Game Dynamics: Discrete versus continuous time
Josef Hofbauer
University of Vienna
$\dot{x}=f(x)$ differential equation in \mathbb{R}^{k}
$x \mapsto T_{h}(x)=x+h f(x)$ discretization map with step size h
if h is small, the dynamics should be similar

general results:

1) linearized dynamics near an equilibrium/fixed point
$\dot{x}=J x \quad T_{h}(x)=(I+h J) x$
a) if J is a stable matrix: $\operatorname{Re} \lambda<0 \quad \forall \lambda$
then $I+h J$ is contracting: $|1+h \lambda|<1$ for small $h>0$
b) if J has an eigenvalue λ with $\operatorname{Re} \lambda>0$ then $|1+h \lambda|>1$ for all $h>0$

For hyperbolic equilibria, small h : same local behaviour
b) applies to $\lambda \neq 0, \operatorname{Re} \lambda=0$
2) Attractors are USC under discretization

Let A be an attractor ($=$ asymptotically stable invariant set) of the differential equation. Then for small h, orbits of T_{h}, i.e., iteration sequences $x, T_{h}(x), T_{h}^{2}(x), \ldots$, converge to a neighborhood of A, for x close to A
3) The chain recurrent set is USC under discretization

For small h, all orbits of T_{h} converge to a neighborhood of the set of chain recurrent points of the differential equation
works more generally for differential inclusions
$\dot{x} \in F(x)$
$F: \mathbb{R}^{k} \rightrightarrows \mathbb{R}^{k}$ u.s.c., with compact convex values
$x_{n+1}^{\varepsilon}-x_{n}^{\varepsilon} \in \varepsilon F^{\delta(\varepsilon)}\left(x_{n}^{\varepsilon}\right), \quad \varepsilon>0$ small step size $\operatorname{Graph}\left(F^{\delta}\right) \subset N^{\delta}(\operatorname{Graph}(F))$
$\delta:(0,+\infty) \rightarrow[0,+\infty): \delta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
M. Benaim, JH, S. Sorin, Dynamic Games and Applications, to appear

applications to game dynamics

replicator dynamics

Nash map

BR dynamics

Evolutionary Games

a large population of players
pure strategies: $\quad S=\{1, \ldots, n\}$
mixed strategies: $x \in \Delta(S): x_{i} \geq 0, \sum_{i \in S} x_{i}=1$
payoff to i : $a_{i}(x), a_{i}: \Delta \rightarrow \mathbb{R}$ continuous (population game)
(Symmetric) 2 Person Game: $a_{i j}, a_{i}(x)=\sum_{j} a_{i j} x_{j}=(A x)_{i}$
payoff to mixed strategy $y \in \Delta: y \cdot A x$
$\widehat{x} \in \Delta(S)$ is a (symmetric) NE iff $\widehat{x} \cdot A \widehat{x} \geq x \cdot A \widehat{x} \quad \forall x \in \Delta(S)$

Replicator dynamics

$$
\begin{equation*}
x_{i}^{\prime}=x_{i} \frac{C+(A x)_{i}}{C+x \cdot A x}, \quad i=1, \ldots, n \tag{RM}
\end{equation*}
$$

as a difference equation: $x_{i}^{\prime}-x_{i}=\frac{(A x)_{i}-x A x}{C+x A x}$ $x=x(t), x^{\prime}=x(t+h), h=1 / C, C \rightarrow \infty$: differential equation

$$
\begin{equation*}
\dot{x}_{i}=x_{i}\left((A x)_{i}-x \cdot A x\right) \tag{REP}
\end{equation*}
$$

(RM) is (for large C) essentially an Euler discretization of (REP)
players replicate, offspring inherits strategy payoff \doteq fitness \doteq number of offspring

Special case $a_{i j}=a_{j i}$ (potential game)
population genetics

$$
x_{i}^{\prime}=x_{i} \frac{(A x)_{i}}{x \cdot A x} \quad(i=1, \ldots, n) \quad x^{\prime}=F(x), \quad F: \Delta \rightarrow \Delta
$$

selection map on simplex $\Delta=\Delta_{n}=\left\{x \in \mathbb{R}_{+}^{n}: \sum x_{i}=1\right\}$
x_{i} frequency of gene (allele) A_{i} (in gene pool)
$x_{i} x_{j}$ frequency of genotype $A_{i} A_{j}$ (random mating)
$a_{i j}=a_{j i} \geq 0$ fitness (survival probability) of genotype $A_{i} A_{j}$
$a_{i j} x_{i} x_{j}$ adults with genotype $A_{i} A_{j}$
$x_{i}^{\prime} \sim \sum_{j} a_{i j} x_{i} x_{j}$ frequency of gene A_{i} in next generation
$n=2$ Fisher, Haldane, Wright 1930s

Fundamental Theorem of Natural Selection

Mulholland-Smith 1959, Atkinson-Watterson-Moran 1960, Kingman 1961

Mean fitness $x \cdot A x=\sum_{i j} a_{i j} x_{i} x_{j}$ increases along orbits: $x^{\prime} \cdot A x^{\prime} \geq x \cdot A x$ with equality only if $x=x^{\prime}$ (at fixed points)

Hence: ω-limits are connected sets of fixed points, of constant mean fitness.

Convergence Theorem (Lyubich et al, Aulbach, Losert \& Akin 1983): Each orbit of the selection map converges to a fixed point.

Qu: Does this follow from Lojasiewicz technique?
(REP) is gradient system w.r.t. a certain Riemannian metric on int Δ

$$
\begin{equation*}
x^{\prime}=F(x), \quad x_{i}^{\prime}=x_{i} \frac{(A x)_{i}}{x A x}, \quad i=1, \ldots, n \tag{RM}
\end{equation*}
$$

$n=2$: The replicator map $F:[0,1] \rightarrow[0,1]$ is strictly increasing.
\Longrightarrow convergence to fixed points $(0,1, \widehat{x})$

$$
\begin{equation*}
x_{i}^{\prime}=x_{i} \frac{(A x)_{i}}{x \cdot A x}, \quad i=1, \ldots, n \tag{RM}
\end{equation*}
$$

general n : If $a_{i j}>0 \quad \forall i, j$ then $F: \Delta \rightarrow \Delta$ is a diffeomorphism (Losert \& Akin, JMB 1983)
however, for $n \geq 3$, ($R M$) is more complicated than (REP)

Example: The Rock-Scissors-Paper game

$A=\left(\begin{array}{ccc}a & b & c \\ c & a & b \\ b & c & a\end{array}\right) \quad(c>a>b \geq 0)$
unique $N E: E=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
$V(x)=x_{1} x_{2} x_{3}$
$V(x) \geq 0, V$ is maximal at $E=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
I) If $2 a=b+c$ then $\dot{V}(x)=0 \quad \forall x \in \Delta$: closed orbits
II) If $2 a<b+c$ then $\dot{V}(x) \geq 0 \quad \forall x \in \Delta, E$ is global attractor.
III) If $2 a>b+c$ then $\dot{V}(x) \leq 0 \quad \forall x \in \Delta . E$ is repeller, $\omega(p)=\partial \Delta$ for all $p \neq E$.

$x_{1} x_{2} x_{3}=$ const.

The RSP game: discrete time

$V(x)=\frac{x_{1} x_{2} x_{3}}{x A x} \quad$ (JH 1984)
$V(x) \geq 0, V$ is maximal at $E=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
I) If $a^{2}=b c$ then $V\left(x^{\prime}\right)=V(x) \quad \forall x \in \Delta$.
II) If $a^{2}<b c$ then $V\left(x^{\prime}\right) \geq V(x) \quad \forall x \in \Delta, E$ is global attractor.
III) If $a^{2}>b c$ then $V\left(x^{\prime}\right) \leq V(x) \quad \forall x \in \Delta$. E is repeller.
$\omega(p) \subseteq \partial \Delta$ for all $p \neq E$.
In case (I): invariant closed curves, dynamics is conjugate to rotation
Case (III): Qu: $\omega(p)=\partial \Delta$?

Stein-Ulam spiral map (1955/60/64): $a=1, b=2, c=0$ $x \cdot A x=\left(x_{1}+x_{2}+x_{3}\right)^{2}=1$
Menzel-Stein-Ulam (1955): quadratic maps $\Delta \rightarrow \Delta$

BRUCE KITCHENS AND MICHA£ MISIUREWICZ

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}\left(x_{1}+2 x_{2}\right) \\
x_{2}^{\prime} & =x_{2}\left(x_{2}+2 x_{3}\right) \\
x_{3}^{\prime} & =x_{3}\left(x_{3}+2 x_{1}\right)
\end{aligned}
$$

all orbits go to $\partial \Delta$

Vallander (1972): what is the limit set?

Barański \& Misiurewicz (2009):

1) For generic initial conditions $p \in \Delta$ (residual set): $\omega(p)=\partial \Delta$
2) For each closed invariant subset $L \subseteq \partial \Delta$ which intersects all three sides of Δ there is a dense set of points $p \in \Delta$ with $\omega(p)=L$

Evolutionary stability (John Maynard Smith)

\widehat{x} is an ESS \Leftrightarrow

$$
\text { (i) } x \cdot A \widehat{x} \leq \widehat{x} \cdot A \widehat{x} \quad \forall x \in \Delta
$$ and if there is equality in (i) then

(ii) $x \cdot A x<\hat{x} \cdot A x$ for $x \neq \hat{x}$
$\Leftrightarrow \quad \widehat{x} \cdot A x>x \cdot A x \quad \forall x \neq \widehat{x}$ close to \widehat{x}.

For a NE $\widehat{x} \in \operatorname{int} \triangle: \quad E S S \Leftrightarrow$

$$
z \cdot A z<0 \quad \forall z \neq 0, \sum_{i} z_{i}=0
$$

Example: The RSP game

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right) \quad(c>a>b \geq 0) z \in \mathbb{R}_{0}^{n}: z_{1}+z_{2}+z_{3}=0 \\
z \cdot A z=a\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right)+(b+c)\left(z_{1} z_{2}+z_{2} z_{3}+z_{1} z_{3}\right) \\
=\left(a-\frac{b+c}{2}\right)\left[z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right] \\
2 a<b+c: \text { negative definite, } E \text { is ESS }
\end{gathered}
$$

$2 a>b+c:$ positive definite, E is anti-ESS

Theorem. 1) An ESS is asymptotically stable under (REP), and asymp. stable under (RM) for small h (= large C).
2) In a negative definite game:

$$
z \cdot A z<0 \quad \forall z \neq 0, \sum_{i} z_{i}=0
$$

The unique NE is an ESS and is globally asymptotically stable under (REP), and under (RM) for small h (= large C).

Liapunov function: $V(x)=\sum_{i} \widehat{x}_{i} \log x_{i}$
$z A z \leq 0 \quad a(x)=A x \quad(x-y)(a(x)-a(y)) \leq 0 \quad \forall x, y \in S x$
payoff function 'monotone'

Replicator dynamics for bimatrix games

two disjoint player populations, playing a two person game payoff matrices: $A=\left(a_{i j}\right) n \times m, B=\left(b_{j i}\right) m \times n$

$$
\begin{gather*}
x_{i}^{\prime}=x_{i} \frac{(A x)_{i}}{y \cdot A x}, \quad y_{j}^{\prime}=y_{j} \frac{(B y)_{j}}{x \cdot B y} \tag{RM}\\
i=1, \ldots, n \quad j=1, \ldots, m \\
x_{i}^{\prime}=x_{i} \frac{1+h(A x)_{i}}{1+h y \cdot A x}, \quad y_{j}^{\prime}=y_{j} \frac{1+h(B y)_{j}}{1+h x \cdot B y}
\end{gather*}
$$

with rescaled payoffs $h>0, h \rightarrow 0$

$$
\begin{equation*}
\dot{x}_{i}=x_{i}\left((A x)_{i}-y \cdot A x\right), \quad \dot{y}_{j}=y_{j}\left((B y)_{j}-x \cdot B y\right) \tag{REP}
\end{equation*}
$$

alternative discrete time version
$x_{i}^{\prime}=x_{i}+h x_{i}\left((A x)_{i}-y A x\right), \quad y_{j}^{\prime}=y_{j}+h y_{j}\left((B y)_{j}-x B y\right) \quad(\mathrm{RM})_{h}^{\prime}$ arises from reinforcement learning model (Borgers and Sarin) and imitation model (Schlag, 1998)
$1-h$ level of inertia
opportunity for switching with probability h between rounds

Constant sum games: $a_{i j}+b_{j i}=1$

Example: 2×2 cyclic games

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right), B=\left(\begin{array}{ll}
c & d \\
d & c
\end{array}\right) \quad(a>b>0, d>c>0)
$$

closed orbits for (REP)

For (RM) (both discrete time versions): interior equilibrium is repelling: eigenvalues λ imaginary, hence $|1+h \lambda|>1$, all orbits converge to boundary of $[0,1]^{2}$
sophisticated imitation model (Schlag, 1999, Hofbauer \& Schlag, 2000):
observe 2 or more agents
(sequential) proportional observation rule
adopt a strategy with payoff p (normalized s.t. $\in(0,1)$) with probability p

$$
\begin{aligned}
x_{i}^{\prime} & =x_{i}+h x_{i}\left((A x)_{i}-y \cdot A x\right) \phi_{1}(y \cdot A x) \\
y_{j}^{\prime} & =y_{j}+h y_{j}\left((B y)_{j}-x \cdot B y\right) \phi_{2}(x \cdot B y)
\end{aligned}
$$

ϕ_{i} decreasing
continuous time limit:

$$
\begin{aligned}
& \dot{x}_{i}=x_{i}\left((A x)_{i}-y \cdot A x\right) \phi_{1}(y \cdot A x) \\
& \dot{y}_{j}=y_{j}\left((B y)_{j}-x \cdot B y\right) \phi_{2}(x \cdot B y)
\end{aligned}
$$

E is asymptotically stable for differential equation eigenvalues at $E: \pm i \omega$
E is repelling for difference equation
Hopf bifurcation through discretization:
$h \rightarrow 0$ invariant curve, radius $\sim \sqrt{h}$

The Nash map

Nash's proof of existence of Nash equilibria (Ann. Math. 1951)

Continuous map $f: \Delta \rightarrow \Delta$

$$
f(x)_{i}=\frac{x_{i}+h \widehat{a}_{i}(x)}{1+h \sum_{j=1}^{n} \widehat{a}_{j}(x)} \quad h>0
$$

with $\widehat{a}_{i}(x)=\left[(A x)_{i}-x \cdot A x\right]_{+} \quad$ excess payoffs ($u_{+}=\max (u, 0)$)

Brouwer: $\hat{x}=f(\hat{x})$

$$
\Leftrightarrow \quad \widehat{a}_{i}(\widehat{x})=0 \quad \forall i \quad \Leftrightarrow \quad \widehat{x} \in \mathrm{NE}
$$

difference equation

$$
f(x)_{i}-x_{i}=h \frac{\widehat{a}_{i}(x)-x_{i} \sum_{j=1}^{n} \widehat{a}_{j}(x)}{1+h \sum_{j=1}^{n} \widehat{a}_{j}(x)}
$$

$h \rightarrow 0$

$$
\begin{equation*}
\dot{x}_{i}=\widehat{a}_{i}(x)-x_{i} \sum_{j=1}^{n} \widehat{a}_{j}(x) \tag{BNN}
\end{equation*}
$$

Brown-von Neumann (1950) differential equation:
2 person symmetric zero-sum games convergence to set of equilibria
players switch to strategies better than average Nash map, (BNN) are not smooth, but Lipschitz

(BNN)
$2 a=b+c$

Stability result:

ESS are asympt. stable, interior ESS are globally asympt. stable for (BNN), and for Nash map for small h.

But not for large h !
hawk-dove game: Nash map can converge to a period 2 orbit for large h.

Cyclic 2×2 games: $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Becker et al(JDEA 2007): $h=2$: convergence to a (semistable) period 8 orbit

Geller, Kitchens, Misiurewicz (DCDS 2010):
for small h : attracting invariant closed curve, radius grows linearly with h, like $3 \pi h / 16$
supercritical Hopf bifurcation through discretization:
NE is asympt stable for (BNN), with quadratic terms ensuring convergence

MICRODYNAMICS FOR NASH MAPS

Figure 1. Attractors for various values of c; the phase space

Discretization of the BR dynamics

$\operatorname{BR}(x)=\underset{y \in \Delta}{\operatorname{Argmax}} y \cdot a(x)=\{y \in \Delta: y \cdot a(x) \geq z \cdot a(x) \forall z \in \Delta\} \subseteq \Delta$
A simple discretization of the BR dynamics with constant step size ε is

$$
\begin{equation*}
x(t+\varepsilon) \in \varepsilon \operatorname{BR}(x(t))+(1-\varepsilon) x(t) \tag{1}
\end{equation*}
$$

or

$$
x^{\prime}=T_{h}(x) \in \frac{1}{1+h}(x+h \mathrm{BR}(x))
$$

In each time unit a small proportion of the population switches to a best reponse.
limit $h \rightarrow 0: \dot{x} \in B R(x)-x \quad$ (BR dynamics)

More general is a discretization with variable step sizes

$$
\begin{equation*}
x\left(t_{n+1}\right) \in \varepsilon_{n} \operatorname{BR}\left(x\left(t_{n}\right)\right)+\left(1-\varepsilon_{n}\right) x\left(t_{n}\right), \quad t_{n}+\varepsilon_{n}=t_{n+1} \tag{2}
\end{equation*}
$$

For $\varepsilon_{n}=\frac{1}{n}$ this is fictitious play.
For $\varepsilon_{n}=\frac{1-\rho}{1-\rho^{n}}$ (with $0<\rho<1$) this is geometric fictitious play with discount rate ρ which tends to (1) with $\varepsilon=1-\rho$, as $n \rightarrow \infty$.

$$
x^{\prime} \in \frac{1}{1+h}(x+h \mathrm{BR}(x))
$$

general result: global attractor is USC against discretization (H. and Sorin, 2006)

Example: RPS game (zero sum):

global attractor of the BR dynamics $\dot{x} \in B R(x)$ is the unique equilibrium E

$$
\begin{aligned}
& V(x)=\max (A x)_{i} \\
& \dot{V}(x)=-V(x)
\end{aligned}
$$

hence, for small h, orbits of

$$
x^{\prime} \in \frac{1}{1+h}(x+h \operatorname{BR}(x))
$$

converge to a small neighborhood of the unique equilibrium E.

What is the limit set? (with Peter Bednarik)

The region bounded by the two green triangles is globally attracting
E is a repellor, attractor lies between the two triangles shrink to E as $h \rightarrow 0$ (like h, resp. \sqrt{h})

Orbits of period $3 n$ exist for $0<h<h_{n}$

(a) $h=1.00$
$h=1, \varepsilon=\frac{1}{2}$: periods 3 (red) and 6 (dark red)

(b) $h=0.30$
$h=.3:$ periods 3 (red), 6 (dark red) and 9 (green)

(c) $h=0.25$

(d) $h=0.20$
periods 3 (red), 6 (dark red), 9 (green), 12 (dark green)

(e) $h=0.12$

(f) $h=0.05$
periods 3 (red), 6 (dark red), 9 (green), 12 (dark green), 15 (yellow), 18 (khaki), 21 (blue)

Orbits of period $3 n$ exist for $0<h<h_{n}$

For cyclic 2×2 games: similar behavior, orbits of period $4 n$

(a) $h=0.83$

(b) $h=0.50$
periods 4 (green), 8 (blue)

periods 4 (green), 8 (blue), 12 (teal)

periods 4 (green), 8 (blue), 12 (teal), 16 (black)
discretization of BR dynamics, stepsize h :
attractor shrinks like \sqrt{h} towards the equilibrium
the smaller h the more complex is the dynamics!

