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§1. Introduction

Throughout, H is a real Hilbert space with power set 2H , identity operator IdH , scalar product

〈 · | · 〉H , associated norm ‖ · ‖H , and quadratic kernel QH = ‖ · ‖2H/2. In addition, G is a real Hilbert

space, the space of bounded linear operators from H to G is denoted by B (H ,G), and we set

B (H) = B (H ,H). The Legendre conjugate of 5 : H → [−∞, +∞] is

5 ∗ : H → [−∞, +∞] : G∗ ↦→ sup
G∈H

(
〈G | G∗〉H − 5 (G)

)
, (1.1)

the Moreau envelope of index W ∈ ]0, +∞[ of 5 : H → [−∞, +∞] is

W5 : H → [−∞, +∞] : G ↦→ inf
~∈H

(
5 (~) + 1

W
QH (G − ~)

)
, (1.2)

and the adjoint of ! ∈ B (H ,G) is denoted by !∗.
In analysis, there are several ways to compose a function 6 : G → [−∞, +∞] and an operator

! ∈ B (H ,G) in order to construct a function fromH to [−∞, +∞]. The most common is the standard

composition

6 ◦ ! : H → [−∞, +∞] : G ↦→ 6(!G). (1.3)

Another instance is the infimal postcomposition of 6 by !∗, that is (see [2, Section 12.5] and [16,

Section I.5], and, for applications, [4, 5, 19]),

!∗ ⊲ 6 : H → [−∞, +∞] : G ↦→ inf
~∈G
!∗~=G

6(~). (1.4)

These two operations are dually related by the identities (!∗ ⊲ 6)∗ = 6∗ ◦ ! and, under certain qual-

ification conditions, (6 ◦ !)∗ = !∗ ⊲ 6∗ [2, Corollary 15.28]. The focus of the present paper is on the

following alternative operations introduced in [9], where they were shown to manifest themselves in

various variational models.

Definition 1.1. Let ! ∈ B (H ,G), 6 : G → [−∞, +∞], and W ∈ ]0, +∞[. The proximal composition of

6 and ! with parameter W is the function !
W
⋄6 : H → [−∞, +∞] given by

!
W
⋄6 =

(
1
W
(
6∗

)
◦ !

)∗
− 1

W
QH , (1.5)

and the proximal cocomposition of 6 and ! with parameter W is !
W
˛ 6 = (!

1/W
⋄ 6∗)∗.

In [9], proximal compositions were studied only in the case when W = 1 and few of their proper-

ties were explored. The goal of this paper is to carry out an in-depth analysis of these compositions,

leading to results which are new even when W = 1. We study in particular convexity, Legendre con-

jugacy, differentiability, subdifferentiability, Moreau envelopes, minimizers, recession functions, per-

spective functions, as well as the preservation of properties such as coercivity, supercoercivity, and

Lipschitzianity. We also investigate the behavior of !
W
⋄ 6 and !

W
˛ 6 as W varies. Another contribution

of our work is to derive from these results a systematic analysis of the notions of integral proximal

mixtures and comixtures. These operations, recently introduced in [7], combine arbitrary families of
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convex functions and linear operators acting in different spaces in such a way that the proximity op-

erator of the mixture is explicitly computable in terms of those of the individual functions. In turn,

this analysis leads to new results on the proximal expectation of a family of convex functions.

The remainder of the paper is organized as follows. In Section 2, we provide our notation and the

necessary mathematical background. In Section 3, we investigate various variational properties of

proximal compositions. Finally, Section 4 is devoted to applications to integral proximal mixtures and

proximal expectations.

§2. Notation and background

We first present our notation, which follows [2] (see also the first paragraph of Section 1).

Let ! ∈ B (H ,G). The range of ! is denoted by ran! and, if it is closed, the generalized inverse of

! is denoted by !†. Further, ! is called an isometry if !∗ ◦ ! = IdH and a coisometry if ! ◦ !∗ = IdG .
Let 5 : H → [−∞, +∞]. We set




cam 5 =
{
ℎ : H → R | ℎ is continuous, affine, and ℎ 6 5

}

5 = sup
{
ℎ : H → [−∞, +∞] | ℎ is lower semicontinuous and ℎ 6 5

}

5̆ = sup
{
ℎ : H → [−∞, +∞] | ℎ is lower semicontinuous, convex, and ℎ 6 5

}
.

(2.1)

The infimal postcomposition of 5 by ! ∈ B (H ,G) (see (1.4)) is denoted by ! ·⊲ 5 if, for every ~ ∈
!(dom 5 ), there exists G ∈ H such that !G = ~ and (! ⊲ 5 ) (~) = 5 (G) ∈ ]−∞, +∞]. The function 5 is

proper if dom 5 =
{
G ∈ H | 5 (G) < +∞

}
≠ ∅ and −∞ ∉ 5 (H). If 5 is proper, its subdifferential is

m5 : H → 2H : G ↦→
{
G∗ ∈ H | (∀~ ∈ H) 〈~ − G | G∗〉H + 5 (G) 6 5 (~)

}
(2.2)

and, if 5 is also convex, its recession function at G ∈ H is

(rec 5 ) (G) = sup
~∈dom 5

(
5 (G + ~) − 5 (~)

)
. (2.3)

If 5 and 6 : H → ]−∞, +∞] are proper, their infimal convolution is

5 � 6 : H → [−∞, +∞] : G ↦→ inf
~∈H

(
5 (~) + 6(G − ~)

)
. (2.4)

We denote by �0 (H) the class of functions fromH to ]−∞, +∞] which are proper, lower semicontin-

uous, and convex. If 5 ∈ �0 (H), its proximity operator is

prox5 : H → H : G ↦→ argmin
~∈H

(
5 (~) +QH (G − ~)

)
. (2.5)

Let � ⊂ H . Then ]� denotes the indicator function of � and f� the support function of �. If � is

convex, its normal cone is denoted by #� and its strong relative interior is the set sri� of points

G ∈ � such that the smallest cone containing� −G is a closed vector subspace ofH . If� is nonempty,

closed, and convex, its projection operator is denoted by proj� . Finally, the closed ball with center

G ∈ H and radius d ∈ ]0, +∞[ is denoted by � (G ; d).
The following facts will be frequently used in the paper.

Lemma 2.1. Let 5 and 6 be functions fromH to [−∞, +∞]. Then the following hold:

(i) 5 ∗∗ 6 5 .
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(ii) 5 6 6 ⇒ 6∗ 6 5 ∗.

(iii) 5 ∗∗∗ = 5 ∗.

(iv) 5 ∗ ≡ +∞ ⇔ cam 5 = ∅.
(v) 5 ∗ ∈ �0 (H) ⇔ [ 5 is proper and cam 5 ≠ ∅ ] .

Proof. (i)–(iii): [2, Proposition 13.16].

(iv): [2, Proposition 13.12(ii)].

(v): Combine [2, Proposition 13.10(ii)] and (iv).

Lemma 2.2. [2, Propositions 13.10(ii) and 13.23(i)–(ii)] Let 5 : H → [−∞, +∞] and let d ∈ ]0, +∞[.
Then the following hold:

(i) (d 5 )∗ = d 5 ∗ (·/d).
(ii) (d 5 (·/d))∗ = d 5 ∗.

(iii) ( 5 (d ·))∗ = 5 ∗(·/d).
The next lemma follows easily from (1.2).

Lemma 2.3. Let 5 : H → [−∞, +∞], W ∈ ]0, +∞[, and d ∈ ]0, +∞[. Then the following hold:

(i) d (W5 ) =
W
d (d 5 ).

(ii) (W 5 ) (d ·) =
W

d2 ( 5 (d ·)).
Lemma 2.4. Let 5 ∈ �0 (H) and W ∈ ]0, +∞[. Then the following hold:

(i) [2, Theorem 9.20] cam 5 ≠ ∅.
(ii) [2, Corollary 13.38] 5 ∗ ∈ �0 (H) and 5 ∗∗ = 5 .

(iii) [2, Corollary 16.30] m5 ∗ = (m5 )−1.
(iv) [2, Remark 14.4] 15 + 1( 5 ∗) = QH and prox5 + prox5 ∗ = IdH .

(v) [2, Theorem 13.49] rec( 5 ∗) = fdom 5 and rec 5 = fdom 5 ∗ .

(vi) [2, Propositions 12.15 and 12.30] W 5 : H → R is convex and Fréchet differentiable.

(vii) [2, Proposition 12.30] ∇(W 5 ) = (IdH − proxW 5 )/W .
(viii) [2, Proposition 14.1] ( 5 + WQH )∗ = W( 5 ∗).
Lemma 2.5. Let 5 : H → ]−∞, +∞], ! ∈ B (H ,G), and W ∈ ]0, +∞[. Then the following hold:

(i) [2, Proposition 13.24(iii)] (W5 )∗ = 5 ∗ + WQH .

(ii) [2, Proposition 13.24(iv)] (! ⊲ 5 )∗ = 5 ∗ ◦ !∗.
(iii) [2, Corollary 15.28(i)] Suppose that 5 ∈ �0 (H) and 0 ∈ sri(dom 5 − ran!∗). Then ( 5 ◦ !∗)∗ =

! ·⊲ 5 ∗.

Lemma 2.6. Let 5 ∈ �0 (H), 6 ∈ �0 (H), and W ∈ ]0, +∞[ be such that W 5 = W6. Then 5 = 6.

Proof. By Lemma 2.5(i), 5 ∗ = (W5 )∗ − WQH = (W6)∗ − WQH = 6∗. Therefore, we deduce from

Lemma 2.4(ii) that 5 = 5 ∗∗ = 6∗∗ = 6.

Lemma 2.7. Let ! ∈ B (H ,G) and setQ = QG −QH ◦ !∗. ThenQ is convex if and only if ‖!‖ 6 1.

Proof. Since domQ = G and ∇Q = IdG −! ◦!∗, we deduce from [2, Proposition 17.7] thatQ is convex

⇔ IdG − ! ◦ !∗ is monotone⇔ ‖!∗ · ‖2H 6 ‖ · ‖2G ⇔ ‖!∗‖ 6 1 ⇔ ‖!‖ 6 1.

Lemma 2.8. [2, Proposition 17.36(iii)] Let� ∈ B (H) be monotone and self-adjoint. Suppose that ran�

is closed, set @� : H → R : G ↦→ 〈G |�G〉H/2, and define @�† likewise. Then @∗� = ]ran� + @�† .
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§3. Proximal compositions

3.1. General properties

We start with direct consequences of Definition 1.1.

Proposition 3.1. Let ! ∈ B (H ,G), 6 : G → [−∞, +∞], W ∈ ]0, +∞[, and d ∈ ]0, +∞[. Then the

following hold:

(i) Let ℎ : G → [−∞, +∞] be such that 6∗∗ 6 ℎ 6 6. Then !
W
⋄ℎ = !

W
⋄6 and !

W
˛ ℎ = !

W
˛ 6.

(ii) (!
W
⋄6)∗ = !

1/W
˛ 6∗.

(iii) (!
W
˛ 6)∗ = (!

1/W
⋄ 6∗)∗∗.

(iv) (!
W
⋄6)∗∗ = (!

1/W
˛ 6∗)∗.

(v) d (!
W
⋄6) = !

W/d
⋄ (d6).

(vi) (!
W
⋄6) (d ·) = !

W/d2

⋄ (6(d ·)).

(vii) d (!
W
˛ 6) = !

W/d
˛ (d6).

(viii) (!
W
˛ 6) (d ·) = !

W/d2

˛ (6(d ·)).

Proof. (i): By Lemma 2.1(ii)–(iii), 6∗ = 6∗∗∗ > ℎ∗ > 6∗. Therefore, ℎ∗ = 6∗, and the claims follow from

Definition 1.1.

(ii): It follows from Definition 1.1 and (i) that !
1/W
˛ 6∗ = (!

W
⋄6∗∗)∗ = (!

W
⋄6)∗.

(iii): An immediate consequence of Definition 1.1.

(iv): This follows from (ii).

(v): Combining Lemmas 2.2(ii), 2.3(i)–(ii), and 2.2(i), we obtain

d
(

1
W
(
6∗

)
◦ !

)∗
=

(
d

1
W
(
6∗

)
◦

(
!/d

) )∗
=

( d
W
(
d6∗ (·/d)

)
◦ !

)∗
=

( d
W
(
(d6)∗

)
◦ !

)∗
. (3.1)

The assertion therefore follows from Definition 1.1.

(vi): We deduce from Lemmas 2.2(iii) and 2.3(ii) that

(
1
W
(
6∗

)
◦ !

)∗ (
d ·

)
=

(
1
W
(
6∗

)
◦

(
!/d

) )∗
=

( d2

W
(
6∗ (·/d)

)
◦ !

)∗
=

( d2

W
( (
6(d ·)

)∗) ◦ !
)∗
. (3.2)

In view of Definition 1.1, the assertion is established.

(vii): We invoke Definition 1.1, Lemma 2.2(ii), (v), (vi), and Lemma 2.2(i) to get

d
(
!

W
˛ 6

)
= d

(
!

1/W
⋄ 6∗

)∗
=

(
d
(
!

1/W
⋄ 6∗

) (
·/d

) )∗
=

(
!

d/W
⋄

(
d6

)∗)∗
= !

W/d
˛

(
d6

)
. (3.3)

(viii): By Definition 1.1, Lemma 2.2(iii), and (vi), we get

(
!

W
˛ 6

) (
d ·

)
=

(
!

1/W
⋄ 6∗

)∗ (
d ·

)
=

((
!

1/W
⋄ 6∗

) (
·/d

) )∗
=

(
!

d2/W
⋄

(
6(d ·)

)∗)∗
= !

W/d2

˛

(
6(d ·)

)
, (3.4)

which completes the proof.

Proposition 3.2. Let ! ∈ B (H ,G), let 6 : G → ]−∞, +∞] be a proper function such that cam6 ≠ ∅,
let W ∈ ]0, +∞[, and setQ = QG −QH ◦ !∗. Then the following hold:
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(i) !
W
⋄6 = !∗ ·⊲ (6∗∗ +Q/W).

(ii) !
W
˛ 6 = (6∗ + WQ)∗ ◦ !.

(iii) dom(!
W
⋄6) = !∗(dom6∗∗).

(iv) Suppose that one of the following are satisfied:

(a) 0 < ‖!‖ < 1.

(b) dom6∗∗ = G.

Then dom(!
W
˛ 6) = H .

(v) !
W
˛ 6 > W(6∗∗) ◦ !.

Proof. By Lemma 2.1(v), 6∗ ∈ �0 (G). Therefore, Lemma 2.4(vi) implies that dom
1
W (6∗) = G and that

1
W (6∗) ∈ �0 (G).

(i): Let G ∈ H . Because dom
1
W (6∗) − ran! = G, it follows from Definition 1.1 and items (iii) and (i)

in Lemma 2.5 that

(
!

W
⋄6

)
(G) =

((
1
W
(
6∗

)
◦ !

)∗
− 1

W
QH

)
(G)

=

(
!∗ ·⊲

(
1
W
(
6∗

) )∗)
(G) − 1

W
QH (G)

=

(
!∗ ·⊲

(
6∗∗ + 1

W
QG

))
(G) − 1

W
QH (G)

= min
~∈G
!∗~=G

(
6∗∗ (~) + 1

W
QG (~)

)
− 1

W
QH (G)

= min
~∈G
!∗~=G

(
6∗∗ (~) + 1

W
QG (~) −

1

W
QH (!∗~)

)

= min
~∈G
!∗~=G

(
6∗∗ (~) + 1

W
Q (~)

)
. (3.5)

(ii): By Definition 1.1, (i), and Lemmas 2.1(iii) and 2.5(ii),

!
W
˛ 6 =

(
!

1/W
⋄ 6∗

)∗
=

(
!∗ ·⊲ (

6∗∗∗ + WQ
) )∗

=
(
!∗ ·⊲ (

6∗ + WQ
) )∗

=
(
6∗ + WQ

)∗ ◦ !. (3.6)

(iii): Since domQ = G, we deduce from [2, Proposition 12.36(i)] and (i) that dom(!
W
⋄ 6) =

!∗ (dom(6∗∗ +Q/W)) = !∗ (dom6∗∗).
(iv): By Lemma 2.7, Q ∈ �0 (G). Because domQ = G, the identity (WQ)∗ = Q∗/W and [2, Proposi-

tion 15.2] imply that

(
6∗ + WQ

)∗
= 6∗∗ � (WQ)∗ = 6∗∗ �

(
Q∗/W

)
. (3.7)

On the other hand, we have (1−‖!‖2)QG 6 Q . Hence, in view of property (iv)(a) and Lemma 2.1(ii), we

haveQ∗
6 QG/(1− ‖!‖2), which yields domQ∗ = G. We thus deduce from (3.7) that dom(6∗ +WQ)∗ =

dom6∗∗ + domQ∗ = G and obtain the assertion via (ii).
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(v): SinceQ 6 QG , 6∗ + WQ 6 6∗ + WQG . In turn, Lemmas 2.4(viii) and 2.1(ii), and (ii) imply that

W (
6∗∗

)
◦ ! =

(
6∗ + WQG

)∗ ◦ ! 6 (
6∗ + WQ

)∗ ◦ ! = !
W
˛ 6, (3.8)

which completes the proof.

Remark 3.3. Suppose that ! ∈ B (H ,G) satisfies ‖!‖ = 1, set Q = QG − QH ◦ !∗, and set � =

IdG − ! ◦ !∗. Then � is monotone and self-adjoint,Q : ~ ↦→ 〈~ |�~〉G/2, and Lemma 2.8 shows that

domQ∗ = ran� under the assumption that ran� is closed. In this case, arguing as in (3.7) and using

Proposition 3.2(ii), we obtain dom(!
W
˛ 6) = !−1 (dom6∗∗ + ran�).

Proposition 3.4. Let ! ∈ B (H ,G) be such that ran! is closed and ker ! = {0}, let 6 : G → ]−∞, +∞]
be a proper function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then the following hold:

(i) Suppose that 6∗∗ is coercive. Then !
W
˛ 6 is coercive.

(ii) Suppose that 6∗∗ is supercoercive. Then !
W
˛ 6 is supercoercive.

Proof. It follows from [2, Fact 2.26] that there exists U ∈ ]0, +∞[ such that ‖! · ‖G > U ‖ · ‖H . Thus,

‖!G ‖G → +∞ as ‖G ‖H → +∞. On the other hand, combining Lemmas 2.1(v) and 2.4(ii), we obtain

6∗∗ ∈ �0 (G).
(i): By [2, Corollary 14.18(i)], W(6∗∗) is coercive. Therefore, Proposition 3.2(v) implies that (!

W
˛6) (G) >

(W(6∗∗)) (!G) → +∞ as ‖G ‖H → +∞.

(ii): By [2, Corollary 14.18(ii)], W(6∗∗) is supercoercive. Hence, Proposition 3.2(v) yields

(
!

W
˛ 6

)
(G)

‖G ‖H
>

W (
6∗∗

)
(!G)

‖G ‖H
> U

W (
6∗∗

)
(!G)

‖!G ‖G
→ +∞ as ‖G ‖H → +∞, (3.9)

which concludes the proof.

The next proposition studies the effect of quadratic perturbations and translations.

Proposition 3.5. Let ! ∈ B (H ,G), 6 ∈ �0 (G), U ∈ R, W ∈ ]0, +∞[, d ∈ [0, +∞[, and D ∈ H . Given

F ∈ G, set gF 6 : ~ ↦→ 6(~ −F ). Then the following hold:

(i) Set V = W/(1 + dW). Then !
W
⋄ (6 + dQG + 〈· | !D〉G + U) = (!

V
⋄6) + dQH + 〈· |D〉H + U .

(ii) !
W
˛ (g!D 6 + U) = gD (!

W
˛ 6) + U .

Proof. (i): Let G ∈ H , set ℎ = 6 + dQG + 〈· | !D〉G + U , and setQ = QG −QH ◦ !∗. Since 6 ∈ �0 (G) and
d > 0, we have ℎ ∈ �0 (G). In turn, Lemma 2.4(ii) yields ℎ∗ ∈ �0 (G), ℎ∗∗ = ℎ, and 6∗∗ = 6. Therefore, it
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follows from Proposition 3.2(i) that

(
!

W
⋄ ℎ

)
(G) = min

~∈G
!∗~=G

(
ℎ(~) + 1

W
Q (~)

)

= min
~∈G
!∗~=G

(
6(~) + dQG (~) + 〈~ | !D〉G + U + 1

W
Q (~)

)

= min
~∈G
!∗~=G

(
6(~) + dQ (~) + dQH (!∗~) + 〈!∗~ |D〉H + 1

W
Q (~)

)
+ U

= min
~∈G
!∗~=G

(
6(~) +

(
d + 1

W

)
Q (~)

)
+ dQH (G) + 〈G |D〉H + U

= min
~∈G
!∗~=G

(
6(~) + 1

V
Q (~)

)
+ dQH (G) + 〈G |D〉H + U

=
(
!

V
⋄6

)
(G) + dQH (G) + 〈G |D〉H + U. (3.10)

(ii): Set ℎ = g!D 6 + U . We recall from [2, Proposition 13.23(iii)] that ℎ∗ = 6∗ + 〈· | !D〉G − U . Hence,

using Definition 1.1 and (i), we get

!
W
˛ ℎ =

(
!

1/W
⋄

(
6∗ + 〈· | !D〉G − U

) )∗

=
((
!

1/W
⋄ 6∗

)
+ 〈· |D〉H − U

)∗

= gD
(
!

1/W
⋄ 6∗

)∗ + U

= gD
(
!

W
˛ 6

)
+ U, (3.11)

as claimed.

3.2. Convex-analytical properties

We first study the convexity, Legendre conjugacy, and differentiability properties of proximal com-

positions. We then turn our attention to the evaluation of their proximity operators, subdifferentials,

Moreau envelopes, recession functions, and perspective functions.

Proposition 3.6. Suppose that 0 ≠ ! ∈ B (H ,G), let 6 : G → ]−∞, +∞] be a proper function such

that cam6 ≠ ∅, let W ∈ ]0, +∞[, and let U ∈ [−1/W, +∞[. Suppose that 6∗∗ − UQG is convex and set

V = (U + 1/W)/‖!‖2 − 1/W . Then !
W
⋄6 − VQH ∈ �0 (H).

Proof. By Lemma 2.1(v), 6∗ ∈ �0 (G). Thus, Lemma 2.4(vi) implies that
1
W (6∗) ◦ ! ∈ �0 (H). In turn, we

deduce from Lemma 2.4(ii) and Definition 1.1 that !
W
⋄6 +QH/W = (

1
W (6∗) ◦ !)∗ ∈ �0 (H). Since (−V −

1/W)QH is continuous with domain G, by [2, Lemma 1.27], !
W
⋄6−VQH = !

W
⋄6+QH /W + (−V −1/W)QH

is proper and lower semicontinuous. It remains to show that !
W
⋄ 6 − VQH is convex. Let G ∈ H , set
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k = ‖!‖2QG −QH ◦ !∗, and setQ = QG −QH ◦ !∗. By Proposition 3.2(i),

(
!

W
⋄6

)
(G) − VQH (G) = min

~∈G
!∗~=G

(
6∗∗ (~) + 1

W
Q (~)

)
− VQH (G)

= min
~∈G
!∗~=G

(
6∗∗ (~) + 1

W
Q (~) − VQH (!∗~)

)

= min
~∈G
!∗~=G

(
6∗∗ (~) + 1

W
QG (~) −

1

‖!‖2
(
U + 1

W

)
QH (!∗~)

)

= min
~∈G
!∗~=G

((
6∗∗ (~) − UQG (~)

)
+

(
V + 1

W

)
k (~)

)
. (3.12)

Since ∇k = ‖!‖2IdG −! ◦!∗, for every ~ ∈ G, 〈∇k (~) |~〉G = ‖!‖2‖~‖2G − ‖!∗~‖2H > 0. Therefore, we

infer from [2, Proposition 17.7] thatk is convex. Further, since U + 1/W > 0, (V + 1/W)k is convex with

domain G. By assumption, 6∗∗ −UQG ∈ �0 (G). Hence, the function (6∗∗ −UQG) + (V + 1/W)k is proper

and convex. Altogether, in view of (3.12) and [2, Proposition 12.36(ii)], we conclude that !
W
⋄6 − VQH

is convex.

Proposition 3.7. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then the following hold:

(i) !
W
⋄6 ∈ �0 (H) and !

W
˛ 6 ∈ �0 (H).

(ii) (!
W
˛ 6)∗ = !

1/W
⋄ 6∗

(iii) !
W
⋄6 = (!

1/W
˛ 6∗)∗.

Proof. Recall that Lemmas 2.1(v) and 2.4(i) assert that 6∗ ∈ �0 (G) and cam6∗ ≠ ∅.
(i): Lemma 2.4(ii) yields 6∗∗ ∈ �0 (G). Now set V = (1/‖!‖2 − 1)/W . Then V > 0 and, by applying

Proposition 3.6 with U = 0, we see that !
W
⋄6 − VQH ∈ �0 (H) and hence that !

W
⋄6 ∈ �0 (H). Likewise,

applying Proposition 3.6 with U = 0 to 6∗ ∈ �0 (G) and using Lemma 2.1(iii) we get !
1/W
⋄ 6∗ ∈ �0 (H).

In view of Definition 1.1 and Lemma 2.4(ii), we conclude that !
W
˛ 6 ∈ �0 (H).

(ii): We derive from Definition 1.1, (i), and Lemma 2.4(ii) that (!
W
˛ 6)∗ = (!

1/W
⋄ 6∗)∗∗ = !

1/W
⋄ 6∗.

(iii): By Proposition 3.1(iv), (i), and Lemma 2.4(ii), (!
1/W
˛ 6∗)∗ = (!

W
⋄6)∗∗ = !

W
⋄6.

The next result examines differentiability.

Proposition 3.8. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then the following hold:

(i) Suppose that ‖!‖ < 1 and set V = W (1/‖!‖2 − 1). Then !
W
˛ 6 is differentiable with a (1/V)-

Lipschitzian gradient.

(ii) Let \ ∈ ]0, +∞[, suppose that 6 is real-valued, convex, and differentiable with a \ -Lipschitzian

gradient, and set V = (1/\ + W)/‖!‖2 − W . Then !
W
˛ 6 is differentiable with a (1/V)-Lipschitzian

gradient.
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Proof. We recall that a continuous convex function 5 : H → R is differentiable with a (1/V)-
Lipschitzian gradient if and only if 5 ∗ − VQH is convex [2, Theorem 18.15]. Further, by Proposi-

tion 3.7(ii), (! W
˛ 6)∗ = !

1/W
⋄ 6∗.

(i): By Proposition 3.2(iv)(a), dom(!
W
˛ 6) = H . Now set U = 0. Since U > −W , we deduce from

Proposition 3.6 that !
1/W
⋄ 6∗ − VQH is convex, i.e., that (!

W
˛ 6)∗ − VQH is convex.

(ii): Since 6 ∈ �0 (G), Lemma 2.4(ii) yields dom6∗∗ = dom6 = G. Thus, it results from Propo-

sition 3.2(iv)(b) that dom(!
W
˛ 6) = H . Now set U = 1/\ . Since 6∗ − UQGis convex and U > −W ,

Proposition 3.6 implies that (!
W
˛ 6)∗ − VQH = !

1/W
⋄ 6∗ − VQH is convex.

Remark 3.9. Proposition 3.8(i) guarantees the smoothness of the proximal cocomposition when 0 <

‖!‖ < 1. Proposition 3.8(ii) shows that the Lipschitz constant of the gradient of the cocomposition is

improved when the original function is itself smooth.

The following proposition motivates calling !
W
⋄6 a proximal composition.

Proposition 3.10. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then the following hold:

(i) prox
W (!W⋄6) = !∗ ◦ proxW6∗∗ ◦!.

(ii) prox
W (!W˛6) = IdH − !∗ ◦

(
IdG − proxW6∗∗

)
◦ !.

Proof. As previously noted, 6∗ ∈ �0 (G) and 6∗∗ ∈ �0 (G).
(i): It follows from Proposition 3.1(v) and Definition 1.1 that

QH + W
(
!

W
⋄6

)
= QH + !

1⋄ (W6) =
(
1((W6)∗

)
◦ !

)∗
. (3.13)

Since Proposition 3.7(i) yields !
W
⋄6 ∈ �0 (H), we deduce from [2, Corollary 16.48(iii)], (3.13), and items

(iii) and (vii) in Lemma 2.4 that

IdH +Wm
(
!

W
⋄6

)
= m

(
QH + W

(
!

W
⋄6

))
=

(
∇
(
1((W6)∗

)
◦ !

))−1
=

(
!∗ ◦

(
IdG − prox(W6)∗

)
◦ !

)−1
. (3.14)

Hence, by [2, Proposition 16.44] and Lemma 2.4(iv), we obtain prox
W (!W⋄6) = (IdH + Wm(!

W
⋄ 6))−1 =

!∗ ◦ prox(W6)∗∗ ◦! = !∗ ◦ proxW6∗∗ ◦!.
(ii): By Proposition 3.1(vii) and Definition 1.1, W (!

W
˛6) = !

1
˛ (W6) = (! 1⋄ (W6)∗)∗. Therefore, Propo-

sition 3.7(i) and Lemma 2.4(ii) entail that (W (!
W
˛ 6))∗ = !

1⋄ (W6)∗. In turn, Lemma 2.4(iv) and (i) yield

prox
W (!W˛6) = IdH − prox

!
1⋄(W6)∗

= IdH − !∗ ◦ (IdG − proxW6∗∗) ◦ !.

Our next result concerns the subdifferential of proximal compositions. We recall that the parallel

composition of � : H → 2H by ! ∈ B (H ,G) is ! ⊲� = (! ◦�−1 ◦ !∗)−1 [2, Section 25.6].

Proposition 3.11. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then the following hold:

(i) m(!
W
⋄6) = !∗ ⊲ (m6∗∗ + (IdG − ! ◦ !∗)/W).
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(ii) m(!
W
˛ 6) = !∗ ◦ (m6∗ + W (IdG − ! ◦ !∗))−1 ◦ !.

Proof. As seen in Proposition 3.7(i), !
W
⋄ 6 ∈ �0 (H) and !

W
˛ 6 ∈ �0 (H). Now set Q = QG − QH ◦ !∗

and ℎ = 6∗∗ +Q/W . We deduce from Lemmas 2.1(v), 2.4(ii), and 2.7 that 6∗ ∈ �0 (G), 6∗∗ ∈ �0 (G), and
Q ∈ �0 (G). Therefore, since domQ = G, we have ℎ ∈ �0 (G) and, by Lemma 2.4(ii), ℎ∗∗ = ℎ. On the

other hand, domℎ∗ ∩ ran! ≠ ∅ since Propositions 3.2(ii) and 3.7(i) yield ℎ∗ ◦ ! = !
1/W
˛ 6∗ ∈ �0 (G).

Upon invoking Propositions 3.2(i) and 3.7(iii), we get

!∗ ·⊲ ℎ = !
W
⋄6 =

(
!

1/W
˛ 6∗

)∗
=

(
ℎ∗ ◦ !

)∗
. (3.15)

Therefore, [2, Proposition 16.42], Lemma 2.4(iii), and [2, Corollary 16.48(iii)] imply that

m(ℎ∗ ◦ !) = !∗ ◦ mℎ∗ ◦ ! = !∗ ◦
(
mℎ

)−1 ◦ ! = !∗ ◦
(
m6∗∗ + ∇Q/W

)−1 ◦ !. (3.16)

(i): Combining (3.15), Lemma 2.4(iii), and (3.16), we obtain

m
(
!

W
⋄6

)
= m

(
ℎ∗ ◦ !

)∗
=

(
m(ℎ∗ ◦ !)

)−1
=

(
!∗ ◦

(
m6∗∗ + ∇Q/W

)−1 ◦ !
)−1

= !∗⊲
(
m6∗∗ + ∇Q/W

)
. (3.17)

(ii): By Definition 1.1, Lemma 2.4(iii), (i), and Lemma 2.1(iii),

m
(
!

W
˛ 6

)
= m

(
!

1/W
⋄ 6∗

)∗
=

(
m
(
!

1/W
⋄ 6∗

) )−1
=

(
!∗ ⊲

(
m6∗∗∗ + W∇Q

) )−1
= !∗ ◦

(
m6∗ + W∇Q

)−1 ◦!, (3.18)

which completes the proof.

Corollary 3.12. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let V ∈ ]0, +∞[, let W ∈ ]0, +∞[, and
let 6 : G → R be convex and V-Lipschitzian. Then !

W
˛ 6 is (V ‖!‖)-Lipschitzian.

Proof. We recall that a lower semicontinuous convex function 5 : H → R is V-Lipschitzian if and only
if ran m5 = dom m5 ∗ ⊂ � (0; V) [2, Corollary 17.19]. Since 6 ∈ �0 (G), Lemma 2.4(ii) yields 6∗ ∈ �0 (G).
We therefore invoke Proposition 3.11(ii) to get

ran m
(
!

W
˛ 6

)
⊂ !∗

(
ran

(
m6∗ + W (IdG − ! ◦ !∗)

)−1)

= !∗
(
dom

(
m6∗ + W (IdG − ! ◦ !∗)

))

= !∗
(
dom m6∗

)

⊂ !∗
(
� (0; V)

)

⊂ � (0; V ‖!‖), (3.19)

where !
W
˛ 6 : H → ]−∞, +∞] is a real-valued lower semicontinuous convex function by Proposi-

tions 3.2(iv)(b) and 3.7(i).

Let us now evaluate Moreau envelopes of proximal cocompositions.

Proposition 3.13. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, let W ∈ ]0, +∞[, and let d ∈ ]0, +∞[. Then the following hold:

(i)
d

(!
W+d
˛ 6) = !

W
˛ (d6).
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(ii)
W

(!
W
˛ 6) = W(6∗∗) ◦ !.

Proof. By Lemma 2.1(v) and Proposition 3.7(i), !
1/W
⋄ 6∗ ∈ �0 (H). Therefore, Lemma 2.4(viii) and Defi-

nition 1.1 yield

( (
!

1/W
⋄ 6∗

)
+ dQH

)∗
=

d ( (
!

1/W
⋄ 6∗

)∗)
=

d (
!

W
˛ 6

)
. (3.20)

(i): We combine Definition 1.1, Lemma 2.5(i), Proposition 3.5(i), and (3.20) to arrive at

!
W
˛

(
d6

)
=

(
!

1/W
⋄

(
d6

)∗)∗
=

(
!

1/W
⋄

(
6∗ + dQG

) )∗
=

((
!

1/(W+d)
⋄ 6∗

)
+ dQH

)∗
=

d (
!
W+d
˛ 6

)
. (3.21)

(ii): Since 6∗ ∈ �0 (G), items (ii) and (vi) in Lemma 2.4 imply that W(6∗∗) ∈ �0 (G) and that

dom W(6∗∗) = G. Hence, W(6∗∗) ◦ ! ∈ �0 (H) and it follows from Lemma 2.4(ii), Definition 1.1, and

(3.20) that

W (
6∗∗

)
◦ ! =

(
W (
6∗∗

)
◦ !

)∗∗
=

((
!

1/W
⋄ 6∗

)
+ WQG

)∗
=

W (
!

W
˛ 6

)
, (3.22)

as announced.

Corollary 3.14. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper

function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then Argmin(!
W
˛ 6) = Argmin(W(6∗∗) ◦ !).

Proof. Since the set of minimizers of a function in �0 (H) coincides with that of its Moreau envelope

[2, Propositions 17.5], the assertion follows from Proposition 3.13(ii).

Corollary 3.15. Let K be a real Hilbert space, suppose that ! ∈ B (H ,G) and ( ∈ B (K,H) satisfy
‖!‖ 6 1, ‖( ‖ 6 1, and ! ◦ ( ≠ 0, let 6 : G → ]−∞, +∞] be a proper function such that cam6 ≠ ∅, and
let W ∈ ]0, +∞[. Then the following hold:

(i) (
W
˛ (!

W
˛ 6) = (! ◦ ()

W
˛ 6.

(ii) (
W
⋄ (!

W
⋄6) = (! ◦ ()

W
⋄6.

Proof. (i): Set 5 = !
W
˛6. Since ‖!◦( ‖ 6 ‖!‖ ‖( ‖ 6 1, we deduce from Proposition 3.7(i) that 5 ∈ �0 (H),

(
W
˛ 5 ∈ �0 (K), and (! ◦ ()

W
˛ 6 ∈ �0 (K). By Lemma 2.4(ii), 5 ∗∗ = 5 . Hence, Proposition 3.13(ii) yields

W (
(

W
˛ 5

)
=

W (
5 ∗∗

)
◦ ( = W 5 ◦ ( =

(
W (
6∗∗

)
◦ !

)
◦ ( =

W ( (
! ◦ (

) W
˛ 6

)
. (3.23)

Therefore, the assertion follows from Lemma 2.6.

(ii): By Proposition 3.7(i), !
W
⋄ 6 ∈ �0 (H), (

W
⋄ (!

W
⋄ 6) ∈ �0 (K), and (! ◦ ()

W
⋄ 6 ∈ �0 (K). Therefore,

using Propositions 3.7(iii) and 3.1(ii), together with (i), we get

(
W
⋄

(
!

W
⋄6

)
=

(
(

1/W
˛

(
!

W
⋄6

)∗)∗
=

(
(

1/W
˛

(
!

1/W
˛ 6∗

))∗
=

((
! ◦ (

) 1/W
˛ 6∗

)∗
=

(
! ◦ (

) W
⋄6, (3.24)

which completes the proof.

Proposition 3.16. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then rec(!

W
˛ 6) = (rec(6∗∗)) ◦ !.
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Proof. By Lemmas 2.1(v) and 2.4(ii), 6∗ ∈ �0 (G) and 6∗∗ ∈ �0 (G). Therefore, Lemma 2.4(v), Proposi-

tions 3.7(ii) and 3.2(iii), and Lemma 2.1(iii) imply that

rec
(
!

W
˛ 6

)
= f

dom(!W˛6)∗ = f
dom(!1/W⋄ 6∗)

= f!∗ (dom6∗∗∗) = fdom6∗ ◦ ! =
(
rec(6∗∗)

)
◦ !, (3.25)

as claimed.

Proposition 3.17. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 ∈ �0 (G), let

6̃ : G ⊕ R→ ]−∞, +∞] : (~, [) ↦→



[6(~/[), if [ > 0;(
rec6

)
(~), if [ = 0;

+∞, otherwise

(3.26)

be its perspective, let W ∈ ]0, +∞[, and set !̃ : H ⊕ R→ G ⊕ R : (G, b) ↦→ (!G, b). Then

�
!

W
˛ 6 : H ⊕ R→ ]−∞, +∞] : (G, b) ↦→




(
!̃

bW
˛ 6̃

)
(G, b), if b > 0;

(
rec6

)
(!G), if b = 0;

+∞, otherwise.

(3.27)

Proof. Let (G, b) ∈ H ⊕ R, set Q = QG − QH ◦ !∗, and setR = QG⊕R − QH⊕R ◦ !̃ ∗. We consider two

cases.

• b = 0: It follows fromProposition 3.16 and Lemma 2.4(i)–(ii) that (�! W
˛ 6) (G, 0) = (rec(!

W
˛6)) (G) =

(rec6) (!G).
• b > 0: Set� =

{
(~∗, [) ∈ G ⊕ R | [ + 6∗ (~∗) 6 0

}
. Then [8, Items (ii) and (iv) in Proposition 2.3]

assert that 6̃ ∈ �0 (G ⊕ R) and (6̃ )∗ = ]� . Therefore, by Lemma 2.2(ii),

(∀~∗ ∈ G) sup
[∈R

(
[b − (6̃ )∗(~∗, [)

)
= sup

[∈R

(
[b − ]� (~∗, [)

)

= sup
[∈]−∞,−6∗(~∗)]

[b

= −b6∗ (~∗)
= −

(
b6(·/b)

)∗ (~∗). (3.28)

On the other hand, for every [ ∈ R,R (·, [) = Q and, since 0 < ‖!‖ 6 1, we have 0 < ‖!̃‖ 6 1.
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Hence, appealing to Proposition 3.2(ii), (3.28), and Proposition 3.1(vii)–(viii),

(
!̃

bW
˛ 6̃

)
(G, b) =

(
(6̃ )∗ + bWR

)∗ (
!̃(G, b)

)

=
(
(6̃ )∗ + bWR

)∗ (!G, b)
= sup

(~∗,[)∈G⊕R

(
〈(!G, b) | (~∗, [)〉G⊕R − (6̃ )∗ (~∗, [) − bWR (~∗, [)

)

= sup
(~∗,[)∈G⊕R

(
[b + 〈!G |~∗〉G − (6̃ )∗ (~∗, [) − bWQ (~∗)

)

= sup
~∗∈G

(
〈!G |~∗〉G − bWQ (~∗) + sup

[∈R

(
[b − (6̃ )∗ (~∗, [)

) )

= sup
~∗∈G

(
〈!G |~∗〉G − bWQ (~∗) −

(
b6(·/b)

)∗ (~∗))

=
((
b6(·/b)

)∗ + bWQ
)∗
(!G)

=
(
!

bW
˛

(
b6(·/b)

) )
(G)

= b
(
!

W
˛ 6

)
(G/b)

=
( �
!

W
˛ 6

)
(G, b). (3.29)

We have thus proved (3.27).

3.3. Comparison with standard compositions and infimal postcompositions

As mentioned in Section 1, our discussion involves several ways to compose a function defined on

G with a linear operator from H to G in order to obtain a function defined on H : the standard

composition (1.3), the infimal postcomposition (1.4), and the proximal composition and cocomposition

of Definition 1.1. We saw in Proposition 3.10 that a numerical advantage of the proximal compositions

is that their proximity operators are easily decomposable in terms of that of the underlying function.

Our purpose here is to compare these various compositions.

Example 3.18. Let

{
! : R2 → R5 : (b1, b2) ↦→

(
0.5b2,−0.5b1,−0.5b2, 0.3b1 + 0.4b2, 0.1b1 − 0.3b2

)

6 : R5 → R : ([1, [2, [3, [4, [5) ↦→ ‖([1, [2, [3)‖1 + ‖([4 − 1, [5 + 2)‖.
(3.30)

Figure 1 shows the graphs of both the standard composition and proximal cocomposition for various

values of W .

Example 3.19. Let � = � (0; 2) and
{
! : R2 → R3 : (b1, b2) ↦→

(
0.7b1 + 0.1b2,−0.3b1 + 0.4b2, 0.5b1 − 0.3b2

)

6 : R3 → R : ([1, [2, [3) ↦→ 3� ([1, [2, [3).
(3.31)

Figure 2 shows the graphs of both the standard composition and proximal cocomposition for various

values of W .

As we now show, the pointwise orderings suggested by Figures 1 and 2 are generally true.
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Proposition 3.20. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then the following hold:

(i) !∗ ⊲ 6∗∗ 6 !
W
⋄6.

(ii) W(6∗∗) ◦ ! 6 !
W
˛ 6 6 6∗∗ ◦ !.

(iii) !
W
˛ 6 6 !

W
⋄6.

(iv) Suppose that ! is an isometry. Then !
W
⋄6 = !

W
˛ 6.

(v) Suppose that ! is a coisometry. Then !
W
⋄6 = !∗ ·⊲ 6∗∗ and !

W
˛ 6 = 6∗∗ ◦ !.

(vi) Suppose that ! is invertible with !−1 = !∗. Then !
W
⋄6 = !∗ ·⊲ 6∗∗ = 6∗∗ ◦ ! = !

W
˛ 6.

Proof. SetQ = QG −QH ◦ !∗ and observe that 0 6 Q 6 QG .
(i): Let G ∈ H . By Proposition 3.2(i),

(
!

W
⋄6

)
(G) = min

~∈G
!∗~=G

(
6∗∗ (~) + 1

W
Q (~)

)
> inf

~∈G
!∗~=G

6∗∗ (~) =
(
!∗ ⊲ 6∗∗

)
(G). (3.32)

(ii): The leftmost inequality is established in Proposition 3.2(v). Let us prove rightmost inequality.

By Lemma 2.1(ii) and (i), (!
1/W
⋄ 6∗)∗ 6 (!∗ ⊲ 6∗∗∗)∗. It therefore follows from Definition 1.1 and

Lemmas 2.1(iii) and 2.5(ii) that

!
W
˛ 6 =

(
!

1/W
⋄ 6∗

)∗
6 (!∗ ⊲ 6∗)∗ = 6∗∗ ◦ !. (3.33)

(iii): Set 5 = 1(6∗∗) ◦ !. Since ‖!‖ 6 1, QG ◦ ! 6 QH , and we deduce from Lemma 2.1(ii) that

(QH − 5 )∗ 6 (QG ◦!− 5 )∗. However, it results from Lemma 2.4(iv) thatQG ◦!− 5 = (QG− 1(6∗∗)) ◦! =
1(6∗) ◦ !. Altogether, it follows from Definition 1.1 and [2, Proposition 13.29] that

!
1
˛ 6 =

(
5 ∗ −QH

)∗
=

(
QH − 5

)∗ −QH 6
(1(6∗) ◦ !)∗ −QH = !

1⋄6. (3.34)

Hence, by Proposition 3.1(vii), (3.34), and Proposition 3.1(v), we get

!
W
˛ 6 =

1

W

(
!

1
˛ (W6)

)
6

1

W

(
!

1⋄ (W6)
)
= !

W
⋄6. (3.35)

(iv): Here QH = QG ◦ ! and therefore the inequalities in the proof of (iii) can be replaced with

equalities.

(v): Here QG = QH ◦ !∗ and thusQ = 0. Therefore, the result follows from Proposition 3.2(i)–(ii).

(vi): A consequence of (iv) and (v).

Remark 3.21. Suppose that ! ∈ B (H ,G) is an isometry, let 6 : G → ]−∞, +∞] be a proper function
such that cam6 ≠ ∅, and let W ∈ ]0, +∞[. Then we recover from [2, Proposition 13.24(v)] as well as

items (i), (iv), and (ii) in Proposition 3.20 the inequalities

(6∗ ◦ !)∗ 6 !∗ ⊲ 6∗∗ 6 !
W
⋄6 = !

W
˛ 6 6 6∗∗ ◦ !, (3.36)

which appear in [9, Proposition 5.4] in the special case in which W = 1.
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Proposition 3.22. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper
function such that cam6 ≠ ∅, let W ∈ ]0, +∞[, let G ∈ H , and setQ = QG −QH ◦ !∗. Then the following

hold:

(i) Suppose that ~∗ ∈ m6(!G). Then 0 6 6(!G) − (!
W
˛ 6) (G) 6 WQ (~∗).

(ii) Suppose that 0 ∈ (IdG − ! ◦ !∗) (m6(!G)). Then (!
W
˛ 6) (G) = 6(!G).

Proof. (i): By [2, Proposition 16.10], 6(!G) + 6∗ (~∗) = 〈!G |~∗〉G . Further, [2, Proposition 16.5] yields

6∗∗ (!G) = 6(!G) ∈ R. Therefore, we deduce from Propositions 3.20(ii) and 3.2(ii) that (!
W
˛ 6) (G) ∈ R

and that

0 6 6(!G) −
(
!

W
˛ 6

)
(G)

= 6(!G) −
(
6∗ + WQ

)∗(!G)
= 6(!G) − sup

~∈G

(
〈!G |~〉G − 6∗ (~) − WQ (~)

)

6 6(!G) −
(
〈!G |~∗〉G − 6∗ (~∗) − WQ (~∗)

)

= WQ (~∗). (3.37)

(ii): There exists ~∗ ∈ m6(!G) such that !(!∗~∗) = ~∗. Therefore, Q (~∗) = 0 and the conclusion

follows from (i).

Proposition 3.23. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let V ∈ ]0, +∞[, let W ∈ ]0, +∞[,
and let 6 : G → R be convex and V-Lipschitzian. Then the following hold:

(i) 0 6 6 ◦ ! − !
W
˛ 6 6 WV2/2.

(ii) !∗ ⊲ 6∗ 6 !
1/W
⋄ 6∗ 6 (!∗ ⊲ 6∗) + WV2/2.

Proof. We recall that a lower semicontinuous convex function 5 : H → R is V-Lipschitzian if and only
if ran m5 = dom m5 ∗ ⊂ � (0; V) [2, Corollary 17.19]. Moreover, since dom6 = G, we have dom m6 = G
by [2, Proposition 16.27].

(i): Let G ∈ H and set Q = QG − QH ◦ !∗. Since dom m6 = G, there exists ~∗ ∈ m6(!G) ⊂ ran m6 ⊂
� (0; V). Thus,Q (~∗) 6 QG (~∗) 6 V2/2 and the result follows from Proposition 3.22(i).

(ii): The leftmost inequality follows from Proposition 3.20(i) and Lemma 2.1(iii). On the other hand,

Proposition 3.7(i) implies that !
1/W
⋄ 6∗ ∈ �0 (H). Additionally, in view of Lemma 2.1(ii) and (i), (!

W
˛6)∗ 6

(6 ◦ ! − WV2/2)∗. Finally, we deduce from Proposition 3.7(ii) and [2, Proposition 13.24(v)] that

!
1/W
⋄ 6∗ =

(
!

W
˛ 6

)∗
6

(
6 ◦ ! − WV2

2

)∗
=

(
6 ◦ !

)∗ + WV2

2
6

(
!∗ ⊲ 6∗

)
+ WV2

2
, (3.38)

as required.

Example 3.24. Let ! ∈ B (H ,G), let 6 ∈ �0 (G), let W ∈ ]0, +∞[, and let d ∈ ]0, +∞[. Suppose that
! ◦ !∗ = dIdG . Then the following hold:

(i) Set ℎ = 6(√d ·) and ( = !/√d . Then 6 ◦ ! = (
W
˛ ℎ.

(ii) proxW6◦! = IdH + d−1!∗ ◦ (proxWd6 −IdG) ◦ !.

17



Proof. (i): Since ! ◦ !∗ = dIdG , ( is a coisometry, and we deduce from Proposition 3.20(v) and

Lemma 2.4(ii) that (
W
˛ ℎ = ℎ ◦ ( = 6 ◦ !.

(ii): This follows from (i) and Proposition 3.10(ii) (see also [2, Proposition 24.14]).

Example 3.25. Let+ be a closed vector subspace of H and W ∈ ]0, +∞[. Then the following hold:

(i) proj+
W
⋄ ‖ · ‖ = ]+ + ‖ · ‖.

(ii) proj+
W
˛ ‖ · ‖ = ‖ · ‖ ◦ proj+ .

Proof. SetQ = QH −QH ◦ proj+ and let G ∈ H .

(i): It follows from Proposition 3.2(i), Lemma 2.4(ii), and the identityQ = QH ◦ proj+⊥ that

(
proj+

W
⋄ ‖ · ‖

)
(G) = inf

~∈H
proj+ ~=G

(
‖~‖ + 1

2W
‖G − ~‖2

)
=

{
‖G ‖, if G ∈ +

+∞, if G ∉ +
= ]+ (G) + ‖G ‖. (3.39)

(ii): We recall that m‖ · ‖ (G) = {G/‖G ‖} if G ≠ 0 and that m‖ · ‖ (0) = � (0; 1) [2, Example 16.32].

Hence,

proj+⊥
(
m‖ · ‖ (proj+ G)

)
=

{{
proj+⊥

(
proj+ G/‖ proj+ G ‖

)}
, if proj+ G ≠ 0;

proj+⊥
(
� (0; 1)

)
, if proj+ G = 0

=

{
{0}, if G ∉ +⊥;

proj+⊥
(
� (0; 1)

)
, if G ∈ + ⊥

∋ 0. (3.40)

However, Id − proj+ ◦ proj∗+ = proj+⊥ . Therefore, in view of Proposition 3.22(ii), this confirms that

proj+
W
˛ ‖ · ‖ = ‖ · ‖ ◦ proj+ .

Remark 3.26. In contrast with Proposition 3.20(v), Example 3.25(ii) shows an instance in which the

proximal cocomposition coincides with the standard composition for a linear operator which is not a

coisometry.

Example 3.27. Let + be a closed vector subspace of G, ! ∈ B (H ,G), 6 ∈ �0 (G), and W ∈ ]0, +∞[.
Suppose that ! is surjective and that !∗ ◦ ! = proj+ . Then !

W
⋄6 = !∗ ·⊲ 6 and !

W
˛ 6 = 6 ◦ !.

Proof. Let ~ ∈ G. Since ! is surjective, there exists G ∈ H such that !G = ~. Moreover, since ker! =

ker(!∗ ◦ !) = ker proj+ = + ⊥, we obtain

!(!∗~) = !
(
!∗(!G)

)
= !(proj+ G) = !G − !(proj+⊥ G) = ~ − 0 = ~. (3.41)

Hence, ! is a coisometry and the assertion follows from Proposition 3.20(v) and Lemma 2.4(ii).

Remark 3.28. In the context of Example 3.27, the identity !
W
˛ 6 = 6 ◦ ! combined with Proposi-

tion 3.13(ii) recovers the fact that W(6 ◦ !) = W6 ◦ ! (see [21, Lemma 3]).
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3.4. Asymptotic properties

We investigate asymptotic properties of the families (!
W
⋄ 6)W∈]0,+∞[ and (!

W
˛ 6)W∈]0,+∞[ as W varies.

These results provide further connections between the compositions (1.3), (1.4), and the proximal

compositions of Definition 1.1.

Proposition 3.29. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1 and let 6 : G → ]−∞, +∞] be
a proper function such that cam6 ≠ ∅. Suppose that G ∈ !−1 (dom6∗∗) and set, for every W ∈ ]0, +∞[,
GW = prox

W (!
W
˛6) G . Then

lim
0<W→0

(
!

W
˛ 6

)
(GW ) = 6∗∗ (!G). (3.42)

Proof. We first observe that, by virtue of Proposition 3.7(i), (GW )W∈]0,+∞[ is well defined. Appealing to
Proposition 3.13(ii), we get

(
!

W
˛ 6

)
(GW ) +

1

W
QH (G − GW ) =

W (
!

W
˛ 6

)
(G) = W (

6∗∗
)
(!G). (3.43)

On the other hand, by Proposition 3.10(ii),

1

W
QH (G − GW ) =

1

W
QH

(
!∗

(
!G − proxW6∗∗ (!G)

))
6

1

W
‖!‖2QG

(
!G − proxW6∗∗ (!G)

)
. (3.44)

Therefore, since !G ∈ dom6∗∗, [2, Proposition 12.33(iii)] implies that (1/W)QH (G − GW ) → 0 as W → 0.

Finally, by (3.43) and [2, Proposition 12.33(ii)],

lim
0<W→0

(
!

W
˛ 6

)
(GW ) = lim

0<W→0

W (
6∗∗

)
(!G) =

(
6∗∗

)
(!G), (3.45)

as claimed.

Theorem 3.30. Suppose that ! ∈ B (H ,G) satisfies 0 < ‖!‖ 6 1, let 6 : G → ]−∞, +∞] be a proper

function such that cam6 ≠ ∅, and let G ∈ H . Then the following hold:

(i) The function ]0, +∞[ → ]−∞, +∞] : W ↦→ (!
W
⋄6) (G) is decreasing.

(ii) The function ]0, +∞[ → ]−∞, +∞] : W ↦→ (!
W
˛ 6) (G) is decreasing.

(iii) lim
W→+∞

(!
W
⋄6) (G) = (!∗ ⊲ 6∗∗) (G).

(iv) lim
0<W→0

(!
W
˛ 6) (G) = 6∗∗ (!G).

(v) Suppose that ‖!‖ < 1. Then lim
W→+∞

(!
W
˛ 6) (G) = inf

~∈G
6∗∗ (~).

(vi) Suppose that ‖!‖ = 1 and that+ = ran(IdG−!◦!∗) is closed. Then lim
W→+∞

(!
W
˛6) (G) = inf

~∈!G−+
6∗∗ (~).

Proof. SetQ = QG −QH ◦ !∗.
(i): Fix W1 ∈ ]0, +∞[ and W2 ∈ ]0, +∞[ such that W1 6 W2. Then we deduce from Proposition 3.2(i)

that

!
W2⋄ 6 = !∗ ·⊲ (

6∗∗ +Q/W2
)
6 !∗ ·⊲ (

6∗∗ +Q/W1
)
= !

W1⋄ 6. (3.46)
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(ii): Fix W1 ∈ ]0, +∞[ and W2 ∈ ]0, +∞[ such that W1 6 W2. By (i), !
1/W1⋄ 6∗ 6 !

1/W2⋄ 6∗. Therefore,
appealing to Definition 1.1 and Lemma 2.1(ii), we get

!
W2
˛ 6 =

(
!

1/W2⋄ 6∗
)∗
6

(
!

1/W1⋄ 6∗
)∗

= !
W1
˛ 6. (3.47)

(iii): SinceQ > 0, it follows from (i) and Proposition 3.2(i) that

lim
W→+∞

(
!

W
⋄6

)
(G) = inf

W∈]0,+∞[

(
!∗ ·⊲

(
6∗∗ + 1

W
Q
))
(G)

= inf
W∈]0,+∞[

(
inf
~∈G
!∗~=G

(
6∗∗ (~) + 1

W
Q (~)

))

= inf
~∈G
!∗~=G

(
inf

W∈]0,+∞[

(
6∗∗ (~) + 1

W
Q (~)

))

= inf
~∈G
!∗~=G

6∗∗ (~)

=
(
!∗ ⊲ 6∗∗

)
(G). (3.48)

(iv): By [2, Proposition 12.33(ii)],
W (
6∗∗

)
→ 6∗∗ as 0 < W → 0. The claim therefore follows from

Proposition 3.20(ii).

(v)–(vi): As in the proof of Proposition 3.2(iv), (6∗ + WQ)∗ = 6∗∗ � (Q∗/W). Thus, it follows from
Proposition 3.2(ii) that

!
W
˛ 6 =

(
6∗∗ �

(
Q∗/W

) )
◦ !. (3.49)

Moreover, sinceQ 6 QG , Lemma 2.1(ii) yieldsQG 6 Q∗. Altogether, using (ii) and (3.49), we obtain

lim
W→+∞

(
!

W
˛ 6

)
(G) = inf

W∈]0,+∞[

(
6∗∗ �

Q∗

W

)
(!G)

= inf
W∈]0,+∞[

(
inf
~∈G

(
6∗∗ (~) + 1

W
Q∗(!G − ~)

))

= inf
~∈!G−domQ∗

(
inf

W∈]0,+∞[

(
6∗∗ (~) + 1

W
Q∗(!G − ~)

))

= inf
~∈!G−domQ∗

6∗∗ (~). (3.50)

We set� = IdG −! ◦!∗ and observe thatQ : ~ ↦→ 〈~ |�~〉G/2. In case (v), since ‖!‖ < 1,� is invertible

and Lemma 2.8 asserts that domQ∗ = ran� = G in (3.50). Finally, case (vi) follows from Lemma 2.8

and (3.50).

Corollary 3.31. Suppose that ! ∈ B (H ,G) is an isometry, let 6 ∈ �0 (G), and let G ∈ H . Then the

following hold:

(i) lim
W→+∞

(!
W
⋄6) (G) = (!∗ ⊲ 6) (G).
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(ii) lim
0<W→0

(!
W
⋄6) (G) = 6(!G).

Proof. By Proposition 3.20(iv), !
W
˛ 6 = !

W
⋄6, whereas Lemma 2.4(ii) yields 6∗∗ = 6.

(i): A consequence of Theorem 3.30(iii).

(ii): A consequence of Theorem 3.30(iv).

Example 3.32. Let+ ≠ {0} be a closed vector subspace of G, let 6 ∈ �0 (G), and let G ∈ G. Then

lim
W→+∞

(
proj+

W
˛6

)
(G) = inf

E∈+⊥
6(G + E). (3.51)

Proof. Since ‖ proj+ ‖ = 1 and ran(IdG − proj+ ◦ proj∗+ ) = + ⊥, it follows from Theorem 3.30(vi) and

Lemma 2.4(ii) that

lim
W→+∞

(
proj+

W
˛6

)
(G) = inf

~∈proj+ G−+ ⊥
6(~) = inf

~∈G++ ⊥
6(~) = inf

E∈+⊥
6(G + E), (3.52)

as announced.

We now turn our attention to epi-convergence. As discussed in [1], this notion plays a central role

in the approximation of variational problems. It will allow us to connect asymptotically the prox-

imal composition to the infimal postcomposition, and the proximal cocomposition to the standard

composition as W evolves.

Definition 3.33 ([1, Chapter 1], [17, Chapter 7]). Suppose that H is finite-dimensional, and let

( 5=)=∈N and 5 be functions from H to [−∞, +∞]. We say that ( 5=)=∈N epi-converges to 5 , in symbols

5=
4−→ 5 , if the following hold for every G ∈ H :

(i) For every sequence (G=)=∈N inH such that G= → G , 5 (G) 6 lim 5= (G=).
(ii) There exists a sequence (G=)=∈N inH such that G= → G and lim 5= (G=) 6 5 (G).

The epi-topology is the topology induced by epi-convergence.

Lemma 3.34. Suppose thatH and G are finite-dimensional, let (!=)=∈N and ! be operators inB (H ,G),
let (6=)=∈N and 6 be functions in �0 (G), and let (W=)=∈N and W be reals in ]0, +∞[. Suppose that != → !,

6=
4−→ 6, and W= → W . Then the following hold:

(i) W=6=
4−→ W6.

(ii) 6∗=
4−→ 6∗.

(iii) Suppose that ℎ : G → R is continuous. Then 6= + W=ℎ
4−→ 6 + Wℎ.

(iv) Suppose that 0 ∈ int(dom6 − ran!). Then 6= ◦ !=
4−→ 6 ◦ !.

Proof. (i): [17, Exercise 7.8(d)].

(ii): [17, Theorem 11.34].

(iii): It follows from (i) and [17, Exercise 7.8(a)] that 6=/W= + ℎ
4−→ 6/W + ℎ. Invoking (i) once more,

we obtain 6= + W=ℎ = W= (6=/W= + ℎ)
4−→ W (6/W + ℎ) = 6 + Wℎ.

(iv): [17, Exercise 7.47(a)].

Theorem 3.35. Suppose that H and G are finite-dimensional, let (!=)=∈N and ! be operators in

B (H ,G), let (6=)=∈N and 6 be functions in �0 (G), and let (W=)=∈N and W be reals in ]0, +∞[. Then
the following hold:
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(i) Suppose that != → !, 6=
4−→ 6, and W= → W . Then the following are satisfied:

(a) !=
W=⋄ 6=

4−→ !
W
⋄6.

(b) !=
W=
˛ 6=

4−→ !
W
˛ 6.

(ii) Suppose that 0 < ‖!‖ 6 1. Then the following are satisfied:

(a) Suppose that W= ↑ +∞. Then !
W=⋄ 6

4−→ (!∗ ⊲ 6)̆ .
(b) Suppose that W= ↓ 0. Then !

W=
˛ 6

4−→ 6 ◦ !.

Proof. (i)(a): It follows from Lemmas 2.4(viii) and 3.34(ii)–(iii) that

1
W=

(
6∗=

)
=

(
6= +

1

W=
QG

)∗ 4−→
(
6 + 1

W
QG

)∗
=

1
W
(
6∗

)
. (3.53)

Since Lemmas 2.1(v) and 2.4(vi) yield dom
1
W (6∗) = G, Lemma 3.34(iv) and (3.53) imply that

1
W= (6∗=) ◦

!=
4−→

1
W (6∗) ◦ !. Finally, appealing to Definition 1.1 and Lemma 3.34(ii)–(iii), we conclude that

!=
W=⋄ 6= =

(
1
W=

(
6∗=

)
◦ !=

)∗
− 1

W=
QH

4−→
(

1
W
(
6∗

)
◦ !

)∗
− 1

W
QH = !

W
⋄6. (3.54)

(i)(b): By Lemma 3.34(ii), 6∗=
4−→ 6∗. Therefore, upon combining (i)(a) and Lemma 3.34(ii), we obtain

!=
W=
˛ 6= =

(
!=

1/W=⋄ 6∗=
)∗ 4−→

(
!

1/W
⋄ 6∗

)∗
= !

W
˛ 6. (3.55)

(ii)(a): Set 5 = !∗ ⊲ 6 and (∀= ∈ N) 5= = !
W=⋄ 6. It follows from items (i) and (iii) in Theorem 3.30,

as well as Lemma 2.4(ii), that ( 5=)=∈N is decreasing and pointwise convergent to 5 as = → +∞. Fur-

ther, since 5 is convex by [2, Proposition 12.36(ii)], we deduce from [17, Proposition 7.4(c)] and [2,

Corollary 9.10] that

5=
4−→ inf

=∈N
5= = 5 = 5̆ . (3.56)

(ii)(b): Set 5 = 6 ◦ ! and (∀= ∈ N) 5= = !
W=
˛ 6. Since (W=)=∈N is decreasing, ( 5=)=∈N is increasing by

Theorem 3.30(ii). Further, Theorem 3.30(iv) and Lemma 2.4(ii) imply that ( 5=)=∈N converges pointwise
to 5 as = → +∞. On the other hand, Proposition 3.7(i) implies that (∀= ∈ N) 5= = 5=. Therefore, by

virtue of [17, Proposition 7.4(d)],

5=
4−→ sup

=∈N
5= = sup

=∈N
5= = 5 , (3.57)

which concludes the proof.

Corollary 3.36. Suppose that H and G are finite-dimensional, let ! ∈ B (H ,G), let 6 ∈ �0 (G), and
let (W=)=∈N be a sequence in ]0, +∞[. Suppose that ! is an isometry and that (ri dom6∗) ∩ (ran!) ≠ ∅.
Then the following hold:

(i) Suppose that W= ↑ +∞. Then !
W=⋄ 6

4−→ !∗ ⊲ 6.

(ii) Suppose that W= ↓ 0. Then !
W=⋄ 6

4−→ 6 ◦ !.
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(iii) For every C ∈ [0, 1], set WC = tan(cC/2). Then the operator

) : [0, 1] → �0 (H) : C →



6 ◦ !, if C = 0;

!
WC⋄ 6, if 0 < C < 1;

!∗ ⊲ 6, if C = 1

(3.58)

is continuous with respect to the epi-topology.

Proof. Proposition 3.20(iv) yields (∀W ∈ ]0, +∞[) !
W
˛6 = !

W
⋄6. Further, [2, Proposition 6.19(x)] implies

that 0 ∈ sri(dom6∗− ran!). Therefore, by virtue of Lemmas 2.5(iii) and 2.4(ii), we get !∗⊲6 ∈ �0 (H).
(i): A consequence of Theorem 3.35(ii)(a).

(ii): See Theorem 3.35(ii)(b).

(iii): Theorem 3.35(i)(a) guarantees the epi-continuity of ) on ]0, 1[. Finally, (i) and (ii) imply that

lim
0<C→0

) (C) = ) (0) and lim
1>C→1

) (C) = ) (1), respectively.

Remark 3.37. Suppose that H and G are finite-dimensional and that ! ∈ B (H ,G) satisfies

0 < ‖!‖ 6 1, let 6 ∈ �0 (G), and let (W=)=∈N be a sequence in ]0, +∞[. Under a qualification con-

dition (see Lemma 2.5(iii)), !∗ ⊲ 6 ∈ �0 (H) and, consequently, !∗ ⊲ 6 = (!∗ ⊲ 6)̆ . In this case, The-

orem 3.30(iii) and Theorem 3.35(ii)(a) show that the proximal composition converges pointwise and

epi-converges to the infimal postcomposition as W= ↑ +∞. On the other hand, Theorem 3.30(iv) and

Theorem 3.35(ii)(b) show that the proximal cocomposition converges pointwise and epi-converges to

the standard composition. Further, in the particular case in which ! ∈ B (H ,G) is an isometry, Corol-

lary 3.36(iii) asserts that 6 ◦ ! and !∗ ⊲6 are homotopic via the proximal composition with respect to

the epi-topology.

Proposition 3.38. Suppose that H and G are finite-dimensional and that ! ∈ B (H ,G) satisfies 0 <

‖!‖ 6 1, let 6 ∈ �0 (G), and let (W=)=∈N be a sequence in ]0, +∞[ such that W= ↓ 0. Suppose that

dom6 ∩ ran! ≠ ∅ and that 6 ◦ ! is coercive. Then the following hold:

(i) infG∈H (!
W=
˛ 6) (G) → minG∈H 6(!G).

(ii) There exists # ⊂ N such that N r # is finite and (∀= ∈ # ) Argmin(!
W=
˛ 6) ≠ ∅. Further,

limArgmin
(
!
W=
˛ 6

)
⊂ Argmin

(
6 ◦ !

)
. (3.59)

Proof. Set 5 = 6 ◦ ! and (∀= ∈ N) 5= = !
W=
˛ 6. Since dom6 ∩ ran! ≠ ∅, 5 ∈ �0 (H). Thus, by

[2, Proposition 11.15(i)], 5 has a minimizer over H . Further, by Proposition 3.7(i), for every = ∈ N,
5= ∈ �0 (H) and, by Theorem 3.35(ii)(b), 5=

4−→ 5 . On the other hand, [2, Proposition 11.12] asserts that

the lower level sets (lev6b 5 )b∈R are bounded. Altogether, by virtue of [17, Exercise 7.32(c)], for every
b ∈ R, there exists #b ∈ N such that

⋃
=>#b

lev6b 5= is bounded.

(i)–(ii): A consequence of [17, Theorem 7.33].

§4. Integral proximal mixtures

4.1. Definition and mathematical se�ing

Integral proximal mixtures were introduced in [7] as a tool to combine arbitrary families of convex

functions and linear operators in such a way that the proximity operator of the mixture can be ex-

pressed explicitly in terms of the individual proximity operators. They extend the proximal mixtures
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of [9], which were designed for finite families. In this section, we use the results of Section 3 to study

their variational properties. This investigation is carried out in the same framework as in [7], which

hinges on the following assumptions. Henceforth, we adopt the customary convention that the inte-

gral of an F-measurable function o : S → [−∞, +∞] is the usual Lebesgue integral
∫

S o3`, except

when the Lebesgue integral
∫

S max{o, 0}3` is +∞, in which case
∫

S o3` = +∞.

Assumption 4.1. Let (S,F, `) be a complete f-finite measure space, let (Gl )l∈S be a family of real

Hilbert spaces, and let
∏

l∈S Gl be the usual real vector space of mappings G defined onS such that

(∀l ∈ S) G (l) ∈ Gl . Let ((Gl)l∈S ,G) be an F-measurable vector field of real Hilbert spaces, that

is,G is a vector subspace of
∏

l∈S Gl which satisfies the following:

[A] For every G ∈G, the function S → R : l ↦→ ‖G (l)‖Gl
is F-measurable.

[B] For every G ∈ ∏
l∈S Gl ,

[
(∀~ ∈G) S → R : l ↦→ 〈G (l) |~(l)〉Gl

is F-measurable
]

⇒ G ∈G. (4.1)

[C] There exists a sequence (4=)=∈N inG such that (∀l ∈ S) span{4= (l)}=∈N = Gl .

Setℌ =
{
G ∈G |
∫

S ‖G (l)‖
2
Gl

` (3l) < +∞
}
, and letG be the real Hilbert space of equivalence classes

of `-a.e. equal mappings in ℌ equipped with the scalar product

〈 · | ·〉G : G × G → R : (G, ~) ↦→
∫

S

〈G (l) |~(l)〉Gl
` (3l), (4.2)

where we adopt the common practice of designating by G both an equivalence class in G and a rep-

resentative of it in ℌ. We write

G =
G∫ ⊕

S

Gl` (3l) (4.3)

and call G the Hilbert direct integral of ((Gl)l∈S ,G) [13].

Assumption 4.2. Assumption 4.1 and the following are in force:

[A] H is a separable real Hilbert space.

[B] For every l ∈ S , Ll ∈ B (H,Gl ).
[C] For every x ∈ H, the mapping eLx : l ↦→ Llx lies inG.

[D] 0 <

∫

S ‖Ll ‖
2` (3l) 6 1.

Given a complete f-finite measure space (S,F, `), a separable real Hilbert space H with Borel f-

algebra BH, and ? ∈ [1, +∞[, we set

L
?
(
S,F, `;H

)
=

{
G : S → H

���� G is (F,BH)-measurable and

∫

S

‖G (l)‖?
H
` (3l) < +∞

}
. (4.4)

The Lebesgue (also called Bochner) integral of G ∈ L
1
(
S,F, `;H

)
is denoted by

∫

S G (l)` (3l). The
space of equivalence classes of `-a.e. equal mappings inL

? (S,F, `;H) is denoted by !? (S,F, `;H).

Assumption 4.3. Assumption 4.1 and the following are in force:

[A] For every l ∈ S , gl : Gl → ]−∞, +∞] satisfies cam gl ≠ ∅.
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[B] For every G∗ ∈ ℌ, the mapping l ↦→ proxg∗l G∗ (l) lies inG.

[C] There exists A ∈ ℌ such that the function l ↦→ gl (A (l)) lies inL
1 (S,F, `;R).

[D] There exists A ∗ ∈ ℌ such that the function l ↦→ g∗l (A ∗(l)) lies inL
1 (S,F, `;R).

We introduce below parametrized versions of the integral proximal mixtures of [7, Definition 4.2].

Definition 4.4. Suppose that Assumptions 4.2 and 4.3 are in force, and let W ∈ ]0, +∞[. The integral
proximal mixture of (gl )l∈S and (Ll )l∈S with parameter W is

⋄
MW (Ll, gl )l∈S = h∗ − 1

W
QH, where (∀x ∈ H) h(x) =

∫

S

1
W
(
g∗l

)
(Llx)` (3l), (4.5)

and the integral proximal comixture of (gl )l∈S and (Ll )l∈S with parameter W is

˛

MW (Ll, gl )l∈S =

(
⋄
M1/W

(
Ll, g

∗
l

)
l∈S

)∗
. (4.6)

The following construct will also be required.

Definition 4.5 ([6, Definition 1.4]). Suppose that Assumption 4.1 is in force and, for every l ∈ S ,

let gl : Gl → [−∞, +∞]. Suppose that, for every G ∈ ℌ, the functionS → [−∞, +∞] : l ↦→ gl (G (l))
is F-measurable. The Hilbert direct integral of the functions (gl )l∈S relative toG is

G∫ ⊕

S

gl` (3l) : G → [−∞, +∞] : G ↦→
∫

S

gl
(
G (l)

)
` (3l). (4.7)

4.2. Properties

The following proposition adopts the pattern of [7, Theorem 4.3] by connecting integral proximal

mixtures to proximal compositions in the more general context of Definitions 1.1 and 4.4.

Proposition 4.6. Suppose that Assumptions 4.2 and 4.3 are in force, and let W ∈ ]0, +∞[. Define

! : H → G : x ↦→ eLx (4.8)

and

6 =
G∫ ⊕

S

g∗∗l ` (3l). (4.9)

Then the following hold:

(i) ! ∈ B (H,G) and 0 < ‖!‖ 6 1.

(ii) !∗ : G → H : G∗ ↦→
∫

S L∗l (G∗(l))` (3l).
(iii) 6 ∈ �0 (G).

(iv)
⋄
MW (Ll, gl )l∈S = !

W
⋄6.

(v)
˛

MW (Ll, gl )l∈S = !
W
˛ 6.

Proof. (i): We deduce from [6, Proposition 3.12(ii)] and Assumption 4.2[D] that ! ∈ B (H,G) and that
0 < ‖!‖2 6
∫

S ‖Ll ‖
2` (3l) 6 1.

(ii): See [6, Proposition 3.12(v)].

To establish (iii)–(v), set o : S → R : l ↦→ −g∗∗l (A (l)) and (∀l ∈ S) fl = g∗l . Let us show that

(fl)l∈S satisfies the following:
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[A]’ For every l ∈ S , fl ∈ �0 (Gl).
[B]’ For every G ∈ ℌ, the mapping l ↦→ proxfl (G (l)) lies inG.

[C]’ The function l ↦→ fl (A ∗(l)) lies inL
1 (S,F, `;R).

[D]’ o ∈ L
1 (S,F, `;R) and, for every l ∈ S , fl > 〈A (l) | ·〉Gl

+ o (l).

This will confirm that (fl)l∈S satisfies the properties of [6, Assumption 4.6]. First, it follows from

items [A] and [C] inAssumption 4.3 and fromLemma 2.1(v) that [A]’ holds. Second, Assumption 4.3[B]

implies that [B]’ holds, while Assumption 4.3[D] implies that [C]’ holds. Let us now show that o ∈
L

1 (S,F, `;R). As in the proof of [6, Theorem 4.7(ix)], −o is F-measurable. Further, by (1.1) and

Lemma 2.1(i),

(∀l ∈ S) 〈· | A ∗ (l)〉Gl
− g∗l

(
A ∗ (l)

)
6 g∗∗l 6 gl . (4.10)

Thus, we infer from Assumption 4.3[C]–[D] that g∗∗l is bounded by integrable functions, which shows

that

o ∈ L
1 (S,F, `;R). (4.11)

On the other hand, it follows from Lemma 2.1(iii) and (1.1) that, for every l ∈ S , fl = g∗∗∗l >

〈A (l) | ·〉Gl
− g∗∗l (A (l)) = 〈A (l) | ·〉Gl

+ o (l), which provides [D]’. Therefore (fl)l∈S satisfies the

conclusions of [6, Theorem 4.7]. In particular, [6, Theorem 4.7(i)–(ii)] entail that

5 =
G∫ ⊕

S

fl` (3l) (4.12)

is a well-defined function in �0 (G) and from [6, Theorem 4.7(ix)] and Lemma 2.4(ii) that

6 = 5 ∗ ∈ �0 (G). (4.13)

(iii): See (4.13).

(iv): By [6, Theorem 4.7(viii)],

1
W 5 =

G∫ ⊕

S

1
W fl` (3l). (4.14)

Further, by (iii) and Lemma 2.4(ii), 6∗ = 5 . In turn, (4.8) and (4.14) imply that

1
W
(
6∗

)
◦ ! : H → R : x ↦→

∫

S

1
W
(
g∗l

) (
Llx

)
` (3l). (4.15)

In view of Definitions 1.1 and 4.4, the assertion is proved.

(v): Let us show that (fl)l∈S fulfills the properties of Assumption 4.3 by showing that the following

hold:

[A]” For every l ∈ S , fl : Gl → ]−∞, +∞] satisfies cam fl ≠ ∅.
[B]” For every G∗ ∈ ℌ, the mapping l ↦→ proxf∗l G∗ (l) lies inG.

[C]” The function l ↦→ fl (A ∗(l)) lies inL
1 (S,F, `;R).

[D]” The function l ↦→ f∗l (A (l)) lies inL
1 (S,F, `;R).
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We first note that [A]’ and Lemma 2.4(i) imply that [A]” holds, and that [C]’⇔[C]”. Additionally,

it follows from (4.11) that [D]” holds. It remains to establish [B]”. Assumption 4.3[B] asserts that,

for every G∗ ∈ ℌ, the mapping l ↦→ proxfl G∗ (l) lies in G. Therefore, the inclusion ℌ ⊂ G,

Lemma 2.4(iv), and the fact the G is a vector space imply that, for every G∗ ∈ ℌ, the mapping

l ↦→ proxf∗l G∗ (l) = G∗ (l) − proxfl G∗ (l) lies inG, which provides [B]”. Hence, we combine Defi-

nition 4.4, the application of (iv) to (fl)l∈S , (4.13), Lemma 2.4(ii), and Definition 1.1, to obtain

˛

MW (Ll, gl )l∈S =
( ⋄
M1/W (Ll, fl )l∈S

)∗
=

(
!

1/W
⋄ 5

)∗
=

(
!

1/W
⋄ 6∗

)∗
= !

W
˛ 6, (4.16)

which completes the proof.

Our main results on integral proximal mixtures are the following.

Theorem 4.7. Suppose that Assumptions 4.2 and 4.3 are in force, and letW ∈ ]0, +∞[. Then the following
hold:

(i)
⋄
MW (Ll, gl )l∈S ∈ �0 (H).

(ii)
˛

MW (Ll, gl )l∈S ∈ �0 (H).

(iii) (
˛

MW (Ll, gl )l∈S )∗ =
⋄
M1/W (Ll, g∗l )l∈S .

(iv)
⋄
MW (Ll, gl )l∈S = (

˛

M1/W (Ll, g∗l )l∈S )∗.

(v) Let x ∈ H. Then prox
W

⋄
MW (Ll ,gl )l∈S

x =

∫

S

L∗l (proxWg∗∗l (Llx)) ` (3l).

(vi) Let x ∈ H. Then prox
W

˛

MW (Ll ,gl )l∈S
x = x −
∫

S

L∗l (Llx − proxWg∗∗l (Llx)) ` (3l).

(vii) Define 6 as in (4.9) and ! as in (4.8). Then the following are satisfied:

(a) m(
⋄
MW (Ll, gl )l∈S ) = !∗ ⊲ (m6 + (IdG − ! ◦ !∗)/W).

(b) m(
˛

MW (Ll, gl )l∈S ) = !∗ ◦ (m6∗ + W (IdG − ! ◦ !∗))−1 ◦ !.

(viii) Let x ∈ H. Then
W

(
˛

MW (Ll, gl )l∈S ) (x) =
∫

S

W(g∗∗l ) (Llx) ` (3l).

(ix) Argminx∈H(
˛

MW (Ll, gl )l∈S ) (x) = Argminx∈H

∫

S

W(g∗∗l ) (Llx) ` (3l).

(x) Let x ∈ H. Then (rec
˛

MW (Ll, gl )l∈S ) (x) =
∫

S

(rec(g∗∗l )) (Llx) ` (3l).

(xi) Suppose that ` is a probability measure and that there exists V ∈ ]0, +∞[ such that, for every

l ∈ S , gl : Gl → R is convex and V-Lipschitzian. Then
˛

MW (Ll, gl )l∈S is V-Lipschitzian.

Proof. Define ! as in (4.8) and 6 as in (4.9). Recall from items (i) and (iii) in Proposition 4.6 that ! ∈
B (H,G), 0 < ‖!‖ 6 1, and 6 ∈ �0 (G). Additionally, by Proposition 4.6(iv)–(v),

⋄
MW (Ll, gl )l∈S = !

W
⋄6 and

˛

MW (Ll, gl )l∈S = !
W
˛ 6. (4.17)

Also, proceeding as in the proof of Proposition 4.6, it can be shown that

(
g∗∗l

)
l∈S satisfies the properties of [6, Assumption 4.6]. (4.18)
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Thus, by [6, Theorem 4.7(iv)],

(∀G ∈ G)
(
proxW6 G

)
(l) = proxWg∗∗l

(
G (l)

)
for `-almost every l ∈ S. (4.19)

(i)–(iv): These are consequences of (4.17) and Proposition 3.7.

(v): It follows from (4.17), Propositions 3.10(i) and 4.6(ii), and (4.19) that

prox
W

⋄
MW (Ll ,gl )l∈S

x = !∗
(
proxW6 (!x)

)
=

∫

S

L∗l

(
proxWg∗∗l

(
Llx

))
` (3l). (4.20)

(vi): It follows from (4.17), Propositions 3.10(ii) and 4.6(ii), and (4.19) that

prox
W

˛

MW (Ll ,gl )l∈S
x = x − !∗

(
!x − proxW6 (!x)

)

= x −
∫

S

L∗l

(
Llx − proxWg∗∗l

(
Llx

) )
` (3l). (4.21)

(vii): A consequence of (4.17) and Proposition 3.11.

(viii): By (4.18) and [6, Theorem 4.7(viii)],

W6 =
G∫ ⊕

S

W (
g∗∗l

)
` (3l). (4.22)

However, by Lemma 2.4(ii), 6 = 6∗∗. Therefore, (4.17), Proposition 3.13(ii) and (4.22) yield

W ( ˛

MW (Ll, gl )l∈S
)
(x) =

W (
!

W
˛ 6

)
(x) = W6(!x) =

∫

S

W (
g∗∗l

)
(Llx) ` (3l). (4.23)

(ix): The assertion is obtained by using successively (4.17), Corollary 3.14, and (viii).

(x): By (4.18) and [6, Theorem 4.7(x)],

rec6 =
G∫ ⊕

S

rec
(
g∗∗l

)
` (3l) (4.24)

However, by Lemma 2.4(ii), 6 = 6∗∗. Hence, it results from (4.17), Proposition 3.16, and (4.24) that

(
rec

˛

MW (Ll , gl )l∈S
)
(x) =

(
rec

(
!

W
˛ 6

))
(x) =

(
rec6

)
(!x) =
∫

S

(
rec(g∗∗l )

)
(Llx) ` (3l). (4.25)

(xi): It follows from (4.9), Lemma 2.4(ii), and Jensen’s inequality ([2, Proposition 9.24]) that

(∀G ∈ G)(∀~ ∈ G) |6(G) − 6(~) |2 =
����
∫

S

(
gl

(
G (l)

)
− gl

(
~(l)

) )
` (3l)

����
2

6

∫

S

��gl
(
G (l)

)
− gl

(
~(l)

) ��2 ` (3l)

6 V2
∫

S
‖G (l) − ~(l)‖2Gl

` (3l)

= V2‖G − ~‖2G . (4.26)

Therefore, 6 is V-Lipschitzian, and the conclusion follows from (4.17) and Corollary 3.12.

Our second batch of results focuses on approximation properties.
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Theorem 4.8. Suppose that Assumptions 4.2 and 4.3 are in force. For every x ∈ H, define

( ⊲
M(Ll, gl )l∈S

)
(x) = inf

{
∫

S

g∗∗l (G (l))` (3l)
���� G ∈ G and

∫

S

L∗l (G (l))` (3l) = x

}
(4.27)

and write (
⊲

M(Ll, gl )l∈S ) (x) = (
·⊲
M(Ll, gl )l∈l ) (x) if the infimum is attained. Then the following hold:

(i) Let W ∈ ]0, +∞[. Then
⋄
MW (Ll, gl )l∈S >

⊲

M(Ll , gl )l∈S .

(ii) Let W ∈ ]0, +∞[ and x ∈ H. Then

∫

S

W(g∗∗l ) (Llx) ` (3l) 6
(

˛

MW (Ll, gl )l∈S
)
(x) 6
∫

S

g∗∗l (Llx) ` (3l). (4.28)

(iii) Let W ∈ ]0, +∞[. Then
˛

MW (Ll, gl )l∈S 6
⋄
MW (Ll, gl )l∈S .

(iv) Let W ∈ ]0, +∞[ and suppose that ` is a probability measure and that, for every l ∈ S , Ll is an

isometry. Then
⋄
MW (Ll, gl )l∈S =

˛

MW (Ll, gl )l∈S .

(v) Let W ∈ ]0, +∞[ and suppose that ! in (4.8) is a coisometry. Then the following are satisfied:

(a)
⋄
MW (Ll, gl )l∈S =

·⊲
M(Ll, gl )l∈S .

(b) Let x ∈ H. Then (
˛

MW (Ll, gl )l∈S ) (x) =
∫

S

g∗∗l (Llx) ` (3l).

(vi) Let x ∈ H. Then the following are satisfied:

(a) lim
W→+∞

(
⋄
MW (Ll, gl )l∈S ) (x) = (

⊲

M(Ll, gl )l∈S ) (x).

(b) lim
0<W→0

(
˛

MW (Ll , gl )l∈S ) (x) =
∫

S

g∗∗l (Llx) ` (3l).

(vii) Suppose that H and G are finite-dimensional, and let (W=)=∈N be a sequence in ]0, +∞[. Then the

following are satisfied:

(a) Suppose that W= ↑ +∞. Then
⋄
MW= (Ll, gl )l∈S

4−→
( ⊲
M(Ll, gl )l∈S

)̆
.

(b) Suppose thatW= ↓ 0. Then
˛

MW= (Ll, gl )l∈S
4−→ f, where (∀x ∈ H) f (x) =

∫

S

g∗∗l (Llx) ` (3l).

(c) Suppose that W= ↓ 0 and that the function x ↦→
∫

S

g∗∗l (Llx)` (3l) is proper and coercive.

Then infx∈H (
˛

MW= (Ll, gl )l∈S ) (x) → minx∈H

∫

S

g∗∗l (Llx) ` (3l).

Proof. Define ! as in (4.8) and 6 as in (4.9), and recall from items (i) and (iii) of Proposition 4.6 that

! ∈ B (H,G), 0 < ‖!‖ 6 1, and 6 ∈ �0 (G). Further, by Proposition 4.6(iv)–(v),

⋄
MW (Ll, gl )l∈S = !

W
⋄6, and

˛

MW (Ll, gl )l∈S = !
W
˛ 6. (4.29)

Additionally, Proposition 4.6(ii) yields

(∀x ∈ H)
(
!∗ ⊲ 6

)
(x) = inf

G∈G
!∗G=x

6(G) =
( ⊲
M(Ll, gl )l∈S

)
(x). (4.30)
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On the other hand,

(∀x ∈ H) 6(!x) =
∫

S

g∗∗l
(
(eLx) (l)

)
` (3l) =
∫

S

g∗∗l
(
Llx

)
` (3l). (4.31)

(i): The assertion follows from (4.29), (4.30), and Proposition 3.20(i).

(ii): Combine (4.29), (4.31), and Proposition 3.20(ii).

(iii): This is a consequence of (4.29) and Proposition 3.20(iii).

(iv): We have

(∀x ∈ H) ‖!x‖2G =

∫

S

‖Llx‖2Gl
` (3l) =
∫

S

‖x‖2H` (3l) = ` (S)‖x‖2H = ‖x‖2H. (4.32)

Therefore, ! is an isometry and the assertion follows from (4.29) and Proposition 3.20(iv).

(v)(a): This follows from (4.29), (4.30), and Proposition 3.20(v).

(v)(b): This follows from (4.29), (4.31), and Proposition 3.20(v).

(vi)(a): This follows from (4.29), (4.30), and Theorem 3.30(iii).

(vi)(b): This follows from (4.29), (4.31), and Theorem 3.30(iv).

(vii)(a): This follows from (4.29), (4.30), and Theorem 3.35(ii)(a).

(vii)(b): This follows from (4.29), (4.31), and Theorem 3.35(ii)(b).

(vii)(c): This follows from (4.29), (4.31), and Proposition 3.38(i).

Example 4.9. Let ? ∈ Nr {0}, let (U:)16:6? be a family in ]0, +∞[, let H and (G: )16:6? be separable

real Hilbert spaces, letG = G1 × · · · × G? be the usual Cartesian product vector space, with generic

element G = (x: )16:6? , and, for every : ∈ {1, . . . , ?}, let L: ∈ B (H,G: ) and let g: ∈ �0 (G:). Suppose
that 0 <

∑?

:=1
U: ‖L: ‖2 6 1 and set

S = {1, . . . , ?}, F = 2{1,...,?}, and
(
∀: ∈ {1, . . . , ?}

)
`
(
{:}

)
= U: , (4.33)

Then ((G:)16:6? ,G) is an F-measurable vector field of real Hilbert spaces and
G∫ ⊕

S Gl` (3l) is the
weighted Hilbert direct sum of (G: )16:6? , namely the Hilbert space obtained by equippingG with

the scalar product (G, ~) ↦→ ∑?

:=1
U: 〈x: | y: 〉G:

. Further,
∫

S ‖Ll ‖2` (3l) =
∑?

:=1
U: ‖L: ‖2 ∈ ]0, 1].

Therefore, Assumptions 4.2 and 4.3 are satisfied, and (4.5) becomes a parametrized version of the

proximal mixture of [9, Example 5.9], namely,

⋄
MW (L:, g: )16:6? =

( ?∑

:=1

U:
1
W
(
g∗:

)
◦ L:

)∗
− 1

W
QH, (4.34)

while (4.6) becomes a parametrized version of the proximal comixture

˛

MW (L:, g: )16:6? =

(( ?∑

:=1

U:
W (
g∗∗:

)
◦ L:

)∗
− WQH

)∗
. (4.35)

In particular, for every x ∈ H, we derive from Theorem 4.8(vi) the following new facts:

(i) lim
W→+∞

( ⋄
MW (L:, g: )16:6?

)
(x) =

( ⊲
M(L:, g: )16:6?

)
(x) = inf

y1∈G1,...,y?∈G?∑?

:=1
U:L

∗
:
y:=x

( ?∑

:=1

U:g
∗∗
: (y: )

)
.

(ii) lim
0<W→0

(
˛

MW (L: , g: )16:6?
)
(x) =

?∑

:=1

U:g
∗∗
: (L:x).
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Example 4.10. In the context of Example 4.9, suppose thatH is finite-dimensional and that, for every

: ∈ {1, . . . , ?}, G: is finite-dimensional and g: ∈ �0 (G: ). Let (W=)=∈N be a sequence in ]0, +∞[. Then
we obtain the following new results on proximal mixtures and comixtures.

(i) Suppose that W= ↑ +∞. Then Theorem 4.8(vii)(a) implies that

⋄
MW= (L:, g: )16:6?

4−→
( ⊲
M(L: , g: )16:6?

)̆
. (4.36)

(ii) Suppose that W= ↓ 0. Then Theorem 4.8(vii)(b) implies that
˛

MW= (L: , g: )16:6?
4−→ ∑?

:=1
U:g: ◦ L: .

(iii) Suppose that W= ↓ 0 and that the function
∑?

:=1
U:g: ◦ L: is proper and coercive. Then Theo-

rem 4.8(vii)(c) implies that

inf
x∈H

(
˛

MW= (L: , g: )16:6?
)
(x) → min

x∈H

?∑

:=1

U:g: (L:x). (4.37)

Remark 4.11. In connection with Example 4.10, it was empirically argued in [11] (see also [14,

15, 18, 20] for the special cases of proximal averages) that, in variational formulations arising in

image recovery and machine learning, combining linear operators (L:)16:6? and convex functions

(g: )16:6? by means of the proximal comixture (4.35) instead of the standard averaging operation∑?

:=1
U:g: ◦ L: had modeling and numerical advantages. For instance, the proximity of the former

is intractable in general [12], while that of the latter is explicitly given by Theorem 4.7(vi) to be

IdH − ∑?

:=1
U: (L∗: ◦ (IdG:

− proxWg: ) ◦ L: ), which makes the implementation of first-order optimiza-

tion algorithms [10] straightforward. The results of Example 4.10 provide a theoretical context that

sheds more light on such an approximation.

4.3. Proximal expectations

We specialize the results of Section 4.2 to the proximal expectation. This operation, introduced in

[7, Definition 4.6] as an extension of the proximal average for finite families, performs a nonlinear

averaging of an arbitrary family of functions. We study here the following extension of it which

incorporates a parameter.

Definition 4.12. Let (S,F, P) be a complete probability space, letH be a separable real Hilbert space,

let (fl)l∈S be a family of functions in �0 (H) such that the function

S × H → ]−∞, +∞] : (l, x) ↦→ fl (x) (4.38)

is F ⊗BH-measurable. Suppose that there exist A ∈ L
2 (S,F, P;H) and A ∗ ∈ L

2 (S,F, P;H) such that

the functions l ↦→ fl (A (l)) and l ↦→ f∗l (A ∗(l)) lie in L
1 (S,F, P;R). The proximal expectation of

(fl)l∈S with parameter W ∈ ]0, +∞[ is
⋄
EW (fl)l∈S = h∗ − 1

W
QH, where (∀x ∈ H) h(x) =

∫

S

1
W
(
f∗l

)
(x)P(3l). (4.39)

An inspection of Definition 4.4 suggests that the proximal expectation can be viewed as the instance

of the integral proximal mixture in which (∀l ∈ S) Gl = H and Ll = IdH. This fact opens the

possibility of specializing the results of Section 4.2 to obtain properties of the proximal expectation.

Let us formalize these ideas.
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Proposition 4.13. Consider the setting of Definition 4.12 and let W ∈ ]0, +∞[. Then the following hold:

(i)
⋄
EW (fl )l∈S =

⋄
MW

(
IdH, fl

)
l∈S =

˛

MW

(
IdH, fl

)
l∈S .

(ii)
⋄
EW (fl )l∈S ∈ �0 (H).

(iii) (
⋄
EW (fl)l∈S )∗ =

⋄
E1/W (f∗l )l∈S .

(iv) Let x ∈ H. Then prox
W

⋄
EW (fl )l∈S

x =

∫

S

proxWfl x P(3l).

(v) Let x ∈ H. Then
W

(
⋄
EW (fl)l∈S ) (x) =

∫

S

Wfl (x) P(3l).

(vi) Argminx∈H(
⋄
EW (fl)l∈S ) (x) = Argminx∈H

∫

S

Wfl (x) P(3l).

(vii) Let x ∈ H. Then (rec
⋄
EW (fl)l∈S ) (x) =

∫

S

(rec fl) (x) P(3l).

(viii) Suppose that there exists V ∈ ]0, +∞[ such that, for every l ∈ S , fl : H → R is V-Lipschitzian.

Then
⋄
EW (fl)l∈S is V-Lipschitzian.

Proof. (i): As in the proof of [7, Proposition 4.7], the family (fl)l∈S fulfills the properties of Assump-

tion 4.3. Therefore, the conclusion follows from (4.39), (4.5), and Theorem 4.8(iv).

(ii)–(viii): Combine (i) and Theorem 4.7.

Remark 4.14. Item (iv) in Proposition 4.13 justifies calling
⋄
EW (fl)l∈S the proximal expectation of

(fl)l∈S : its proximity operator is the expected value of the individual ones.

Proposition 4.15. Consider the setting of Definition 4.12. For every x ∈ H, define

( ⊲
E (fl)l∈S

)
(x) = inf

{
∫

S

fl (G (l))P(3l)
���� G ∈ !2 (S,F, P;H) and

∫

S

G (l)P(3l) = x

}
. (4.40)

Then the following hold:

(i) Let W ∈ ]0, +∞[ and x ∈ H. Then (
⋄
EW (fl)l∈S ) (x) >

∫

S

Wfl (x) P(3l).

(ii) Let W ∈ ]0, +∞[ and x ∈ H. Then

( ⊲
E (fl)l∈S

)
(x) 6

(⋄
EW (fl)l∈S

)
(x) 6
∫

S

fl (x) P(3l). (4.41)

(iii) Let x ∈ H. Then the following are satisfied:

(a) lim
W→+∞

(
⋄
EW (fl)l∈S ) (x) = (

⊲

E (fl)l∈S ) (x).

(b) lim
0<W→0

(
⋄
EW (fl)l∈S ) (x) =

∫

S

fl (x) P(3l).

(iv) Suppose that H and G are finite-dimensional, and let (W=)=∈N be a sequence in ]0, +∞[. Then the

following are satisfied:

(a) Suppose that W= ↑ +∞. Then
⋄
EW= (fl)l∈S

4−→
( ⊲
E (fl)l∈S

)̆
.

(b) Suppose that W= ↓ 0. Then
⋄
EW= (fl)l∈S

4−→ f, where (∀x ∈ H) f (x) =
∫

S

fl (x) P(3l).
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(c) Suppose that W= ↓ 0 and that the function x ↦→
∫

S

fl (x)P(3l) is proper and coercive. Then

infx∈H (
⋄
EW= (fl)l∈S ) (x) → minx∈H

∫

S

fl (x)P(3l).

Proof. Combine Proposition 4.13(i) and Theorem 4.8.

Remark 4.16. Suppose that (f: )16:6? is a finite family of functions in �0 (H) and define P as in (4.33),

with the additional assumption that
∑?

:=1
U: = 1. Then

⋄
E(f:)16:6? is the proximal average of (f:)16:6? ,

studied in [3] (see also [9, Example 5.9]), namely,

⋄
EW (f:)16:6? =

( ?∑

:=1

U:
1
W
(
f∗:

))∗
− 1

W
QH = pavW (f: )16:6? . (4.42)

In this context, Propositions 4.13(i)–(vi) and 4.15 recover properties presented in [3]. On the other

hand, Proposition 4.13(vii)–(viii) yields the following new properties of the proximal average:

(i) rec(pavW (f:)16:6? ) =
∑?

:=1
U: rec f: .

(ii) Suppose that there exists V ∈ ]0, +∞[ such that, for every : ∈ {1, . . . , ?}, f: : H → R is V-

Lipschitzian. Then pavW (f: )16:6? is V-Lipschitzian.

We conclude by making a connection between proximal expectations and integral proximal comix-

tures that extends Proposition 4.13(i).

Proposition 4.17. Let (S,F, P) be a complete probability space, suppose that Assumptions 4.2 and

4.3 are in force, and let W ∈ ]0, +∞[. Further, for every l ∈ S , suppose that 0 < ‖Ll ‖ 6 1 and set

fl = Ll
W
˛ gl . Suppose that the function S × H → ]−∞, +∞] : (l, x) ↦→ fl (x) is F ⊗ BH-measurable

and that there exist B ∈ L
2 (S,F, P;H) and B∗ ∈ L

2 (S,F, P;H) such that the functions l ↦→ fl (B (l))
and l ↦→ f∗l (B∗ (l)) lie in L

1 (S,F, P;R). Then

⋄
EW

(
Ll

W
˛ gl

)
l∈S

=
˛

MW (Ll, gl )l∈S . (4.43)

Proof. As in the proof of [7, Proposition 4.7], the family (fl)l∈S fulfills the properties of Assump-

tion 4.3. On the other hand, Proposition 4.13(ii) and Theorem 4.7(ii) assert that
⋄
EW (fl)l∈S and

˛

MW (Ll, gl )l∈S are in �0 (H). Further, Propositions 4.13(v) and 3.13(ii), together with Theorem 4.7(viii)

yield

(∀x ∈ H)
W (⋄
EW (fl)l∈S

)
(x) =
∫

S

Wfl (x) P(3l)

=

∫

S

W (
Ll

W
˛ gl

)
(x) P(3l)

=

∫

S

W (
g∗∗l

)
(Llx) P(3l)

=
W ( ˛

MW (Ll, gl )l∈S
)
(x), (4.44)

and the assertion therefore follows from Lemma 2.6.
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