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ABSTRACT

We consider a variational formulation of blind image recov-

ery problems. A novel iterative proximal algorithm is pro-

posed to solve the associated nonconvex minimization prob-

lem. Under suitable assumptions, this algorithm is shown to

have better convergence properties than standard alternating

minimization techniques. The objective function includes a

smooth convex data fidelity term and nonsmooth convex reg-

ularization terms modeling prior information on the data and

on the unknown linear degradation operator. A novelty of our

approach is to bring into play recent nonsmooth analysis re-

sults. The pertinence of the proposed method is illustrated in

an image restoration example.

Index Terms— Blind restoration, blind reconstruction,

proximal methods, nonlinear optimization, wavelets

1. INTRODUCTION

Blind restoration and reconstruction are challenging problems

in image processing [3, 4, 9]. Variational approaches to these

problems are often based on alternating minimization strate-

gies which, in spite of their practical usefulness, offer in gen-

eral few theoretical guarantees of convergence. In this pa-

per, we propose a novel proximal alternating minimization

algorithm for which stronger convergence results can be es-

tablished, under wide assumptions. In recent years, proxi-

mal methods have become increasingly popular for solving

inverse problems in image processing [6] due to their ability

to tackle minimization problems involving sums of possibly

nonsmooth functions, such as those arising in the presence of

hard or sparsity promoting constraints. However, most of the

existing work on proximal methods has focused on data re-

covery problems based on a model involving a linear operator

assumed to be known a priori.

Throughout the paper, we use the following notation.

Γ0(H) denotes the class of lower semicontinuous convex

functions from a real Hilbert space H to ]−∞,+∞]. An

example of a function in Γ0(H) is the indicator function ιC
of a nonempty closed convex subset C of H, which takes on
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the value 0 on C and +∞ on Hr C. A fundamental tool for

the derivation of the algorithms in this paper is the proximity

operator of a function f ∈ Γ0(H), which is defined as

proxf :H → H : x 7→ argmin
y∈H

f(y) +
1

2
‖x− y‖2. (1)

For background on proximity operators and their use in signal

and image processing problems, the reader is referred to [6,

7]. Subsequently, two Hilbert spaces will be of interest: the

standard Euclidean space R
N and R

M×N , the space of real

valued matrices of size M × N endowed with the Fröbenius

norm. For notational conciseness, the norms of both spaces

will be denoted by ‖ · ‖.

In Section 2, the blind data recovery problem under con-

sideration is formulated. In Section 3, we emphasize some

of the limitations of basic alternating minimization schemes.

The new proximal optimization method is introduced in Sec-

tion 4. Finally, in Section 5, we apply the proposed algorithm

to a blind image deconvolution problem.

2. PROBLEM

We consider the standard linear observation model

z = Lx+ w, (2)

where z ∈ R
M is the observed data, L ∈ R

M×N models to

the linear measurement process, x ∈ R
N is the target data

and w ∈ R
N is some noise perturbation. Our objective is to

recover x from z, without knowledge of L. Such a problem

arises in many blind data recovery problems in deconvolution,

source separation or reconstruction. An estimate of (L, x) is

obtained by solving the following optimization problem.

Problem 2.1 Set Φ: (x, L) 7→ f(x) + g(L) + h(z − Lx),
where h : RM → R is a differentiable convex function which

has a Lipschitz continuous gradient over every bounded sub-

sets ofRM , f ∈ Γ0(R
N ), and g ∈ Γ0(R

M×N ). The objective

is to

minimize
x∈RN , L∈RM×N

Φ(x, L). (3)



For example, in a Bayesian framework, a solution to Prob-

lem 3 is a Maximum A Posteriori estimate of (L, x) if one as-

sumes thatw is a realization of a random vector with probabil-

ity density function ∝ exp(−h(·)), L is a realization of a ran-

dom matrix with probability density function ∝ exp(−g(·)),
x is a realization of a random vector with probability den-

sity ∝ exp(−f(·)), and the three latter random variables are

jointly independent.

Often, f and g can be decomposed as sums of sim-

pler functions, say f =
∑p

i=1 fi and g =
∑q

j=1 gj , where

(fi)1≤i≤p are functions in Γ0(R
N ), and (gj)1≤j≤q are func-

tions in Γ0(R
M×N ). Problem (3) then becomes

minimize
x∈RN , L∈RM×N

p∑

i=1

fi(x) +

q∑

j=1

gj(L) + h(z − Lx). (4)

Because of the coupling term (x, L) 7→ h(z − Lx), the ob-

jective function is in general not convex. In the supervised

case when L (respectively, x) is known a natural choice is to

set q = 1 and g1 = ι{0}(· − L) (respectively, p = 1 and

f1 = ι{0}(·−x)). In such instances, (4) reduces to a classical

convex problem.

3. LIMITATIONS OF BASIC ALTERNATING

MINIMIZATION PROCEDURES

Let us define the following auxiliary functions. For everyL ∈
R
N×M , we set

ϕL : x 7→

p∑

i=1

fi(x) + h(z − Lx) (5)

and, for every x ∈ R
N , we set

ψx : L 7→

q∑

j=1

gj(L) + h(z − Lx), (6)

For fixed values of L and x, we have ϕL ∈ Γ0(R
N ) and

ψx ∈ Γ0(R
M×N ).

A popular approach for solving Problem 3 consists of

applying an alternating minimization approach. The cor-

responding algorithm, sometimes called the Gauss-Seidel

method, takes the following form.

Algorithm 3.1

Fix L0 ∈ R
M×N

For k = 0, 1, . . .
⌊
xk ∈ ArgminϕLk

Lk+1 ∈ Argminψxk
.

This algorithm may provide satisfactory results in practice.

However, it is well known that such an alternating minimiza-

tion procedure requires quite restrictive conditions to guaran-

tee convergence to a local minimizer, e.g., [4] (the lack of

convergence of alternating minimization procedures can also

be observed with convex objectives). In the present context, a

simple counterexample is the following.

Example 3.2 Assume that N =M and set

f = ιC , g = ‖ · ‖1 + ιD, and h =
1

2
‖ · ‖2, (7)

where C = [−1, 1]N and where D is the vector subspace of

diagonal matrices of RN×N . If we suppose that z ∈ C and

initialize Algorithm 3.1 with L0 = 0, a resulting sequence of

iterates is given by

(∀k ∈ N) xk = (−1)k[1, . . . , 1]⊤, Lk = 0. (8)

Hence, (xk)k∈N does not converge.

4. PROPOSED OPTIMIZATION METHOD

As an alternative to Algorithm 3.1, we propose to use the fol-

lowing alternating proximal algorithm generating a sequence

(xk, Lk)k∈N in R
N × R

M×N :

Algorithm 4.1

Fix x0 ∈ R
N , L0 ∈ R

M×N and ]ρ, ρ[⊂ ]0,+∞[

For k = 0, 1, . . .


(λk, µk) ∈ [ρ, ρ]2

xk+1 = proxλkϕLk
xk

Lk+1 = proxµkψxk+1
Lk.

It is worth pointing out that, in the supervised case when

q = 1 and g1 = ι{0}(· − L) (respectively, p = 1 and f1 =
ι{0}(· − x)), the method reduces to the standard proximal

point algorithm [6].

The computational complexity of Algorithm 4.1 is usually

similar to that of Algorithm 3.1. In addition, Algorithm 4.1

enjoys attractive convergence properties. First, we recall that

Φ is coercive if lim‖x‖+‖L‖→+∞ Φ(x, L) = +∞ and it is

semi-algebraic if its graph graΦ =
{(

(x, L), ν
) ∣∣ ν = Φ(x, L)

}

is a semi-algebraic set, that is, it can be expressed as a finite

union of subsets of (RN × R
N×M ) × R defined by a finite

number of polynomial inequalities. The set of semi-algebraic

functions constitutes a wide class of functions, including

many standard functions, and it is stable through common

operations (e.g., addition, multiplication, inversion, and com-

position). The following result follows from Lemma 5 and

Theorem 9 in [2].

Proposition 4.2 Let Φ be as in Problem 2.1. Then, for every

k ∈ N,

Φ(xk+1, Lk+1)+
1

2λk
‖xk+1−xk‖

2+
1

2µk
‖Lk+1−Lk‖

2

≤ Φ(xk, Lk). (9)



If, in addition, Φ is coercive, then Φ has a global minimizer.

If, furthermore, Φ is semi-algebraic, then every sequence

(xk, Lk)k∈N generated by Algorithm 4.1 converges to a criti-

cal point of Φ.

Proposition 4.3 [2, Theorem 11] Let Φ be as in Problem 2.1

and suppose that it is coercive and semi-algebraic. Let (x̃, L̃)
be the limit of a sequence (xk, Lk)k∈N generated by Algo-

rithm 4.1. Then one of the following holds.

(i) Convergence occurs in a finite number of iterations.

(ii) There exist τ ∈ ]0, 1[ and η ∈ ]0,+∞[ such that, for

every k ∈ N, ‖xk − x̃‖2 + ‖Lk − L̃‖2 ≤ ητk .

(iii) There exist θ and η in ]0,+∞[ such that, for every k ∈

N r {0}, ‖xk − x̃‖2 + ‖Lk − L̃‖2 ≤ ηk−θ.

A main difficulty in the implementation of Algorithm 4.1

is the computation of the proximity operators proxλkϕLk
and

proxµkψxk+1
at each iteration k. This task can be efficiently

performed by using the parallel Dykstra-like proximal algo-

rithm proposed in [5]. This leads to the following routine to

compute proxλϕL
x with λ ∈ ]0,+∞[, L ∈ R

M×N , and

x ∈ R
N (a similar method can be employed to compute

proxµψx
L with µ ∈ ]0,+∞[, x ∈ R

N , and L ∈ R
M×N ).

Algorithm 4.4

Fix y0 = x, s1,0 = y0, . . . , sp+1,0 = y0, and

(ωi)1≤i≤p+1 ∈ ]0, 1]p+1 such that
∑p+1

i=1 ωi = 1

For ℓ = 0, 1, . . .


For i = 1, . . . , p⌊
ri,ℓ = proxλfi

ωi

si,ℓ

rp+1,ℓ = proxλh(z−L·)
ωi

sp+1,ℓ

yℓ+1 =
∑p+1
i=1 ωiri,ℓ

For i = 1, . . . , p+ 1⌊
si,ℓ+1 = yℓ+1 + si,ℓ − ri,ℓ.

Proposition 4.5 [5, Theorem 4.2] The sequence (yℓ)ℓ∈N gen-

erated by Algorithm 4.4 converges to proxλϕL
x.

5. SIMULATION EXAMPLE

We consider a blind deconvolution scenario where an original

8 bit N1 ×N2 image x is degraded by a blur and the addition

of a zero-mean white Gaussian noise with variance σ2. We

have thusM = N = N1N2 and h = ‖·‖2/(2σ2). A classical

generalized Gaussian frame-analysis prior [1, 8] is assumed

for the original image, which yields

(∀x ∈ R
N) f1(x) =

K∑

ℓ=1

ζℓ|(Fx)
(ℓ)|κℓ , (10)

where F ∈ R
K×N corresponds to a frame analysis opera-

tor, (ζℓ)1≤ℓ≤K ∈ [0,+∞[
K

and (κℓ)1≤ℓ≤K ∈ [1,+∞[K

(rational values of (κℓ)1≤ℓ≤K are chosen so that f1 is a semi-

algebraic function). We also take into account the available

information on the range intensity values by setting f2 =
ι[0,255]N . Hence, p = 2.

The blur is modeled by a periodic convolution with a ker-

nel H ∈ R
P×Q. Let S be the linear operator which maps

a filter kernel H ∈ R
P×Q to its associated circulant block-

circulant transform matrix of size N × N (when N1 ≥ P
and N2 ≥ Q). This yields L = S(H). Prior information on

the unknown degradation operator can be incorporated by as-

suming that L = S(H), where H = (Hn,m)1≤n≤P,1≤m≤Q

satisfies the following properties.

• nonnegativity: H ∈ ([0,+∞[)P×Q.

• mean:
∑P

n=1

∑Q

m=1Hn,m = 1.

• bounds on vertical variations of the blur:

(∀n ∈ {1, . . . , P − 1})(∀m ∈ {1, . . . , Q})

α1,n,m ≤ Hn+1,m −Hn,m ≤ β1,n,m, (11)

where (α1,n,m)n,m and (β1,n,m)n,m are given.

• bounds on horizontal variations of the blur:

(∀n ∈ {1, . . . , P})(∀m ∈ {1, . . . , Q− 1})

α2,n,m ≤ Hn,m+1 −Hn,m ≤ β2,n,m, (12)

where (α2,n,m)n,m and (β2,n,m)n,m are given.

The above constraints define four closed convex subsets

(Dj)1≤j≤4 of RP×Q. We consequently choose q = 4 and

(∀j ∈ {1, 2, 3, 4}) gj = ιS(Dj).

Fig. 1 displays the original satellite image (with N1 =
N2 = 512) which is blurred by an anisotropic truncated Gaus-

sian kernel of size 7 × 7. The blurred signal-to-noise ratio is

equal to 20.7 dB in the degraded image shown in Fig 2. Fig. 3

shows the result provided by Algorithm 4.1. The method was

initialized with the blurred image (x0 = z) and a uniform ker-

nel. A symlet 8 wavelet basis decomposition computed over

4 resolution levels is used in this example, and the parame-

ters (ζℓ)1≤ℓ≤K and (κℓ)1≤ℓ≤K are subband-dependent (they

have been chosen with a maximum likelihood approach). The

bounds on the vertical (respectively, horizontal) variations of

the blur are (∀m ∈ {1, . . . , 7}) (∀n ∈ {1, . . . , 3}) α1,n,m =
0 and β1,n,m = 6 × 10−3 and (∀n ∈ {4, . . . , 6}) α1,n,m =
−6× 10−3 and β1,n,m = 0 (respectively, (∀n ∈ {1, . . . , 7})
(∀m ∈ {1, . . . , 3}) α2,n,m = 0 and β2,n,m = 3 × 10−3 and

(∀m ∈ {4, . . . , 6}) α2,n,m = −3 × 10−3 and β2,n,m = 0).

As shown visually, and confirmed by the provided signal-to-

noise ratios (SNR), the results are close to those obtained by

a similar wavelet-based restoration approach which assumes

that the blur is known (see Fig. 4).



Fig. 1. Original image x.

Fig. 2. Degraded image z: SNR = 12.5 dB, SSIM = 0.683.
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