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Abstract—In variational signal processing and machine
learning problems, loss functions and linear operators are
typically aggregated as an average of composite terms. We
propose an alternative formulation using proximal comix-
tures, an operation that combines functions and linear
operators in such a way that the proximity operator of
the resulting function is computable explicitly. The benefits
of comixture formulations are illustrated through image
recovery and machine learning applications.

Index Terms—proximal comixture, convex optimization,
signal recovery.

I. INTRODUCTION

Various data analysis problems in signal processing and

machine learning can be condensed into the minimization

of an aggregation of loss functions that model individually
desired properties of the ideal solution in a Hilbert space

H. These properties typically result from prior knowledge

and the observation of data. To be more specific, let us
state our assumptions on the variational models to be

discussed (see Section II for notation).

Assumption 1 H is a real Hilbert space with scalar prod-
uct 〈· | ·〉 and associated norm ‖ · ‖, f ∈ Γ0(H), and, for

every k ∈ {1, . . . , p}, Gk is a real Hilbert space, gk ∈
Γ0(Gk), and Lk : H → Gk is a bounded linear operator
such that (without loss of generality) ‖Lk‖ 6 1. Further,

the coefficients (αk)16k6p ∈ ]0, 1]
p

satisfy
∑p

k=1 αk = 1.

The most prevalent optimization framework used in
data analysis problems is the following, in which the

objective is to minimize the sum of a function f and p
composite functions aggregated via a standard averaging
operation (see [6], [11], [13] and the references therein).

Problem 2 Under Assumption 1, the task is to

minimize
x∈H

f(x) +

p∑

k=1

αkgk(Lkx). (1)

While simple from a modeling viewpoint, the above

averaging process brings some challenge on the numerical
side. Indeed, since the proximity operator of the com-

posite average has no closed form expression, solving

Problem 2 requires splitting p + 1 terms, which typically
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leads to algorithms that are slower and necessitate more
memory storage than those that would split less terms.

In addition, the aggregation model of Problem 2 may not

be robust to perturbations. For instance, let us consider
the special case when f = 0 and each gk is the indicator

function of a nonempty closed convex set Dk ⊂ Gk. This

reduces (1) to the convex feasibility problem

find x ∈ H such that (∀k ∈ {1, . . . , p}) Lkx ∈ Dk. (2)

If the sets (Dk)16k6p or the operators (Lk)16k6p are not

specified exactly, no solution may exist [4], [8].

The objective of the present paper is to propose the
use of a new aggregation process, called the proximal

comixture, to combine the functions (gk)16k6p and the

linear operators (Lk)16k6p. This operation, introduced in
[9], further studied in [3], and applied for the first time

in the present paper, can be viewed as a generalization of
the proximal average [1], [2], which corresponds to the

special case in which, for every k ∈ {1, . . . , p}, Gk = H
and Lk = Id. In this specific context, the benefits of
using proximal averages in lieu of standard averages has

been documented in several studies, e.g., [14], [17],

[19], [21]. We shall show that, more generally, solv-
ing minimization problems involving proximal comixtures

instead of the composite averages of Problem 2 may
yield notable modeling and computational advantages.

For instance, as discussed above, the computation of the

proximity operator of the standard average in (1) is not
tractable and solving Problem 2 requires sophisticated

splitting techniques. By contrast, the proximity operator

of the comixture will be shown to be computable explicitly
in terms of the individual proximity operators of the

functions (gk)16k6p. As a result, Problem 2 can be solved
by splitting only two terms, namely f and the proximal

comixture.

The remainder of the paper is organized as follows. Sec-
tion II provides the necessary mathematical background

and notation. Section III is devoted to proximal comix-

tures and their main properties. The proximal comixture
minimization problem is introduced in Section IV. Finally,

numerical experiments are presented in Section V.

II. MATHEMATICAL BACKGROUND AND NOTATION

Our notation follows [1], where one will find the neces-
sary background. We denote by Γ0(H) the class of lower



semicontinuous convex functions f : H → ]−∞,+∞]
which are proper, i.e., dom f =

{
x ∈ H | f(x) < +∞

}
6=

∅. Let C ⊂ H. Then ιC denotes the indicator function of C
and dC the distance function to the set C. Let f ∈ Γ0(H).
The conjugate of f is the function f∗ ∈ Γ0(H) defined by

f∗ : H → ]−∞,+∞] : u 7→ sup
x∈H

(
〈x |u〉 − f(x)

)
(3)

and the subdifferential of f at x ∈ H is the set

∂f(x) =
{
u ∈ H|(∀z ∈ H) 〈z − x |u〉+f(x)6f(z)

}
. (4)

Now let QH = ‖·‖2/2 be the normalized quadratic kernel

of H. The Moreau envelope of f is

f �QH : H → R : x 7→ inf
z∈H

(
f(z) + QH(x− z)

)
(5)

and the proximity operator of f is

proxf : H → H : x 7→ argmin
z∈H

(
f(z) + QH(x− z)

)
. (6)

The Huber function with parameter ρ ∈ ]0,+∞[ is

hρ : R → R : ξ 7→





ρ|ξ| − ρ2

2
, if |ξ| > ρ;

|ξ|2
2

, if |ξ| 6 ρ.
(7)

III. PROXIMAL COMIXTURES

Proximal comixtures were introduced in [9] and further
investigated in [3] as a new operation that combines

functions and linear operators.

Definition 3 Suppose that Assumption 1 is in force. The
proximal comixture of (gk)16k6p and (Lk)16k6p is

˛

M(Lk, gk)16k6p =

((
p∑

k=1

αk(gk �QGk
) ◦ Lk

)∗

− QH

)∗

.

Let us recall from [9] some key properties of proximal
comixtures, in particular the fact that their proximity

operator can be computed explicitly.

Proposition 4 Suppose that Assumption 1 is in force and

set h =
˛

M(Lk, gk)16k6p. Then the following hold:

(i) h ∈ Γ0(H).
(ii) proxh = Id−∑p

k=1 αkL
∗
k ◦ (Id−proxgk) ◦ Lk.

(iii) Argmin h = Argmin
∑p

k=1 αk(gk �QGk
) ◦ Lk.

Let us provide a few illustrations of Definition 3, start-

ing with the extreme case when it happens to coincide

with the standard composite average.

Example 5 Suppose that Assumption 1 is in force and let

G be the standard product vector space G1×· · ·×Gk, with
generic element y = (yk)16k6p, and equipped with the

scalar product (y,v) 7→ ∑p
k=1 αk〈yk | vk〉. Suppose that

L : H → G : x 7→ (Lkx)16k6p satisfies L ◦ L∗ = Id. Then
˛

M(Lk, gk)16k6p =
∑p

k=1 αkgk ◦ Lk.

Example 6 Suppose that Assumption 1 is in force and

that, for every k ∈ {1, . . . , p}, Gk = H and Lk = Id. Then
it follows from results of [9] that Definition 3 reduces to

the proximal average of (gk)16k6p, namely,

˛

M(Id, gk)16k6p =

(
p∑

k=1

αk(g
∗
k �QGk

)

)∗

− QH. (8)

This construct has been studied in [1], [2] and applied

to data analysis problems in [14], [17], [19], [21].

Example 7 Suppose that Assumption 1 is in force, that

f = 0, and that, for every k ∈ {1, . . . , p}, gk = ιDk
, where

Dk is a nonempty closed convex subset of Gk. In this case
(1) reduces to (2), while Definition 3 yields

˛

M(Lk, ιDk
)16k6p=

((
1

2

p∑

k=1

αkd
2
Dk

◦ Lk

)∗

− QH

)∗

. (9)

By Proposition 4(iii), the set of minimizers of (9) coin-

cides with that of the function x 7→
∑p

k=1 αkd
2
Dk

(Lkx),
which has been used in least-squares relaxation of incon-

sistent feasibility problems [4], [8]. This robust behavior

can be established for more general settings beyond con-
vex feasibility [9].

Example 8 Let {V , E} be an undirected graph, where

V = {1, . . . ,M} is the set of nodes and E is the set of
edges. For every edge (i, j) ∈ E , let Gij be a real Hilbert

space, let αij ∈ ]0, 1], let Lij : H → Gij be linear and
bounded with ‖Lij‖ 6 1, and let gij ∈ Γ0(Gij). Suppose

that
∑

(i,j)∈E
αij = 1. In the spirit of existing graph

regularizers, one can consider the abstract loss function
∑

(i,j)∈E

αijgij ◦ Lij, (10)

which is based on a standard composite average. The
corresponding proximal comixture is

˛

M(Lij , gij)(i,j)∈E (11)

which, by Proposition 4(ii), has an explicit proximity oper-

ator. The setting of [15] in the context of feature selection

utilizes (10) with H = R
N and, for every (i, j) ∈ E ,

Gij = R
N , Lij = Id, and gij : (ξl)16l6N 7→ |ξi − ξj |. By

contrast, [21] applied implicitly the comixture (11) in the

form of the proximal average (8) in this specific scenario.
More generally, (11) can be considered as an alternative

to (10) as a graph-based regularizer.

IV. THE PROXIMAL COMIXTURE MINIMIZATION PROBLEM

We consider the following alternative to Problem 2.

Problem 9 Under Assumption 1, the task is to

minimize
x∈H

f(x) +
(

˛

M(Lk, gk)16k6p

)
(x), (12)

assuming that a solution exists.



Since, by virtue of Proposition 4(ii), the proximity oper-

ator of the second term is explicit, two direct algorithms
can be devised for solving (12): the Douglas–Rachford

algorithm [1, Section 28.3] in general, and the forward-
backward algorithm [1, Section 28.5] if f is smooth.

Proposition 10 (Douglas–Rachford) In Problem 9, sup-

pose that 0 ∈ range (∂f+∂(
˛

M(Lk, gk)16k6p)). Let (λn)n∈N

be a sequence in ]0, 2[ such that
∑

k∈N
λn(2 − λn) = +∞,

let y0 ∈ H, and iterate

for n = 0, 1, . . .

xn = yn +

p∑

k=1

αkL
∗
k

(
proxgk(Lkyn)− Lkyn

)

zn = proxf (2xn − yn)

yn+1 = yn + λn(zn − xn).

(13)

Then (xn)n∈N converges weakly to a solution to Problem 9.

Proposition 11 (Forward-backward) In Problem 9, sup-

pose that f is differentiable on H with a β-Lipschitzian

gradient, where β ∈ ]0, 2[, let x0 ∈ H, and iterate

for n = 0, 1, . . .
yn = xn −∇f(xn)

xn+1 = yn +

p∑

k=1

αkL
∗
k

(
proxgk(Lkyn)− Lkyn

)
.

(14)

Then (xn)n∈N converges weakly to a solution to Problem 9.

Let us add that, as shown in [5], inertia can be added
in Proposition 11 to obtain optimal rates of convergence

for the values of the objective in (12). To solve Problem 2,

we shall use the Condat–Vũ algorithm [12], [20]. Unlike
(13) and (14), which split two functions and store two

variables, it splits p+1 functions and stores p+1 variables

at each iteration. The same holds true for other algorithms
for solving Problem 2 [6], [11], [13].

Proposition 12 In Problem 2, suppose that 0 ∈
range (∂f+

∑p
k=1 αkL

∗
k◦∂gk◦Lk). Let τ and σ be in ]0,+∞[

and, for every k ∈ {1, . . . , p}, let v∗k,0 ∈ Gk. Suppose that

τσ
∑p

k=1 ‖Lk‖2 < 1, let x0 ∈ H, and iterate

for n = 0, 1, . . .

yn = xn − τ
∑p

k=1 L
∗
kv

∗
k,n

xn+1 = proxτfyn
zn = 2xn+1 − xn

for every k ∈ {1, . . . , p}⌊
wk,n = v∗k,n + σLkzn
v∗k,n+1 = wk,n − σproxαkgk/σ

(wk,n/σ).

(15)

Then (xn)n∈N converges weakly to a solution to Problem 2.

V. APPLICATIONS

Since the algorithms have essentially the same compu-
tational load per iteration, we compare them in terms of

error versus iteration number. The results of the three

experiments conducted below consistently support the
fact that the proximal comixture models lead to reliable

solutions and faster algorithms which, in addition, are
much less demanding in terms of memory requirements.

A. Experiment 1: Multiview image reconstruction from par-

tial diffraction data

We consider the problem of reconstructing the image

x ∈ C = [0, 255]N (N = 2562) of Fig. 1(a) from a partial

observation of its diffraction over some frequency range
R, possibly with measurement errors [18]. To exploit

this information we use the soft constraint penalty dE
associated with the set

E =
{
x ∈ R

N | (∀k ∈ R) x̂(k) = x̂(k)
}
, (16)

where x̂ denotes the two-dimensional discrete Fourier

transform of x. The set R contains the frequencies in
{0, . . . , 15}2 as well as those resulting from the symmetry

properties of the discrete Fourier transform. In addition,

two blurred noisy observations of x are available, namely
(see Fig. 1(b)–(c)) z1 = L1x + w1 and z2 = L2x + w2.

Here, L1 and L2 model convolutional blurs with constant

kernels of size 3 × 11 and of 7 × 5, respectively, and w1

and w2 are Gaussian white noise realizations. The blurred

image-to-noise ratios are 30.1 dB and 34.6 dB.

Problem 13 In Problem 2, set f = ιC , p = 4, α1 = α2 =
3/8, α3 = α4 = 1/8, g1 = hρ ◦ ‖ · −z1‖, g2 = hρ ◦ ‖ · −z2‖,
g3 = dE , L3 = Id, g4 =

√
8‖ · ‖1, and L4 = D/

√
8, where

ρ = 300, hρ is defined in (7), and D : RN → R
N × R

N

models finite differences. The task is to

minimize
x∈C

3

8
hρ(‖L1x− z1‖) +

3

8
hρ(‖L2x− z2‖)+

1

8
dE(x) +

1

8

(√
8‖L4x‖1

)
. (17)

Problem 14 In Problem 9, define f , p, (αk)16k6p,

(gk)16k6p, and (Lk)16k6p as in Problem 13, and replace
(17) by

minimize
x∈C

(
˛

M(Lk, gk)16k6p

)
(x). (18)

We apply Propositions 12 and 10 to Problems 13 and

14, respectively, with all initial vectors set to 0. The

parameters used in Propositions 12 are σ = 1/(1.1β) and

τ = 1/β, where β =
√∑4

k=1 ‖Lk‖2, as these values gave

faster converge of the algorithm. The restored images

are shown in Fig. 2, while Fig. 3 illustrates the faster

convergence of the proximal comixture model compared
to the standard composite average.



(a) (b)

(c)

Fig. 1: (a) Original image x. (b) Degraded image z1.

(c) Degraded image z2.

(a) (b)

Fig. 2: (a) Image restored by Problem 13/Proposition 12.
(b) Image restored by Problem 14/Proposition 10.
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Fig. 3: Normalized error 20 log10(‖xn − x∞‖/‖x0 − x∞‖)
(dB) versus iteration count in Experiment V-A.

B. Experiment 2: Image reconstruction from phase

This numerical example addresses a phase recovery
problem considered in [10]. The goal is to recover the

image x ∈ C = [0, 255]N (N = 5122) from the observation

of its Fourier phase θ = ∠ x̂ [16]. The original image x is
shown in Fig. 4(a). The problem is modeled as a convex

feasibility problem with the following constraint sets.

• Phase: C1 =
{
x ∈ R

N | ∠ x̂ = θ
}

.
• Mean pixel value: C2 =

{
x ∈ R

N | 〈x | 1〉 = η
}

.
• Upper bound on the norm of the gradient: Dx/

√
8 ∈

C3, where C3 =
{
y ∈ R

N × R
N | ‖y‖2 6 ρ

}
and D is

defined as in Problem 13.
• Proximity to the reference image z of Fig. 4(b): C4 ={

x ∈ R
N | ‖x− z‖2 6 ξ

}
. The image z is a blurred

and noise corrupted version of x, which is further

degraded by saturation (the pixel values beyond 130

are clipped to 130) and the addition of a local high
intensity noise on a rectangular area around the right

eye.

Because of inaccuracies in the values θ, η, ρ, and ξ, this

problem is inconsistent and it is relaxed as follows.

Problem 15 In Problem 2, set f = ιC , p = 4, α1 = α2 =
α3 = α4 = 1/4, g1 = hρ1

◦ dC1
, L1 = Id, g2 = hρ2

◦ dC2
,

L2 = Id, g3 = hρ3
◦ dC3

, L3 = D/
√
8, g4 = hρ4

◦ dC4
, and

L4 = Id, where ρ1 = ρ2 = ρ3 = 3000, ρ4 = 5000, and hρ
is defined in (7). The task is to

minimize
x∈C

1

4
hρ1

(dC1
(x)) +

1

4
hρ2

(dC2
(x))+

1

4
hρ3

(dC3
(L3x)) +

1

4
hρ4

(dC4
(x)). (19)

Problem 16 In Problem 9, define f , p, (αk)16k6p,

(gk)16k6p and (Lk)16k6p as in Problem 15, and replace

(19) by

minimize
x∈C

(
˛

M(Lk, gk)16k6p

)
(x). (20)

(a) (b)

Fig. 4: (a) Original image x. (b) Reference image z.

We apply Propositions 12 and 10 to Problems 15 and

16, respectively, with all initial vectors set to 0. The

parameters used in Propositions 12 are σ = 1/(1.1β) and

τ = 1/β, where β =
√∑4

k=1 ‖Lk‖2, as these values gave

faster convergence of the algorithm. The restored images

are shown in Fig. 5, while Fig. 6 illustrates the faster

convergence of the proximal comixture model compared
to the standard composite average.



(a) (b)

Fig. 5: (a) Image restored by Problem 15/Proposition 12.

(b) Image restored by Problem 16/Proposition 10.
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Fig. 6: Normalized error 20 log10(‖xn − x∞‖/‖x0 − x∞‖)
(dB) versus iteration count in Experiment V-B.

C. Experiment 3: Overlapping group lasso

We consider the following instance of Problem 2.

Problem 17 The task is to solve the overlapping group

lasso problem [7]

minimize
x∈R

N

1

2
‖Ax− z‖2 +

p∑

k=1

αk‖Lkx‖, (21)

where p = 50, N = 2255, M = 2000, A ∈ R
M×N

is normalized so that ‖A‖ 6 1, x = (ξj)16j6N , where

ξj = (−1)j exp(−(j − 1)/50), z = Ax + w, where w is
a realization of a Gaussian noise with zero mean and

unit variance, and, for every k ∈ {1, . . . , p}, Lk : x 7→
(ξ45(k−1)+1, . . . , ξ45(k−1)+50) and αk = 1/p.

Problem 18 In Problem 17, replace (21) by

minimize
x∈R

N

1

2
‖Ax− z‖2 +

(
˛

M(Lk, ‖ · ‖)16k6p

)
(x). (22)

While the methods converge to similar solutions, Fig. 7

shows that the proximal comixture approach yields faster
convergence than that of the standard composite average.
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