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¢ = f(z) differential equation in R*
x+— Ty (x) = x + hf(x) discretization map with step size h

if A is small, the dynamics should be similar



general results:
1) linearized dynamics near an equilibrium/fixed point
&= Jx Ty(z) = (I + h))x

a) if J is a stable matrix: ReA <0 VA
then I 4+ hJ is contracting: |1 4+ hA| < 1 for small h > 0O

b) if J has an eigenvalue A with Re\ > 0
then |1+ AX| > 1 for all h >0
For hyperbolic equilibria, small Ah: same local behaviour

b) applies to A = 0,ReA =0



2) Attractors are USC under discretization

Let A be an attractor (= asymptotically stable invariant set) of
the differential equation. Then for small h, orbits of T}, i.e., iter-
ation sequences x,Th(x),T}%(a:), ..., converge to a neighborhood
of A, for x close to A

3) The chain recurrent set is USC under discretization

For small h, all orbits of T}, converge to a neighborhood of the
set of chain recurrent points of the differential equation



works more generally for differential inclusions

x € F(x)

F :RF = RF u.s.c., with compact convex values

xf;;_|_1 — x5 € sF‘S(g)(a;%), e > 0 small step size
Graph(F?) ¢ N°(Graph(F))
d:(0,400) — [0,40): 6(c) >0 ase— 0.

M. Benaim, JH, S. Sorin, Dynamic Games and Applications, to appear



applications to game dynamics
replicator dynamics
Nash map

BR dynamics



Evolutionary Games
a large population of players
pure strategies: S ={1,...,n}
mixed strategies: x € A(S): z; >0, ;cqgx; =1
payoff to i: a;(x), a; : A — R continuous (population game)
(Symmetric) 2 Person Game: a;j, a;(z) = X ;a;z; = (Ax);
payoff to mixed strategy y € A: y-Ax

Tz € A(S) is a (symmetric) NE iff 2- Az > x- Az  Va € A(S)



Replicator dynamics

CE’I/ CEZ C + CC.A:C 9 Z ) 7n ( )
. . ) / L (A:C)Z—a?ACB
as a difference equation: z; — x; = CrzAz

r=uxz(t),’ =z(t+ h),h=1/C, C — co: differential equation
z; = z;((Ax); — x-Ax) (REP)
(RM) is (for large C) essentially an Euler discretization of (REP)

players replicate, offspring inherits strategy
payoff = fithess = number of offspring



Special case a;; = a;; (potential game)

population genetics
/ (Ax)z

r; — &y
x-Ax

selection map on simplex A = A, = {z € R} : Y z; =1}

x; frequency of gene (allele) A; (in gene pool)

r;z; frequency of genotype A;A; (random mating)

a;; = aj; > 0 fitness (survival probability) of genotype A;A;

;i TiTj adults with genotype AzAj

x; ~ Y ;a;jxw; frequency of gene A; in next generation

(i=1,....,n) z=F(), F:A—->A

n = 2 Fisher, Haldane, Wright 1930s



Fundamental Theorem of Natural Selection

Mulholland—Smith 1959, Atkinson—Watterson—Moran 1960, Kingman 1961
Mean fitness z- Az = };; a;;x;x; inCreases along orbits:
x'- Az’ > x- Az with equality only if z = 2’ (at fixed points)

Hence: w—limits are connected sets of fixed points, of constant
mean fitness.

Convergence Theorem (Lyubich et al, Aulbach, Losert & Akin
1983): Each orbit of the selection map converges to a fixed
point.

Qu: Does this follow from Lojasiewicz technique?
(REP) is gradient system w.r.t. a certain Riemannian metric on
int A
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n = 2: The replicator map F': [0,1] — [0, 1] is strictly increasing.
—— convergence to fixed points (0,1,2)

/ (Azx);

€T, = x;
7 /] 9
- Ax

1=1,...,n (RM)

general n: If a;j > 0 Vi,7 then F': A — A is a diffeomorphism
(Losert & Akin, JMB 1983)

however, for n > 3, (RM) is more complicated than (REP)



Example: The Rock—Scissors—Paper game

a b c

A=|c a b (c>a>b>0)
b c a

unigue NE: E = (%,%,%)

V(x) = z12023

V(z) >0, V is maximal at E = (3,1,1)

W=

I) If 2a =b+c then V() =0 Vz € A: closed orbits

II) If 2a < b+ c then V(z) >0 Vz € A, E is global attractor.
III) If 2a > b+ c then V() <0 Vax € A. E is repeller,

w(p) = 0A for all p = E.



r1Troxr3 = Cconst.



The RSP game: discrete time

V(z) = HE2E3  (JH 1984)

TAx

V(z) >0, V is maximal at E = (3,1,1)

W=

I) If a2 = be then V() =V (z) Vze A.

I1) If a? < be then V(2/) > V(z) Vx € A, E is global attractor.
III) If a2 > be then V(2)) < V(z) Vax e A. E is repeller.

w(p) COA for all p = FE.

In case (I): invariant closed curves,
dynamics is conjugate to rotation
Case (III): Qu: w(p) = 0A7



Stein-Ulam spiral map (1955/60/64): a=1,b=2,c=0
r-Ax = (z1 4+ a0+ 23)2 =1
Menzel-Stein—Ulam (1955): quadratic maps A — A

BRUCE KITCHENS AND MICHAL MISIUREWICZ

] = x1(z1 + 222)
xs = xo(zp + 223)
rh = x3(z3 + 2771)

all orbits go to 0A

FIGURE 1. A piece of a trajectory of the Stein-Ulam Spiral map.



Vallander (1972): what is the limit set?

Baranski & Misiurewicz (2009):

1) For generic initial conditions p € A (residual set): w(p) = A
2) For each closed invariant subset L C 0A which intersects
all three sides of A there is a dense set of points p € A with

w(p) =L






Evolutionary stability (John Maynard Smith)

T is an ESS &

(i) z-AZ < 3-AZ Vz € A,
and if there is equality in (i) then
(i1) x-Ax < ZT-Ax for xz#£Z

& x-Ax > x-Ax Vx #*= x close to .

For a NE z € int A: ESS &

z-Az <0 \V’Z#O,Zzizo
7



Example: The RSP game

(c>a>b>0)2zcRE: 2z1+220+23=0

AN

I
S0 R
o o
S O

2 Az = a(z% + z% + z%) + (b+ ¢)(z129 + 2023 + 2123)

b+ c
2
2a < b+ c: negative definite, E is ESS

= (a— )25 + 23 + 23]

2a > b+ c: positive definite, E is anti-ESS



Theorem. 1) An ESS is asymptotically stable under (REP),
and asymp. stable under (RM) for small h (= large C).

2) In a negative definite game:

z-Az <0 ‘v’z#O,ZzizO
)

The unigue NE is an ESS and is globally asymptotically stable
under (REP), and under (RM) for small h (= large C).

Liapunov function: V(z) =Y, ;109 x;

2A2<0 alz) =Axr (r—y)(a(zx) —aly)) <0 Vz,y€ Sz
payoff function ‘monotone’



Replicator dynamics for bimatrix games

two disjoint player populations, playing a two person game
payoff matrices: A = (a;;) n xm, B=(bj;) mxn

/ (Am)z / (By)j

— L= . RM
xz yAx yj ijBy ( )
1=1,....n 173=1,...,m
o 1 + h(Ax); ) = 1 —i—h(By)] (RM)
¢ 1—|—hyAx J ‘71—|—h:cBy h

with rescaled payoffs h > 0, h — O

T; = xi((AfE)z' — y'A$)7 Yj = yj((By)j — 37'33/) (REP)



alternative discrete time version

:I:fb = :ci—l—ha:i((Aa:)i—yA:I:), y} — yj-l—hyj<(By)j—J}By) (RM),h

arises from reinforcement learning model (Borgers and Sarin)
and imitation model (Schlag, 1998)

1 — h level of inertia
opportunity for switching with probability h between rounds



Constant sum games: a;; + b5 =1

Example: 2 x 2 cyclic games

A:(Z Z)’B:<ccl i) (a>b>0,d>c>0)
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For (RM) (both discrete time versions):
interior equilibrium is repelling:

eigenvalues X imaginary, hence |1 4+ h\| > 1,
all orbits converge to boundary of [0, 1]2



sophisticated imitation model (Schlag, 1999,
Hofbauer & Schlag, 2000):

observe 2 or more agents
(sequential) proportional observation rule

adopt a strategy with payoff p (normalized s.t. € (0,1)) with
probability p

1; = ;4 hay((Az); — y-Az) 1 (y- Ax)

v; = y; + hy;((By); — z-By) ¢2(z- By)

¢; decreasing



continuous time limit:

iy = z;((Az); — y- Az) p1(y- A)

Y = yj((By)j - w-By)¢2(w-By)

FE is asymptotically stable for differential equation
eigenvalues at F: $+ww

FE is repelling for difference equation

Hopf bifurcation through discretization:

h — 0 invariant curve, radius ~ vh



The Nash map

Nash's proof of existence of Nash equilibria (Ann. Math. 1951)

Continuous map f: A —- A

. h’\.
fla); = —mi T i) h>0
1+h3 a;(z)
with a;(z) = [(Az); — - Az] 4 excess payoffs

(u4 = max(u,0))

Brouwer: z = f(Z)

s (@) =0 Vi < FENE



difference equation
ai(z) — x; 35—q a;j(x)

1 —|— h Z?’:l EL](.CU)

fx);i—x;=h

h — 0O

b= @) — o Y a0)  (BNN)
j=1

Brown—von Neumann (1950) differential equation:
2 person symmetric zero—sum games
convergence to set of equilibria

players switch to strategies better than average
Nash map, (BNN) are not smooth, but Lipschitz



(BNN)
2a = b+ c




Stability result:

ESS are asympt. stable, interior ESS are globally asympt. stable
for (BNN), and for Nash map for small h.

But not for large h!

hawk—dove game: Nash map can converge to a period 2 orbit
for large h.



) _ (1 O (0 1
Cyclic 2 x 2 games: A_<O 1),B_<1 O)

Becker et al(JDEA 2007): h = 2: convergence to a (semistable)
period 8 orbit

Geller, Kitchens, Misiurewicz (DCDS 2010):
for small h: attracting invariant closed curve, radius grows lin-
early with h, like 37h/16

supercritical Hopf bifurcation through discretization:
NE is asympt stable for (BNN), with quadratic terms ensuring
convergence



MICRODYNAMICS FOR NASH MAPS

FIGURE 1. Attractors for various values of ¢; the phase space



Discretization of the BR dynamics

BR(z) = Argmax y-a(z) ={y € A :y-a(x) > z-a(x)Vz € A} C A
yeA

A simple discretization of the BR dynamics with constant step
Size € is

x(t+¢) € eBR(z(t)) + (1 —e)x(t) (1)
or
) 1
r = Ty(x) € T+ (x + hBR(x))

In each time unit a small proportion of the population switches
to a best reponse.

limit h - 0: € BR(x) —x (BR dynamics)



More general is a discretization with variable step sizes

T(tnh+1) € enBR(z(tn)) + (1 —en)z(tn), thten=1tpy1 (2)

For ep = + this is fictitious play.

For &, = 11__/)81 (with 0 < p < 1) this is geometric fictitious play

with discount rate p which tends to (1) withe =1 —p, as n — .



1
1+ h
general result: global attractor is USC against discretization
(H. and Sorin, 2006)

r' € (x + hBR(x))

Example: RPS game (zero sum):
global attractor of the BR dynamics # € BR(x) is the unique
equilibrium E



V(z) = max(Ax);
V(iz) = -V(x)




hence, for small h, orbits of

= 1+ (x + hBR(x))

converge to a small neighborhood of the unique equilibrium E.

What is the limit set? (with Peter Bednarik)
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The region bounded by the two green triangles is globally attracting

E is a repellor, attractor lies between the two triangles
shrink to E as h — 0 (like h, resp. Vh)
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Orbits of period 3n exist for O < h < hy,



(a) h =1.00 |

. periods 3 (red) and 6 (dark red)



(b) h = 0.30

h = .3: periods 3 (red), 6 (dark red) and 9 (green)



(c) h=0.25 (d) h=0.20

periods 3 (red), 6 (dark red), 9 (green), 12 (dark green)



(f) h = 0.05

periods 3 (red), 6 (dark red), 9 (green), 12 (dark green), 15
(vellow), 18 (khaki), 21 (blue)
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0 hs h4 ]’l3 1 h2

Orbits of period 3n exist for O < h < hy,



For cyclic 2 x 2 games: similar behavior, orbits of period 4n

(a) h = 0.83 (b) h = 0.50

periods 4 (green), 8 (blue)



(c) h = 0.26 (d) h =0.21

periods 4 (green), 8 (blue), 12 (teal)



(e) h =0.16 (f) h =0.13

periods 4 (green), 8 (blue), 12 (teal), 16 (black)



discretization of BR dynamics, stepsize h:
attractor shrinks like VA towards the equilibrium

the smaller h the more complex is the dynamics!



