiable on the

entire space X∗. Hence f∗ is essentially smooth. By Theorem 5.4 (applied to f∗),

the function f is essentially strictly convex. Altogether, f is Legendre with dom f =

intBX .

Example 6.5. Suppose X is uniformly rotund and uniformly smooth, and let

f = ‖ · ‖s, where 1 < s < +∞. Then f is Legendre, uniformly convex on closed

balls, and totally convex.

Proof. It is well-known that X is both uniformly rotund and uniformly smooth, as

is X∗. Lemma 6.2 yields that f is Legendre. By [45, Theorem 4.1(ii)], the function

f(x) = ‖x‖s =
∫ ‖x‖

0 sts−1dt is uniformly convex on closed balls, since t 7→ sts−1 is

increasing (see also [44, Theorem 6] or [25, p. 54].) For total convexity, see [18].

Example 6.6. In [38], Reich studies “the method of cyclic Bregman projections” in

a reflexive Banach space X under the following assumptions: • dom f = dom∇f =

X (hence f is essentially smooth by Theorem 5.6 and f∗ is essentially strictly

convex by Theorem 5.4); • ∇f maps bounded sets to bounded sets, ∇f is uniformly

continuous on bounded sets (hence f is Fréchet differentiable [37, Proposition 2.8],

and f∗ is supercoercive (Theorem 3.3)); • f is uniformly convex (hence f is strictly

convex on X).

These properties imply (see [33] and [44]) that • lim‖x‖→+∞
f(x)
‖x‖2 > 0 (hence f

is supercoercive and so f∗ is everywhere subdifferentiable and ∂f∗ maps bounded

sets to bounded sets). Altogether, f is Legendre and ∇f : X → X∗ is bijective and

norm-to-norm continuous.

If X is reflexive and f is Legendre, then f∗ is Legendre as well (Corollary 5.4).

This is no longer true in general Banach spaces:

Example 6.7 (f Legendre 6⇒ f∗ Legendre). X = `1 is a weakly compactly

generated space [25, Chap. 5, Sec. 2, p. 142] or [37, Examples 2.42]. Consequently,

X admits an equivalent norm such that (X, ‖| · ‖|) is smooth and rotund, and
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(X∗, ‖| · ‖|∗), where ‖| · ‖|∗ denotes the dual norm of ‖| · ‖|, is rotund [25, Chap. 5,

Sec. 2, Corollary 2, p. 148]. Let f = 1
2‖| · ‖|2. Then, by Lemma 6.2,

f is Legendre and f∗ is essentially strictly convex .

On the other hand, X∗ = `∞ admits no smooth renorm [25, Chap. 4, Sec. 5,

Proposition 2]; in particular, (X∗, ‖| · ‖|∗) is not smooth so that

f∗ is not essentially smooth, hence f∗ is not Legendre .

Finally, by James’ theorem [25], int dom f∗ = ∅.

Remark 6.8. In [14], Borwein and Vanderwerff discuss the construction of Legen-

dre functions in terms of smoothness and rotundity of the underlying Banach space.

For instance, they prove that in a weakly compactly generated space, every convex

nonempty open subset is the domain of some Legendre function. In contrast, no

Legendre function can exist on `∞/c0.

7. Legendre Functions are Zone Consistent

In this final section, we assume in addition that

X is reflexive and int dom f 6= ∅.

Definition 7.1 (Bregman Distance). The Bregman distance corresponding to

f is defined by

D = Df : X × int dom f → [0,+∞]: (x, y) 7→ f(x)− f(y) + f ′(y; y − x) .

For more on Bregman distance and their fundamental importance in optimiza-

tion and convex feasibility problems, see [16, 17, 20] and the references therein. We

begin with a quite different example of a Legendre function:

Example 7.2 (Hilbert Space Projections). Suppose X is a Hilbert space,

γ > 0, and

f(x) =
1 + γ

2
‖x‖2 − 1

2
d2(x,C) ,

where d(x,C) = minc∈C ‖x−c‖ = ‖x−Px‖, P denotes the (orthogonal) projection

map onto C, and x ∈ X. Then

∇f(x) = γx+ Px,D(x, y) =
1

2
(γ‖x− y‖2 + ‖x− Py‖2 − ‖x− Px‖2) ,

and

f∗(y) =
1

2(1 + γ)
‖y‖2 +

1 + γ

2γ
d2

(
1

1 + γ
y, C

)
,

for all x, y ∈ X. Both f and f∗ are supercoercive Legendre functions.



November 12, 2001 14:11 WSPC/152-CCM 00052

642 H. H. Bauschke, J. M. Borwein & P. L. Combettes

Proof. It is well-known (see, e.g. [37, Example 1.14(d)]) that 1
2‖ · ‖2−

1
2d

2(·, C) is

convex and Fréchet differentiable with gradient P . We thus readily obtain the for-

mula for ∇f , and also conclude that f is strictly convex everywhere. The expression

for the Bregman distance is a simple expansion. Now let y = ∇f(x) = γx + Px.

Then 1
1+γ y is a convex combination of x and Px: 1

1+γ y = γ
1+γx+ 1

1+γPx. It follows

that P ( 1
1+γ y) = Px. Hence we can solve y = γx+ Px = γx+ P ( 1

1+γ y) for x:

∇f∗(y) = x =
1

γ
y − 1

γ
P

(
1

1 + γ
y

)
.

Thus dom f∗ = X is open and f is cofinite. By Lemma 5.8, f is a Legendre

function. Hence f∗ is a Legendre function, too (Corollary 5.4). In fact, since P

is nonexpansive, the gradient mapping ∇f∗ clearly maps bounded sets to bounded

sets. Thus, by Theorem 3.3, f is supercoercive. The same argument shows that f∗

is supercoercive. Integrating ∇f∗(y) with respect to y yields

f∗(y) =
1

2(1 + γ)
‖y‖2 +

1 + γ

2γ
d2

(
1

1 + γ
y, C

)
+ k ,

where k is constant that we shall determine from the equation f(x)+ f∗(∇f(x)) =

〈∇f(x), x〉. Using the identity d( 1
1+γ y, C) = γ

1+γ d(x,C), we find k = 0.

We next turn to basic properties of the Bregman distance.

Lemma 7.3. Suppose x ∈ X and y ∈ int dom f. Then

(i) D(x, y) = f(x)− f(y) + max〈∂f(y), y − x〉.
(ii) D(·, y) is convex, lower semicontinuous, proper with domD(·, y) = dom f.

(iii) D(x, y) = f(x) + f∗(y∗)− 〈y∗, x〉, for every y∗ ∈ ∂f(y) with max〈∂f(y), y −
x〉 = 〈y∗, y − x〉.

(iv) If f is differentiable at y, then D(x, y) = f(x) − f(y) − 〈∇f(y), x − y〉 =

f(x) + f∗(∇f(y))− 〈∇f(y), x〉 and dom∇D(·, y) = dom∇f.
(v) If f is essentially strictly convex and differentiable at y, then D(·, y) is

coercive.

(vi) If f is essentially strictly convex, then: D(x, y) = 0⇔ x = y.

(vii) If f is differentiable on int dom f and essentially strictly convex, and x ∈
int dom f, then Df (x, y) = Df∗(∇f(y),∇f(x)).

(viii) If f is supercoercive and x ∈ int dom f, then D(x, ·) is coercive.

(ix) If X is finite-dimensional, dom f∗ is open, and x ∈ int dom f, then D(x, ·) is

coercive.

(x) If (yn) is a sequence in int dom f converging to y, then D(y, yn)→ 0.

Proof. (i) See Fact 2.0.

(ii) Clear from (i).

(iii) Clear from Fact 2.12.

(iv) Follows from (i) and (iii).
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(v) ∇f(y) ∈ int dom f∗ by Theorem 5.9(ii). Fact 3.0 yields the coercivity of

f −∇f(y). Hence, by (iv), D(·, y) is coercive.

(vi) Pick y∗ as in (iii) and assume 0 = D(x, y) = f(x) + f∗(y∗)− 〈y∗, x〉. Then

x ∈ ∂f∗(y∗) ⊆ ∂f∗(∂f(y)) = {y} (Theorem 5.9(iii)). The converse is trivial.

(vii) By using Theorem 5.9(ii), Theorem 5.9(iii), and item (iv) from above,

we obtain the equalities Df∗(∇f(y),∇f(x)) = f∗(∇f(y)) + f(∇f∗(∇f(x))) −
〈∇f∗(∇f(x)),∇f(y)〉 = f∗(∇f(y)) + f(x)− 〈x,∇f(y)〉 = Df (x, y).

(viii),(ix) Fix x ∈ int dom f and let (yn) be a sequence in int dom f such that

(D(x, yn)) is bounded. Then it suffices to show that (yn) is bounded.

Pick (see (iii)) y∗n ∈ ∂f(yn) such thatD(x, yn) = f(x)+f∗(y∗n)−〈y∗n, x〉, for every

n ≥ 1. Then (y∗n) is bounded since f∗ − x is coercive by Fact 3.0. To prove (viii),

note that supercoercivity of f implies (Theorem 3.3) that ∂f∗ maps the bounded

set {y∗n : n ≥ 1} to a bounded set which contains {yn : n ≥ 1}. The coercivity

of D(x, ·) follows. It remains to prove (ix) in which X is finite-dimensional and

dom f∗ is open. Assume to the contrary that (yn) is unbounded. After passing to

a subsequence if necessary, we may and do assume that ‖yn‖ → +∞ and that (y∗n)

converges to point y∗. Then (f∗(y∗n)) = (D(x, yn) − f(x) + 〈y∗n, x〉) is bounded.

Since f∗ is lower semicontinuous, y∗ ∈ dom f∗ = int dom f∗. On the one hand,

∂f∗ is locally bounded at y∗ (Corollary 2.19). On the other hand, y∗n → y∗ and

yn ∈ ∂f∗(y∗n). Altogether, (yn) is bounded — contradiction!

(x) By (iii), select y∗n ∈ ∂f(yn) such that D(y, yn) = f(y) + f∗(y∗n) − 〈y∗n, y〉,
for every n ≥ 1. The sequence (y∗n) is bounded, since ∂f is locally bounded

at y (Corollary 2.19). Assume to the contrary that D(y, yn) 6→ 0. Again, after

passing to a subsequence if necessary, we assume that there is some ε > 0

such that ε ≤ D(y, yn) = f(y) + f∗(y∗n) − 〈y∗n, y〉, for every n, and that (y∗n)

converges weakly to some y∗ ∈ ∂f(y). Since y∗n ∈ ∂f(yn), Fact 2.12 and the

assumption imply that f∗(y∗n) = 〈y∗n, yn〉− f(yn)→ 〈y∗, y〉− f(y). Hence f∗(y∗) ≤
limnf

∗(y∗n) = limn f
∗(y∗n) = 〈y∗, y〉 − f(y) ≤ f∗(y∗), which yields the absurdity

0 < ε ≤ D(y, yn) = f(y) + f∗(y∗n)− 〈y∗n, y〉 → f(y) + f∗(y∗)− 〈y∗, y〉 = 0.

Remark 7.4. It is not possible to replace “yn → y” in Lemma 7.3(x) by “yn ⇀ y”:

consider f = 1
2‖ · ‖2 on X = `2, let yn denote the nth unit vector. Then yn ⇀ 0,

but D(0, yn) = 1
2‖0− yn‖2 ≡

1
2 .

Example 7.5 (f Cofinite 6⇒f Supercoercive). Let X = `2 and define (as in

[4, Example 7.11]) h(y) =
∑
n≥1

1
2y

2n
n , for every y = (yn) ∈ X∗ = X. Then h

is strictly convex, proper, with domh = X∗. Moreover, h is everywhere differen-

tiable with ∇h(y) = (ny2n−1
n ). Now set g = h+ 1

2‖ · ‖2. Then g is strictly convex,

proper, with dom g = X∗ = int dom g, everywhere differentiable with ∇g = ∇h+I,

and supercoercive. Since dom∇g = X∗, Corollary 2.19 yields that g is essentially

smooth. Now let f = g∗. Then f is essentially strictly convex (Theorem 5.4), and

dom f = X (since f = h∗� 1
2‖ · ‖2 or by Theorem 3.4). The strict convexity of

g together with Lemma 5.1 implies that ∂f is single-valued on its domain. Since
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X = int dom f ⊆ dom ∂f (Fact 2.6), f must be differentiable everywhere and hence

(Corollary 2.19) f is essentially smooth. To sum up, by Corollary 5.4,

f is Legendre and cofinite with dom f = dom∇f = X ,

and

f∗ is Legendre and supercoercive with dom f∗ = dom∇f∗ = X∗ .

Denote the standard unit vectors in X∗ by en and fix x ∈ X arbitrarily. Then

en ⇀ 0, but ‖∇f∗(en)‖ = n+ 1→ +∞ .

Now let yn = ∇f∗(en) = (n + 1)en, for every n ≥ 1. On the one hand, ‖yn‖ →
+∞. On the other hand, by Lemma 7.3(iv), D(x,yn) = f(x) + f∗(∇f(yn)) −
〈∇f(yn),x〉 = f(x)+ f∗(en)−〈en,x〉 ≤ f(x)+ g(en)+ ‖en‖‖x‖ ≤ f(x)+ 1 + ‖x‖.
Altogether:

there is no x ∈ X such that Df(x, ·) is coercive .

In view of Lemma 7.3(viii), f is not supercoercive.

Remark 7.6. It follows from the above example (together with Fact 3.0 and

Theorem 3.4) that “f is supercoercive” in Lemma 7.3(viii) cannot be replaced by

“f is cofinite”. Let us also observe that the existence of a cofinite, yet not super-

coercive function is guaranteed by Theorem 3.6 (since `2 clearly does not have the

Schur property). In Example 7.0, we have explicitly constructed such a function.

The following concept goes back to Bregman [16].

Definition 7.7 (Bregman Projection). Suppose C is a closed convex set in X.

Given y ∈ int dom f , the set PCy = {x ∈ C: D(x, y) = infc∈C D(c, y)} is called the

Bregman projection of y onto C. Abusing notation slightly, we shall write PCy = x,

if PCy happens to be the singleton PCy = {x}.

Theorem 7.8. Suppose C is a closed convex set in X with C ∩ dom f 6= ∅, and

y ∈ int dom f. Then

(i) If f is essentially strictly convex and differentiable at y, then PCy is nonempty

and PCy ∩ int dom f is at most a singleton.

(ii) If f differentiable at y and strictly convex, then PCy is at most a singleton.

(iii) If f is essentially smooth and C ∩ int dom f 6= ∅, then PCy ⊆ int dom f.

Proof. (i) By Lemma 7.3(ii) and (v), D(·, y) is convex, lower semicontinuous,

coercive, and C ∩ domD(·, y) 6= ∅. Hence PCy = arginfx∈CD(x, y) 6= ∅. Since

f and hence (Lemma 7.3(iii)) D(·, y) is strictly convex on int dom f , it follows that

PCy ∩ int dom f is at most a singleton.

(ii) By Lemma 7.3(iv), D(x, y) = f(x) + f∗(∇f(y))− 〈∇f(y), x〉. Hence D(·, y)
is strictly convex and the result follows.
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(iii) Assume to the contrary that there exists x̄ ∈ PCy ∩ (dom f\(int dom f)).

Fix c ∈ C ∩ int dom f and define

Φ: [0, 1]→ [0,+∞[: t 7→ D((1− t)x̄+ tc, y) .

Then, using Lemma 7.3(ii), Φ is lower semicontinuous convex proper and Φ′(t) =

〈∇f(x̄ + t(c − x̄)), c − x̄〉 − 〈∇f(y), c − x̄〉, for all 0 < t < 1. By Theorem 5.6,

limt→0+ Φ′(t) = −∞. This implies Φ(t) < Φ(0), for all t > 0 sufficiently small

(since Φ′(t)(0− t) ≤ Φ(0)− Φ(t), i.e. Φ(t) ≤ Φ(0) + tΦ′(t), for every 0 < t < 1). It

follows that for such t, (1−t)x̄+tc ∈ C∩ int dom f and D((1−t)x̄+tc, y) < D(x̄, y),

which contradicts x̄ ∈ PCy. The entire theorem is proven.

In the terminology of Censor and Lent [19], the next result states that every

Legendre function is zone consistent. This result is of crucial importance, since —

as explained in the Introduction and carried out in Euclidean spaces in [5] — it

makes the sequence generated by the method of cyclic Bregman projections well-

defined under reasonable constraint qualifications. A detailed study of the central

role played by Legendreness in the design and the analysis of this and various other

algorithms in Banach spaces will appear in [6].

Corollary 7.9 (Legendre Functions are Zone Consistent). Suppose f is a

Legendre function, C is a closed convex set in X with C ∩ int dom f 6= ∅, and

y ∈ int dom f. Then:

PCy is a singleton and is contained in int dom f .

Proof. Immediate from Theorem 7.8(i) and (iii).

Remark 7.10. Theorem 7.8 generalizes results in [5, Sec. 3]. We would like to

point out an infelicity in the statement (not in the proof) of [5, Theorem 3.12(i)]:

f should be essentially strictly convex rather than essentially smooth.

Note added in proof. After acceptance of this paper, Prof. Lionel Thibault

Kindly informed us that Theorem 4.5 is closely related to Proposition 3.4 and

its corollaries in A. Jofré and L. Thibault, D-representation of subdifferentials of

directionally Lipschitz functions, Proc. Amer. Math. Soc. 110(1) (1990) 117–123

and to Theorem 3.3 in L. Thibault and D. Zagrodny, Integration of subdifferentials

of lower semicontinuous functions on Banach Spaces, J. Math. Anal. Appl. 189(1)

(1995) 33–58. The proof methods are quite different.
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sur les Equations aux Dérivées Partielles II.
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