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Abstract The effectiveness of projection methods for solving systems of linear inequal-
ities is investigated. It is shown that they often have a computational advantage over
alternatives that have been proposed for solving the same problem and that this makes
them successful in many real-world applications. This is supported by experimental
evidence provided in this paper on problems of various sizes (up to tens of thousands
of unknowns satisfying up to hundreds of thousands of constraints) and by a discussion
of the demonstrated efficacy of projection methods in numerous scientific publications
and commercial patents (dealing with problems that can have over a billion unknowns
and a similar number of constraints).
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1 Introduction

Projection methods were first used to solve systems of linear equations in Euclidean
spaces in the 1930s [35,62] and were subsequently extended to systems of linear in-
equalities in [1,70,71]. The basic step in these early algorithms consists of a projection
onto an affine subspace or a half-space. Modern projection methods are much more so-
phisticated [7,8,9,10,19,29,38,39,40,47,48,65] and they can solve the general convex
feasibility problem of finding a point in the intersection of a family of closed convex
sets in a Hilbert space. In such formulations, each set can be specified in various forms,
e.g., as the fixed point set of a nonexpansive operator, the set of zeros of a maximal
monotone operator, the set of solutions to a convex inequality, or the set of solutions to
an equilibrium problem. Projection methods can have various algorithmic structures
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(some of which are particularly suitable for parallel computing) and they also pos-
sess desirable convergence properties and good initial behavior patterns [8,29,37,38,
39,58,76]. The main advantage of projection methods, which makes them successful in
many real-world applications, is computational. They have the ability to handle some
huge-size problems of dimensions beyond which more sophisticated methods cease to
be efficient or even applicable due to memory requirements. This is so because the
building blocks of a projection algorithm are the projections onto the given individ-
ual sets, which are assumed to be easy to perform, and the algorithmic structure is
either sequential or simultaneous, or in-between, as in the block-iterative projection
methods or in the more recent string-averaging projection methods. The number of
sets used simultaneously in each iteration in block-iterative methods and the number
and lengths of strings used in each iteration in string-averaging methods are variable,
which provides great flexibility in matching the implementation of the algorithm with
the parallel architecture at hand; for block-iterative methods see, e.g., [2,10,18,26,39,
45,49,53,65,73] and for string-averaging methods see, e.g., [12,20,25,27,28,44,74,77].

The convex feasibility formalism is at the core of the modeling of many problems
in various areas of mathematics and the physical sciences; see [36,37] and references
therein. Over the past four decades, it has been used to model significant real-world
problems in sensor networks [15], in radiation therapy treatment planning [23,32,59],
in resolution enhancement [30], in wavelet-based denoising [34], in antenna design [56],
in computerized tomography [58], in materials science [63], in watermarking [66], in
data compression [68], in demosaicking [69], in magnetic resonance imaging [78], in
holography [79], in color imaging [80], in optics and neural networks [81], in graph
matching [82] and in adaptive filtering [84], to name but a few. In these – and numerous
other – problems, projection methods have been used to solve the underlying convex
feasibility problems.

We focus on the important subclass of convex feasibility problems in which finitely
many sets are given and each of them is specified by a linear equality or inequality in the
Euclidean space RN . For such problems, which arise in many important applications
[32,36,58,59], alternatives to projection methods are available (see, e.g., [3,55] and the
references therein), and it is therefore legitimate to ask whether projection methods
are competitive.

In this paper we address this question and show that projection methods are in-
deed very competitive for some inverse problems in the environment of linear inequality
constraints. In Section 2 we discuss their comparative performance for four different
kinds of problems. In Section 3 we give some examples of their use in real-world appli-
cations from the research and the patent literature. Finally, we present our conclusions
in Section 4.

2 Comparisons

2.1 Examples from traditional linear programming (LP)

In a recent paper [55] the author applies several projection methods to the Netlib
LP collection of test problems and observes that the solution times of those methods
are relatively long when compared to an interior point code. In this paper we point
out that there are better performing projection methods than those used in [55]. In
particular, for a Netlib test problem such as ISRAEL with a full dimensional feasible
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set, projection methods converge quite quickly. Other examples in which projection
methods perform quite well will be given.

Some overarching statements in [55] about the non-effectiveness and uncompetitive-
ness of projection methods1 are based on applications of some projection methods of the
author’s choice to simple 2-set formulations of problems only from the Netlib/CUTEr
LP problem set, which is a standard test set and reflects many of the difficulties affect-
ing real-world linear programming (LP). However, it is somewhat old and therefore the
problems it contains are not huge by modern standards, but they aptly represent some
of the pitfalls that are common in LP. In comparison, as indicated in the Introduction,
projection methods have been used to solve highly nonlinear complex problems involv-
ing a very large number of sets. Therefore, results based on the Netlib/CUTEr LP
problem set are insufficient to draw general conclusions. It will also be shown in this
subsection that the experiments reported in [55] use suboptimal versions of projection
methods.

We start with a specific example: the problem named ISRAEL from the LP prob-
lem set Netlib/CUTEr, which has 142 variables and 316 linear inequality constraints.
Gould [55] reports that none of the four variants of the projection method discussed
in that paper succeeds in finding a feasible point in no more than 1,000,000 iterations,
which require in total about 300 seconds of computer time. However, we now present a
published projection method, called ART3+, that (starting with the same initial point
as used by Gould [55]) finds a feasible point for ISRAEL in only 8,258 iterations, and
requires only 0.54 millisecond to get there on an Intel Xeon 2.66 GHz processor, 16
Gbyte memory, 64 bit workstation (the time reported by Gould for his LSQP approach
is 0.3 seconds).

ART3+ was introduced in [59] to solve problems of the form:

find an x ∈ RN such that c ≤ Ax ≤ d, (1)

where c ∈ (R ∪ {−∞})M , d ∈ (R ∪ {+∞})M and, for 1 ≤ i ≤ M, ci < di and at least
one of ci and di is finite. ISRAEL is a problem of this type with M = 316 and N = 142.
ART3+ is an iterative procedure, in which only a single inequality-constraint-pair is
treated in one iteration. Denoting by 〈�, �〉 and ‖�‖ the Euclidean inner product and
norm, respectively, the iterate x(n+1) is obtained from x(n), given that the inequality-

1 Such as in the Abstract of [55]: “Unfortunately, particularly given the large literature which
might make one think otherwise, numerical tests indicate that in general none of the variants [of
projection methods for solving convex feasibility problems] considered are especially effective
or competitive with more sophisticated alternatives.”
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constraint-pair selected in this iteration is ci(n) ≤ 〈ai(n), x〉 ≤ di(n), by

x(n+1) = x(n) −



〈
ai(n),x

(n)
〉
−(di(n)+ci(n))/2

‖ai(n)‖2 ai(n),

if
〈
ai(n), x

(n)
〉

< ci(n) −
(
di(n) − ci(n)

)
/2,

2

〈
ai(n),x

(n)
〉
−ci(n)

‖ai(n)‖2 ai(n),

if ci(n) −
(
di(n) − ci(n)

)
/2 ≤

〈
ai(n), x

(n)
〉

< ci(n),

2

〈
ai(n),x

(n)
〉
−di(n)

‖ai(n)‖2 ai(n),

if di(n) <
〈
ai(n), x

(n)
〉
≤ di(n) +

(
di(n) − ci(n)

)
/2,〈

ai(n),x
(n)

〉
−(di(n)+ci(n))/2

‖ai(n)‖2 ai(n),

if di(n) +
(
di(n) − ci(n)

)
/2 <

〈
ai(n), x

(n)
〉

.

(2)

If none of the conditions in (2) is satisfied, it means that ci(n) ≤
〈
ai(n), x

(n)
〉
≤ di(n)

and we set x(n+1) = x(n). Note that in all cases x(n+1) is obtained from x(n) by
adding a multiple of ai(n) to it, and x(n+1) is in the convex set determined by the
inequality-constraint-pair used in the iteration. The control sequence (i(n))n∈N by
which the algorithm ART3+ selects the constraint-pairs is as follows. An ordered set
of constraint-pairs is initialized to contain all constraint-pairs. We repeatedly cycle
through this ordered set, but remove from it the currently-picked constraint-pair if it is
satisfied by the current iterate x(n). If the ordered set becomes empty, it is filled up by
the complete set of constraint-pairs, unless all the constraints are satisfied, in which case
ART3+ terminates. It is proved in [59] that, provided that the set of all x ∈ RN that
satisfies all the constraints is full-dimensional (this is the case for ISRAEL), ART3+
will terminate in a finite number of iterations, irrespective of how x(0) ∈ RN is chosen.
For ISRAEL, when we selected x(0) to be the same vector as used by Gould [55] for
the initial point, we obtained a solution satisfying all the constraints over 500 times
faster than the time reported by Gould using a different computer.

We point out that the Netlib/CUTEr LP problem set has very few examples for
which (1) is the natural representation and of these ISRAEL is the only one for which
the feasible set is full-dimensional. This by itself demonstrates the insufficiency of
the Netlib/CUTEr LP problem set for benchmarking projection methods in general:
problems of the kind (1) with full-dimensional feasible sets appear in many applications,
of which we have some examples below. Examples of the form (1) in the Netlib/CUTEr
LP problem set for which the feasible set is not full-dimensional include FIT1P and
FIT2P; our experience with these examples is the same as reported in [55] in that
we could not identify a projection-based approach for them that is competitive with
standard interior-point algorithms. Thus, there are LP problems for which projection
methods are not the methods of choice. On the other hand, as shown in Subsection
2.3 below, there do exist realistic classes of LP problems for which projection methods,
properly formulated, significantly outperform standard interior-point algorithms. Thus,
the evidence presented in [55] should not be interpreted as meaning that projection
methods are always inferior for LP problems.

The reason for the feasible set not being full dimensional for many problems in the
Netlib/CUTEr set is that they include constraints of the form Ax = b. In the kind of
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problems from practical applications with which the authors of this paper work, the
vector b is not known exactly; for example, because we have only physical measurements
that are supposed to approximate it. In such applications, there is no point in insisting
that an x satisfying Ax = b be found, the mathematical task described in (1) with
c < d, or something of similar nature, is more appropriate. This typically leads to
feasibility problems with full-dimensional solution sets, a point of which can be found
in a finite number of steps by a suitable projection method such as ART3+. It is of
course possible that “finite” is very large. For example, as illustrated in Table 2 of [59],
the execution time required to find a feasible point increases as the bound d approaches
the bound c from above, thereby reducing the volume of the feasible region. However, as
will be seen in the examples that follow, the actual execution times on typical problems
are acceptable and compare favorably with those of alternative approaches.

The numerical experiments provided in [55] focus exclusively on the problem of
solving a linear system of equations under box constraints, namely

find an x ∈ RN , such that


Ax = b,

x ∈
N

×
j=1

[vj , wj ],
(3)

where v = (vj)1≤j≤N and w = (wj)1≤j≤N are given vectors, A ∈ RM×N (M ≤ N)

has full rank, b ∈ RM , and the problem is assumed to be feasible. Problems, such as
the one specified in (1), are forced into this form in [55] by the introduction of slack
variables. Quite differently from the ART3+ projection method approach discussed
above, it is then perceived that we have just two convex sets (the one determined by
the equalities and the one determined by the box constraints) and that a projection
method should consist of alternating projections onto these particular convex sets. This
is indeed one way of solving LP problems by a projection method, but (as we have
already demonstrated by the ISRAEL example) there may be other, more efficient
projection methods available for particular classes of problems. Furthermore, we now
show that, even in the restrictive setting adopted in [55], there are projection algorithms
implemented with standard relaxation strategies that perform much better than those
identified as projection methods in [55].

Let us denote by P1 and P2 the projection operators onto the closed affine subspace
S1 =

{
x ∈ RN

∣∣ Ax = b
}

and the closed convex set S2 = ×N
j=1 [vj , wj ], respectively.

The first operator is defined by (see Chapter 8 of [47])

P1 : x 7→ x−A>
(
AA>

)
−1(Ax− b), (4)

where A> denotes the transpose of A. This transformation can be implemented in
various fashions. For instance, in many signal and image processing problems, the
matrix A is block-circulant and hence diagonalized by the discrete Fourier transform
operator, which leads to a very efficient implementation of P1 via the Fast Fourier
Transform (FFT) [4]. Here, we adopt a QR decomposition approach. Let

A> =
[
Q11 Q12

] [
R11

0

]
(5)

be the QR decomposition of A>, where R11 is an M ×M invertible upper triangular
matrix [52]. Then (4) yields

P1 : x 7→ x−Q11

(
R>11

)−1
(Ax− b). (6)
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On the other hand, the projection P2x = (πj)1≤j≤N of a vector x = (xj)1≤j≤N onto S2

is obtained through a simple clipping of its components, i.e., for every j ∈ {1, . . . , N},
πj = min

{
max

{
xj , vj

}
, wj

}
(see Subsection 8.1.1 of [16]).

Two standard projection methods to solve (3) are the alternating projection method

x(0) ∈ RN and (∀n ∈ N) x(n+1) = x(n) + λn(P1P2x(n) − x(n)) (7)

and the parallel projection method

x(0) ∈ RN and (∀n ∈ N) x(n+1) = x(n) + λn

(
P1x(n) + P2x(n)

2
− x(n)

)
, (8)

where (λn)n∈N is a sequence of strictly positive relaxation parameters. If λn ≡ 1 in
(7), we obtain the popular Projection Onto Convex Sets (POCS) algorithm [36,83]:

x(0) ∈ RN and (∀n ∈ N) x(n+1) = P1P2x(n). (9)

The convergence of a sequence
(
x(n)

)
n∈N thus constructed to a point in S1 ∩ S2

was established in [17]. On the other hand, if λn ≡ 1 in (8), we obtain the Parallel
Projection Method (PPM):

x(0) ∈ RN and (∀n ∈ N) x(n+1) =
P1x(n) + P2x(n)

2
. (10)

The convergence of a sequence
(
x(n)

)
n∈N

thus constructed to a point in S1 ∩ S2 was

established in [5], see also [6]. In [55], (7) and (8) are used, together with variants
featuring a construction of λn at iteration n resulting from a line search procedure and
without closed-form expression. However, as the numerical results of [55] show, these
relaxation schemes do not lead to significantly better convergence profiles than those
obtained with the unrelaxed algorithms POCS (9) and PPM (10). In addition, nothing
is said regarding the convergence of (7) and (8) with such relaxation schemes.

The potentially slow convergence of projections methods has long been recognized
[42,57,70] and remedies have been proposed to address this problem in the form of
adapted relaxation strategies that guarantee convergence. In the case of (7), it was
shown in [10] that any sequence generated by the Extrapolated Alternating Projection
Method (EAPM)

x(0) ∈ S1 and (∀n ∈ N) x(n+1) = x(n) + ρKn(P1P2x(n) − x(n)),

where 0 < ρ < 2 and Kn =


∥∥∥P2x(n) − x(n)

∥∥∥ 2∥∥P1P2x(n) − x(n)
∥∥ 2

, if x(n) /∈ S2,

1, if x(n) ∈ S2,

(11)

produces a fast algorithm that converges to a solution to (3). (The word “fast” here is
used in its standard intuitive sense, its use is clearly justified by the plots in Figure 1 and
numerical experiments presented in [10,13,39,70,75,76].) This type of extrapolation
scheme, which exploits the fact that S1 is an affine subspace, actually goes back to the
classical work of [57]. It has been further investigated in [11,39] and has been extended
recently to a general block-iterative scheme in [10]. Acceleration methods have also
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Fig. 1: Average performance of the algorithms when M ×N = 600× 1000.

been devised for the parallel algorithm (8). Thus, the convergence of the sequence
produced by the Extrapolated Parallel Projection Method (EPPM)

x(0) ∈ RN and (∀n ∈ N) x(n+1) = x(n) + χLn

(
P1x(n) + P2x(n)

2
− x(n)

)
,

where 0 < χ < 2 and

Ln =

2

∥∥∥P1x(n) − x(n)
∥∥∥ 2 +

∥∥∥P2x(n) − x(n)
∥∥∥ 2∥∥P1x(n) + P2x(n) − 2x(n)

∥∥ 2
, if x(n) /∈ S1 ∩ S2,

1, if x(n) ∈ S1 ∩ S2,

(12)

to a solution of (3) was established in [38]. This type of parallel extrapolated method
goes back to [70] and [75], and it has been refined or generalized in several places [39,
65,73].

Generally speaking, the numerical superiority of extrapolated projection methods
such as EPPM and EAPM over standard projection methods such as POCS and PPM
has been consistently observed in various types of problems in areas as diverse as partial
differential equations, signal deconvolution, linear numerical analysis, or image restora-
tion [10,37,39,43,53,70,75,76] (see also [11,64] for further theoretical justifications).
By way of illustration, in Figure 1, we compare the numerical performance of POCS
(9), PPM (10), EAPM (11), and EPPM (12) for problems of size M ×N = 600×1000.
As in [10,37,39], the performance of the algorithms is measured by the decibel (dB)
values of the normalized proximity function, which is evaluated at the nth iterate x(n)

by

10 log10


∥∥∥P1x(n) − x(n)

∥∥∥ 2 +
∥∥∥P2x(n) − x(n)

∥∥∥ 2∥∥P1x(0) − x(0)
∥∥ 2 +

∥∥P2x(0) − x(0)
∥∥ 2

 . (13)
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This comparison is relevant because the computational load of each iteration resides
essentially in the computation of the projection onto S1 and it is therefore roughly the
same for all four algorithms. The results are averaged over 20 runs of the algorithms
initialized with x(0) = P10 and ρ = χ = 1.9. In each run a matrix A ∈ [−0.5, 0.5]M×N

and a vector x ∈ [0, 1]N are randomly generated. The vector b = Ax is then constructed
so as to obtain a feasible problem using vj ≡ 0 and wj ≡ 1 in (3). As in [55] and many
other studies, we observe that POCS is faster than PPM. However, EPPM is faster
than POCS and EAPM is clearly the best method: on the average, it is about 60

times faster than PPM, 30 times faster than POCS, and it achieves full convergence in
just 7 iterations. In addition, convergence to a feasible solution is guaranteed by the
theory and the expression of the extrapolation parameter Kn in (11) is explicit and
it requires no additional computation. It is argued in Section 5 of [55] that “there is a
significant difference between random and real-life problems (similar observations have
been made for linear equations, where random problems tend to be well-conditioned
[...] and thus often easier to solve than those from applications).” Let us observe that
random matrices do show up in many real-life problems, see [41,85] and the references
therein. In addition, as shown in Figure 2, the qualitative behavior of the algorithms in
the presence of poor conditioning is quite comparable to that observed in Figure 1 (for
the experiments of Figure 2, the condition numbers vary from 3× 104 to 3.5× 104).

We have consistently observed this type of performance for problems of various
sizes. For instance, we report in Figure 3 on the same experiment as above on problems
of size M×N = 3000×7000. Here EAPM is about 45 times faster than PPM, 22 times
faster than POCS, and full convergence is achieved in just 5 iterations.
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These experiments, together with the above cited results of [10,11,37,39,43,64,
53,70,75,76], indicate that the results in [55] on the speed of convergence of POCS
and PPM (and the variants proposed there featuring modest speed-up factors and
lacking a formal convergence analysis) correspond to a suboptimal implementation of
projection methods and are not representative of their performance, since significant
improvements can be achieved by appropriate relaxations. Of course, this observation
does not rule out the possibility that for certain LP problems there are alternatives to
projection methods that have a better performance; this is pointed out above for the
problems FIT1P and FIT2P of the Netlib/CUTEr set.

2.2 An example from image representation

The problem with the largest number of unknowns in the Netlib/CUTEr LP problem
set used in [55] has M ×N = 6, 330× 22, 275 and (according to the on-line attachment
to [55]), for that problem, all methods discussed in [55] need 42 seconds or more to
reach the stopping tolerance on a 3.06 GHz Dell Precision 650 workstation. We found
among the problems from applications that we have been investigating one that is over
an order of magnitude larger and for which the projection algorithm recommended in
[31] required only 25 seconds on the average on an Intel Xeon 1.7 GHz processor, 1

Gbyte memory, 32 bit workstation using the SNARK09 programming system [46]. We
now give a brief description of this problem.

A J×J digitized image is one that is subdivided into J2 square-shaped pixels within
each of which the image value is uniform. Sometimes alternative representations of an
image are superior. For example, in computerized tomography [58], we use the blob
basis functions advocated by Lewitt [67] in some series expansion methods to reduce
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artifacts in the reconstruction. Such a reduction is due to the fact that blob basis
functions are smoother than pixel basis functions.

The contribution to the image value at the center of any of the M = J2 pixels by any
of the N blob basis functions is known from the geometry of the representations. If we
are given a pixel image to start with and would like to find a good blob representation
for it, the task is to find the weights x to be given to the blobs so that their combined
contributions approximate the pixel values. In mathematical terms, this problem can
be formulated as an instance of (1) in which the bounds c and d have to be tight to
ensure a good approximation of the pixel image by the blob image. (The entries in the
matrix A are the values of the various blobs at the centers of the various pixels.)

In the experiments reported in [31] M × N = 59,049 × 51,152. The algorithm
that was found most efficacious among those tried is the projection method called
CART3++: the average (over 40 instances of the problem) time required by CART3++

to find a solution to (1) was less than 25 seconds.
The algorithm CART3++ belongs to a large family of projection methods that

are usually referred to as algebraic reconstruction techniques (ART). These were first
introduced to the tomographic image reconstruction literature in [54]; for a recent
discussion, see [58, Chapter 11]. CART3++, just like the closely related ART3+ of
(2), has the property that, provided that the set of feasible vectors satisfying the
inequalities in (1) is full-dimensional, it will find a feasible solution in a finite number
of iterations [31]. The only difference between CART3++ and ART3+ is the control
sequence (i(n))n∈N, which provides CART3++ with a wider range of applicability; see
[31].

2.3 An example from intensity-modulated radiation therapy planning

The goal of intensity-modulated radiation therapy is to deliver sufficient doses to tu-
mors to kill them, but without causing irreparable damage to critical organs. This
requirement can be formulated as a linear feasibility problem of the kind shown in (1).
The interpretation in this application is that each component of x is a to-be-determined
intensity of radiation to be delivered to the patient in N separate beamlets, the com-
ponents of Ax are the delivered doses at M points in the patient’s body, and c and
d are provided by the radiation oncologist as the desired limits on these doses. The
following is based on the work performed for [32].

In the clinical case that we use as an example we have M ×N = 302,491× 13,734.
The number of nonzero elements in A is 62,226,127, which is less than 1.5% of the
total number of entries of A, an important consideration for the efficacy of projection
methods for solving the problem. There is an additional technical consideration: since it
is impossible to deliver negative radiation, each component of x has to be nonnegative,
which results in an additional 13,734 inequality constraints. We use ART3+ (2) to
solve this feasibility problem.

In clinical applications, it is considered desirable to find multiple feasible points,
each of which is optimal according to its own criterion. A typical optimization task is
“find a feasible point that results in the smallest total dose delivered to the liver.” The
associated functional is linear: there is an a ∈ RN such that 〈a, x〉 is the sum of those
components of Ax that are associated with points in the liver. Recognizing the speed
by which ART3+ finds a feasible point, we propose to apply it repeatedly, to solve the
linear optimization problem:
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find an x ∈ RN that minimizes 〈a, x〉 subject to c ≤ Ax ≤ d. (14)

Our method solves this problem by turning the objective function 〈a, x〉 into an addi-
tional constraint and solving

find an x ∈ RN such that c ≤ Ax ≤ d and 〈a, x〉 ≤ ρ (15)

using ART3+. By reducing ρ using a bisection search until we obtain (within a pre-
specified tolerance) the lowest value possible for it, we get a good approximation to a
solution of (14). This whole process is called ART3+O [32].

The task of minimizing a linear functional subject to linear inequality constraints is
the well-known LP problem and many software packages are available for solving it, see,
e.g., [3]. To compare the efficiency of our proposed procedure with currently popular
standard approaches, we applied them to the problem (14) for a patient with pancreatic
cancer. We used all methods to find just a feasible point (NoTask) and also for eight dif-
ferent LP tasks representing various linear optimization criteria. The three algorithms
with which we compared ART3+O were the self-dual interior point optimizer, the
primal simplex optimizer and the dual simplex optimizer in the commercial software
package MOSEK version 5. The results are reported in Figure 4. Typically, for each
task, ART3+O used about one to two minutes and the MOSEK algorithms needed one
to several hours on an Intel Xeon 2.66 GHz processor, 16 Gbyte memory, 64 bit work-
station. It is also noteworthy that the memory requirements of the MOSEK algorithms
were at least twelve times as large as that of ART3+O. To enable the readers to inves-
tigate the performance of their favorite approaches to solving such problems, we posted
the data for the eight LP tasks at http://dig.cs.gc.cuny.edu/~wei/web/?page_id=221.
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2.4 Examples from computerized tomography

Computerized tomography is the problem of recovering an image from its measured
(and hence not strictly accurate) integrals along M lines [58]. If we assume that the
recovered image will be represented as a linear combination of N basis functions (see
Subsection 2.2), then the task is to find the vector x the components of which are the
weights to be given to the basis functions. Due to the linearity of integration and based
on the knowledge of the basis functions, we can produce an M ×N matrix A such that
Ax is approximately the vector b of measurements. Since it is not likely that there is
an x such that Ax = b, it is reasonable to aim instead at finding an x that minimizes

σ2 ‖b−Ax‖2 + ‖x‖2 , (16)

where σ ∈ R indicates our confidence in our measurements. As explained in Section
11.3 of [58], this sought-after x is in fact the x part of the minimum norm solution of
the consistent system of equations

[U σA]
[u

x

]
= σb, (17)

where U is the M ×M identity matrix. In the same section there is a derivation of a
variant of ART that converges to the sought-after x, given by:

u(0) is the M -dimensional zero vector,
x(0) is the N -dimensional zero vector,
u(n+1) = u(n) + γnei(n),

x(n+1) = x(n) + σγnai(n),

(18)

with

γn = λ
σ

(
bi(n) −

〈
ai(n), x

(n)
〉)

− u
(n)
i(n)

1 + σ2
∥∥∥ai(n)

∥∥∥2
, (19)

where, for n ∈ N, i(n) = (n mod M)+1, for 1 ≤ i ≤ M , ei is the M -dimensional vector
whose ith component is 1 and whose other components are 0, ai is the ith row of A and
bi is the ith component of b, and 0 < λ < 2. Recognizing that in one iterative step only
one row of the matrix is needed and that in computerized tomography most entries
of each row are zero, we see that an iterative step can be carried out very rapidly,
provided that we have access to the locations and the values of the nonzero entries. If
the memory of the computer is large enough, this can be accommodated by storing A in
a row-by-row sparse representation, otherwise the locations and values of the nonzero
entries can be generated within each iterative step by some rapid mechanism, such as
the digital difference analyzer explained, e.g., in Section 4.6 of [58].

In Section 5.8 of [58] there is an exact specification of the so-called standard projec-
tion data that are used to evaluate various reconstruction algorithms in that book, the
number of lines used in the standard projection data is M = 223,744. In the evaluations
based on the standard projection data that are reported in [58] for reconstruction algo-
rithms that use blob basis functions, the number of blobs used is N = 51,152. The first
experiment on which we report in this subsection used exactly the same arrangement.
(For the experiments in this subsection, the input data were created and outputs were
analyzed and illustrated using SNARK09 [46].)
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In this experiment we applied the ART algorithm of (18) and (19) with σ = 5 and
λ = 0.05 to the standard projection data. In Figure 5(a) we show the behavior of the
objective function (16) as a function of iteration cycles (an iteration cycle is defined to
be M iterations). It can be observed that the initial decrease in the objective function
is very rapid.

This desirable initial behavior is even more noticeable when we evaluate the al-
gorithm not from the purely mathematical point of view of how well the objective
function is reduced, but rather from the application point of view of how good are the
reconstructed images. For this purpose, we report on the normalized mean absolute
picture distance measure, as defined in [58]. To define this measure we need a J × J

digitization of the test phantom for which the data used in the reconstruction were
collected; such a digitization for the phantom we used is shown in Figure 6(a). In our
definition of the measure we use th,k and s

(n)
h,k to denote the densities of the kth pixel of

the hth row of the digitized test phantom and of the reconstruction (which is obtained
from the vector x(n) of blob coefficients), respectively. We define the distance measure
as

r(n) =

J∑
h=1

J∑
k=1

∣∣∣th,k − s
(n)
h,k

∣∣∣
J∑

h=1

J∑
k=1

∣∣th,k

∣∣ . (20)

In Figure 5(b) we plot r(n) for this experiment. It is seen that its minimum is reached
at the seventh iteration cycle, i.e., when n = 7M . This reflects the fact that the mini-
mization objective (16) does not (and, in fact, it cannot in real applications where the
phantom is not known to us) fully describe the application objective. For this reason
it is standard practice in tomography [58] to stop the iterative process after a few
iteration cycles and use the result at that time as the reconstruction. The digitization
obtained from x(7M) produced by this experiment is shown in Figure 6(b). The recon-
struction is not perfect (as indeed it cannot possibly be since the measured data are
only approximations of the line integrals assumed by the mathematics), but important
features of the phantom are identifiable in the reconstruction. This ART reconstruction
was carried out in 38.4 seconds on an Intel Core 1.6 GHz processor, 2 Gbyte memory,
32 bit laptop.

The plots in Figure 5 nicely demonstrate the claim we have made in the Introduction
that “Projection methods . . . possess . . . good initial behavior patterns.” ART seems
to compare particularly favorably with some popular alternatives from this point of
view. To demonstrate this we note that minimization of (16) can also be achieved
using a conjugate gradient (CG) method (see, e.g., (12.48) and (12.49) in [58]). The
computational cost of one iteration of the CG method is approximately the same as
that of one iteration cycle by ART. However, what we get in quality of reconstruction
during the early iterations is quite different: it is illustrated in Figure 7 that the early
iterates of ART significantly outperform what can be obtained at the same cost using
CG. This is an illustration of the well-known difference between the early behaviors
of ART-type methods [58, Chapter 11] that make use of only one row of the system
matrix A in any one iteration (such as the ART of (18)-(19)) and SIRT-type methods
[58, Chapter 12] that make use of all rows of A simultaneously in every iteration (of
which CG is an example) for image reconstruction from projections. Why this should
be the case was studied for example in [72], by plotting the spectral radius per each
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(b) Plot of the distance measure (20).

Fig. 5: Image reconstruction by ART when M ×N = 223,744× 51,152. (One “Iteration cycle”
is M ART iterative steps.)



15

(a) (b)

Fig. 6: Displays of a 243 × 243 digitized phantom (a) and of an ART reconstruction when
M ×N = 223,744× 51,152 (b).

Fig. 7: Plots of the distance measure (20): image reconstruction by ART (light) and conjugate
gradient method (dark) when M ×N = 223,744×51,152. (One “Iteration” is M ART iterative
steps, but it is only one iterative step by the conjugate gradient method. The computational
cost of one “Iteration” is approximately the same in the two cases.)
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iteration cycle of the linear operator that is underlying the ART and SIRT algorithms,
respectively; comparison of the spectral radii for ART (Figure 5.7 of [72]) with those
for SIRT (Figure 5.8 of [72]) indicates why early iterates of ART produce better results
than early iterates of SIRT.

We wanted to compare the time needed by ART with the time needed to solve the
system (17) of consistent equations for the same data by the current implementation
of the interior point method of MOSEK version 5 [3]. Unfortunately this could not be
done, because the memory requirements of the MOSEK software were too large for our
laptop. So we attempted to use a much more powerful Intel Xeon 2.66 GHz processor,
16 Gbyte memory, 64 bit workstation, but even the 16 Gbyte memory was too small
to handle this problem using the MOSEK software. The importance of this memory
requirement issue for the subject matter of this paper cannot be overemphasized: prob-
lems that routinely arise in real applications can be handled by projection methods
using inexpensive laptops, while “more sophisticated alternatives” fail to produce any
results even on much more powerful workstations due to their much greater demands
on computer memory.

To be able to compare the efficiency of ART with that of the interior point method
in MOSEK we had to reduce M and N to about a ninth of their previously-used sizes.
Thus, in the second experiment on which we now report M ×N = 24,880× 5,711. For
this smaller example we ran both ART and the interior point method in MOSEK (with
its default parameters) on the Intel Xeon 2.66 GHz processor, 16 Gbyte memory, 64 bit
workstation. In Figure 8 we plot both the objective function and the distance measure
for both algorithms as a function of time. From the point of view of the objective
function, MOSEK needed over 5000 seconds to reach a value as low as ART reached in
10 seconds. The advantage of ART is more pronounced when considering the picture
distance measure: the optimal value is reached by ART at 1.7 seconds (when n = 14M)
while the interior point method never reaches a distance value that is as low as that of
ART and it needs approximately 5000 seconds to reach its lowest distance measure.

Since both M and N are about a ninth of their previous sizes, we report in Figure
9 on the 81× 81 digitizations of the phantom and of the reconstruction x(14M). These
are clearly inferior to the images in Figure 6, demonstrating the medical necessity for
the larger system of equations.

An alternative to minimizing (16) is to

find an x ∈ RN that minimizes φ(x) subject to Res (x) ≤ ε, (21)

where φ : RN → R is a convex function, ε is a user-specified positive number and

Res(x) =

√√√√ M∑
i=1

(
bi − 〈ai, x〉

‖ai‖

)2

. (22)

The intuitive intent is that φ(x) should be a measure of the undesirability of x. A
choice that has become quite popular in recent years in the image processing literature
is defined as follows. Let q be a J × J digitized image whose pixel values are denoted
by qh,k (1 ≤ h ≤ J, 1 ≤ k ≤ J). We define the total variation (TV) of q by

TV (q) =

J−1∑
h=1

J−1∑
k=1

√
(qh+1,k − qh,k)2 + (qh,k+1 − qh,k)2. (23)
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Fig. 8: Image reconstruction by ART and the interior point method in MOSEK when M×N =
24,880× 5,711.
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(a) (b)

Fig. 9: Displays of an 81 × 81 digitized phantom (a) and of an ART reconstruction when
M ×N = 24,880× 5,711 (b).

By mapping q into a (N = J2)-dimensional vector x (by stacking into a single column
all the columns of q), (23) gives rise to a convex function that can be used as the
objective function. Indeed many algorithms have been proposed in the recent litera-
ture for TV-minimization by solving (21) with φ defined based on (23); for a recent
representative publication see [50].

In practice, a minimization algorithm needs to be terminated at some point and so
its actual output is only an approximation to a minimizer. If we happen to know the
“truth” (the J × J digitization x̄ of the phantom for which the data b were collected),
then any algorithm that solves

find an x ∈ RN such that φ(x) ≤ φ(x̄) and Res (x) ≤ Res (x̄) (24)

should be considered satisfactory for the purpose at hand. We now report on the
comparative speed on a problem of image reconstruction from projections of a state-
of-the-art optimization algorithm and a projection method, both of which return a
solution of (24). In brief: the projection method is more than four times faster. For
the TV-minimization algorithm we used the code provided to us by Goldstein and
Osher [51] in response to our request for their most efficient optimization algorithm to
be used for solving (24). According to them, that code uses the algorithm they refer
to as TwIST [14] with split Bregman [50] as the substep. For the projection method
we used a block-iterative algorithm with superiorization [24,45]. Superiorization uses
perturbations to steer the iterative process of a projection method towards a minimizer
of the given convex function φ.

For the experiment we used a 243× 243 phantom presented in Figure 10(a), with
a large number of low contrast tumors introduced at various locations inside the skull.
The TV value (23) of this phantom is 454.0. Data were collected based on the standard
projection data from Section 5.8 of [58], but with 360 views making M = 124,200

and using pixels as the basis functions for the reconstruction algorithms with N =
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(a)

(b) (c)

Fig. 10: (a) A head phantom for which realistically-simulated data were collected. (b) Recon-
struction using a block-iterative TV-superiorizing projection algorithm (reconstruction time is
less than 7 seconds). (c) Reconstruction using the Goldstein-Osher code [51] (reconstruction
time is over 28 seconds).

59,049. Figure 10(b) shows the result of the reconstruction using the TV-superiorizing
block-iterative projection method and Figure 10(c) has the output image produced by
the Goldstein-Osher code [51]. The TV value of these images are 451.5 and 443.9 for
the image in 10(b) and 10(c), respectively. Both algorithms provide a solution to the
problem (24), but the times needed to produce the images are substantially different:
on an Intel Pentium Core 2 Duo 2.8 GHz (using a single CPU) with 4 Gbyte memory
the image in Figure 10(b) needed less than 7 seconds to be produced by the projection
method versus slightly over 28 seconds needed by the optimization algorithm to produce
the image in Figure 10(c).
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3 Published and patented results

3.1 Scientific publications

Here we give a brief glimpse into some recently published results that show the efficacy
of projection methods for some large problems. In the problems discussed in [45], the
number of unknowns was 59,049. In the examples given in [59] (a paper devoted to
radiation therapy planning), problems of the form (1) were considered with the number
N of unknowns only 515 but the number of pairs of constraints M = 128,688. In four out
of the six cases reported there, the projection method ART3+ (2) found a feasible point
in less than three seconds, and in the remaining two cases a feasible point was found in
less than 34 seconds. These times are for a standard PC, using an Intel Xeon 1.7 GHz
processor and 1 Gbyte memory. The problems in [45,59] are small compared to some
of the other applications for which projection methods have been successfully used. In
[21] (a paper devoted to reconstruction from electron micrographs), there are examples
in which 16,777,216 unknowns are to be recovered from 4,587,520 measurements (each
giving an approximate linear equality) and others in which 884,436 unknowns are to
be recovered from 92,160,000 measurements. Projection methods were used in [21] to
handle such large problems in a reasonable time.

In a recent paper [63] it is shown that a variant of ART can be used for crystal
lattice orientation distribution function estimation from diffraction data. One of the
problems discussed in [63] has 1,372,000,000 unknowns and the number of equations is
potentially infinite. They are randomly generated and a projection step can be carried
out as soon as a new equation is available (an ideal use of a sequential projection
method of the row-action type, see [22]). The result reported in the paper for that
problem is that obtained after 1,000,000,000 such projection steps.

As for all methodologies, projection methods are not necessarily the approach of
choice in all applications. However, in important applications in biomedicine and im-
age processing, projection methods work well and have been used successfully for a
long time. For example, an important application of reconstruction from projections is
electron microscopy and some of the leading groups in that field consider the projec-
tion method “ART with blobs” to be the method of choice, see [13]. A mathematical
reason for this is that for such problems the angles between hyperplanes or half-spaces,
represented by linear equalities or linear inequalities as in (1) and (3), are in general
large (in the sense that the cosine of the angle between the normals of two randomly
chosen hyperplanes in the system to be solved is likely to be near zero) due to the high
sparsity in each of the rows of the system matrix.

3.2 Commercial patents

There is hardly better evidence for the value of projection methods than the many
patents for commercial purposes that include them. Projection methods are used in
commercial devices in many areas. Unfortunately, if a device is truly commercial, then
the algorithm that is actually used in it is proprietary and usually not published. Many
commercial emission tomography scanners use now some sort of iterative algorithms. A
prime example is provided by the commercially-successful Philips Allegro scanners (see
http://www.healthcare.philips.com/main/products/ and [33]). In x-ray computerized
tomography (CT), there are reports emanating from companies that sell such scanners
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indicating that variants of ART are used in heart imaging; an example is presented in
[61].

The first EMI (Electric & Musical Industries Ltd., London, England, UK) CT
scanner, invented by G.N. Hounsfield [60], used a variant of ART. For this pioneering
invention, Hounsfield shared the Nobel Prize with A.M. Cormack in 1979. Thirty years
later (on September 29, 2009), a patent was issued to Philips (Koninklijke Philips Elec-
tronics N.V., Eindhoven, The Netherlands) for a “Method and device for the iterative
reconstruction of cardiac images” [86]. The role of projection methods is demonstrated
by the following quote from the “Summary of the Invention” included in the Patent
Description:

“The iterative reconstruction applied here may particularly be based on an Al-
gebraic Reconstruction Technique (ART) (cf. R. Gordon, R. Bender, and G.T.
Herman: “Algebraic reconstruction techniques (ART) for three-dimensional elec-
tron microscopy and x-ray photography”, J. Theor. Biol., 29:471–481, 1970) or
on a Maximum Likelihood (ML) algorithm (K. Lange and J.A. Fessler: “Glob-
ally convergent algorithms for maximum a posteriori transmission tomography”,
IEEE Transactions on Image Processing, 4(10):1430–1450, 1995), wherein each
image update step uses the projections of a selected subset, i.e., projections
corresponding to a similar movement phase.”

4 Conclusion

In this paper we have shown that, whether or not alternative methods are applicable,
correctly implemented projection methods are very efficient for solving some convex
feasibility problems with linear inequality constraints, especially for those that are
large, sparse, and originate from real-life applications.
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