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3Université de Limoges, Laboratoire XLIM, 87060 Limoges, France

francisco.silva@unilim.fr

Abstract. The classical perspective of a function is a construction which transforms a convex function

into one that is jointly convex with respect to an auxiliary scaling variable. Motivated by applications

in several areas of applied analysis, we investigate an extension of this construct in which the scaling

variable is replaced by a nonlinear term. Our construction is placed in the general context of locally

convex spaces and it generates a lower semicontinuous convex function under broad assumptions

on the underlying functions. Various convex-analytical properties are established and closed-form

expressions are derived. Several applications are presented.

*Contact author: P. L. Combettes, plc@math.ncsu.edu, phone: +1 919 515 2671. The work of L. M. Briceño-Arias was
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1 Introduction

The objective of this work is to study the following construction, which combines two functions to

generate a lower semicontinuous convex function on a product space. Throughout, X and Y are real,

locally convex, Hausdorff topological vector spaces.

Definition 1.1 The preperspective of a base function ϕ : X Ñ r´8,`8s with respect to a scaling

function s : Y Ñ r´8,`8s is

ϕ ˙ s : X ˆ Y Ñ r´8,`8s

px, yq ÞÑ

$
&
%
spyqϕ

ˆ
x

spyq

˙
, if 0 ă spyq ă `8;

`8, if ´8 ď spyq ď 0 or spyq “ `8,

(1.1)

and the perspective of ϕ with respect to s is the largest lower semicontinuous convex function ϕé s

minorizing ϕ ˙ s.

Definition 1.1 provides a general model for functions found in areas such as mean field games

[1], machine learning [4, 43], physics [9, 18], optimal transportation [11, 15, 19, 25, 35], operator

theory [16, 26, 42], statistics [23, 44], matrix analysis [24], mathematical programming [29, 36],

information theory [34, 51], inverse problems [40], and economics [50]. Although it appears for

instance in [9, 34, 51], the preperspective ϕ ˙ s is of limited use in variational problems due to its

lack of lower semicontinuity and convexity.

Let us note that Definition 1.1 covers the classical notion of a linearly scaled perspective. Indeed,

let Γ0pX q be the class of proper lower semicontinuous convex functions from X to s´8,`8s. Take

ϕ P Γ0pX q and let recϕ denote the recession function of ϕ. Then the classical perspective of ϕ is

rϕ : X ˆ R Ñ s´8,`8s : px, yq ÞÑ

$
’’’&
’’’%

yϕ

ˆ
x

y

˙
, if y ą 0;

precϕqpxq, if y “ 0;

`8, if y ă 0.

(1.2)

Upon letting Y “ R and s : y ÞÑ y, it follows from [45, Theorem 3E] that ϕé s “ rϕ. This linear

scaling framework is also studied in [21, 22, 28, 46].

The investigation of notions of perspectives with nonlinear scaling functions was initiated in [37,

38, 39] in Euclidean spaces and extensions to infinite-dimensional normed spaces were carried out

in [49]. In these papers, ϕ P Γ0pX q and either ϕp0q ď 0 and ´s P Γ0pYq, or ϕ ě recϕ and s P Γ0pYq.
Such conditions are not fulfilled for perspectives using the elementary base function ϕ “ | ¨ |2 ` α

(α P s0,`8r) on X “ R, which is used in [2] (see [23, 44] for similar examples). In addition, the

construction proposed in [37, 38, 39, 49] provides lower semicontinuous convex functions f ď ϕé s

and, when Y “ R and s : y ÞÑ y, it does not capture (1.2) for a general ϕ P Γ0pX q.
The goal of the present work is to build a theory of perspective functions with nonlinear scaling in

the context of Definition 1.1 and to derive closed-form expressions for them. We review notation and

preliminary results in Section 2. In Section 3, we introduce and study two notions of functional en-

velopes which will greatly facilitate our analysis and will constitute structuring blocks in subsequent

sections. Section 4 is devoted to the derivation of properties of preperspective functions and the com-

putation of their conjugates. Closed-form expressions for perspective functions in the general setting

of Definition 1.1 are derived in Section 5, as well as conditions that characterize their properness.

Finally, in Section 6, we provide examples and applications of our results and, in Section 7, we make

closing statements.
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2 Notation and preliminary results

2.1 Notation

We recall that, throughout, X and Y are real, locally convex, Hausdorff topological vector spaces.

Let X ˚ be the topological dual of X , which is equipped with the weak˚ topology and is thus also a

locally convex Hausdorff topological vector space. In this context, X and X ˚ are placed in compatible

duality (see [10]) via the canonical form x¨, ¨yX : X ˆX ˚ Ñ R : px, x˚q ÞÑ x˚pxq. We denote by X ‘ Y

the standard product vector space equipped with the product topology and paired with its topological

dual X ˚ ˆ Y˚ via

`
@px, yq P X ˆ Y

˘`
@px˚, y˚q P X ˚ ˆ Y˚

˘
xpx, yq, px˚, y˚qyXˆY “ xx, x˚yX ` xy, y˚yY . (2.1)

From now on, we drop the subscripts on the pairing brackets. Let f : X Ñ r´8,`8s. Then dom f “ 
x P X

ˇ̌
fpxq ă `8

(
is the domain of f , dom f the closure of dom f , levďξ f “

 
x P X

ˇ̌
fpxq ď ξ

(

the lower level set of f at height ξ P R, and epi f “
 

px, ξq P X ˆ R
ˇ̌
fpxq ď ξ

(
the epigraph of

f . We say that f is convex if epi f is convex, lower semicontinuous if epi f is closed, and proper if

´8 R fpX q ‰ t`8u. We denote by cam f the set of continuous affine minorants of f and put

p@x P X q f˚˚pxq “ sup
aPcam f

apxq. (2.2)

In addition, we denote by f̆ : X Ñ r´8,`8s the largest lower semicontinuous convex function

majorized by f . The (Legendre) conjugate of f is

f˚ : X ˚ Ñ r´8,`8s : x˚ ÞÑ sup
xPX

`
xx, x˚y ´ fpxq

˘
(2.3)

and the conjugate of g : X ˚ Ñ r´8,`8s is

g˚ : X Ñ r´8,`8s : x ÞÑ sup
x˚PX˚

`
xx, x˚y ´ gpx˚q

˘
. (2.4)

If f is proper and convex, its recession function is

rec f : X Ñ r´8,`8s : x ÞÑ sup
yPdom f

`
fpx` yq ´ fpyq

˘
. (2.5)

and, if f P Γ0pX q and z P dom f , we have

p@x P X q prec fqpxq “ lim
0ăαÑ`8

fpz ` αxq ´ fpzq
α

“ sup
αPs0,`8r

fpz ` αxq ´ fpzq
α

. (2.6)

The set of proper lower semicontinuous convex functions from X to s´8,`8s is denoted by Γ0pX q.
Let C be a subset of X . The indicator function of C is denoted by ιC , the support function of C by

σC , the smallest convex set containing C by convC, the smallest closed convex set containing C by

convC, and the recession cone of C by recC.

2.2 Facts from convex analysis

The first three lemmas are standard; see [20, 30, 32, 41, 48].

Lemma 2.1 Let f P Γ0pX q, let x P dom f , and let y P dom f . Then f is continuous relative to rx, ys.
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Lemma 2.2 Let C Ă X . Then σC “ σconvC .

Lemma 2.3 Let f : X Ñ r´8,`8s. Then the following hold:

(i) pf˚q˚ “ f˚˚ ď f̆ ď f .

(ii) pf̆q˚ “ f˚ “ f˚˚˚.

(iii) cam f ‰ ∅ ô ´8 R f˚˚pX q ô f˚˚ ı ´8 ô dom f˚ ‰ ∅.

(iv) cam f “ ∅ ñ f̆pX q Ă t´8,`8u.

(v) Suppose that f P Γ0pX q. Then cam f ‰ ∅ and f̆ “ f˚˚ “ f .

Lemma 2.4 Let f : X Ñ s´8,`8s be such that cam f ‰ ∅. Then the following hold:

(i) Suppose that f ı `8. Then f˚ P Γ0pX ˚q and f˚˚ P Γ0pX q.

(ii) f̆ “ f˚˚.

(iii) conv dom f “ dom f˚˚.

Proof. (i)–(ii): See [41].

(iii): We derive from (ii) and [5, Proposition 9.8(iv)] (its proof remains valid in our setting) that

conv dom f Ă dom f˚˚ Ă conv dom f . Taking the closure yields the identity.

Lemma 2.5 Let f P Γ0pX q. Then the following hold:

(i) rec epi f “ epi rec f .

(ii) rec f “ σdom f˚ “ rec pf˚˚q.

(iii) f “ rec f ô f˚pdom f˚q “ t0u.

Proof. (i): See [5, Proposition 9.29] (its proof remains valid in our setting).

(ii): The first identity is from [45, Corollary 3D]. In view of Lemma 2.3(v), it implies the second.

(iii): It follows from Lemma 2.3(v), (ii), and Lemma 2.4(ii) that

f “ rec f ô f˚ “ pιdom f˚ q˚˚ “ ι
dom f˚ , (2.7)

which implies that dom f˚ “ dom ι
dom f˚ “ dom f˚. Thus, since f˚ is lower semicontinuous, f “

rec f ô f˚ “ ι
dom f˚ “ ιdom f˚ ô f˚pdom f˚q “ t0u.

Lemma 2.6 Let f P Γ0pX q. Then the following are equivalent:

(i) rec f ď f .

(ii) p@λ P r1,`8rqp@x P X q fpλxq ď λfpxq.

(iii) f˚pdom f˚q Ă s´8, 0s.
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Proof. (i)ñ(ii): Without loss of generality, let λ P s1,`8r and x P dom f . Arguing as in the proof of

[49, Proposition 8(iii)], we observe that Lemma 2.5(i) yields

pλ ´ 1qepi f Ă pλ ´ 1qepi rec f “ pλ ´ 1qrec epi f “ rec epi f. (2.8)

Hence, pλx, λfpxqq “ px, fpxqq`pλ´1qpx, fpxqq P epi f`rec epi f “ epi f . Therefore, fpλxq ď λfpxq.
(ii)ñ(iii): Let x˚ P dom f˚. Since

f˚px˚q “ sup
xPX

`
xx, x˚y ´ fpxq

˘

“ sup
yPX

sup
λPr1,`8r

`
xλy, x˚y ´ fpλyq

˘

ě sup
λPr1,`8r

λ sup
yPX

`
xy, x˚y ´ fpyq

˘

“ sup
λPr1,`8r

λ f˚px˚q, (2.9)

we have f˚px˚q ą 0 ñ f˚px˚q “ `8, which contradicts the fact that x˚ P dom f˚.

(iii)ñ(i): In view of Lemma 2.5(ii), p@x˚ P dom f˚q f˚px˚q P s´8, 0s ñ p@x˚ P dom f˚q x˚ ď f

ñ σdom f˚ ď f ñ rec f ď f .

3 The İ and Ĳ envelopes

We introduce two types of envelope of a function that will be essential in our analysis.

Definition 3.1 Let f : X Ñ r´8,`8s. Then

f_ : X Ñ s´8,`8s : x ÞÑ
#
fpxq, if ´8 ă fpxq ă 0;

`8, otherwise
(3.1)

and the İ envelope of f is

fİ “ f_˚˚. (3.2)

Furthermore,

f^ : X Ñ s´8,`8s : x ÞÑ
#
fpxq, if 0 ă fpxq ă `8;

`8, otherwise
(3.3)

and the Ĳ envelope of f is

fĲ “ f^˚˚. (3.4)

Let us examine some key properties of these envelopes.

Lemma 3.2 Let f : X ÞÑ r´8,`8s be such that E “ f´1ps´8, 0rq ‰ ∅. Then the following holds:

(i) Suppose that cam f_ ‰ ∅. Then fİ P Γ0pX q, dom fİ Ă convE, and fİpdom fİq Ă s´8, 0s.

Now suppose that, in addition, f P Γ0pX q. Then the following are satisfied:
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(ii) E “ f´1ps´8, 0sq.

(iii) fİ “ f ` ιf´1ps´8,0sq.

(iv) dom fİ “ f´1ps´8, 0sq.

(v) fİ´1pt0uq “ f´1pt0uq.

(vi) E “ pfİq´1ps´8, 0rq and fİ|E “ f |E .

Proof. (i): The fact that fİ P Γ0pX q follows from (3.2) and Lemma 2.4(i). Next, since f_pX q Ă
s´8, 0r Y t`8u, we deduce from (3.2), Lemma 2.4(iii), and (3.1) that

dom fİ Ă dom fİ

“ conv dom f_

“ conv pf_q´1ps´8, 0rq (3.5)

“ convE. (3.6)

On the other hand, Lemma 2.3(i) yields fİ ď f_. Hence, we derive from (3.5) that

dom fİ Ă conv pfİq´1ps´8, 0rq
Ă conv pfİq´1ps´8, 0sq
“ pfİq´1ps´8, 0sq (3.7)

since fİ P Γ0pX q.
(ii): Since f is lower semicontinuous, f´1ps´8, 0sq is closed. Therefore E Ă f´1ps´8, 0sq ñ

E Ă f´1ps´8, 0sq. Conversely, take x0 P f´1ps´8, 0sq and x P E, and set p@α P s0, 1rq xα “
αx` p1´αqx0. Since f is convex p@α P s0, 1rq fpxαq ď αfpxq ` p1´αqfpx0q ă 0, hence xα P E. Thus

x0 “ limαÓ0 xα P E.

(iii): Let x˚ P X ˚ and let us show that f_˚px˚q “ suppx˚ ´fqpEq. Since f_˚px˚q “ suppx˚ ´fqpEq,
we have f_˚px˚q ď suppx˚ ´ fqpEq. To get the reverse inequality let x P E. We need to show that

xx, x˚y ´ fpxq ď f_˚px˚q. It is enough to assume that x P E r E, which yields fpxq “ 0. In addition,

since x˚ is lower semicontinuous and f_|E ă 0,

xx, x˚y ´ fpxq “ xx, x˚y ď supx˚pEq “ supx˚pEq ď f_˚px˚q. (3.8)

Thus,

f_˚px˚q “ suppx˚ ´ fqpEq “
`
f ` ιE

˘˚px˚q “
`
f ` ιf´1ps´8,0sq

˘˚px˚q. (3.9)

On the other hand, since E ‰ ∅, using (ii), we see that

f ` ιf´1ps´8,0sq “ f ` ιE P Γ0pX q. (3.10)

Altogether, (3.10) and Lemma 2.3(v) yield fİ “ f_˚˚ “ pf ` ιf´1ps´8,0sqq˚˚ “ f ` ιf´1ps´8,0sq.

(iv)–(vi): These follow from (iii).

Lemma 3.3 Let f : X Ñ r´8,`8s be such that F “ f´1ps0,`8rq ‰ ∅. Then the following holds:

(i) fĲ P Γ0pX q, dom fĲ Ă convF , and fĲpdom fĲq Ă r0,`8r.
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Now suppose that, in addition, f P Γ0pX q. Then the following are satisfied:

(ii) fĲ “ maxtf, 0u ` ιconvF .

(iii) dom fĲ “ dom f X convF Ą F .

(iv) pfĲq´1pt0uq “ f´1ps´8, 0sq X convF .

(v) pfĲq´1pt0uq “ ∅ ô f´1ps´8, 0sq “ ∅.

(vi) F “ pfĲq´1ps0,`8rq and f |F “ fĲ|F .

Proof. (i): Set θ : X Ñ R : x ÞÑ 0. Since f^ ą θ P cam f and F ‰ ∅, Lemma 2.4(i) asserts that

fĲ P Γ0pX q. In addition, (3.3), (3.4), and Lemma 2.4(iii) yield

dom fĲ Ă dom fĲ “ conv dom f^ “ convF (3.11)

and

`
@x P dom fĲ

˘
0 “ θpxq “ θ˚˚pxq ď f^˚˚pxq “ fĲpxq ă `8. (3.12)

(ii): Set g “ maxtf, 0u. Since F ‰ ∅, we have g P Γ0pX q and `8 ı f^ “ g ` ιF ě g ` ιconvF P
Γ0pX q. Hence, appealing to Lemma 2.3(v), we obtain

g ` ιconvF ď fĲ ď g ` ιF . (3.13)

Let x P X . If x P F , then

gpxq ` ιconvF pxq “ fĲpxq “ gpxq ` ιF pxq “ gpxq. (3.14)

If x R convF or x R dom g, then gpxq ` ιconvF pxq “ fĲpxq “ gpxq ` ιF pxq “ `8. Now, suppose that

x P pdom g X convF q r F . Then, since gpX r F q Ă t0,`8u, we have

gpxq “ 0. (3.15)

It remains to show that fĲpxq “ 0. To this end, fix ε P s0,`8r. Suppose first that x P pconvF q r F .

Since x P convF , there exist finite families pxiqiPI in F and pαiqiPI in s0, 1r such that
ř
iPI αi “ 1

and x “ ř
iPI αixi. Hence, it follows from Lemma 2.1, (3.14), and (3.15) that, for every i P I, there

exists zi P sx, xir X F such that fĲpziq “ gpziq P s0, εs, say zi “ p1 ´ ηiqx ` ηixi for some ηi P s0, 1r.
Therefore, for every i P I, xi “ η´1

i zi ` p1 ´ η´1

i qx. In turn, x “ ř
iPI αixi “ ř

iPI βizi, where, for

every i P I, βi “ αiη
´1

i {přjPI αjη
´1

j q ą 0. Since
ř
iPI βi “ 1 and tziuiPI Ă levďε g, we have x P levďε g

and 0 ď fĲpxq ď
ř
iPI βif

Ĳpziq “
ř
iPI βigpziq ď ε. Thus, fĲpxq “ 0. Altogether, in view of (3.15),

since x is arbitrarily chosen in pconvF q r F , we have

`
@u P pconvF q r F

˘
gpuq “ 0 and fĲpuq “ 0. (3.16)

Next, suppose that x P pconvF qrconvF . Then there exists a net puaqaPA in convF such that ua Ñ x.

For every a P A, we consider the following alternatives.

• ua P F : Since gpxq “ 0 and gpuaq P s0,`8r, (3.14) and Lemma 2.1 guarantee the existence of

rua P sx, uar X F such that fĲpruaq “ gpruaq P s0, εs.

• ua R F : Set rua “ ua. It follows from (3.16) that gpruaq “ 0 and fĲpruaq “ 0.
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By construction, for every a P A, rua P convF and, if ua is in a convex neighborhood of x, so is

rua. Since X is locally convex, we obtain rua Ñ x. By lower semicontinuity of fĲ, we conclude that

0 ď fĲpxq ď lim fĲpruaq ď ε. This shows that fĲpxq “ 0.

(iii)&(iv): These follow from (ii).

(v): Suppose that f´1ps´8, 0sq ‰ ∅, let x P f´1ps´8, 0sq, and let z P F . By Lemma 2.1,

rx, zr X f´1pt0uq X F ‰ ∅ and, hence, (iv) yields pfĲq´1pt0uq ‰ ∅ since F Ă convF . The reverse

implication is clear by (iv).

(vi): This follows from (ii).

Remark 3.4 In the setting of Lemma 3.3, we can have f P Γ0pX q and pconvF q X f´1ps´8, 0rq ‰ ∅.

Take, for instance, X “ R
2, and set

f : X Ñ s´8,`8s : pξ, ηq ÞÑ

$
’&
’%

ξ2{η ´ 1, if η ą 0;

´1, if ξ “ η “ 0;

`8, otherwise.

(3.17)

Since f ` 1 is an instance of (1.2), we have f P Γ0pX q. For every n P N, setting xn “ p2´n, 2´2n´1q
yields fpxnq “ 1. We obtain F Q xn Ñ p0, 0q P convF and fp0, 0q “ ´1.

Lemma 3.5 Let f : X Ñ r´8,`8s be such that F “ f´1ps0,`8rq ‰ ∅ and assume that cam p´fq_ ‰
∅. Then the following hold:

(i) ´p´fqİ ă `8.

(ii) 0 ď fĲ|convF ď ´p´fqİ|convF .

(iii) dom fĲ “ convF .

Proof. (i): Since cam p´fq_ ‰ ∅, (3.2) and Lemma 2.3(iii) yield ´8 R p´fqİpX q and therefore

´p´fqİ ă `8.

(ii): The first inequality follows from Lemma 3.3(i). We derive from Definition 3.1 and

Lemma 2.3(i) that

p@x P F q fĲpxq ď f^pxq “ ´
`

´ fpxq
˘

“ ´p´fq_pxq ď ´p´fqİpxq. (3.18)

Now set h “ fĲ ` p´fqİ. Then (3.18) implies that h|F ď 0. Since F Ă levď0 h and h is lower

semicontinuous and convex, note that convF Ă conv levď0 h “ levď0 h.

(iii): This follows from (i), (ii), and Lemma 3.3(i).

Remark 3.6 Let f P Γ0pX q be such that pf˚q´1ps´8, 0rq ‰ ∅. Then f “ maxtf˚İ˚, f˚Ĳ˚u. In-

deed, since Lemma 2.3(v) asserts that f “ f˚˚, it follows from Lemma 2.4(i), Lemma 3.2(iii), (3.3),

Lemma 2.3(ii), and (3.4) that

p@x P X q fpxq “ sup
x˚PX˚

`
xx, x˚y ´ f˚px˚q

˘

“ max

"
sup

x˚Ppf˚q´1ps´8,0sq

`
xx, x˚y ´ f˚px˚q

˘
, sup
x˚Ppf˚q´1ps0,`8rq

`
xx, x˚y ´ f˚px˚q

˘*

“ max

"
sup
x˚PX˚

`
xx, x˚y ´ f˚İpx˚q

˘
, sup
x˚PX˚

`
xx, x˚y ´ f˚^px˚q

˘*

“ max
!
f˚İ˚pxq, f˚Ĳ˚pxq

)
. (3.19)
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Figure 1: Plots of f˚İ˚ (Huber, blue) and f˚Ĳ˚ (Berhu, orange) when X “ R
2 and f “ p} ¨ }2

2
` 1q{2.

We verify that f is the maximum of both functions, as observed in Remark 3.6.

Example 3.7 Suppose that pX , } ¨ }q is a nonzero real reflexive Banach space with dual norm } ¨ }˚, let

α P s0,`8r, let p P s1,`8r, set p˚ “ p{pp´1q, and set f “ }¨}p{p`αp˚{p˚. Then f˚ “ p}¨}p˚
˚ ´αp˚q{p˚,

which yields pf˚q´1ps´8, 0rq ‰ ∅ and pf˚q´1ps0,`8rq ‰ ∅. Therefore, since conv pf˚q´1ps0,`8rq “
X ˚, Lemma 3.2(iii) and Lemma 3.3(ii) imply that

f˚İ : x˚ ÞÑ

$
’&
’%

`8, if }x˚}˚ ą α;

}x˚}p˚
˚ ´ αp

˚

p˚ , if }x˚}˚ ď α
and f˚Ĳ : x˚ ÞÑ

$
’&
’%

}x˚}p˚
˚ ´ αp

˚

p˚ , if }x˚}˚ ą α;

0, if }x˚}˚ ď α.

(3.20)

It is noteworthy that we obtain by conjugation

f˚İ˚ : x ÞÑ

$
’&
’%

α}x}, if }x} ą α
1

p´1 ;

}x}p
p

` αp
˚

p˚ , if }x} ď α
1

p´1

and f˚Ĳ˚ : x ÞÑ

$
’&
’%

}x}p
p

` αp
˚

p˚ , if }x} ą α
1

p´1 ;

α}x}, if }x} ď α
1

p´1 .

(3.21)

We recognize, respectively, the pth order Huber and Berhu functions used in [23, 33] (see Figure 1).

4 Preperspective functions

Let us first record some direct consequences of Definition 1.1.

Proposition 4.1 Let ϕ : X Ñ r´8,`8s, let s : Y Ñ r´8,`8s, and set S “ s´1ps0,`8rq. Then the

following hold:

(i) dom pϕ ˙ sq “
 

px, yq P X ˆ S
ˇ̌
x P spyqdomϕ

(
.

(ii) ϕ ˙ s is proper if and only if ϕ is proper and S ‰ ∅.
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Proof. (i): Clear from Definition 1.1.

(ii): We derive from (1.1) that ´8 P pϕ˙ sqpX ˆ Yq ô ´8 P ϕpX q. Suppose that ϕ˙ s is proper

and let px, yq P dom pϕ ˙ sq. In view of (i), y P S and x{spyq P domϕ. Now suppose that ϕ is proper

and S ‰ ∅, and let px, yq P domϕ ˆ S. Then pspyqx, yq P dom pϕ ˙ sq.
Our first result provides conditions under which the preperspective of a convex function is itself

convex.

Proposition 4.2 Let ϕ : X Ñ r´8,`8s be convex, let s : Y Ñ r´8,`8s, set S “ s´1ps0,`8rq, and

suppose that one of the following holds:

(i) ϕ satisfies

p@λ P s1,`8rqp@x P domϕq ϕpλxq ď λϕpxq, (4.1)

s is proper and convex, and S is convex.

(ii) ϕp0q ď 0 and ´s is proper and convex.

(iii) s is an affine function.

Then ϕ˙ s is convex.

Proof. Let α P s0, 1r, and suppose that px1, y1q P dom pϕ ˙ sq and px2, y2q P dom pϕ ˙ sq. Set

y “ αy1 ` p1 ´ αqy2. (4.2)

Observe that, since S is convex, y P S. Further, set

β1 “ αspy1q
spyq , β2 “ p1 ´ αqspy2q

spyq , and β “ β1 ` β2, (4.3)

and note that β1 P s0,`8r and β2 P s0,`8r.
(i): Observe that the convexity of s yields β P r1,`8r. In view of (4.3), (4.1), and the convexity

of ϕ, we have

pϕ ˙ sq
`
αpx1, y1q ` p1 ´ αqpx2, y2q

˘
“ spyqϕ

ˆ
αx1 ` p1 ´ αqx2

spyq

˙

“ spyqϕ
ˆ
β1x1

spy1q ` β2x2

spy2q

˙

“ spyqϕ
ˆ
β

ˆ
β1x1

βspy1q ` β2x2

βspy2q

˙˙

ď spyqβϕ
ˆ
β1

β

x1

spy1q ` β2

β

x2

spy2q

˙

ď spyqβ1ϕ
ˆ

x1

spy1q

˙
` spyqβ2ϕ

ˆ
x2

spy2q

˙

“ αspy1qϕ
ˆ

x1

spy1q

˙
` p1 ´ αqspy2qϕ

ˆ
x2

spy2q

˙

“ αpϕ ˙ sqpx1, y1q ` p1 ´ αqpϕ ˙ sqpx2, y2q. (4.4)
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(ii)–(iii): By convexity, spyq ě αspy1q ` p1 ´αqspy2q ą 0 and, therefore, (4.3) yields β P s0, 1s. We

have

pϕ ˙ sq
`
αpx1, y1q ` p1 ´ αqpx2, y2q

˘
“ spyqϕ

ˆ
αx1 ` p1 ´ αqx2

spyq

˙

“ spyqϕ
ˆ
β1

x1

spy1q ` β2
x2

spy2q ` p1 ´ βq0
˙
. (4.5)

In case (iii) we have β “ 1 and hence, by convexity of ϕ,

pϕ ˙ sq
`
αpx1, y1q ` p1 ´ αqpx2, y2q

˘
ď αspy1qϕ

ˆ
x1

spy1q

˙
` p1 ´ αqspy2qϕ

ˆ
x2

spy2q

˙

“ αpϕ ˙ sqpx1, y1q ` p1 ´ αqpϕ ˙ sqpx2, y2q. (4.6)

We now turn to (ii). If β “ 1, then we obtain (4.6) using (4.5). On the other hand, if β P s0, 1r, then

since ϕp0q ď 0, we have p1 ´ βqspyqϕp0q ď 0. Hence, it follows from (4.5) and convexity of ϕ that

pϕ ˙ sq
`
αpx1, y1q ` p1 ´ αqpx2, y2q

˘
ď αspy1qϕ

ˆ
x1

spy1q

˙
` p1 ´ αqspy2qϕ

ˆ
x2

spy2q

˙

` p1 ´ βqspyqϕp0q

ď αspy1qϕ
ˆ

x1

spy1q

˙
` p1 ´ αqspy2qϕ

ˆ
x2

spy2q

˙

ď αpϕ ˙ sqpx1, y1q ` p1 ´ αqpϕ ˙ sqpx2, y2q, (4.7)

which concludes the proof.

Next, we determine the conjugate of the preperspective, using the İ and Ĳ envelopes of Defini-

tion 3.1. In view of (1.1), if s´1ps0,`8rq “ ∅, then pϕ ˙ sq˚ ” ´8 and ϕé s ” `8. We therefore

rule out this trivial case henceforth.

Proposition 4.3 Let ϕ : X Ñ r´8,`8s, let s : Y Ñ r´8,`8s, let x˚ P X ˚ and y˚ P Y˚, and suppose

that S “ s´1ps0,`8rq ‰ ∅. Then the following hold:

(i) pϕ ˙ sq˚px˚, y˚q “ supyPSpxy, y˚y ` spyqϕ˚px˚qq.

(ii) Suppose that ϕ˚px˚q “ ˘8. Then pϕ ˙ sq˚px˚, y˚q “ ˘8.

(iii) Suppose that ´8 ă ϕ˚px˚q ă 0. Then pϕ ˙ sq˚px˚, y˚q “ psĲ˚ ˙ p´ϕ˚qqpy˚, x˚q.

(iv) Suppose that ϕ˚px˚q “ 0. Then pϕ ˙ sq˚px˚, y˚q “ σconvSpy˚q.

(v) Suppose that 0 ă ϕ˚px˚q ă `8. Then pϕ ˙ sq˚px˚, y˚q “ pp´sqİ˚ ˙ ϕ˚qpy˚, x˚q.

Proof. (i): It follows from Definition 1.1 and Proposition 4.1(i) that

pϕ ˙ sq˚px˚, y˚q “ sup
xPX
yPY

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sqpx, yq

˘

“ sup
xPX
yPS

ˆ
xx, x˚y ` xy, y˚y ´ spyqϕ

ˆ
x

spyq

˙˙

“ sup
yPS

ˆ
xy, y˚y ` spyq

ˆ
sup
xPX

B
x

spyq , x
˚

F
´ ϕ

ˆ
x

spyq

˙˙˙

“ sup
yPS

`
xy, y˚y ` spyqϕ˚px˚q

˘
. (4.8)
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(ii): This follows from (i).

(iii): It follows from (i), (3.3), (3.4), and Lemma 2.3(ii) that

pϕ ˙ sq˚px˚, y˚q “ ´ϕ˚px˚q sup
yPS

ˆB
y,

y˚

´ϕ˚px˚q

F
´ spyq

˙

“ ´ϕ˚px˚q sup
yPY

ˆB
y,

y˚

´ϕ˚px˚q

F
´ s^pyq

˙

“ ´ϕ˚px˚qs^˚

ˆ
y˚

´ϕ˚px˚q

˙

“
`
sĲ˚ ˙ p´ϕ˚q

˘
py˚, x˚q. (4.9)

(iv): We derive from (i) and Lemma 2.2 that pϕ ˙ sq˚px˚, y˚q “ σSpy˚q “ σconvSpy˚q.
(v): It follows from (i), (3.1), (3.2), and Lemma 2.3(ii) that

pϕ ˙ sq˚px˚, y˚q “ ϕ˚px˚q sup
yPS

ˆB
y,

y˚

ϕ˚px˚q

F
` spyq

˙

“ ϕ˚px˚q sup
yPY

ˆB
y,

y˚

ϕ˚px˚q

F
´ p´sq_pyq

˙

“ ϕ˚px˚qp´sq_˚

ˆ
y˚

ϕ˚px˚q

˙

“
`
p´sqİ˚ ˙ ϕ˚

˘
py˚, x˚q, (4.10)

as claimed.

As an illustration, we consider the case of affine scaling.

Example 4.4 Let ϕ P Γ0pX q, let w˚ P Y˚
r t0u, let y P Y, set s “ w˚ ´ xy,w˚y, set S “ 

y P Y
ˇ̌

xy ´ y,w˚y ą 0
(
, and set K “

 
y P Y

ˇ̌
xy,w˚y ě 0

(
. Let x˚ P X ˚ and y˚ P Y˚. If

ϕ˚px˚q “ `8, Proposition 4.3(ii) yields pϕ ˙ sq˚px˚, y˚q “ `8. Otherwise, ϕ˚px˚q P R and, since

S ‰ ∅, it follows from Proposition 4.3(i) that

pϕ ˙ sq˚px˚, y˚q “ sup
yPS

`
xy, y˚y ` ϕ˚px˚qxy ´ y,w˚y

˘

“ xy, y˚y ` sup
yPS

xy ´ y, y˚ ` ϕ˚px˚qw˚y

“ xy, y˚y ` sup
yPK

xy, y˚ ` ϕ˚px˚qw˚y

“
#

xy, y˚y, if
`
Dβ P s´8,´ϕ˚px˚qs

˘
y˚ “ βw˚;

`8, otherwise.
(4.11)

In particular, suppose that Y “ R, w˚ “ 1, and y “ 0, i.e., s : y ÞÑ y. Then ϕ ˙ s is the standard

preperspective of (1.1) and (4.11) yields

pϕ ˙ sq˚ “ ιC , where C “
 

px˚, y˚q P X ˚ ˆ R
ˇ̌
ϕ˚px˚q ` y˚ ď 0

(
, (4.12)

which recovers the expression given in [45].

Next, we derive a variant of Proposition 4.3 that will be more readily applicable.
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Theorem 4.5 Let ϕ : X Ñ s´8,`8s be proper, let s : Y Ñ r´8,`8s be such that S “ s´1ps0,`8rq ‰
∅, let x˚ P X ˚, and let y˚ P Y˚. Then the following hold:

(i) Suppose that ϕ˚pX ˚q Ă s´8, 0s Y t`8u and pϕ˚q´1ps´8, 0rq ‰ ∅. Then

`
ϕ ˙ s

˘˚px˚, y˚q “

$
’’’’’&
’’’’’%

´ϕ˚px˚qsĲ˚

˜
y˚

´ϕ˚px˚q

¸
, if ´8 ă ϕ˚px˚q ă 0;

σconvSpy˚q, if ϕ˚px˚q “ 0;

`8, if ϕ˚px˚q “ `8.

(4.13)

(ii) Suppose that ϕ˚pX ˚q Ă t0,`8u. Then
`
ϕ ˙ s

˘˚px˚, y˚q “ ιpϕ˚q´1pt0uqpx˚q ` σconvSpy˚q. (4.14)

(iii) Suppose that ϕ˚pX ˚q Ă r0,`8s and pϕ˚q´1ps0,`8rq ‰ ∅. Then

pϕ ˙ sq˚px˚, y˚q “

$
’’’’’&
’’’’’%

ϕ˚px˚qp´sqİ˚

˜
y˚

ϕ˚px˚q

¸
, if 0 ă ϕ˚px˚q ă `8;

σconvSpy˚q, if ϕ˚px˚q “ 0;

`8, if ϕ˚px˚q “ `8.

(4.15)

(iv) Suppose that pϕ˚q´1ps´8, 0rq ‰ ∅ and pϕ˚q´1ps0,`8rq ‰ ∅. Then the following hold:

a) pϕ ˙ sq˚px˚, y˚q “

$
’’’’’’’’’&
’’’’’’’’’%

´ϕ˚px˚qsĲ˚

˜
y˚

´ϕ˚px˚q

¸
, if ´8 ă ϕ˚px˚q ă 0;

σconvSpy˚q, if ϕ˚px˚q “ 0;

ϕ˚px˚qp´sqİ˚

˜
y˚

ϕ˚px˚q

¸
, if 0 ă ϕ˚px˚q ă `8;

`8, if ϕ˚px˚q “ `8.
b) pϕ ˙ sq˚px˚, y˚q “ min

 `
ϕ˚İ˚ ˙ s

˘˚px˚, y˚q,
`
ϕ˚Ĳ˚ ˙ s

˘˚px˚, y˚q
(
.

Proof. Claims (i)–(iv)a) follow from Proposition 4.3(ii)–(v) and Definition 1.1. It remains to show

(iv)b). Since ϕ is proper, ´8 R ϕ˚pX ˚q. Moreover, domϕ˚ ‰ ∅ and hence ϕ˚ P Γ0pX ˚q. Therefore,

applying items (i), (vi), and (v) in Lemma 3.2 to ϕ˚ and invoking Lemma 2.3(v) and (i) yield

`
ϕ˚İ˚ ˙ s

˘˚px˚, y˚q “

$
’’’’’&
’’’’’%

´ϕ˚px˚qsĲ˚

˜
y˚

´ϕ˚px˚q

¸
, if ´8 ă ϕ˚px˚q ă 0;

σconvSpy˚q, if ϕ˚px˚q “ 0;

`8, if 0 ă ϕ˚px˚q ď `8.

(4.16)

Likewise, using Lemma 3.3 and (iii), we arrive at

pϕ˚Ĳ˚ ˙ sq˚px˚, y˚q “

$
’’’’’’’&
’’’’’’’%

ϕ˚px˚qp´sqİ˚

˜
y˚

ϕ˚px˚q

¸
, if 0 ă ϕ˚px˚q ă `8;

σconvSpy˚q, if ´8 ă ϕ˚px˚q ď 0

and x˚ P conv pϕ˚q´1ps0,`8rq;

`8, otherwise.

(4.17)
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If 0 ď ϕ˚px˚q ď `8, we deduce the identity from (iv)a), (4.16), and (4.17). Now assume that

´8 ă ϕ˚px˚q ă 0. Lemma 3.3(i) asserts that sĲpdom sĲq Ă r0,`8r and dom sĲ Ă convS. Hence,

´ϕ˚px˚qsĲ˚

ˆ
y˚

´ϕ˚px˚q

˙
“ ´ϕ˚px˚q sup

yPdom sĲ

ˆB
y,

y˚

´ϕ˚px˚q

F
´ sĲpyq

˙

“ sup
yPconvS

`
xy, y˚y ` ϕ˚px˚qsĲpyq

˘

ď sup
yPconvS

xy, y˚y

“ σconvSpy˚q, (4.18)

which yields

mint
`
ϕ˚İ˚ ˙ s

˘˚px˚, y˚q,
`
ϕ˚Ĳ˚ ˙ s

˘˚px˚, y˚qu “ ´ϕ˚px˚qsĲ˚

ˆ
y˚

´ϕ˚px˚q

˙
. (4.19)

Thus, the conclusion follows from (iv)a).

We conclude this section by establishing conditions under which the preperspective admits a con-

tinuous affine minorant. Note that, in view of Lemma 2.3(iii) and Theorem 4.5(ii), camϕ “ ∅ ñ
cam pϕ ˙ sq “ ∅.

Corollary 4.6 Let ϕ : X Ñ s´8,`8s be proper and such that camϕ ‰ ∅ and let s : Y Ñ r´8,`8s
be such that S “ s´1ps0,`8rq ‰ ∅. Then

cam pϕ ˙ sq ‰ ∅ ô
“

pϕ˚q´1ps´8, 0sq ‰ ∅ or cam p´sq_ ‰ ∅
‰
. (4.20)

Proof. Lemma 2.3(iii) asserts that cam pϕ ˙ sq “ ∅ if and only if pϕ ˙ sq˚ ” `8. In view of

Theorem 4.5(iii),

”
ϕ˚pX ˚q Ă s0,`8s and p´sqİ˚ ” `8

ı
ñ pϕ ˙ sq˚ ” `8. (4.21)

An inspection of items (i)–(iv)a) in Theorem 4.5 shows that the converse implication also holds.

Altogether, (4.20) follows from (4.21) and Lemma 2.3(ii)–(iii).

Example 4.7 Let ϕ : X Ñ s´8,`8s be proper and convex, and let s : Y Ñ r´8,`8s be such that

S “ s´1ps0,`8rq ‰ ∅. Suppose that one of the following holds:

(i) Γ0pX q Q ϕ ě recϕ.

(ii) ϕ is lower semicontinuous at 0 and ϕp0q P s0,`8r.

(iii) camϕ ‰ ∅ and ´s P Γ0pYq.

Then cam pϕ ˙ sq ‰ ∅.

Proof. (i): This follows from Lemma 2.3(v), Corollary 4.6, and Lemma 2.6.

(ii): As in [5, Proposition 13.44], we have inf ϕ˚pX ˚q “ ´ϕ˚˚p0q “ ´ϕp0q P s´8, 0r, which yields

pϕ˚q´1ps´8, 0sq ‰ ∅. Hence the conclusion follows from Lemma 2.3(iii) and Corollary 4.6.

(iii): According to Lemma 2.3(v), ∅ ‰ cam p´sq Ă cam p´sq_. Therefore, the conclusion follows

from Corollary 4.6.
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5 Perspective functions

We investigate the properties of the perspective function introduced in Definition 1.1. We preface our

analysis with the case of affine scaling.

Example 5.1 Let ϕ P Γ0pX q, suppose that w˚ P Y˚
r t0u, let y P Y, and set s “ w˚ ´ xy,w˚y. Let

x P X and y P Y. Then

pϕé sqpx, yq “

$
’’’&
’’’%

xy ´ y,w˚yϕ
ˆ

x

xy ´ y,w˚y

˙
, if xy ´ y,w˚y ą 0;

precϕqpxq, if xy ´ y,w˚y “ 0;

`8, otherwise.

(5.1)

In particular, if Y “ R, w˚ “ 1, and y “ 0, we recover the fact that ϕé s “ rϕ mentioned in Section 1

(see (1.2)).

Proof. Since ´s P Γ0pYq, it follows from Lemma 2.3(v) and Example 4.7(iii) that cam pϕ ˙ sq ‰ ∅.

Therefore, we deduce from Definition 1.1, Lemma 2.4(ii), and Example 4.4 that

pϕé sqpx, yq “ pϕ ˙ sq˘px, yq
“ pϕ ˙ sq˚˚px, yq
“ sup

x˚PX˚

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘

“ sup
x˚Pdomϕ˚

βPs´8,´ϕ˚px˚qs

`
xx, x˚y ` β xy ´ y,w˚y

˘

“

$
’’&
’’%

sup
x˚Pdomϕ˚

`
xx, x˚y ´ ϕ˚px˚qxy ´ y,w˚y

˘
, if xy ´ y,w˚y ą 0;

σdomϕ˚pxq, if xy ´ y,w˚y “ 0;

`8, if xy ´ y,w˚y ă 0,

(5.2)

which, by virtue of Lemma 2.3(v) and Lemma 2.5(ii), yields (5.1).

We are now ready to present our main result, which provides explicit expressions of the perspec-

tive function in the general case of nonlinear scaling. We state our theorem in a setting that avoids

the degenerate case when pϕé sqpX ˆ Yq Ă t´8,`8u.

Theorem 5.2 Let ϕ : X Ñ s´8,`8s be proper and such that camϕ ‰ ∅, let s : Y Ñ r´8,`8s be

such that S “ s´1ps0,`8rq ‰ ∅, and suppose that

pϕ˚q´1ps´8, 0sq ‰ ∅ or cam p´sq_ ‰ ∅. (5.3)

Then

(i) ϕé s P Γ0pX ‘ Yq.

Furthermore, let x P X and y P Y. Then the following are satisfied:

(ii) Suppose that ϕ˚pX ˚q Ă s´8, 0s Y t`8u and pϕ˚q´1ps´8, 0rq ‰ ∅. Then

`
ϕé s

˘
px, yq “

$
’’’’&
’’’’%

sĲpyqϕ̆
ˆ

x

sĲpyq

˙
, if 0 ă sĲpyq ă `8;

prec ϕ̆qpxq, if sĲpyq “ 0;

`8, if sĲpyq “ `8.

(5.4)
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(iii) Suppose that ϕ˚pX ˚q Ă t0,`8u. Then

`
ϕé s

˘
px, yq “ prec ϕ̆qpxq ` ιconvSpyq. (5.5)

(iv) Suppose that ϕ˚pX ˚q Ă r0,`8s. Then the following are satisfied:

a) Suppose that pϕ˚q´1pt0uq ‰ ∅ and cam p´sq_ “ ∅. Then

`
ϕé s

˘
px, yq “ σpϕ˚q´1pt0uqpxq ` ιconvSpyq. (5.6)

b) Suppose that pϕ˚q´1ps0,`8rq ‰ ∅ and cam p´sq_ ‰ ∅. Then

`
ϕé s

˘
px, yq “

$
’’’&
’’’%

´p´sqİpyqϕ̆
ˆ

x

´p´sqİpyq

˙
, if ´8 ă p´sqİpyq ă 0;

prec ϕ̆qpxq, if p´sqİpyq “ 0;

`8, if p´sqİpyq “ `8.

(5.7)

(v) Suppose that pϕ˚q´1ps´8, 0rq ‰ ∅ and that pϕ˚q´1ps0,`8rq ‰ ∅. Then the following are satis-

fied:

a)
`
ϕé s

˘
px, yq “ max

 `
ϕ˚İ˚

é s
˘
px, yq,

`
ϕ˚Ĳ˚

é s
˘
px, yq

(
.

b) Suppose that cam p´sq_ “ ∅. Then ϕ˚İ˚
é s ě ϕ˚Ĳ˚

é s and

`
ϕé s

˘
px, yq “

$
’’’’&
’’’’%

sĲpyqϕ˚İ˚

ˆ
x

sĲpyq

˙
, if 0 ă sĲpyq ă `8;

precϕ˚İ˚qpxq, if sĲpyq “ 0;

`8, if sĲpyq “ `8.

(5.8)

c) Suppose that cam p´sq_ ‰ ∅. Then

`
ϕé s

˘
px, yq “

$
’’’’’’’’’’&
’’’’’’’’’’%

max

"
sĲpyqϕ˚İ˚

ˆ
x

sĲpyq

˙
,´p´sqİpyqϕ˚Ĳ˚

ˆ
x

´p´sqİpyq

˙*
, if 0 ă sĲpyq ă `8;

max

"
precϕ˚İ˚qpxq,´p´sqİpyqϕ˚Ĳ˚

ˆ
x

´p´sqİpyq

˙*
, if p´sqİpyq ă 0 “ sĲpyq;

prec ϕ̆qpxq, if p´sqİpyq “ 0 “ sĲpyq;

`8, if sĲpyq “ `8,
(5.9)

where all the possible cases are exhausted.

Proof. Since camϕ ‰ ∅ and ϕ ı `8, by virtue of Lemma 2.4(i)–(ii), we have

ϕ˚ P Γ0pX ˚q and ϕ˚˚ “ ϕ̆ P Γ0pX q. (5.10)

In turn, it follows from (5.3), Corollary 4.6, Definition 1.1, and Lemma 2.4(ii) that

cam pϕ ˙ sq ‰ ∅ and ϕé s “ pϕ ˙ sq˘“ pϕ ˙ sq˚˚. (5.11)
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We also derive from Lemma 2.3(ii), (5.10), and Lemma 2.5(ii) that

σdomϕ˚ “ σdom pϕ̆q˚ “ rec ϕ̆ (5.12)

and from Proposition 4.1(ii) that

dom pϕ ˙ sq ‰ ∅. (5.13)

(i): This follows from (5.11), (5.13), and Lemma 2.4(i).

(ii): Theorem 4.5(i) implies that dom pϕ ˙ sq˚ Ă pϕ˚q´1ps´8, 0sq ˆ Y˚. Consequently,

pϕ ˙ sq˚˚px, yq “ max

#
sup

x˚Ppϕ˚q´1ps´8,0rq
y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘
,

sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘
+
. (5.14)

Moreover, by Theorem 4.5(i), (3.4), and Lemma 2.3(ii),

sup
x˚Ppϕ˚q´1ps´8,0rq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘

“ sup
x˚Ppϕ˚q´1ps´8,0rq

y˚PY˚

˜
xx, x˚y ` xy, y˚y ` ϕ˚px˚qsĲ˚

˜
y˚

´ϕ˚px˚q

¸¸

“ sup
x˚Ppϕ˚q´1ps´8,0rq

˜
xx, x˚y ´ ϕ˚px˚q sup

y˚PY˚

˜B
y,

y˚

´ϕ˚px˚q

F
´ sĲ˚

˜
y˚

´ϕ˚px˚q

¸¸¸

“ sup
x˚Ppϕ˚q´1ps´8,0rq

`
xx, x˚y ´ ϕ˚px˚qsĲpyq

˘
(5.15)

and

sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘
“ sup

x˚Ppϕ˚q´1pt0uq
y˚PY˚

`
xx, x˚y ` xy, y˚y ´ σconvSpy˚q

˘

“ sup
x˚Ppϕ˚q´1pt0uq

`
xx, x˚y ` ιconvSpyq

˘
. (5.16)

Hence, in view of (5.14) and (5.15),

pϕ˙sq˚˚px, yq “ max

#
sup

x˚Ppϕ˚q´1ps´8,0rq

`
xx, x˚y´ϕ˚px˚qsĲpyq

˘
, sup
x˚Ppϕ˚q´1pt0uq

`
xx, x˚y`ιconvSpyq

˘
+
.

(5.17)

In addition, Lemma 3.3(i) yields sĲpyq P r0,`8s. If sĲpyq “ `8, since pϕ˚q´1ps´8, 0rq ‰ ∅, then it

follows from (5.17) that pϕ˙sq˚˚px, yq “ `8. Now assume that sĲpyq P r0,`8r. Then Lemma 3.3(i)

yields

y P convS. (5.18)
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Thus, if sĲpyq P s0,`8r, we deduce from (5.17), (5.18), and (5.10) that

pϕ ˙ sq˚˚px, yq “ sup
x˚Ppϕ˚q´1ps´8,0sq

`
xx, x˚y ´ ϕ˚px˚qsĲpyq

˘

“ sup
x˚Pdomϕ˚

`
xx, x˚y ´ ϕ˚px˚qsĲpyq

˘

“ sĲpyqϕ̆
ˆ

x

sĲpyq

˙
. (5.19)

Now, if sĲpyq “ 0, we infer from (5.17) and (5.12) that

pϕ ˙ sq˚˚px, yq “ max
 
σpϕ˚q´1ps´8,0rqpxq, σpϕ˚q´1pt0uqpxq

(
“ σdomϕ˚ pxq “

`
rec ϕ̆

˘
pxq. (5.20)

Hence, (5.4) holds.

(iii): Theorem 4.5(ii) implies that ∅ ‰ dom pϕ ˙ sq˚ Ă pϕ˚q´1pt0uq ˆ Y˚. Hence, we have

pϕ ˙ sq˚˚px, yq “ sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘

“ sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ σconvSpy˚q

˘

“ sup
x˚Pdomϕ˚

`
xx, x˚y ` ιconvSpyq

˘

“ σdomϕ˚ pxq ` ιconvSpyq, (5.21)

and we obtain (5.5) from (5.12).

(iv): Theorem 4.5(iii) implies that dom pϕ ˙ sq˚ Ă pϕ˚q´1pr0,`8rq ˆ Y˚, which yields

pϕ ˙ sq˚˚px, yq “ max

#
sup

x˚Ppϕ˚q´1pt0uq
y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘
,

sup
x˚Ppϕ˚q´1ps0,`8rq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘
+
. (5.22)

Moreover, by Theorem 4.5(iii), as in (5.16),

sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘
“ sup

x˚Ppϕ˚q´1pt0uq

`
xx, x˚y ` ιconvSpyq

˘
(5.23)

and, using (3.2) and Lemma 2.3(ii),

sup
x˚Ppϕ˚q´1ps0,`8rq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ ˙ sq˚px˚, y˚q

˘

“ sup
x˚Ppϕ˚q´1ps0,`8rq

y˚PY˚

˜
xx, x˚y ` xy, y˚y ´ ϕ˚px˚qp´sqİ˚

˜
y˚

ϕ˚px˚q

¸¸

“ sup
x˚Ppϕ˚q´1ps0,`8rq

˜
xx, x˚y ` ϕ˚px˚q sup

y˚PY˚

˜B
y,

y˚

ϕ˚px˚q

F
´ p´sqİ˚

˜
y˚

ϕ˚px˚q

¸¸¸

“ sup
x˚Ppϕ˚q´1ps0,`8rq

`
xx, x˚y ` ϕ˚px˚qp´sqİpyq

˘
. (5.24)
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Combining (5.22), (5.23), and (5.24), we get

pϕ ˙ sq˚˚px, yq “

max

#
sup

x˚Ppϕ˚q´1pt0uq

`
xx, x˚y ` ιconvSpyq

˘
, sup
x˚Ppϕ˚q´1ps0,`8rq

`
xx, x˚y ` ϕ˚px˚qp´sqİpyq

˘
+
. (5.25)

(iv)a): Lemma 2.3(iii) asserts that p´sqİ ” ´8. Therefore, since pϕ˚q´1pt0uq ‰ ∅, we deduce

from (5.25) that

pϕ ˙ sq˚˚px, yq “ sup
x˚Ppϕ˚q´1pt0uq

`
xx, x˚y ` ιconvSpyq

˘
“ σpϕ˚q´1pt0uqpxq ` ιconvSpyq, (5.26)

as announced in (5.6).

(iv)b): Lemma 3.2(i) yields p´sqİpyq P s´8, 0sYt`8u. If p´sqİpyq “ `8, since pϕ˚q´1ps0,`8rq ‰
∅, it follows from (5.25) that pϕ ˙ sq˚˚px, yq “ `8. Now assume that ´8 ă p´sqİpyq ď 0. Then

Lemma 3.2(i) yields

y P convS. (5.27)

Thus, if p´sqİpyq “ 0, we infer from (5.25) and (5.12) that

pϕ ˙ sq˚˚px, yq “ max
 
σpϕ˚q´1pt0uqpxq, σpϕ˚q´1ps0,`8rqpxq

(
“ σdomϕ˚ pxq “

`
rec ϕ̆

˘
pxq. (5.28)

Next, assume that p´sqİpyq ă 0. Then we deduce from (5.27), (5.25), and (5.10) that

pϕ ˙ sq˚˚px, yq “ sup
x˚Ppϕ˚q´1pr0,`8rq

`
xx, x˚y ` ϕ˚px˚qp´sqİpyq

˘

“ sup
x˚Pdomϕ˚

`
xx, x˚y ` ϕ˚px˚qp´sqİpyq

˘

“ ´p´sqİpyqϕ̆
ˆ

x

´p´sqİpyq

˙
. (5.29)

This verifies that (5.7) holds.

(v): We deduce from Lemma 3.2(i) and Lemma 3.3(ii) that ϕ˚İ P Γ0pX ˚q and ϕ˚Ĳ P Γ0pX ˚q. In

turn, Lemma 2.3(v) yields

pϕ˚İ˚q˘“ ϕ˚İ˚ P Γ0pX q and pϕ˚Ĳ˚q˘“ ϕ˚Ĳ˚ P Γ0pX q. (5.30)

Note also that (5.10), Lemma 3.2(vi), and Lemma 3.3(v) imply that

pϕ˚İq´1ps´8, 0rq “ pϕ˚q´1ps´8, 0rq ‰ ∅ and pϕ˚Ĳq´1pt0uq ‰ ∅. (5.31)

We derive from Corollary 4.6, Lemma 2.3(ii), and (5.31) that cam pϕ˚İ˚˙sq ‰ ∅ and cam pϕ˚Ĳ˚˙sq ‰
∅. Therefore we deduce from Lemma 2.4(ii) that

ϕ˚İ˚
é s “

`
ϕ˚İ˚ ˙ s

˘˚˚
and ϕ˚Ĳ˚

é s “
`
ϕ˚Ĳ˚ ˙ s

˘˚˚
. (5.32)

(v)a): It follows from Theorem 4.5(iv)b) that

`
ϕ˙ s

˘˚˚px, yq “ max
!`
ϕ˚İ˚ ˙ s

˘˚˚px, yq,
`
ϕ˚Ĳ˚ ˙ s

˘˚˚px, yq
)
. (5.33)
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Thus, the claim follows from (5.11) and (5.32).

(v)b): According to (5.10) and Lemma 3.2(iv), domϕ˚İ “ pϕ˚q´1ps´8, 0sq. Hence, using

Theorem 4.5(i), Lemma 2.3(ii), and (5.31), we arrive at dom pϕ˚İ˚ ˙ sq˚ Ă domϕ˚İ ˆ Y˚ “
pϕ˚q´1ps´8, 0sq ˆ Y˚. Therefore, it follows from (5.32) that

`
ϕ˚İ˚

é s
˘
px, yq “ max

#
sup

x˚Ppϕ˚q´1ps´8,0rq
y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ˚İ˚ ˙ sq˚px˚, y˚q

˘
,

sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ˚İ˚ ˙ sq˚px˚, y˚q

˘
+
. (5.34)

On the one hand, Theorem 4.5(i) applied to ϕ˚İ˚ and s, Lemma 3.2(vi) applied to ϕ˚, Lemma 2.3(ii),

and Lemma 3.3(i) applied to s yield

sup
x˚Ppϕ˚q´1ps´8,0rq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ˚İ˚ ˙ sq˚px˚, y˚q

˘

“ sup
x˚Ppϕ˚q´1ps´8,0rq

y˚PY˚

˜
xx, x˚y ` xy, y˚y ` ϕ˚İpx˚qsĲ˚

˜
y˚

´ϕ˚İpx˚q

¸¸

“ sup
x˚Ppϕ˚q´1ps´8,0rq

˜
xx, x˚y ´ ϕ˚px˚q sup

y˚PY˚

˜B
y,

y˚

´ϕ˚px˚q

F
´ sĲ˚

˜
y˚

ϕ˚px˚q

¸¸¸

“ sup
x˚Ppϕ˚q´1ps´8,0rq

`
xx, x˚y ´ ϕ˚px˚qsĲpyq

˘

ě sup
x˚Ppϕ˚q´1ps´8,0rq

`
xx, x˚y ` ιconvSpyq

˘
. (5.35)

On the other hand, with the help of Lemma 3.2(v), Theorem 4.5(i) applied to ϕ˚İ˚ implies that

sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ pϕ˚İ˚ ˙ sq˚px˚, y˚q

˘

“ sup
x˚Ppϕ˚q´1pt0uq

y˚PY˚

`
xx, x˚y ` xy, y˚y ´ σconvSpy˚q

˘

“ sup
x˚Ppϕ˚q´1pt0uq

`
xx, x˚y ` ιconvSpyq

˘
. (5.36)

Combining (5.34), (5.35), (5.36), Lemma 3.3(iv), (5.31), and (iv)a) we obtain
`
ϕ˚İ˚

é s
˘
px, yq ě σpϕ˚q´1ps´8,0sqpxq ` ιconvSpyq

ě σpϕ˚Ĳq´1pt0uqpxq ` ιconvSpyq
“
`
ϕ˚Ĳ˚

é s
˘
px, yq. (5.37)

Altogether, the result follows from (5.31), (v)a), and (ii) applied to ϕ˚İ˚ and s.

(v)c): Using Lemma 3.3(i) and Lemma 3.5, we partition Y as

Y “ psĲq´1ps0,`8rq
ď ´

psĲq´1pt0uq X
`
p´sqİq´1ps´8, 0r

˘¯

ď ´
psĲq´1pt0uq X

`
p´sqİq´1pt0u

˘¯ď
psĲq´1pt`8uq, (5.38)
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which corresponds to the cases in (5.9). Therefore, it follows from (5.30), Lemma 2.5(ii),

Lemma 3.2(iv), Lemma 3.3(iii), Lemma 2.3(ii), and (5.12) that

max
 

precϕ˚İ˚qpxq, precϕ˚Ĳ˚qpxq
(

“ max
 
σdomϕ˚İpxq, σdomϕ˚Ĳpxq

(

“ σdomϕ˚ pxq
“ prec ϕ̆qpxq. (5.39)

Altogether, (5.9) follows from (v)a), by applying (ii) to ϕ˚İ˚
é s and (iv)b) to ϕ˚Ĳ˚

é s, and invoking

(5.38), (5.30), and (5.39).

Next, we focus on the case when ϕ P Γ0pX q and ˘s P Γ0pYq. We express the results in terms of

recession functions via Lemma 2.6, which does not involve the sign of ϕ˚.

Corollary 5.3 Let ϕ P Γ0pX q and let s : Y Ñ r´8,`8s be such that S “ s´1ps0,`8rq ‰ ∅. Let x P X

and y P Y. Then the following hold:

(i) Suppose that ϕ ě recϕ ‰ ϕ and s P Γ0pYq. Then

pϕé sqpx, yq “

$
’’’&
’’’%

spyqϕ
ˆ

x

spyq

˙
, if 0 ă spyq ă `8;

precϕqpxq, if y P convS and spyq ď 0;

`8, otherwise.

(5.40)

(ii) Suppose that ϕ “ recϕ. Then pϕé sqpx, yq “ ϕpxq ` ιconvSpyq.

(iii) Suppose that ϕ ‰ recϕ, ϕp0q ď 0, and ´s P Γ0pYq. Then

pϕé sqpx, yq “

$
’’’&
’’’%

spyqϕ
ˆ

x

spyq

˙
, if 0 ă spyq ă `8;

precϕqpxq, if spyq “ 0;

`8, otherwise.

(5.41)

Furthermore, in each case, ϕé s P Γ0pX ‘ Yq.

Proof. We first observe that Lemma 2.3(v) yields ϕ̆ “ ϕ. Furthermore, by Lemma 2.5(iii), we have

ϕ “ recϕ ô ϕ˚pX ˚q Ă t0,`8u. (5.42)

(i): Lemma 2.6 and (5.42) yield

domϕ˚ “ pϕ˚q´1ps´8, 0sq and pϕ˚q´1ps´8, 0rq ‰ ∅. (5.43)

Hence, (5.40) follows from Theorem 5.2(ii) and Lemma 3.3 applied to s.

(ii): This assertion follows from (5.42) and Theorem 5.2(iii).

(iii): We have p@x˚ P X ˚q ϕ˚px˚q ě x0, x˚y ´ ϕp0q ě 0. Thus, (5.42) yields

domϕ˚ “ pϕ˚q´1pr0,`8rq and pϕ˚q´1ps0,`8rq ‰ ∅. (5.44)

Thus, since cam p´sq_ ‰ ∅ by Lemma 2.3(v), (5.41) follows from Theorem 5.2(iv)b) and Lemma 3.2

applied to ´s.
Finally, since (5.3) holds in each case, we deduce from Theorem 5.2(i) that ϕé s P Γ0pX ‘ Yq.
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Remark 5.4 As mentioned in the Introduction, in the context of Corollary 5.3, alternative notions of

perspective functions with nonlinear scaling were proposed in [37, 49] under additional restrictions

on the scaling function. Specically, these papers deal with operations ∆1 and ∆2 between functions

ϕ P Γ0pX q and ψ P Γ0pYq in the following scenarios.

(i) Suppose that ϕ ě recϕ ‰ ϕ and ψpdomψq Ă r0,`8r. In view of (1.2),

ϕ∆2 ψ : X ‘ Y Ñ s´8,`8s : px, yq ÞÑ
#
rϕ
`
x, ψpyq

˘
if y P domψ;

`8, if y R domψ.
(5.45)

Now suppose that ψ´1ps0,`8rq ‰ ∅. It follows from Corollary 5.3(i) that

ϕ∆2 ψ ď ϕéψ : px, yq ÞÑ pϕ∆2ψqpx, yq ` ιconvψ´1ps0,`8rqpyq. (5.46)

Let us note that, since equality fails above, the ϕ∆2 ψ is not the largest minorant of ϕ ˙ ψ in

Γ0pX ‘ Yq. For instance, suppose that

Y “ R and ψ : y ÞÑ maxt0, yu. (5.47)

Then convψ´1ps0,`8rq “ r0,`8r and therefore, if y P s´8, 0r and 0 P domϕ, we have

ψpyq “ 0 and 0 “ pϕ∆2 ψqp0, yq ă pϕéψqp0, yq “ `8.

(ii) Suppose that ϕ ‰ recϕ, ϕp0q ď 0, and ψpdomψq Ă s´8, 0s. Then, using (1.2),

ϕ∆1 ψ : X ‘ Y Ñ s´8,`8s : px, yq ÞÑ
#
rϕ
`
x,´ψpyq

˘
, if y P domψ;

`8, if y R domψ.
(5.48)

Now suppose that ψ´1ps´8, 0rq ‰ ∅. Then it follows from Corollary 5.3(iii) that ϕ∆1ψ “
ϕé p´ψq. In turn, Definition 1.1 asserts that, in this particular scenario, ϕ∆1ψ is the largest

minorant of ϕ ˙ p´ψq in Γ0pX ‘ Yq.

The construction proposed in Definition 1.1 covers a much broader range of functions pϕ, sq that those

employed above. Concrete instances will be presented in Section 6.

Remark 5.5 Let ϕ P Γ0pX q and let s : Y Ñ r´8,`8s be such that s´1ps0,`8rq ‰ ∅. The above

remark reveals some particular instances in which ϕé s can be expressed in terms of the classical

perspective of (1.2) applied to certain transformations of ϕ and s. Let us clarify these identities and,

in particular, address the natural question that arises as to the validity of the identity

`
ϕé s

˘
px, yq “

#
rϕ
`
x, spyq

˘
if spyq P R;

`8, otherwise
(5.49)

beyond the classical case already discussed in Section 1 in which Y “ R and s : y ÞÑ y. It turns out

that (5.49) is true only in very specific instances, some of which are provided below. Let x P X and

y P Y. Then it follows from Theorem 5.2 that the following hold:

(i) Suppose that ϕ˚pX ˚q Ă s´8, 0s Y t`8u. Then

`
ϕé s

˘
px, yq “

#
rϕ
`
x, sĲpyq

˘
, if y P dom sĲ;

`8, if y R dom sĲ.
(5.50)

If we assume additionally that s “ sĲ, then it follows from Lemma 2.6 that (5.49) holds. This

corresponds to the setting of Remark 5.4(i).
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(ii) Suppose that ϕ˚pX ˚q Ă r0,`8s, pϕ˚q´1ps0,`8rq ‰ ∅, and cam p´sq_ ‰ ∅. Then

`
ϕé s

˘
px, yq “

#
rϕ
`
x,´p´sqİpyq

˘
, if y P dom p´sqİ

;

`8, if y R dom p´sqİ.
(5.51)

If we assume additionally that s “ ´p´sqİ, then (5.49) holds. This corresponds to the setting

of Remark 5.4(ii).

(iii) Suppose that w˚ P Y˚
r t0u, y P Y, and s “ w˚ ´ xy,w˚y. Then Example 5.1 implies that (5.49)

holds.

(iv) Suppose that pϕ˚q´1ps´8, 0rq ‰ ∅ and that pϕ˚q´1ps0,`8rq ‰ ∅. Then

`
ϕé s

˘
px, yq “

#
max

 Ćϕ˚İ˚
`
x, sĲpyq

˘
,Ćϕ˚Ĳ˚

`
x,´p´sqİpyq

˘(
, if y P dom sĲ;

`8, if y R dom sĲ.
(5.52)

If s “ sĲ “ ´p´sqİ, it follows from Remark 3.6 that (5.49) holds.

6 Examples and applications

We illustrate various cases that arise in Theorem 5.2.

Example 6.1 Suppose that X is a nonzero real reflexive Banach space, let α P s0,`8r, let p P s1,`8r,
set p˚ “ p{pp´ 1q, and set

ϕ1 : X Ñ R : x ÞÑ

$
’&
’%

α}x}, if }x} ą α
1

p´1 ;

}x}p
p

` αp
˚

p˚ , if }x} ď α
1

p´1 .

(6.1)

Suppose that Y “ R, let β P r0, 1r, and set

s : R Ñ s´8,`8s : y ÞÑ

$
’’’’&
’’’’%

y ´ β2 ` 1

2
, if y ą 1;

|y|2 ´ β2

2
, if ´ 1 ď y ď 1;

`8, if y ă ´1.

(6.2)

It follows from Example 3.7 that ϕ˚
1pX ˚q Ă s´8, 0s Y t`8u and pϕ˚

1q´1ps´8, 0rq ‰ ∅. Furthermore,

Lemma 3.3(ii) yields

sĲ : y ÞÑ

$
’’’’’’’&
’’’’’’’%

y ´ β2 ` 1

2
, if y ą 1;

|y|2 ´ β2

2
, if ´ 1 ă y ď ´β or β ă y ď 1;

0, if ´ β ď y ď β;

`8, if y ă ´1.

(6.3)

We thus derive ϕ1 é s from Theorem 5.2(ii); see Figure 2.
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Example 6.2 Suppose that X is a nonzero real reflexive Banach space, let α P s0,`8r, let p P s1,`8r,
set p˚ “ p{pp´ 1q, and set

ϕ2 : X Ñ R : x ÞÑ

$
’&
’%

}x}p
p

` αp
˚

p˚ , if }x} ą α
1

p´1 ;

α}x}, if }x} ď α
1

p´1 .

(6.4)

Let Y and s be as in Example 6.1. In view of Example 3.7, we have ϕ˚
2pX ˚q Ă r0,`8r and

pϕ˚
2
q´1ps0,`8rq ‰ ∅. Additionally, cam p´sq_ ‰ ∅ and (3.2) yields

´p´sqİ
: y ÞÑ

$
&
%
y ` 3 ´ β2

2
, if y ě ´1;

´8, if y ă ´1.
(6.5)

We thus derive ϕ2 é s from Theorem 5.2(iv)b); see Figure 2.

Example 6.3 Suppose that X is a nonzero real reflexive Banach space, let α P s0,`8r, let p P s1,`8r,
set p˚ “ p{pp´ 1q, and set

ϕ3 : X Ñ R : x ÞÑ }x}p{p` αp
˚{p˚. (6.6)

Let Y and s be as in Example 6.1. Then, as seen in Example 3.7, pϕ˚
3
q´1ps´8, 0rq ‰ ∅,

pϕ˚
3
q´1ps0,`8rq ‰ ∅, and it follows from (3.21), (6.1), and (6.4) that ϕ3

˚İ˚ “ ϕ1 and ϕ3
˚Ĳ˚ “ ϕ2.

Hence, we derive ϕ3é s from Theorem 5.2(v)a); see Figure 2.

Example 6.4 Let X and ϕ3 be as in Example 6.3, let ϕ1 be as in Example 6.1, and let ϕ2 be as in

Example 6.2. Recall that pϕ˚
3q´1ps´8, 0rq ‰ ∅, pϕ˚

3q´1ps0,`8rq ‰ ∅, ϕ3
˚İ˚ “ ϕ1, and ϕ3

˚Ĳ˚ “ ϕ2.

Suppose that Y “ R, let 1 ‰ q P s0,`8r, and set

s : R Ñ s´8,`8s : y ÞÑ
#
yq, if y ě 0;

`8, if y ă 0.
(6.7)

Since cam p´sq_ “ ∅ for q ą 1, it follows from (3.2), (3.4), Lemma 3.2(iii), and Lemma 3.3(ii) that

sĲ : y ÞÑ

$
’&
’%

0, if y ě 0 and q ă 1;

yq, if y ě 0 and q ą 1;

`8, if y ă 0

and ´ p´sqİ
: y ÞÑ

$
’&
’%

yq, if y ě 0 and q ă 1;

´8, if y ă 0 and q ă 1;

`8, if q ą 1.

(6.8)

Hence, we derive ϕ3é s from Theorem 5.2(v)c) for q ă 1, and from Theorem 5.2(v)b) for q ą 1 (see

Figure 3).

We now turn our attention to specific applications by considering integral functions of the form

px, yq ÞÑ
ż

Ω

`
ϕω é sω

˘`
xpωq, ypωq

˘
µpdωq, (6.9)

where the integrand is a perspective function with nonlinear scaling in the sense of Definition 1.1.
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(a) ϕ1 ˙ s. (b) ϕ1é s.

(c) ϕ2 ˙ s. (d) ϕ2é s.

(e) ϕ3 ˙ s. (f) ϕ3é s.

Figure 2: Plots of ϕi˙ s (left) and ϕi é s (right) for i P t1, 2, 3u in Examples 6.1-6.3 with p “ 2, α “ 1,

and β “ 1{2. The x-axis is in red and the y-axis in green.

25



(a) ϕ3 ˙ s with p “ 1{q “ 2. (b) ϕ3 é s with p “ 1{q “ 2.

(c) ϕ3 ˙ s with p “ q “ 2. (d) ϕ3é s with p “ q “ 2.

Figure 3: Plots of ϕ3 ˙ s (left) and ϕ3é s (right) in Example 6.4. The x-axis is in red and the y-axis

in green.
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Example 6.5 Let p P s1,`8r and q P s0, 1s. Suppose that X “ R
N is normed with } ¨ }, Y “ R,

ϕ : X Ñ s´8,`8s : x ÞÑ }x}p{p, and

s : Y Ñ r´8,`8s : y ÞÑ
#
yq, if y ě 0;

´8, if y ă 0.
(6.10)

Let T P s0,`8r, set M “ pL1pr0, T s ˆ R
dqqN , set R “ L1pr0, T s ˆ R

dq, and consider the integral

function

Φ: M ‘ R Ñ s´8,`8s : pm,̺q ÞÑ
ż T

0

ż

Rd

pϕé sq
`
mpt, ξq, ̺pt, ξq

˘
dtdξ. (6.11)

In optimal mass transportation theory, m and ̺ represent the momentum and the density of particles,

respectively, and m{̺ represents their velocity [6, 47]. In the case when p “ 2 and q “ 1, ϕé s

is a classical perspective (see (1.2)) and the function (6.11) is related to the dynamical formulation

of the 2-Wasserstein distance [6, 47]. Based on this formulation, convex optimization methods are

proposed in [8, 17] to approximate the iterates of the so-called JKO scheme [31] for gradient flows

in the space of probability measures. When q ‰ 1, (6.11) appears in optimal transportation based on

p-Wasserstein distances with nonlinear mobilities [15, 19, 25] and in the optimal control of McKean–

Vlasov systems with congestion [1]. Space-dependent potentials pϕξqξPΞ, where Ξ Ă R
d, are also

found [7, 13, 14], where they lead to functions of the form

Ψ: M ‘ R Ñ s´8,`8s : pm,̺q ÞÑ
ż T

0

ż

Ξ

pϕξ é sq
`
mpt, ξq, ̺pt, ξq

˘
dtdξ. (6.12)

Theorem 5.2 provides conditions under which pϕξ é sqξPΞ is a family of functions in Γ0pX ‘ Yq. Note

that in [7, 13, 14], q “ 1 and we are therefore dealing with classical perspectives (see Example 5.1).

Our nonlinear setting allows us to employ (6.12) with q ă 1 and more structured space-dependent

potentials. For instance, in the context of optimal transport theory, consider

p@ξ P Ξq ϕξ : R
N Ñ s´8,`8s : x ÞÑ }x}p{p` ιCpξqp}x}q ` hpξq, (6.13)

whereCpξq Ă r0,`8r is an interval representing a constraint on the speed of particles located at ξ and

h is a spatial penalization term. For every ξ P Ξ such that inf Cpξq ą 0, we have pϕ˚
ξ q´1ps0,`8rq ‰ ∅

and pϕ˚
ξ q´1ps´8, 0rq ‰ ∅, and Theorem 5.2 is needed to compute ϕξ é s. An illustration is provided

in Figure 4. Another type of scaling function in (6.11) is proposed in [11], namely the concave

function

s : Y Ñ r´8,`8s : y ÞÑ

$
’’&
’’%

yp1 ´ yq
αp1 ´ yq ` βy

, if y P r0, 1s;

´8, otherwise,

(6.14)

where pα, βq P s0,`8r2.

Example 6.6 Let U be a finite set, suppose that X “ R and Y “ R
2, let s : Y Ñ r´8,`8s, and, for

every pu1, u2q P U2, let ϕu1,u2 P Γ0pX q. Furthermore, set M “ L2pr0, 1s;RUˆU q, R “ L1pr0, 1s;RU q,
and

Φ: M ‘ R Ñ s´8,`8s

pm,̺q ÞÑ
ż

1

0

ÿ

u1PU

ÿ

u2PU

`
ϕu1,u2 é s

˘`
mpt, u1, u2q, ̺pt, u1q, ̺pt, u2q

˘
dt. (6.15)
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Figure 4: Plot of ϕ˙ s (left) and ϕé s (right) in Example 6.5 for X “ Y “ R, ϕ “ | ¨ |2{2 ` ιr1,2s, and

s : y ÞÑ ?
y if y ě 0. The x-axis is in red and the y-axis in green.

Theorem 5.2 provides conditions under which, for every pu1, u2q P U2, ϕu1,u2 é s P Γ0pX ‘ Yq.
In the particular case when, for every pu1, u2q P U2, ϕu1,u2 “ Kpu1, u2qπpu1qϕ, where ϕ : X Ñ
s´8,`8s : x ÞÑ |x|2{2, K : U ˆ U Ñ R is an irreducible and reversible Markov kernel on U , and

π : U Ñ R is the associated stationary distribution, (6.15) reduces to

Φ: pm,̺q ÞÑ
ż

1

0

ÿ

u1PU

ÿ

u2PU

`
ϕé s

˘`
mpt, u1, u2q, ̺pt, u1q, ̺pt, u2q

˘
Kpu1, u2qπpu1qdt, (6.16)

which appears in [35]. Under some additional conditions on s, satisfied for instance by the logarith-

mic mean

s : py1, y2q ÞÑ

$
’’’’’&
’’’’’%

0, if py1, y2q P pt0u ˆ r0,`8rq Y ps0,`8r ˆ t0uq;
y1, if y1 “ y2 P s0,`8r ;

y2 ´ y1

logpy2q ´ logpy1q , if py1, y2q P s0,`8r ˆ s0,`8r and y1 ‰ y2;

´8, otherwise,

(6.17)

and by the geometric mean

s : py1, y2q ÞÑ
#?

y1y2, if py1, y2q P r0,`8r ˆ r0,`8r ;
´8, otherwise,

(6.18)

the function Φ is used in [35] to construct a distance on the set of probability densities on U with

respect to π.

Example 6.7 One of the oldest instances involving standard perspective functions is the Fisher infor-

mation of a differentiable probability density y : RN Ñ s0,`8r [27], that is,

Ψpyq “
ż

RN

}∇ypωq}22
ypωq dω, (6.19)
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where } ¨ }2 is the standard Euclidean norm on R
N . Going back to Definition 1.1, given a nonempty

open set Ω Ă R
N , (6.19) can be formalized as an instance of the function

Ψ: W 1,rpΩq Ñ s´8,`8s : y ÞÑ
ż

Ω

`
ϕé s

˘`
∇ypωq, ypωq

˘
dω, (6.20)

where r P r1,`8r, X “ R
N , Y “ R, ϕ “ } ¨ }22, and s : y ÞÑ y. More generally, assume that

Γ0pX q Q ϕ ě 0 and that Γ0pYq Q ´s ď 0 satisfies s´1ps0,`8rq ‰ ∅. Then cam p´sq_ ‰ ∅ and

Theorem 5.2(i) asserts that ϕé s P Γ0pX ‘Yq. In turn, the linearity and the continuity of y ÞÑ p∇y, yq
imply that Ψ P Γ0pW 1,rpΩqq. For instance, let } ¨ } be a norm on R

N , let p P s1,`8r, take γ P s1{p, 1s,
set q “ pγp ´ 1q{pp ´ 1q P s0, 1s, and define

ϕ “ } ¨ }p and s : Y Ñ r´8,`8r : y ÞÑ
#
yq, if y ě 0;

´8, if y ă 0.
(6.21)

To make (6.20) explicit in this scenario, let us introduce

lnγ : R Ñ r´8,`8r : y ÞÑ

$
’’’&
’’’%

y1´γ ´ 1

1 ´ γ
, if γ ‰ 1 and y P s0,`8r ;

ln y, if γ “ 1 and y P s0,`8r ;
´8, if y P s´8, 0s

(6.22)

and note that p@y P s0,`8rq plnγq1pyq “ 1{yγ . Let y P W 1,rpΩq, set Ω0 “
 
ω P Ω

ˇ̌
ypωq “ 0

(
, and set

Ω` “
 
ω P Ω

ˇ̌
ypωq ą 0

(
. Then, by Corollary 5.3(iii) and [3, Proposition 5.8.2], if y ě 0 a.e.,

ż

Ω

`
ϕé s

˘`
∇ypωq, ypωq

˘
dω “

ż

Ω0

precϕqp∇ypωqqdω `
ż

Ω`

spypωqqϕ
˜

∇ypωq
spypωqq

¸
dω

“
ż

Ω0

ιt0up∇ypωqqdω `
ż

Ω`

ypωqq
››››
∇ypωq
ypωqq

››››
p

dω

“
ż

Ω`

ypωq
›››››
∇ypωq
ypωqγ

›››››

p

dω

“
ż

Ω`

ypωq}∇ lnγ ypωq}pdω. (6.23)

Altogether, it follows from Corollary 5.3(iii) that

ż

Ω

`
ϕé s

˘`
∇ypωq, ypωq

˘
dω “

$
&
%

ż

Ω`

ypωq}∇ lnγ ypωq}pdω, if y ě 0 a.e.;

`8, otherwise.

(6.24)

This type of integral shows up in information theory and in thermostatistics [9, 34]. In view of

Corollary 5.3(iii), our construction (6.24) is guaranteed to be in Γ0pW 1,rpΩqq, which opens a path to

solve variational problems such as those in [9] rigorously. In the case when } ¨ } “ } ¨ }2, p “ 2, and

γ “ q “ 1, this recovers a result of [21] on the Fisher information (6.19).

7 Concluding remarks

We have proposed several contributions to the theory of perspective functions with nonlinear scaling.

First, we introduce the notion of a preperspective function and define the perspective as its largest

29



lower semicontinuous minorant. This construction captures the standard case of linear scaling and

guarantees properness, lower semicontinuity, and convexity regardless of the sign of the conjugate of

the base function and of the nature of the scaling function. Our construction necessitate the introduc-

tion of new envelopes, called the İ and Ĳ envelopes, which we have thoroughly investigated. We then

compute the Legendre conjugate of the proposed nonlinear scaled perspectives. These conjugation

formulas are central in duality methods but they also proved to be essential to the computation of

proximity operators of perspective functions in the follow-up paper [12]. Our next contribution is to

provide explicit formulas for the computation of perspective functions in a broad range of scenarios.

Finally, these notions are illustrated by examples as well as through applications touching on areas

such as mean-field games, optimal transportation, and information theory.
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[25] J. Dolbeault, B. Nazaret, and G. Savaré, A new class of transport distances between measures, Calc. Var.

Partial Differential Equations, vol. 34, pp. 193–231, 2009.

[26] E. Effros, A matrix convexity approach to some celebrated quantum inequalities, Proc. Natl. Acad. Sci.

USA, vol. 106, pp. 1006–1008, 2009.

[27] R. A. Fisher, Theory of statistical estimation, Proc. Cambridge Philos. Soc., vol. 22, pp. 700–725, 1925.
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[30] A. D. Ioffe and V. M. Tihomirov, Teoriya Ékstremal’nykh Zadach. Moscow, 1974. English translation: The-

ory of Extremal Problems. North-Holland, Amsterdam, 1979.

[31] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM

J. Math. Anal., vol. 29, pp. 1–17, 1998.

[32] P.-J. Laurent, Approximation et Optimisation. Hermann, Paris, 1972.

[33] M. Liu and D. F. Gleich, Strongly local p-norm-cut algorithms for semi-supervised learning and local

graph clustering, Proc. Adv. Neural Inform. Process. Syst., vol. 33, pp. 5023–5035, 2020.

[34] E. Lutwak, D. Yang, and G. Zhang, Cramér–Rao and moment-entropy inequalities for Rényi entropy and
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