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FEJÉR MONOTONICITY IN CON-

VEX OPTIMIZATION

Let S be a nonempty closed and convex set in a

real Hilbert space H with norm ‖·‖. A sequence

(xn)n≥0 of points in H is said to be Fejér mono-

tone with respect to S (or simply S-Fejérian)

if

(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖xn − x‖ .

(1)

In words, each point in the sequence is not fur-

ther from any point in S than its predecessor.

Given x0 ∈ H, a typical example of S-Fejérian

sequence is that generated by the algorithm

(∀n ∈ N) xn+1 = Txn,

where T : H → H is a nonexpansive operator,

i.e.,

(∀(x, y) ∈ H2) ‖Tx− Ty‖ ≤ ‖x− y‖ , (2)

with nonempty fixed point set S. Under suitable

assumptions, the sequence of successive approx-

imations (xn)n≥0 converges to a point in S [20].

In convex optimization, one frequently en-

counters algorithms whose orbits (xn)n≥0 are

Fejér monotone with respect to the solution set.

In order to simplify and standardize the conver-

gence proofs of this broad class of algorithms,

it is important to investigate the notion of Fejér

monotonicity and to bring out some general con-

vergence principles. These are precisely the ob-

jectives of the present article.

Notation and assumptions. Throughout, the

sequence (xn)n≥0 is Fejér monotone with respect

to a nonempty closed and convex set S in a real

Hilbert space H with scalar product 〈· | ·〉, norm

‖·‖, and distance d. For every n ∈ N, pn denotes

be the projection of xn onto S, i.e., the unique

point pn ∈ S such that ‖xn − pn‖ = d(xn, S).

Recall that pn is characterized by the variational

inequality

(∀x ∈ S) 〈x− pn | xn − pn〉 ≤ 0. (3)

The expressions xn ⇀ x and xn → x denote re-

spectively the weak and strong convergence of

(xn)n≥0 to x. W and S denotes respectively the

sets of weak and strong cluster points of (xn)n≥0.

Finally, Id denotes the identity operator on H.

Basic Convergence Properties. By way of

preamble, some immediate consequences of (1)

are stated below.

Proposition 1 The following assertions hold.

i) (xn)n≥0 is bounded.

ii) (∀x ∈ S) (‖xn − x‖)n≥0 converges.

iii) (d(xn, S))n≥0 is nonincreasing.

iv) (∀x ∈ S) xn → x ⇔ lim ‖xn− x‖ = 0 ⇔

S ∩S 6= ∅.

�

Weak convergence. In general, Fejér monotone

sequences do not converge, even weakly (con-

sider for instance the {0}-Fejérian sequence

((−1)nx0)n≥0 with x0 6= 0). By virtue of Propo-

sition 1i), W 6= ∅ and a necessary condition

for (xn)n≥0 to converge weakly to a point in S

is W ⊂ S. A remarkable consequence of Fejér

monotonicity is that this condition is also suf-

ficient. To see this, take y1 and y2 in W, say

xkn ⇀ y1 and xln ⇀ y2, and x ∈ S. By Proposi-

tion 1ii),

lim ‖xkn− x‖2 = lim ‖xln− x‖2 .

Therefore, by expanding,

lim ‖xkn‖
2 − lim ‖xln‖

2 = 2〈x | y1 − y2〉.

It follows that

S ⊂ {x ∈ H : 〈x | y1 − y2〉 = α} , (4)

where α = (lim ‖xkn‖
2 − lim ‖xln‖

2)/2. Thus,

(y1, y2) ∈ S2 ⇒ α = 〈y1 | y1−y2〉 = 〈y2 | y1−y2〉

⇒ y1 = y2. Consequently, the bounded sequence

(xn)n≥0 cannot have more than one weak clus-

ter point in S. This fundamental property will

be recorded as:

Proposition 2 (xn)n≥0 converges weakly to a

point in S if and only if W ⊂ S. �

Two additional properties are worth mentioning

in connection with weak convergence.

• Let affS be the closed affine hull of S.

If y1 6= y2, then (4) asserts that S is

contained in a closed affine hyperlane. If

affS = H, W reduces to a singleton and

(xn)n≥0 therefore converges weakly.

Fejér monotone → Fejér monotone sequence

Fejérian→ Fejérian→ Fejérian
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• Suppose that xn ⇀ x ∈ S and let x ∈ H.

Then the identities

(∀n ∈ N) ‖xn − x‖2 = ‖xn − x‖2 +

2〈xn − x | x− x〉+ ‖x− x‖2

together with Proposition 1ii) imply that

(‖xn − x‖)n≥0 converges.

Strong convergence. As evidenced by the clas-

sical counterexample of [13], xn ⇀ x ∈ S 6⇒

xn → x ∈ S. Accordingly, strong convergence

conditions for Fejér monotone sequences must

be identified.

First, consider the projected sequence

(pn)n≥0. It follows from (1) and (3) that for

every (m,n) ∈ N2

‖pn−pn+m‖
2 = ‖pn−xn+m‖

2

+2〈 pn−xn+m | xn+m−pn+m〉

+ ‖xn+m−pn+m‖
2

≤ d(xn, S)
2−d(xn+m, S)2

+2〈 pn−pn+m | xn+m−pn+m〉

≤ d(xn, S)
2−d(xn+m, S)2.

Consequently, since (d(xn, S))n≥0 converges by

Proposition 1iii), (pn)n≥0 is a Cauchy sequence.

This establishes:

Proposition 3 (pn)n≥0 converges strongly. �

This result, which is of interest in its own right,

also leads to a simple criterion for the strong

convergence of (xn)n≥0 to a point in S. Indeed,

suppose that limd(xn, S) = 0. Then, thanks to

Proposition 1iii), d(xn, S)→ 0, i.e., xn−pn → 0.

On the other hand, by Proposition 3, pn → x

with x ∈ S since S is closed. One thus obtains:

Proposition 4 (xn)n≥0 converges strongly to a

point in S if and only if limd(xn, S)=0. �

Going back to (4), assume now that (y1, y2) ∈

S
2. Then α = (‖y1‖

2 − ‖y2‖
2)/2 and (4) there-

fore becomes

S ⊂

{

x ∈ H :

〈

x−
y1 + y2

2

∣

∣

∣

∣

y1−y2

〉

= 0

}

= {x ∈ H : ‖x− y1‖ = ‖x− y2‖} . (5)

In words, if (xn)n≥0 possesses two distinct strong

cluster points y1 and y2, S is contained in

the closed affine hyperplane whose elements are

equidistant from y1 and y2. If affS = H, it re-

sults from (5) that (xn)n≥0 possesses at most one

strong cluster point. This happens in particular

when the interior of S is nonempty (Slater con-

dition). In this case, however, a sharper result

holds, namely (xn)n≥0 converges strongly [22].

Linear convergence. Proposition 1iii) asserts

that (d(xn, S))n≥0 is nonincreasing. Assume now

that it decreases at a linear rate, say

(∃κ ∈ ]0, 1[)(∀n ∈ N) d(xn+1, S) ≤ κd(xn, S).

(6)

Then, in view of Proposition 4, xn → x ∈ S. On

the other hand, for every (m,n) ∈ N2, (1) yields

‖xn − xn+m‖ ≤ ‖xn − pn‖+ ‖xn+m − pn‖

≤ 2d(xn, S).

Thus ‖xn − x‖ ≤ 2d(xn, S) and one reaches the

following conclusion.

Proposition 5 Suppose that (6) holds. Then

(xn)n≥0 converges linearly to a point x ∈ S:

(∀n ∈ N) ‖xn − x‖ ≤ 2κnd(x0, S). �

Geometric Construction. In order to make

the above theoretical convergence results more

readily applicable in concrete problems, it will

henceforth be assumed that (xn)n≥0 has been

generated by the following algorithm.

Algorithm 1: General Fejérian scheme

0. Take x0 ∈ H and set n = 0.

1. Generate a closed affine half-space Hn

such that S ⊂ Hn.

2. Compute the projection Pnxn of xn
onto Hn and take λn ∈ [0, 2].

3. Set xn+1 = xn + λn (Pnxn − xn).

4. Set n = n+ 1 and go to step 1.

The relaxation parameter λn determines the

position of the update xn+1 on the closed seg-

ment between the current iterate xn and its re-

flection rn = 2Pnxn − xn with respect to Hn

(see Fig. 1). In some problems, it is possible to

significantly accelerate the progression of the it-

erates towards a solution by proper choice of the

relaxation sequence (λn)n≥0 [5].
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Fig. 1: A Fejérian iteration.

Hereafter, two properties of the relaxation se-

quence will be considered, namely
∑

n≥0

λn(2− λn) = +∞ (7)

and

(λn)n≥0 lies in [ε, 2 − ε], where ε ∈ ]0, 1[ . (8)

Now fix x ∈ S. Then, for every n ∈ N,

‖xn+1 − x‖2 = ‖xn − x‖2 + λ2
n ‖Pnxn − xn‖

2

+2λn〈xn − x | Pnxn − xn〉

≤ ‖xn − x‖2

−λn(2− λn)d(xn,Hn)
2. (9)

Consequently, (xn)n≥0 is S-Fejérian and
∑

n≥0

λn(2− λn)d(xn,Hn)
2 < +∞. (10)

Furthermore, if (λn)n≥0 lies in [0, 2−ε] for some

ε ∈ ]0, 1[, then the series
∑

n≥0
‖xn+1−xn‖

2 and
∑

n≥0
〈x− xn | xn+1 − xn〉 converge [6], [15].

In view of (10), the next two convergence

results are immediate consequences of Proposi-

tions 2 and 4, respectively.

Proposition 6 (xn)n≥0 converges weakly to a

point in S if one of the conditions below is ful-

filled.

i) (10) ⇒ W ⊂ S.

ii) (7) is in force and lim d(xn,Hn) = 0 ⇒

W ⊂ S.

iii) (8) is in force and
∑

n≥0
d(xn,Hn)

2 < +∞

⇒ W ⊂ S.

�

Proposition 7 (xn)n≥0 converges strongly to

a point in S if one of the conditions below is

fulfilled.

i) (10) ⇒ lim d(xn, S) = 0.

ii) (7) is in force and lim d(xn,Hn) = 0 ⇒

lim d(xn, S) = 0.

iii) (8) is in force and
∑

n≥0
d(xn,Hn)

2 < +∞

⇒ lim d(xn, S) = 0.

�

To investigate linear convergence, assume that

(∃ η ∈ ]0, 1[)(∀n ∈ N) d(xn,Hn) ≥ ηd(xn, S)

(11)

and that (8) holds. Then x = pn in (9) supplies

d(xn+1, S)
2 ≤ ‖xn+1 − pn‖

2

≤ d(xn, S)
2 − ε2d(xn,Hn)

2

≤ (1− ε2η2)d(xn, S)
2.

Whence, Proposition 5 yields:

Proposition 8 Suppose that (8) and (11) hold.

Then (xn)n≥0 converges linearly to a point x ∈

S: (∀n ∈ N) ‖xn − x‖ ≤ 2κnd(x0, S) with

κ = (1− ε2η2)1/2. �

Applications. Several convex optimization

methods are now presented. They are shown

to be Fejér monotone and their convergence is

established on the basis of the general results

stated above. For brevity, only weak convergence

is considered; however, strong and linear conver-

gence results can be derived in a like manner un-

der suitable assumptions. In each problem, the

solution set S is assumed to be nonempty.

Fixed Points of Nonlinear Operators. For every

n ∈N, let Tn : H → H be a firmly nonexpansive

operator, i.e.,

(∀(x, y) ∈ H2) 〈Tnx− Tny | x− y〉 ≥

‖Tnx− Tny‖
2 , (12)

and let FixTn = {x∈H : Tnx = x} be its fixed

point set. The problem under consideration is to

find a common fixed point of the family (Tn)n≥0,

i.e.,
{

Find x ∈ H

s. t. (∀n ∈ N) Tn x = x.
(13)

firmly nonexpansive→ firmly nonexpansive operator

fixed point → fixed point problem
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Let S =
⋂

n≥0
Fix Tn and

Hn = {x ∈ H : 〈x− Tnxn | xn − Tnxn〉 ≤ 0} .

It then follows from (12) that S ⊂ FixTn ⊂ Hn.

Thus, Algorithm 1 takes the following form.

Algorithm 2: Common fixed point

0. Take x0 ∈ H and set n = 0.

1. Take λn ∈ [0, 2].

2. Set xn+1 = xn + λn (Tnxn − xn).

3. Set n = n+ 1 and go to step 1.

Noting that d(xn,Hn) = ‖(Id− Tn)xn‖, several

convergence results can be derived by direct ap-

plication of Propositions 6-8. In particular, in

the case of a single nonexpansive operator T (see

(2)), the algorithm below is pertinent.

Algorithm 3: Fixed point

0. Take x0 ∈ H and set n = 0.

1. Take λn ∈ [0, 1].

2. Set xn+1 = xn + λn (Txn − xn).

3. Set n = n+ 1 and go to step 1.

Proposition 9 If
∑

n≥0
λn(1−λn) = +∞, any

sequence generated by Algorithm 3 converges

weakly to a fixed point of T . �

Indeed, the assignments Tn ← (Id + T )/2 and

λn ← 2λn in Algorithm 2 yield Algorithm 3 as

Tn is firmly nonexpansive [3], [5] and Fix Tn =

Fix T . Next, observe that (d(xn,Hn))n≥0 =

(‖(Id− T )xn‖ /2)n≥0 is nonincreasing by (2).

Hence, lim d(xn,Hn) = 0⇒ (Id−T )xn → 0 and

it results from the demiclosedness of Id− T [20]

that xkn ⇀ x ⇒ (Id − T )x = 0. Thus, Proposi-

tion 9 follows from Proposition 6ii).

Zeros of Monotone Maps. In connection with

set-valued maps A,B : H ⇉ H a few defini-

tions and facts need to be recalled [2], [27].

First, A is characterized by its graph grA =
{

(x, u) ∈ H2 : u ∈ Ax
}

. The inverse A−1 of A

has graph
{

(u, x) ∈ H2 : (x, u) ∈ grA
}

and the

linear combination A+ γB (γ ∈ R) has graph

{(x, u+ γv) : (x, u) ∈ grA, (x, v) ∈ grB} .

A is monotone if

(∀(x, u) ∈ grA)(∀(y, v) ∈ grA)

〈x− y | u− v〉 ≥ 0.

If A is monotone and if there exists no mono-

tone map B 6= A such that grA ⊂ grB then A

is maximal monotone. In this case

• grA is weakly-strongly closed: for every se-

quence ((yn, vn))n≥0 in H2







((yn, vn))n≥0 is in grA

yn ⇀ y

vn → v

⇒ (y, v) ∈ grA.

(14)

• For every γ ∈ ]0,+∞[, the resolvent of A,

JA
γ = (Id+γA)−1, is a single-valued firmly

nonexpansive operator defined on H [17],

[23].

Of broad interest is the problem of finding a

zero of a maximal monotone map A : H ⇉ H

[23], i.e.,
{

Find x ∈ H

s. t. 0 ∈ Ax.
(15)

For every γ ∈ ]0,+∞[, the solution set S = A−10

can be written as S = {x ∈ H : x ∈ x+ γAx} =

FixJA
γ . Thus, given (γn)n≥0 in ]0,+∞[, the equi-

librium problem (15) can be cast in the form

of the common fixed point problem (13) with

(Tn)n≥0 = (JA
γn)n≥0. Algorithm 2 is then known

as the (relaxed) proximal point algorithm [17],

[23].

Algorithm 4: Proximal point

0. Take x0 ∈ H and set n = 0.

1. Take γn ∈ ]0,+∞[ and λn ∈ [0, 2].

2. Set xn+1 = xn + λn

(

JA
γnxn − xn

)

.

3. Set n = n+ 1 and go to step 1.

Proposition 10 Suppose that
{

(γn)n≥0 is in [ε,+∞[

(λn)n≥0 is in [ε, 2 − ε]
where ε ∈ ]0, 1[ .

(16)

Then any sequence generated by Algorithm 4

converges weakly to a zero of A. �

This result is a consequence of Proposition 6iii).

Indeed, for every n ∈ N, define yn = xn +

maximal monotone→ maximal monotone map

proximal point algorithm
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(xn+1 − xn)/λn, vn = (xn − xn+1)/(γnλn) and

note that vn ∈ Ayn. Now suppose d(xn,Hn) →

0. Then, thanks to (16), xn+1 − xn → 0 and, in

turn, vn → 0 and yn − xn → 0. Hence, xkn ⇀ x

⇒ ykn ⇀ x ⇒ 0 ∈ Ax by (14).

Weak convergence can also be achieved un-

der variants of (16), e.g.,
∑

n≥0
γ2n = +∞ and

(∀n ∈ N) λn = 1 [2]. Such results can be de-

duced from Proposition 6 as well.

Zeros of the Sum of Two Monotone Maps. Take

two maximal monotone maps A,B : H⇉ H. An

extension of (15) that captures a wide body of

optimization and applied mathematics problems

is [27]

{

Find x ∈ H

s. t. 0 ∈ Ax+B x.
(17)

In instances when A+B is maximal monotone,

one can approach this problem via Algorithm 4.

Naturally, for this approach to be numerically

viable, the resolvents of A + B should be com-

putable relatively easily. A more widely applica-

ble alternative is to devise an operator splitting

algorithm, in which the operators A and B are

employed in separate steps [16]. Two Fejérian

splitting algorithms are described below.

First, suppose that B is (single-valued and)

co-coercive in the sense that B−1−αId is mono-

tone for some α ∈ ]0,+∞[, i.e.,

(∀(x, y) ∈ H2) 〈Bx−By | x− y〉 ≥

α ‖Bx−By‖2 . (18)

Given γ ∈ ]0, 2α], it follows from (18) that

Id − γB is nonexpansive. Moreover, the solu-

tion set S = (A + B)−10 can be written as

S = {x ∈ H : x− γBx ∈ x+ γAx} = Fix T

where T = JA
γ ◦ (Id − γB) is nonexpansive as

the composition of two nonexpansive operators.

Algorithm 3 can then be implemented by alter-

nating a forward step involving B with a back-

ward (proximal) step involving A.

Algorithm 5: Forward-backward method

0. Take γ ∈ ]0, 2α], x0 ∈ H, and set

n = 0.

1. Set xn+ 1

2

= xn − γBxn and take

λn ∈ [0, 1].

2. Set xn+1 = xn + λn

(

JA
γ xn+ 1

2

− xn

)

.

3. Set n = n+ 1 and go to step 1.

As a corollary of Proposition 9 we obtain:

Proposition 11 If
∑

n≥0
λn(1−λn)= +∞, any

sequence generated by Algorithm 5 converges

weakly to a zero of A+B. �

The second algorithm is centered around the op-

erator T = JA
γ ◦ (2J

B
γ − Id) + Id − JB

γ , where

γ ∈ ]0,+∞[. This operator possesses two nice

properties: it is firmly nonexpansive and y ∈

FixT ⇔ JB
γ y ∈ (A + B)−10 [16]. Whence, by

putting Tn ← T in Algorithm 2, one obtains the

Douglas-Rachford method [8], [16].

Algorithm 6: Douglas-Rachford method

0. Take γ ∈ ]0,+∞[, x0 ∈ H, and set n = 0.

1. Set xn+ 1

2

= JB
γ xn and take λn ∈ [0, 2].

2. Set xn+1 = xn+

λn

(

JA
γ

(

2xn+ 1

2

− xn

)

− xn+ 1

2

)

.

3. Set n = n+ 1 and go to step 1.

As in Algorithm 5, B is activated at step 1 and

A at step 2. Convergence is established as in

Proposition 9:

Proposition 12 If
∑

n≥0
λn(2−λn)= +∞, any

sequence generated by Algorithm 6 converges

weakly and the image of the weak limit under

JB
γ is a zero of A+B. �

Variational Inequalities. Let B : H → H

be a single-valued maximal monotone oper-

ator, let ϕ : H → ] − ∞,+∞] be a proper,

lower-semicontinuous, convex function, and let

∂ϕ : H⇉ H be its subdifferential, i.e.,

∂ϕ(x) =
⋂

y∈H

{u ∈ H : 〈y−x | u〉+ϕ(x) ≤ ϕ(y)} .

operator splitting algorithm

co-coercive → co-coercive operator

Douglas-Rachford method

variational inequality
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Then ∂ϕ is maximal monotone [2] and, upon

taking A = ∂ϕ in (17), one arrives at the varia-

tional inequality problem















Find x ∈ H

s. t. (∀x ∈ H)

〈x− x | B x〉+ ϕ(x) ≤ ϕ(x).

(19)

In this context, the resolvent JA
γ reduces to

Moreau’s prox mapping [18]

proxϕγ : x 7→ argmin
y∈H

ϕ(y) +
1

2γ
‖y − x‖2 .

As a special instance of (17), the variational

inequality problem (19) can be solved via the

forward-backward method (Algorithm 5) and

Proposition 11 then yields:

Proposition 13 Suppose that (18) is in force.

Take γ ∈ ]0, 2α], x0 ∈ H, and let

(∀n ∈ N) xn+1 = xn+

λn

(

proxϕγ (xn − γBxn)− xn
)

, (20)

where (λn)n≥0 is in [0, 1] and
∑

n≥0
λn(1 − λn)

= +∞. Then (xn)n≥0 converges weakly to a so-

lution of (19). �

A noteworthy situation is when ϕ = ιQ, where

ιQ is the indicator function of a nonempty closed

convex set Q, i.e.,

ιQ : x 7→

{

0 if x ∈ Q

+∞ if x /∈ Q.
(21)

It follows that ∂ιQ = NQ, where NQ is the nor-

mal cone to Q, i.e.,

NQ x =
⋂

y∈Q

{u ∈ H : 〈y − x | u〉 ≤ 0} ,

if x ∈ Q, and NQ x = ∅ otherwise. In addition,

(19) reads
{

Find x ∈ Q

s. t. (∀x ∈ Q) 〈x− x | B x 〉 ≤ 0,
(22)

and prox
ιQ
γ = PQ is the projector onto Q.

Differentiable Optimization. A standard convex

programming problem is to minimize a proper,

lower-semicontinuous, convex function f : H →

] −∞,+∞] over a nonempty closed convex set

Q ⊂ H, i.e.,

Find x = argmin
x∈Q

f(x). (23)

In view of (21), (23) is equivalent to finding

a global minimizer of ιQ + f , i.e., by Fermat’s

rule, to finding a zero of ∂(ιQ + f). If 0 lies in

the interior of Q− {x ∈ H : f(x) < +∞}, then

∂(ιQ + f) = ∂ιQ + ∂f [2] and (23) is therefore

of the form (17) with A = NQ and B = ∂f .

This occurs in particular when f is finite and

continuous at a point in Q.

Now suppose that f is differentiable. Then

∂f = {∇f} is single-valued and (23) can fur-

ther be reduced to (22) with B = ∇f . The

forward-backward scheme (20) then becomes the

projected gradient algorithm

(∀n ∈ N) xn+1 = xn+

λn (PQ (xn − γ∇f(xn))− xn) .

Proposition 13 provides conditions for weak con-

vergence to a minimizer of f over Q.

Convex Feasibility Problems. Given a family

(Si)i∈I of intersecting nonempty closed and con-

vex subsets of H, the convex feasibility problem

reads [3], [5], [6], [15]

Find x ∈ S =
⋂

i∈I

Si. (24)

At iteration n, select a nonempty finite index

set In ⊂ I and, for every i ∈ In, let pi,n be an

approximate projection of xn onto Si, i.e., the

projection of xn onto a closed affine half-space

Hi,n containing Si. Then

Hi,n = {x ∈ H : 〈x− pi,n | xn − pi,n〉 ≤ 0} .

Let

Hn=

{

x∈H :
∑

i∈In

wi,n〈x−pi,n | xn−pi,n〉≤0

}

where the weights (wi,n)i∈In are in ]0, 1] and

satisfy
∑

i∈In
wi,n = 1. Then S ⊂

⋂

i∈In
Si ⊂

⋂

i∈In
Hi,n⊂Hn and Pnxn = xn+Ln(xn+ 1

2

−xn),

projected gradient algorithm

convex feasibility problem
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where xn+ 1

2

=
∑

i∈In
wi,npi,n and

Ln=















∑

i∈In
wi,n ‖pi,n − xn‖

2

∥

∥

∥
xn+ 1

2

− xn

∥

∥

∥

2
if xn+ 1

2

6= xn

1 else.
(25)

Algorithm 1 then turns into Algorithm 7.

Algorithm 7: Convex feasibility

0. Take x0 ∈ H and set n = 0.

1. Take a nonempty finite set In⊂I.

2. Compute approximate projections

(pi,n)i∈In of xn onto (Si)i∈In .

3. Take (wi,n)i∈In in ]0, 1] such that
∑

i∈In
wi,n = 1.

4. Set xn+ 1

2

=
∑

i∈In
wi,npi,n, Ln as in (25).

5. Take λn∈ [0, 2Ln].

6. Set xn+1 = xn + λn

(

xn+ 1

2

− xn

)

.

7. Set n = n+ 1 and go to step 1.

Weak convergence to a point in S follows from

Proposition 6 under various assumptions on the

control sequence (In)n≥0 and the approximate

projections ((pi,n)i∈In)n≥0 [5], [6], [15].

Nondifferentiable Optimization. Suppose that

f is subdifferentiable in (23), i.e., (∀x ∈ H)

∂f(x) 6= ∅, and that its minimum value f over Q

is known. Then (23) can be viewed as a special

case of (24) with two sets, namely S1 = Q and

S2 =
{

x ∈ H : f(x) ≤ f
}

. Now take

H2,n =
{

x ∈ H : 〈x− xn | un〉 ≤ f − f(xn)
}

where un ∈ ∂f(xn). Then S2 ⊂ H2,n and

p2,n =











xn +
f − f(xn)

‖un‖2
un if xn /∈ S2

xn otherwise

is called a subgradient projection of xn onto S2

[3], [5]. If Algorithm 7 is implemented by alter-

nating a relaxed subgradient projection onto S2

with an exact projection onto S1, i.e.,

(∀n ∈ N) xn+1 = PQ (xn + λn (p2,n − xn)) ,

one obtains the subgradient projection method

of [21]. Weak convergence to a solution of (23)

under the assumptions that ∂f maps bounded

sets into bounded sets, (λn)n≥0 is in [0, 2], and

(8), follows from Proposition 6iii) [3], [5].

Inconsistent Convex Feasibility Problems. When
⋂

i∈I Si = ∅ and I is finite, (24) can be replaced

by the minimization problem

Find x = argmin
x∈H

1

2

∑

i∈I

wid(x, Si)
2 (26)

where (wi)i∈I is in ]0, 1] and
∑

i∈I wi = 1. Let

(Pi)i∈I be the projectors onto (Si)i∈I , let T =
∑

i∈I wiPi, and let S be the solution set of (26).

Then T is firmly nonexpansive and S=Fix T [5].

By reiterating a previous argument, one obtains:

Proposition 14 Take x0 ∈ H, (λn)n≥0 in [0, 2]

such that
∑

n≥0
λn(2− λn)= +∞, and let

(∀n ∈ N) xn+1 = xn+λn

(

∑

i∈I

wiPixn−xn

)

.

Then (xn)n≥0 converges weakly to a solution of

(26). �

Historical Notes and Comments. In 1922,

L. Fejér considered the following problem [12]:

given a closed subset S ⊂ Rp and a point y /∈ S

can one find a point x ∈ Rp such that

(∀x ∈ S) ‖x− x‖ < ‖y − x‖ .

Inspired by this work, T.S. Motzkin and I.J.

Schoenberg adopted in their 1954 paper [19] the

term Fejér monotone to describe sequences sat-

isfying (1). In this paper (see also [1]), an algo-

rithm was developed to solve systems of linear

inequalities in Rp by successive projections onto

the half-spaces defining the polyhedral solution

set S. The concept of Fejér monotonicity was

shown to be an adequate tool to study conver-

gence of this algorithm. Basic facts such as (5)

and (9) can already be found in [19] and [1],

respectively.

In the 1960s, I.I. Eremin extended the use of

Fejér monotonicity to more general convex prob-

lems in Hilbert spaces. A summary of his pub-

lications covering the period 1961-1967 is given

in [9]. By the end of the 1960’s, most results on

Fejér monotonicity in Hilbert spaces were essen-

tially known and one can find them scattered

in the Soviet literature in the context of spe-

cific convex programming problems. Thus, (4)

appears in [10], Proposition 2 in [4], Proposi-

tions 4 and 5 in [14], and Proposition 8 in [14]

subgradient projection
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and [21]. It should be noted that Proposition 2

has been implicitly rediscovered many times and

that it seems to originate in [24].

Recently, Fejér monotonicity has been re-

served a featured role in several convex opti-

mization papers [3], [6], [15], [25], [26]. It has

also proven a valuable tool in more applied disci-

plines such as biology, economics, and engineer-

ing [5], [11]. Some extensions of the notion of

Fejér monotonicity are discussed in [7].
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optimization algorithms’, in D. Butnariu, Y. Cen-

sor, and S. Reich (eds.): Inherently Parallel Algo-

rithms for Feasibility and Optimization and Their

Applications, Elsevier, 2001.

[8] Eckstein, J., and Bertsekas, D.P.: ‘On the

Douglas-Rachford splitting method and the proxi-

mal point algorithm for maximal monotone opera-

tors’, Math. Programming 55 (1992), 293–318.

[9] Eremin, I.I.: ‘Methods of Fejér approximations in

convex programming’, Math. Notes 3 (1968), 139–

149.

[10] Eremin, I.I.: ‘On the speed of convergence in the

method of Fejér approximations’, Math. Notes 4

(1968), 522–527.

[11] Eremin, I.I., and Mazurov, V.D.: Nonstation-

ary processes of mathematical programming, Nauka,

1979.
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