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ABSTRACT

Stochastic approximation techniques have been used in var-

ious contexts in data science. We propose a stochastic ver-

sion of the forward-backward algorithm for minimizing the

sum of two convex functions, one of which is not necessarily

smooth. Our framework can handle stochastic approxima-

tions of the gradient of the smooth function and allows for

stochastic errors in the evaluation of the proximity operator

of the nonsmooth function. The almost sure convergence of

the iterates generated by the algorithm to a minimizer is es-

tablished under relatively mild assumptions. We also propose

a stochastic version of a popular primal-dual proximal split-

ting algorithm, establish its convergence, and apply it to an

online image restoration problem.

Index Terms— convex optimization, nonsmooth opti-

mization, primal-dual algorithm, stochastic algorithm, paral-

lel algorithm, proximity operator, recovery, image restoration.

1. INTRODUCTION

A large array of optimization problems arising in signal

processing involve functions belonging to Γ0(H), the class

of proper lower semicontinuous convex function from H to

]−∞,+∞], whereH is a finite-dimensional real Hilbert space

with norm ‖ · ‖. In particular, the following formulation has

proven quite flexible and far reaching [18].

Problem 1.1 Let f ∈ Γ0(H), let ϑ ∈ ]0,+∞[, and let

h : H → R be a differentiable convex function such that ∇h

is ϑ−1-Lipschitz continuous on H. The goal is to

minimize
x∈H

f(x) + h(x), (1)

under the assumption that the set F of minimizers of f + h is

nonempty.
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A standard method to solve Problem 1.1 is the forward-

backward algorithm [6, 9, 10, 16, 18], which constructs a se-

quence (xn)n∈N in H via the recursion

(∀n ∈ N) xn+1 = proxγnf

(

xn − γn∇h(xn)
)

, (2)

where γn ∈ ]0, 2ϑ[ and proxγnf
is the proximity operator of

function γnf, i.e., [3]

proxγnf
: x → argmin

y∈H

(

f(y) +
1

2γn
‖x− y‖2

)

. (3)

In practice, it may happen that, at each iteration n, ∇h(xn)
is not known exactly and is available only through some

stochastic approximation un, while only a deterministic ap-

proximation fn to f is known; see, e.g., [29]. To solve (1)

in such uncertain environments, we propose to investigate the

following stochastic version of (2). In this algorithm, at itera-

tion n, an stands for a stochastic error term modeling inexact

implementations of the proximity operator of γnfn, (Ω,F ,P)
is the underlying probability space, and L2(Ω,F ,P;H) de-

notes the space of H-valued random variable x such that

E‖x‖2 < +∞. Our algorithmic model is the following.

Algorithm 1.2 Let x0, (un)n∈N, and (an)n∈N be random

variables in L2(Ω,F ,P;H), let (λn)n∈N be a sequence in

]0, 1], and let (γn)n∈N be a sequence in ]0, 2ϑ[, and let

(fn)n∈N be a sequence of functions in Γ0(H). For every

n ∈ N, set

xn+1 = xn + λn

(

proxγnfn
(xn − γnun) + an − xn

)

. (4)

The first instances of the stochastic iteration (4) can be

traced back to [31] in the context of the gradient descent

method, i.e., when fn ≡ f = 0. Stochastic approximations in

the gradient method were then investigated in the Russian lit-

erature of the late 1960s and early 1970s [21,23,36]. Stochas-

tic gradient methods have also been used extensively in adap-

tive signal processing, in control, and in machine learning,



(e.g., in [2, 26, 40]). More generally, proximal stochastic gra-

dient methods have been applied to various problems; see for

instance [1, 20, 27, 32, 35,37, 38].

The first objective of the present work is to provide

a thorough convergence analysis of the stochastic forward-

backward algorithm described in Algorithm 1.2. In particu-

lar, our results do not require that the proximal parameter se-

quence (γn)n∈N be vanishing. A second goal of our paper is

to show that the extension of Algorithm 1.2 for solving mono-

tone inclusion problems allows us to derive a stochastic ver-

sion of a recent primal-dual algorithm [39] (see also [17,19]).

Note that our algorithm is different from the random block-

coordinate approaches developed in [4,30], and that it is more

in the spirit of the adaptive method of [28].

The organization of the paper is as follows. Section 2

contains our main result on the convergence of the iterates of

Algorithm 1.2. Section 3 presents a stochastic primal-dual ap-

proach for solving composite convex optimization problems.

Section 4 illustrates the benefits of this algorithm in signal

restoration problems with stochastic degradation operators.

Concluding remarks appear in Section 5.

2. A STOCHASTIC FORWARD-BACKWARD

ALGORITHM

Throughout, given a sequence (xn)n∈N of H-valued random

variables, the smallest σ-algebra generated by x0, . . . , xn is

denoted by σ(x0, . . . , xn), and we denote by X = (Xn)n∈N

a sequence of sigma-algebras such that

(∀n ∈ N) Xn ⊂ F and σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.
(5)

Furthermore, ℓ+(X ) designates the set of sequences of

[0,+∞[-valued random variables (ξn)n∈N such that, for ev-

ery n ∈ N, ξn is Xn-measurable, and we define

ℓ
1/2
+ (X ) =

{

(ξn)n∈N ∈ ℓ+(X )
∣

∣

∣

∑

n∈N

ξ1/2n < +∞ P-a.s.

}

,

(6)

and

ℓ∞+ (X ) =

{

(ξn)n∈N ∈ ℓ+(X )
∣

∣

∣
sup
n∈N

ξn < +∞ P-a.s.

}

.

(7)

We now state our main convergence result.

Theorem 2.1 Consider the setting of Problem 1.1, let

(τn)n∈N be a sequence in [0,+∞[, let (xn)n∈N be a se-

quence generated by Algorithm 1.2, and let X = (Xn)n∈N

be a sequence of sub-sigma-algebras satisfying (5). Suppose

that the following are satisfied:

(a)
∑

n∈N
λn

√

E(‖an‖2 |Xn) < +∞.

(b)
∑

n∈N

√
λn‖E(un |Xn)−∇h(xn)‖ < +∞.

(c) For every z ∈ F, there exists (ζn(z))n∈N ∈ ℓ∞+ (X )

such that
(

λnζn(z)
)

n∈N
∈ ℓ

1/2
+ (X ) and

(∀n ∈ N) E(‖un − E(un |Xn)‖2 |Xn)

6 τn‖∇h(xn)−∇h(z)‖2 + ζn(z). (8)

(d) There exist sequences (αn)n∈N and (βn)n∈N in

[0,+∞[ such that
∑

n∈N

√
λnαn < +∞,

∑

n∈N
λnβn

< +∞, and

(∀n ∈ N)(∀x ∈ H)

‖proxγnfn
x− proxγnf

x‖ 6 αn‖x‖+ βn. (9)

(e) infn∈N γn > 0, supn∈N τn < +∞, and

supn∈N(1 + τn)γn < 2ϑ.

(f) Either infn∈N λn > 0 or
[

γn ≡ γ,
∑

n∈N
τn < +∞,

and
∑

n∈N
λn = +∞

]

.

Then the following hold for every z ∈ F and for some F-

valued random variable x:

(i)
∑

n∈N
λn‖∇h(xn)−∇h(z)‖2 < +∞ P-a.s.

(ii)
∑

n∈N
λn‖xn−γn∇h(xn)−proxγnf

(

xn−γn∇h(xn)
)

+

γn∇h(z)‖2 < +∞ P-a.s.

(iii) (xn)n∈N converges almost surely to x.

In the deterministic case, Theorem 2.1(iii) can be found

in [7, Corollary 6.5]. The proof the above stochastic version

is based on the theoretical tools of [12] (see [13] for technical

details and extensions to infinite-dimensional Hilbert spaces).

It should be noted that the existing works which are the

most closely related to ours do not allow any approximation of

the function f and make some additional restrictive assump-

tions. For example, in [1, Corollary 8] and [33], (γn)n∈N is

a decreasing sequence. In [1, Corollary 8], [33], and [34], no

error term is allowed in the numerical evaluations of the prox-

imity operators (an ≡ 0). In addition, in the former work, it

is assumed that (xn)n∈N is bounded, whereas the two latter

ones assume that the approximation of the gradient of h is

unbiased, that is

(∀n ∈ N) E(un |Xn) = ∇h(xn). (10)

3. STOCHASTIC PRIMAL-DUAL SPLITTING

The subdifferential

∂f : x 7→
{

u ∈ H
∣

∣ (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)
}

(11)

of a function f ∈ Γ0(H) is an example of a maximally mono-

tone operator [3]. Forward-backward splitting has been de-

veloped in the more general framework of solving monotone



inclusions [3, 7]. This powerful framework makes it possi-

ble to design efficient primal-dual strategies for optimization

problems; see for instance [17,25] and the references therein.

More precisely, we are interested in the following optimiza-

tion problem [11, Section 4].

Problem 3.1 Let f ∈ Γ0(H), let ϑ ∈ ]0,+∞[, let h : H → R

be convex and differentiable with a ϑ−1-Lipschitz-continuous

gradient, and let q be a strictly positive integer. For every

k ∈ {1, . . . , q}, let Gk be a finite-dimensional Hilbert space,

let gk ∈ Γ0(Gk), and let Lk : H → Gk be linear. Let G =
G1 ⊕ · · · ⊕ Gq be the direct Hilbert sum of G1, . . . ,Gq , and

suppose that there exists x ∈ H such that

0 ∈ ∂f(x) +

q
∑

k=1

L∗k∂gk(Lkx) +∇h(x). (12)

Let F be the set of solutions to the problem

minimize
x∈H

f(x) +

q
∑

k=1

gk(Lkx) + h(x) (13)

and let F
∗

be the set of solutions to the dual problem

minimize
v∈G

(f∗ � h∗)

(

−
q
∑

k=1

L∗kvk

)

+

q
∑

k=1

g∗k(vk), (14)

where � denotes the infimal convolution operation, ϕ∗ is the

Legendre conjugate of a function ϕ, and v = (v1, . . . , vq)
designates a generic point in G. The objective is to find a

point in F× F
∗.

We are interested in the case when only stochastic approx-

imations of the gradients of h and approximations of the func-

tion f are available to solve Problem 3.1. The following algo-

rithm, which can be viewed as a stochastic extension of those

of [5,8,17,19,22,24,39], will be the focus of our investigation.

Algorithm 3.2 Let ρ ∈ ]0,+∞[, let (fn)n∈N be a sequence

of functions in Γ0(H), let (λn)n∈N be a sequence in ]0, 1]
such that

∑

n∈N
λn = +∞, and, for every k ∈ {1, . . . , q},

let σk ∈ ]0,+∞[. Let x0, (un)n∈N, and (bn)n∈N be random

variables in L2(Ω,F ,P;H), and let v0 and (cn)n∈N be ran-

dom variables in L2(Ω,F ,P;G). Iterate

for n = 0, 1, . . .






















yn = proxρfn

(

xn − ρ

( q
∑

k=1

L∗kvk,n + un

)

)

+ bn

xn+1 = xn + λn(yn − xn)
for k = 1, . . . , q
⌊

wk,n = proxσkg
∗

k

(

vk,n + σkLk(2yn − xn)
)

+ ck,n
vk,n+1 = vk,n + λn(wk,n − vk,n).

(15)

One of main benefits of the proposed algorithm is that it

allows us to solve jointly the primal problem (13) and the dual

one (14) in a fully decomposed fashion, where each function

and linear operator is activated individually. In particular, it

does not require any inversion of some linear operator related

to the operators (Lk)16k6q arising in the original problem.

The convergence of the algorithm is guaranteed by the fol-

lowing result which follows from [13, Proposition 5.3].

Proposition 3.3 Consider the setting of Problem 3.1, let

X = (Xn)n∈N be a sequence of sub-sigma-algebras of F ,

and let (xn)n∈N and (vn)n∈N be sequences generated by Al-

gorithm 3.2. Suppose that the following are satisfied:

(a) (∀n∈N) σ
(

xn′ ,vn′

)

06n′6n
⊂ Xn ⊂ Xn+1.

(b)
∑

n∈N
λn

√

E(‖bn‖2 |Xn) < +∞ and
∑

n∈N
λn

√

E(‖cn‖2 |Xn) < +∞.

(c)
∑

n∈N

√
λn‖E(un |Xn)−∇h(xn)‖ < +∞.

(d) There exists a summable sequence (τn)n∈N in [0,+∞[
such that, for every x ∈ F, there exists

(

ζn(x)
)

n∈N
∈

ℓ∞+ (X ) such that
(

λnζn(x)
)

n∈N
∈ ℓ

1/2
+ (X ) and

(∀n ∈ N) E(‖un − E(un |Xn)‖2 |Xn)

6 τn‖∇h(xn)−∇h(x)‖2 + ζn(x). (16)

(e) There exist sequences (αn)n∈N and (βn)n∈N in

[0,+∞[ such that
∑

n∈N

√
λnαn < +∞,

∑

n∈N
λnβn

< +∞, and

(∀n ∈ N)(∀x ∈ H)

‖proxρfnx− proxρfx‖ 6 αn‖x‖+ βn. (17)

(f)
(

ρ−1 −∑q
k=1

σk‖Lk‖2
)

ϑ > 1/2.

Then, for some F-valued random variable x and some F
∗-

valued random variable v, (xn)n∈N converges almost surely

to x and (vn)n∈N converges almost surely to v.

4. APPLICATION TO ONLINE SIGNAL RECOVERY

We consider the recovery of a signal x ∈ H = R
N from the

observation model

(∀n ∈ N) zn = Knx+ en, (18)

where Kn is a R
M×N -valued random matrix and en is a

R
M -valued random noise vector. The objective is to recover

x from (Kn, zn)n∈N, which is assumed to be an identically

distributed sequence. Such recovery problems have been ad-

dressed in [14]. In this context, we propose to solve the primal

problem (13) with q = 1 and

(∀x ∈ R
N ) h(x) =

1

2
E‖K0x− z0‖2, (19)



while functions f and g1 ◦ L1 are used to promote prior in-

formation on the target solution. Since the statistics of the

sequence (Kn, zn)n∈N are not assumed to be known a priori

and have to be learnt online, at iteration n ∈ N, we employ

the empirical estimate

un =
1

mn+1

mn+1−1
∑

n′=0

K⊤
n′(Kn′xn − zn′) (20)

of ∇h(xn). The following statement, which can be deduced

from [13, Section 5.2], illustrates the applicability of the re-

sults of Section 3.

Proposition 4.1 Consider the setting of Problem 3.1 and Al-

gorithm 3.2, where fn ≡ f, bn ≡ 0, and cn ≡ 0. Let

(mn)n∈N be a strictly increasing sequence in N such that

mn = O(n1+δ) with δ ∈ ]0,+∞[, and let

(∀n ∈ N) Xn = σ
(

x0,v0, (Kn′ , en′)06n′<mn
). (21)

Suppose that the following are satisfied:

(a) The domain of f is bounded.

(b) (Kn, en)n∈N, is an independent and identically dis-

tributed (i.i.d.) sequence such that E‖K0‖4 < +∞ and

E‖e0‖4 < +∞.

(c) λn = O(n−κ), where κ ∈ ]1− δ, 1] ∩ [0, 1].

Then Assumptions (a)-(e) in Proposition 3.3 hold.

Based on this result, we apply Algorithm 3.2 to a prac-

tical scenario in which a grayscale image of size 256 × 256
with pixel values in [0, 255] is degraded by a stochastic blur.

The stochastic operator corresponds to a uniform i.i.d. sub-

sampling of a uniform 5 × 5 blur, performed in the discrete

Fourier domain. More precisely, the value of the frequency

response at each frequency bin is kept with probability 0.3 or

it is set to zero. In addition, the image is corrupted by an addi-

tive zero-mean white Gaussian noise with standard deviation

equal to 5. The average signal-to-noise ratio (SNR) is initially

equal to 3.4 dB.

In our restoration approach, the function f is the indica-

tor function of the set [0, 255]N , while g1 ◦ L1 is a classical

isotropic total variation regularizer, where L1 is the concate-

nation of the horizontal and vertical discrete gradient opera-

tors. Fig. 1 displays the original image, the restored image,

as well as two realizations of the degraded images. The SNR

for the restored image is equal to 28.1 dB. Fig. 2 shows the

convergence behavior of the algorithm. In these experiments,

in accordance with Proposition 4.1, we have chosen

(∀n ∈ N)

{

mn = n1.1

λn = (1 + (n/500)0.95)−1.
(22)

(a) (b)

(c) (d)

Fig. 1. Original image x (a), restored image (b), degraded image 1

(SNR = 0.14 dB) (c), and degraded image 2 (SNR = 12.0 dB) (d).

5. CONCLUSION

We have proposed two stochastic proximal splitting algo-

rithms for solving nonsmooth convex optimization problems.

These methods require only approximations of the functions

used in the formulation of the optimization problem, which is

of the utmost importance for solving online signal processing

problems. The almost sure convergence of these algorithms

has been established. The stochastic version of the primal-

dual algorithm that we have investigated has been evaluated

in an online image restoration problem in which the data are

blurred by a stochastic point spread function and corrupted

with noise.
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Fig. 2. ‖xn − x∞‖ versus the iteration number n.
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backward splitting algorithm for multivariate monotone inclusions,”

Optimization, to appear.

[35] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent

methods for regularized loss minimization,” J. Mach. Learn. Res., vol.

14, pp. 567–599, 2013.

[36] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.

Springer, New York, 1985.

[37] L. Xiao and T. Zhang, “A proximal stochastic gradient method with

progressive variance reduction,” SIAM J. Optim., vol. 24, pp. 2057–

2075, 2014.

[38] M. Yamagishi, M. Yukawa, and I. Yamada, “Acceleration of adap-

tive proximal forward-backward splitting method and its application to

sparse system identification,” in Proc. Int. Conf. Acoust., Speech Signal

Process., Prague, Czech Republic, May 22-27, 2011, pp. 4296–4299.
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