
Tropical considerations in dynamic programming

Stephane.Gaubert@inria.fr
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Max-plus or tropical algebra

In an exotic country, children are taught that:

“a + b” = max(a, b) “a × b” = a + b

So

“2 + 3” =

“2× 3” =

“5/2” =

“23” =

“
√
−1” =
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The notation a ⊕ b := max(a, b), a ⊗ b := a + b,
0 := −∞, 1 := 0 is also used in the tropical/max-plus
litterature
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The sister algebra: min-plus

“a + b” = min(a, b) “a × b” = a + b

“2 + 3” = 2

“2× 3” = 5
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The term “tropical” is in the honor of Imre Simon,

1943 - 2009

who lived in Sao Paulo (south tropic).
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These algebras were invented by various schools in the
world
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Cuninghame-Green 1960- OR (scheduling, optimization)

Vorobyev ∼65 . . . Zimmerman, Butkovic; Optimization

Maslov ∼ 80’- . . . Kolokoltsov, Litvinov, Samborskii, Shpiz. . . Quasi-classic
analysis, variations calculus

Simon ∼ 78- . . . Hashiguchi, Leung, Pin, Krob, . . . Automata theory

Gondran, Minoux ∼ 77 Operations research

Cohen, Quadrat, Viot ∼ 83- . . . Olsder, Baccelli, S.G., Akian initially
discrete event systems, then optimal control, idempotent probabilities,
combinatorial linear algebra

Nussbaum 86- Nonlinear analysis, dynamical systems, also related work in
linear algebra, Friedland 88, Bapat ˜94

Kim, Roush 84 Incline algebras

Fleming, McEneaney ∼00- max-plus approximation of HJB

Puhalskii ∼99- idempotent probabilities (large deviations)

and now in tropical geometry, after Viro, Mikhalkin, Passare, Sturmfels and

many.
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Menu: connections between. . .

tropical convexity

dynamic programming / zero-sum games

Perron-Frobenius theory

metric geometry
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Some elementary tropical geometry

A tropical line in the plane is the set of (x , y) such that
the max in

“ax + by + c”

is attained at least twice.

max(x , y , 0)
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A tropical line in the plane is the set of (x , y) such that
the max in

max(a + x , b + y , c)

is attained at least twice.

max(x , y , 0)
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Two generic tropical lines meet at a unique point
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By two generic points passes a unique tropical line
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non generic case
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non generic case resolved by perturbation
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Tropical segments:

f

g

[f , g ] := {“λf + µg” | λ, µ ∈ R∪ {−∞}, “λ+ µ = 1”}.

(The condition “λ, µ ≥ 0” is automatic.)
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Tropical segments:

f

g

[f , g ] := { sup(λ + f , µ + g) | λ, µ ∈
R ∪ {−∞}, max(λ, µ) = 0}.

(The condition λ, µ ≥ −∞ is automatic.)
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C

Tropical convex cone: ommit “λ + µ = 1”, i.e., replace
[f , g ] by {sup(λ + f , µ + g) | λ, µ ∈ R ∪ {−∞}}
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A max-plus “tetrahedron”?
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The previous drawing was generated by Polymake of
Gawrilow and Joswig, in which an extension allows one to
handle easily tropical polyhedra. They were drawn with
javaview. See Joswig arXiv:0809.4694 for more information.
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Why?
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)
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attained twice

max(log |x |, log |y |, 0)

|y | ≤ |x |+ 1, |x | ≤ |y |+ 1, 1 ≤ |x |+ |y |
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

X := log |x |, Y := log |y |
Y ≤ log(eX + 1), X ≤ log(eY + 1), 1 ≤ eX + eY
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real tropical lines

y = x + 1
Y = max(X , 0)

X = log(eX + 1)
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real tropical lines

x + y = 1

log(eX + eY ) = 1

max(X ,Y ) = 0
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real tropical lines

x = y + 1

X = log(eX + 1)

X = max(Y , 0)
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Viro’s log-glasses, related to Maslov’s dequantization

a +h b := h log(ea/h + eb/h), h→ 0+

With h-log glasses, the amoeba of the line retracts to the
tropical line as h→ 0+

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

max(a, b) ≤ a +h b ≤ h log 2 + max(a, b)
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Similar to convergence of p-norm to sup-norm

[a, b] := {λa +p µb, λ, µ ≥ 0, λ +p µ = 1

a +p b = (ap + bp)1/p

The convex hull in the +h / +p sense converges to the
tropical convex hull as h→ 0 / p →∞ (Briec and Horvath).
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All the results of classical convexity have tropical
analogues, sometimes more degenerate. . .

generation by extreme points Helbig; SG, Katz 07;

Butkovič, Sergeev, Schneider 07

projection / best-approximation : Cohen, SG,

Quadrat 01,04; Singer

Hahn-Banach analytic Litvinov, Maslov, Shpiz 00; Cohen,

SG, Quadrat 04; geometric Zimmermann 77, Cohen, SG,

Quadrat 01,05; Develin, Sturmfels 04, Joswig 05

cyclic projections Butkovic, Cuninghame-Green TCS03; SG,

Sergeev 06

Radon, Helly, Carathéodory, Colorful Carathéodory,
Tverberg: SG, Meunier DCG09
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See Passare & Rullgard, Duke Math. 04 for more information
on amoebas
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This talk

Tropical convexity is equivalent to dynamic programming
(zero-sum games).

finite dimensional convex sets (cones) ∼ stochastic
games with finite state spaces

infinite dimensional convex cones, spaces of functions
∼ stationnary solutions of Hamilton-Jacobi(-Bellman)
equations (1-player: Fathi’s weak KAM solutions)

leads to: equivalence (computational complexity)
results, algorithms, approximation methods, . . .
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Shapley operators

X = C (K ), even X = Rn; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj
)
, i ∈ [n]

[n] := {1, . . . , n} set of states

a action of Player I, b action of Player II

r abi payment of Player II to Player I

Pab
ij transition probability i → j
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Shapley operators

X = C (K ), even X = Rn; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj
)
, i ∈ [n]

T is order preserving and additively homogeneous:

x ≤ y =⇒ T (x) ≤ T (y)

T (α + x) = α + T (x), ∀α ∈ R
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Shapley operators

X = C (K ), even X = Rn; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj
)
, i ∈ [n]

Conversely, any order preserving additively homogeneous
operator is a Shapley operator (Kolokoltsov), even with
degenerate transition probabilities (deterministic)
Gunawardena, Sparrow; Singer, Rubinov,

Ti(x) = sup
y∈R

(
Ti(y) + min

1≤i≤n
(xi − yi)

)
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Variant. T is additively subhomogeneous if

T (α + x) ≤ α + T (x), ∀α ∈ R+

This corresponds to 1−
∑

j Pab
ij = death probability > 0.

Order-preserving + additively (sub)homogeneous =⇒
sup-norm nonexpansive

‖T (x)− T (y)‖∞ ≤ ‖x − y‖∞ .
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Variant. T is additively subhomogeneous if

T (α + x) ≤ α + T (x), ∀α ∈ R+

This corresponds to 1−
∑

j Pab
ij = death probability > 0.

Order-preserving + additively homogeneous ⇐⇒ top
nonexpansive

t(T (x)− T (y)) ≤ t(x − y), t(z) := max
i

zi .
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Variant. T is additively subhomogeneous if

T (α + x) ≤ α + T (x), ∀α ∈ R+

This corresponds to 1−
∑

j Pab
ij = death probability > 0.

Order-preserving + additively subhomogeneous ⇐⇒
top+ nonexpansive

t+(T (x)−T (y)) ≤ t+(x−y), t+(z) := max(max
i

zi , 0) .
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Repeated games

The value of the game in horizon k starting from state i
is (T k(0))i .

We are interested in the long term payment per time unit

χ(T ) := lim
k→∞

T k(0)/k
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Max and Min flip a coin to decide who makes the move.
Min always pay.

2

3

−1
2

2 1

−1 −8

21

3
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Max and Min flip a coin to decide who makes the move.
Min always pay.

2

3

−1
2

2 1

−1 −8

21

3

v k+1
i =

1

2
(max
j : i→j

(cij + v k
j ) + min

j : i→j
(cij + v k

j )) .
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2

3

−1
2

2 1

−1 −8

21

3

50
4

 v1 = 1
2(max(2 + v1, 3 + v2,−1 + v3) + min(2 + v1, 3 + v2,−1 + v3)

v2 = 1
2(max(−1 + v1, 2 + v2,−8 + v3) + min(−1 + v1, 2 + v2,−8 + v3)

v3 = 1
2(max(2 + v1, 1 + v2) + min(2 + v1, 1 + v2)

this game is fair
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v =
1

2
(max
j : i→j

v k
j + min

j : i→j
v k
j ) ,

vi , i ∈ boundary prescribed:

discrete variant of Laplacian infinity (Oberman), or
Richman games (Tug of war).
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Optimality certificates

More generally, for u ∈ Rn and λ ∈ R,

T (u) ≥ u =⇒ χ(T ) ≥ 0

T (u) ≤ u =⇒ χ(T ) ≤ 0

T (u) = λ + u =⇒ χ(T ) = (λ, . . . , λ) .
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Optimality certificates

More generally, for u ∈ Rn and λ ∈ R,

T (u) ≥ u =⇒ χ(T ) ≥ 0

T (u) ≤ u =⇒ χ(T ) ≤ 0

T (u) = λ + u =⇒ χ(T ) = (λ, . . . , λ) .

Sufficient condition SG+Gunawardena, TAMS 2004: if G (T ) is
strongly connected, then the additive eigenproblem
T (u) = λ + u with λ ∈ R is solvable
G (T ): arc i → j if lims→∞ Ti(sej) = +∞.
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� T (u) = λ + u, u ∈ Rn may not have a solution.
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� T (u) = λ + u, u ∈ Rn may not have a solution.

Indeed, it may happen that χj(T ) 6= χk(T ) for two
different initial states j , k .
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spaces are infinite (Kohlberg, Neyman)
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� T (u) = λ + u, u ∈ Rn may not have a solution.

Indeed, it may happen that χj(T ) 6= χk(T ) for two
different initial states j , k .

� χ(T ) = limk T k(0)/k may even not exist if the action
spaces are infinite (Kohlberg, Neyman)

However. . .
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� T (u) = λ + u, u ∈ Rn may not have a solution.

Indeed, it may happen that χj(T ) 6= χk(T ) for two
different initial states j , k .

� χ(T ) = limk T k(0)/k may even not exist if the action
spaces are infinite (Kohlberg, Neyman)

However. . .

If the graph of T is semi-algebraic, then χ(T ) does
exists. Neyman 04, extending Bewley and Kohlberg 76.

Stephane Gaubert (INRIA and CMAP) Tropical & dynamic programming IHP 29 / 85



By subadditivity, the following limits (indep of x ∈ Rn) do
exist

lim
k→∞

‖T k(x)− x‖∞
k

= inf
k≥1

‖T k(x)− x‖∞
k

χ(T ) := lim
k→∞

t(T k(x)− x)

k
= inf

k≥1

t(T k(x)− x)

k

χ(T ) := lim
k→∞

b(T k(x)− x)

k
= sup

k≥1

b(T k(x)− x)

k

t(z) := max
i

zi , b(z) := min
i

zi .

Stephane Gaubert (INRIA and CMAP) Tropical & dynamic programming IHP 30 / 85



In general, think of T as a Perron-Frobenius operator in
log-glasses:

F = exp ◦T ◦ log, Rn
+ → Rn

+

F extends continuously from intRn
+ to Rn

+ Burbanks,

Nussbaum, Sparrow.

Theorem (non-linear Collatz-Wielandt, Nussbaum, LAA 86)

ρ(F ) = lim
k→∞
‖F k(x)‖1/k , x ∈ IntRn

+

= max{µ ∈ R+ | F (v) = µv , v ∈ Rn
+, v 6= 0}

= max{µ ∈ R+ | F (v) ≥ µv , v ∈ Rn
+, v 6= 0}
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χ(T ) := lim
k→∞

max
1≤j≤n

[T k(0)]j/k = log ρ(F )

SG, Gunawardena, TAMS 04: there always exists an initial
state which achieves the best payoff

∀x ∈ Rn, ∃j , [T k(x)]j ≥ kχ(T ) + xj , ∀k

Theorem (non-linear Collatz-Wielandt, Nussbaum, LAA 86)

ρ(F ) = lim
k→∞
‖F k(x)‖1/k , x ∈ IntRn

+

= max{µ ∈ R+ | F (v) = µv , v ∈ Rn
+, v 6= 0}

= max{µ ∈ R+ | F (v) ≥ µv , v ∈ Rn
+, v 6= 0}
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Correspondence between tropical convexity and

zero-sum games

Theorem (Akian, SG, Guterman, arXiv:0912.2462 → IJAC)

TFAE:

C closed tropical convex cone

C = {u ∈ (R ∪ {−∞})n | u ≤ T (u)} for some
Shapley operator T

and MAX has at least one winning state (χ(T ) ≥ 0) if
and only if

C 6= {(−∞, . . . ,−∞)} .
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Recall C ⊂ (R ∪ {−∞})n is a tropical convex cone if

u, v ∈ C , λ ∈ R∪{−∞} =⇒ sup(u, v) ∈ C , λ+u ∈ C .

Easy implication: T order preserving and additively
homogeneous =⇒ {u | u ≤ T (u)} is a closed tropical
convex cone
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Recall C ⊂ (R ∪ {−∞})n is a tropical convex cone if

u, v ∈ C , λ ∈ R∪{−∞} =⇒ sup(u, v) ∈ C , λ+u ∈ C .

Easy implication: T order preserving and additively
homogeneous =⇒ {u | u ≤ T (u)} is a closed tropical
convex cone

Remark: {u | u ≥ T (u)} is a dual tropical (min-plus)
cone.
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : “Aix ≤ Bix”
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : max
1≤j≤n

aij +xj ≤ max
1≤k≤n

bik +xk , aij , bij ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : max
1≤j≤n

aij +xj ≤ max
1≤k≤n

bik +xk , aij , bij ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .

x ≤ T (x) ⇐⇒ max
1≤j≤n

aij + xj ≤ max
1≤k≤n

bik + xk , ∀i ∈ I .
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a

x2
x1

V

x3

c

b

x2
x1

x3

2x1 ≤ x2 ⊕ 3x3

2 + x1 ≤ max(x2, 3 + x3)
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x1

V

x3

c

b

V

2 + x1 ≤ max(x2, 3 + x3)
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Hi : max
1≤j≤n

aij + xj ≤ max
1≤k≤n

bik + xk

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .

Interpretation of the game

State of MIN: variable xj , j ∈ {1, . . . , n}
State of MAX: half-space Hi , i ∈ I

In state xj , Player MIN chooses a tropical half-space
Hi with xj in the LHS

In state Hi , player MAX chooses a variable xk at the
RHS of Hi

Payment −aij + bik .
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Now, χ(T ) ≥ 0 ⇐⇒ C 6= {−∞} follows from
Nussbaum’s Collatz-Wielandt theorem, F := exp ◦T ◦ log,

χ(T ) ≥ 0

ρ(F ) ≥ 1

∃v ∈ Rn
+, v 6≡ 0,F (v) ≥ v

∃u 6≡ −∞,T (u) ≥ u
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Polyhedral case

Theorem (Akian, SG, Guterman arXiv:0912.2462 → IJAC)

If the game is deterministic with finite action spaces (i.e.
C is a tropical polyhedron), then the set of winning states
is the support of C :

{i | ∃u ∈ C , ui 6= −∞} = {i | χi(T ) ≥ 0}
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x1 ≤ a + max(x2 − 2, x3 − 1) (H1)

−2 + x2 ≤ a + max(x1, x3 − 1) (H2)

max(x2 − 2, x3 − a) ≤ x1 + 2 (H3)

value χ(T )j = (2a + 1)/2, ∀j .

3

2

1 1

2

33

2

1 1

2

3
−a

0

−2

2

−2

−a

0

−2

2

a

a− 2

a− 1a− 1

−2
a− 1 a− 1
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x1

x3

x2

H3
H2

H1

x3

x2

H2H1

H3

x1

a = −3/2, victorious strategy of Min: certificate of
emptyness involving ≤ d inequalities (Helly)
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x1

x3

x2

H3
H2

H1

x3

x2

H2H1

H3

x1

a = 1, victorious strategy of Max: tropical polytrope 6= ∅
included in the convex set
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Corollary

Feasibiliby in tropical linear programming, i.e.,

∃?u ∈ (R∪{−∞})n, max
j

aij+uj ≤ max
j

bij+uj , 1 ≤ i ≤ p

is polynomial-time equivalent to mean payoff games.

Mean payoff games: Gurvich, Karzanov, Khachyan 86; are in
NP ∩ coNP: Zwick, Paterson 96.

Tropical convex sets are log-limits of classical convex sets:
polynomial time solvability of mean payoff games might
follow from a strongly polynomial-time algorithm in linear
programming (Schewe).
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Other problems in tropical programming, like tropical
Farkas (Ax ≤ Bx =⇒ cx ≤ dx?) also equivalent to
mean payoff games by Allamigeon, SG, Katz, LAA 11.

See also SG, Katz, Sergeev for linear-fractional tropical
programming
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An application: perturbation of eigenvalues

Exercise.

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,
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An application: perturbation of eigenvalues

Exercise.

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Show without computation that the eigenvalues have the
following asymptotics as ε→ 0

L1
ε ∼ ε−1/3,L2

ε ∼ jε−1/3,L3
ε ∼ j2ε−1/3.
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Assume that the entries of Aε have Puiseux series
expansions in ε, or even that Aε = a + εb, a, b ∈ Cn×n.

L1, . . . ,Ln eigenvalues of Aε.

v(s): opposite of the smallest exponent of a Puiseux
series s.

γ1 ≥ · · · ≥ γn: tropical eigenvalues of v(Aε).

Theorem (Akian, Bapat, SG CRAS04, arXiv:0402090)

v(L1) + · · ·+ v(Ln) ≤ γ1 + · · ·+ γn

and equality holds under generic (Lidski-type) conditions.
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The maximal tropical eigenvalue γ1 coincides with the
ergodic constant of the one-player game

λ + ui = max
1≤j≤n

(
val(Aε)ij + uj

)
,∀i

λ is the maximal circuit mean.

In general, tropical eigenvalues are non-differentiability
points of a parametric optimal assignment problem =
Legendre transform a the generic Newton polygon
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Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 , A =

 1 0 4
∞ 1 −2
1 2 ∞

 .

We have γ1 = −1/3, corresponding to the critical circuit:

2 31

−20

1

Eigenvalues:

L1
ε ∼ ε−1/3,L2

ε ∼ jε−1/3,L3
ε ∼ j2ε−1/3.
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More algorithmic issues . . .
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Tropical double description, Allamigeon,SG, Goubault,

STACS 10

Can compute efficiently all the extreme generators of
P := {x | Ax ≤ Bx}, where A,B ∈ Rp×d

max (analogue of
Fukuda/Motzkin).
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Tropical double description, Allamigeon,SG, Goubault,

STACS 10

For d = 4 and p = 10, only 24 vertices, but 1215
pseudo-vertices
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(Coarse) worst case bound of double description
O(p2dα(d)(p + d)d−1) where α is the inverse of the
Ackermann function.

Better experimental behavior. Implementation in
TPLib/caml (Allamigeon).

Tropical polyhedra have fewer extreme points than in the
classical case (McMullen bound is not tight, Allamigeon,

SG, Katz, JCTA 11, exact bound for the number of extreme
points of “Ax ≤ Bx”: open).
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Bubble sort

V a r i a b l e s : i , j , k , x , y , z
Program :
l o c a l t {
i := x ;
j := y ;
k:= z ;
i f x > y then

i := y ;

j := x ;
f i ;
i f j > z then

k:= j ;
j := z ;

f i ;
i f i > j then

t := j ;
j := i ;
i := t ;

f i ;
} ;

Can prove
automatically that
k = max(x, y, z)?
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and even that. . .

−y = max(−k,−y ) ; max(−k,−z ) = −z ;
max(− j ,−x ,−z ) = max(−x ,−z ) ;
− j = max(− j ,−k ) ; max(−y ,−z ) = max(− j ,−y ,−z ) ;
max ( j , y , z ) = max ( y , z ) ;
z = max ( i , z ) ; −x = max(−k,−x ) ;

max(−x ,−y ) = max(− j ,−x ,−y ) ;
− i = max(− i ,−x ) ;
max(−x ,−y ,−z ) = max(− i ,−k ) ; x = max ( i , x ) ;
max ( j , x , z ) = max ( x , z ) ;
max ( i , y ) = y ; max ( j , x , y ) = max ( x , y ) ;
j = max ( i , j ) ; k = max ( x , y , z )

Allamigeon, SG, Goubault, SAS’08
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Such invariants can be found by abstract interpretation.

Equivalent to solving a game (monotone fixed point
problem)
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An application of infinite dimensional tropical convexity
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Lagrange problem / Lax-Oleinik semigroup

v(t, x) = sup
x(0)=x , x(·)

∫ t

0

L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (S t)t≥0, S tφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

S t(sup(φ, ψ)) = sup(S tφ, S tψ)
S t(λ + φ) = λ + S tφ

So S t is max-plus linear.
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Lagrange problem / Lax-Oleinik semigroup

v(t, x) = sup
x(0)=x , x(·)

∫ t

0

L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (S t)t≥0, S tφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

S t(“φ + ψ) = “S tφ + S tψ
S t(“λφ) = “λS tφ

So S t is max-plus linear.
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The function v is solution of the Hamilton-Jacobi
equation

∂v

∂t
= H(x ,

∂v

∂x
) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = sup
u

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = sup
y∈Rn

tL(
x − y

t
) + φ(y) .
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The function v is solution of the Hamilton-Jacobi
equation

∂v

∂t
= H(x ,

∂v

∂x
) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = sup
u

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = “

∫
G (x − y)φ(y)dy .
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Max-plus basis / finite-element method

Fleming, McEneaney 00-; Akian, Lakhoua, SG 04-

Approximate the value function by a “linear comb. of
“basis” functions with coeffs. λi(t) ∈ R:

v(t, ·) '“
∑
i∈[p]

λi(t)wi

The wi are given finite elements, to be chosen depending
on the regularity of v(t, ·)

Stephane Gaubert (INRIA and CMAP) Tropical & dynamic programming IHP 56 / 85
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Max-plus basis / finite-element method

Fleming, McEneaney 00-; Akian, Lakhoua, SG 04-

Approximate the value function by a “linear comb. of
“basis” functions with coeffs. λi(t) ∈ R:

v(t, ·) ' sup
i∈[p]

λi(t) + wi

The wi are given finite elements, to be chosen depending
on the regularity of v(t, ·)

Stephane Gaubert (INRIA and CMAP) Tropical & dynamic programming IHP 56 / 85

http://www.springer.com/birkhauser/mathematics/book/978-0-8176-3534-3
http://www.arxiv.org/pdf/math.OC/0603619


Best max-plus approximation

P(f ) := max{g ≤ f | g “linear comb. of wi}
linear forms wi : x 7→ 〈yi , x〉

〈yi , x〉

adapted if v is convex
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Best max-plus approximation

P(f ) := max{g ≤ f | g “linear comb. of wi}

cone like functions wi : x 7→ −C‖x − xi‖

xi

adapted if v is C -Lip
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Use max-plus linearity of Sh:

v t = “
∑
i∈[p]

λi(t)wi

and look for new coefficients λi(t + h) such that

v t+h ' “
∑
i∈[p]

λi(t + h)wi
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Use max-plus linearity of Sh:

v t+h = Shv t ' “
∑
i∈[p]

λi(t)Shwi

and look for new coefficients λi(t + h) such that

v t+h ' “
∑
i∈[p]

λi(t + h)wi
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Use max-plus linearity of Sh:

v t+h = Shv t ' sup
i∈[p]

λi(t) + Shwi

and look for new coefficients λi(t + h) such that

v t+h ' sup
i∈[p]

λi(t + h) + wi
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Max-plus variational approach

Max-plus scalar product

“〈w , z〉 := “

∫
w(x)z(x)dx

For all test functions zj , j ∈ [q]

“〈v t+h, zj〉 = “
∑
i∈[p]

λi(t + h)“〈wi , zj〉

= “
∑
k∈[p]

λk(t)〈Shwk , zj〉
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Max-plus variational approach

Max-plus scalar product

“〈w , z〉 := sup
x

w(x) + z(x)

For all test functions zj , j ∈ [q]

sup
i∈[p]

λi(t + h) + “〈wi , zj〉

= sup
k∈[p]

λk(t) + “〈Shwk , zj〉
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Theorem (Akian, SG, Lakhoua, SICON 04)

The approximation error of the max-plus finite element
method satisfies

‖v t
h − v t‖∞ ≤ C (t) sup

0≤s≤t
‖v s − P(v s)‖

Results of the same nature (but no so simple) for other
versions of the method (Fleming, McEneaney; McEneaney,

Kluberg)
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McEneaney’s curse of dimensionality reduction

Suppose the Hamiltonian is a finite max of Hamiltonians
arising from LQ problems

H = sup
i∈[r ]

Hi , Hi = −(
1

2
x∗Dix + x∗A∗i p +

1

2
p∗Σip)

(=LQ with switching). Let S t and S t
i denote the

corresponding Lax-Oleinik semigroups, S t
i is exactly

known (Riccati!)

Want to solve v = S tv ,∀t ≥ 0
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Choose a quadratic function φ such that S tφ→ v as
t →∞. Then, for t = hk large enough,

v ' (Sh)kφ .

This is a sup of quadratic forms. Inessential terms are
trimmed dynamically using Shor relaxation (SDP) →
solution of a typical instance in dim 6 on a single
processor
McEneaney, Desphande, SG; ACC 08; SG, McEneaney, Qu CDC 11
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i )kφ .
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Choose a quadratic function φ such that S tφ→ v as
t →∞. Then, for t = hk large enough,

v ' “
∑

i1,··· ,ik∈[r ]

Sh
i1
· · · Sh

ik
φ .

This is a sup of quadratic forms. Inessential terms are
trimmed dynamically using Shor relaxation (SDP) →
solution of a typical instance in dim 6 on a single
processor
McEneaney, Desphande, SG; ACC 08; SG, McEneaney, Qu CDC 11
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Choose a quadratic function φ such that S tφ→ v as
t →∞. Then, for t = hk large enough,

v ' sup
i1,··· ,ik∈[r ]

Sh
i1
· · · Sh

ik
φ .

This is a sup of quadratic forms. Inessential terms are
trimmed dynamically using Shor relaxation (SDP) →
solution of a typical instance in dim 6 on a single
processor
McEneaney, Desphande, SG; ACC 08; SG, McEneaney, Qu CDC 11
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Figure: Backsubstitution error and optimal policy on the x1,x2 plane,
h = 0.1 SG, McEneaney, Qu 11

Error estimates: in terms of projection errors Akian, Lakhoua, SG 04-,

curse of dim free estimates (still exp. blowup) Kluberg, McEneaney 09
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SG, McEneaney, Qu CDC 11: cant approximate a C2 strictly
convex function by N affine max-plus finite elements in
dimension d with an approximation error better than

cst× 1

N2/d

Corollary of techniques/results of Grüber on
approximation of convex bodies.
Curse of dim is unavoidable, but certified rough
approximations is possible.
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In program verification, the template method of Manna,

Sankaranarayanan, Sipma is a level-set version of max-plus
basis methods (in such applications 102, 103 typically)
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Dessert: from games to metric geometry (generalizations
of Denjoy-Wolff)
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Beyond games, still with a tropical flavor:

nonexpansive mappings

(X , d) metric space, T : X → X ,

d(T (x),T (y)) ≤ d(x , y) .
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Beyond games, still with a tropical flavor:

nonexpansive mappings

(X , d) metric space, T : X → X ,

d(T (x),T (y)) ≤ d(x , y) .

Define the escape rate

ρ(T ) := lim
k→∞

d(x ,T k(x))

k

(independent of x ∈ X by nonexpansiveness, existence by
subadditivity).
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Theorem (Kohlberg & Neyman, Isr. J. Math., 81)

Assume ρ(T ) > 0. Then, there exists a linear form
ϕ ∈ X ∗ of norm one such that for all x ∈ X ,

ρ(T ) = lim
k→∞

ϕ
(
T k(x)/k

)
= inf

y∈X
‖T (y)− y‖
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Corollary (Kohlberg & Neyman, Isr. J. Math., 81, extending Reich 73
and Pazy 71)

The limit

lim
k→∞

T k(x)

k

exists in the weak (resp. strong) topology if X is reflexive and strictly
convex (resp. if the norm of the dual space X ? is Frechet
differentiable).

ϕϕ

T k(x)
k

T k(x)
k

R = ρ(T )
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Compare Collatz-Wielandt

ρ(F ) = max{µ ∈ R+ | F (v) ≥ µv , v ∈ Rn
+, v 6= 0}

= inf{µ > 0 | F (w) ≤ µw ,w ∈ intRn
+}

= lim
k→∞
‖F k(x)‖1/k , ∀x ∈ intRn

+

and so

inf
w∈intRn

+

max
1≤i≤n

(F (w))i
wi

= ρ(F ) = max
v∈Rn

+
v 6=0

min
1≤i≤n
vi 6=0

(F (v))i
vi

.

with Kohlberg and Neyman

ρ(T ) := lim
k→∞

∥∥∥∥T k(x)

k

∥∥∥∥ = inf
y∈X
‖T (y)− y‖ = lim

k→∞
ϕ
(
T k(x)/k

)
.

Is there an explanation of this analogy ?
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Collatz-Wielandt and Kohlberg-Neyman are special cases of a general
result.
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Theorem (SG and Vigeral, Math. Proc. Phil. Soc. 11 )

Let T be a nonexpansive self-map of a complete hemi-metric space
(X , d) of non-positive curvature in the sense of Busemann. Let

ρ(T ) := lim
k→∞

d(x ,T k(x))

k

Then, there exists a Martin function h such that

h(T (x)) ≥ ρ(T ) + h(x), ∀x

Moreover,
ρ(T ) = inf

y∈X
d(y ,T (y)) .

If in addition X is a metric space and ρ(T ) > 0, then h is an
horofunction.
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Let us explain the different notions appearing in this theorem . . .
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Hemi-metric

δ is an hemi-metric on X if

δ(x , z) ≤ δ(x , y) + δ(y , z)

δ(x , y) = δ(y , x) = 0 if and only if x = y .

Variant: weak metric of Papadoupoulos, Troyanov.
(X , δ) is complete if X is complete for the metric
d(x , y) := max(δ(x , y), δ(y , x)).
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The (reverse) Funk (hemi-)metric on a cone

C closed pointed cone, X = int C 6= ∅,

δ(x , y) = RFunk(x , y) := log inf{λ > 0|λx ≥ y}

Lemma

F : C → C is order preserving and homogeneous of degree 1 iff

RFunk(F (x),F (y)) ≤ RFunk(x , y), ∀x , y ∈ int C .

[simple but useful: Gunawardena, Keane, Sparrow, Lemmens,
Scheutzow, Walsh.]

RFunk(x , y) = log max
ϕ∈C∗\{0}

ϕ(y)

ϕ(x)
= log max

ϕ∈Extr C∗

ϕ(y)

ϕ(x)

= log max
1≤i≤n

yi
xi

if C = Rn
+ ,
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Busemann convexity / nonpositive curvature

condition

We say that (X , δ) is metrically star-shaped with center x? if there
exists a family of geodesics {γy}y∈X , such that γy joins the center x?

to the point y , and

δ (γy (s), γz(s)) ≤ sδ(y , z), ∀(y , z) ∈ X 2, ∀s ∈ [0, 1] .

z

γs(y)

γs(z)

y

x?

Stephane Gaubert (INRIA and CMAP) Tropical & dynamic programming IHP 76 / 85



The horoboundary of a metric space

Defined by Gromov (81), see also Rieffel (Doc. Math. 02).
Fix a basepoint x̄ ∈ X .
i : X → C (X ),

i(x) : y → [i(x)](y) := δ(x̄ , x)− δ(y , x).

so that
i(x)(x̄) = 0, ∀x ∈ X

Martin space: M := i(X ) (eg: product topology)
Boundary: H :=M\ i(X ). An element of H is an horofunction.
A Busemann point is the limit limt i(xt), where (xt)t≥0 is an infinite
(almost) geodesic.
Busemann points ⊆ boundary points, with equality for a polyhedral
norm.
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In the Poincare disk model, the level lines of horofunctions are
horocircles

The Wolff-Denjoy theorem (1926) says that the orbits of a fixed
point free analytic function leaving invariant the open disk converge
to a boundary point (and that horodisks are invariants).
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Theorem (SG and Vigeral)

Let T be a nonexpansive self-map of a complete hemi-metric space
(X , d) of non-positive curvature in the sense of Busemann. Then,
there exists a Martin function h such that

h(T (x)) ≥ ρ(T ) + h(x), ∀x

If in addition X is a metric space and ρ(T ) > 0, then h is an
horofunction.

Kohlberg-Neyman is a direct corollary. Since h = limα−‖ · −xα‖
modulo constants, h is concave. Take any ϕ ∈ ∂h(x). Then,

ϕ(T k(x)− x) ≥ h(T k(x))− h(x) ≥ kρ(T ) .
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Collatz-Wielandt revisited

Let F : C → C , where C is a symmetric cone (self-dual cone with a
group of automorphisms acting transitively on it), say C = Rn

+ or
C = S+

n .

Recall F is nonexpansive in RFunk iff it is order preserving and
homogeneous of degree one.

Walsh (Adv. Geom. 08): the horoboundary of C in the (reverse)
Funk metric is the Euclidean boundary: any Martin function h
corresponds to some u ∈ C \ {0}:

h(x) = −RFunk(x , u) + RFunk(x∗, u) ,∀x ∈ int C ,

h is a horofunction iff u ∈ ∂C \ {0}.
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Corollary (Collatz-Wielandt recovered, and more)

Let T : int C → int C , order-preserving and positively homogeneous,
C symmetric cone. Then,

ρ(T ) := lim
k→∞

RFunk(x ,T k(x))

k
, ∀x ∈ int C

= inf
y∈intC

RFunk(y ,T (y))

= log inf{λ > 0 | ∃y ∈ int C , T (y) ≤ λy}
= max

u∈C\{0}
−RFunk(T (u), u)

= log max{µ ≥ 0 | ∃u ∈ C \ {0}, T (u) ≥ µu}

and there is a generator w of an extreme ray of C such that

log
(
w ,T k(x

)
) ≥ log (w , x) + kρ(T ), ∀k ∈ N

Refines Gunawardena and Walsh, Kibernetica, 03.
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T

T
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The special case of games recovered

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj

)
, 1 ≤ i ≤ n

ρ(T ) = χ(T ) = lim
k→∞

max
1≤j≤n

(T k(x))j
k

Corollary (SG, Gunawardena, TAMS 04 recovered)

For all x ∈ Rn, there exists 1 ≤ i ≤ n such that(
T k(x)

)
i
≥ xi + kρ(T ), ∀k ∈ N .

Initial state i guarantees the best reward per time unit.
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Conclusion

Nonexpansive maps/Perron-Frobenius techniques: tools to prove
combinatorial results.

Symmetric cones have a tropical flavor (log glasses, nonpositive
curvature)

Order preserving homogeneous maps should be thought of as
nonexpansive maps in RFunk(x , y) := log inf{λ > 0|λx ≥ y}.
this leads to Denjoy-Wolff type results (nested invariant
horoballs)

Collatz-Wielandt and Kohlberg-Neyman recovered as special
cases.

Generalization of Edmonds’s good characterizations (NP ∩
coNP membership of mean payoff games is a special case).

Current work SG+Zheng Qu: application to various Riccati-type
equations.
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