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SUMMARY

In deconvolution problems there are two primary sources of uncertainty in the data formation
mechanism, namely measurement noise and errors in the model of the system. In this paper we develop
an abstract set theoretic deconvolution framework for problems in which the only information available
about these sources of uncertainty consists of bounds. Iterative methods based on projections are used
to generate solutions consistent with these bounds, the output data signal and a priori knowledge about
the input signal. An example of application of this general framework to discrete signal recovery is
demonstrated.
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1. INTRODUCTION

The generic signal deconvolution problem is to estimate the input of a known linear shift-
invariant system from its output. This problem arises in a wide range of applications, including
channel equalization, seismology, medical imaging and astronomy. Traditionally,
deconvolution has been approached as an optimization problem, either within the framework
of regularization techniques for deterministic models! or within that of point estimation theory
(primarily maximum likelihood and Bayesian methods) for probabilistic models.?? The
practical value of the solutions thus obtained is often questionable, be it because of the
relevance of the optimality criterion or because of the adequacy of the underlying statistical
hypotheses. *

An alternative route to deconvolution is provided by set theoretic estimation. In this
framework the requirement for a single estimate is relaxed and the end product is a set of
equally valid solutions defined as those objects consistent with all the information available
about the problem, i.e. consistent with the a priori knowledge as well as with the data.’ The
set of signals consistent with a particular piece of information is called a property set; the
intersection of all property sets is the set of feasible signals, i.e. the solution set. The set
theoretic approach was first employed in signal deconvolution in Reference 6. In that study it
was assumed that a complete probabilistic description of the noise was available: it was taken
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to be zero-mean, white and Gaussian with known power. From this knowledge various
property sets were constructed. In Reference 7 some of these sets were re-examined in the
context of fuzzy set theory. The use of a wide range of probabilistic properties of the noise
in general set theoretic estimation problems was addressed in Reference 8. In Reference 9 the
analysis of Reference 6 was extended to incorporate instances in which the convolution kernel
is random with known probabilistic attributes. More specific applications of set theoretic
deconvolution can be found in Reference 10—12.

In this paper we investigate the problem of set theoretic deconvolution when the only
information available about the uncertainty consists of error bounds. Two sources of
uncertainty are considered: the convolution kernel has unknown variations about a known
component and additive measurement noise is present. In contrast with the set theoretic
deconvolution studies mentioned above, no statistical description of these two sources of
uncertainty is assumed and only bounds are known. In systems theory a significant amount of
work has been devoted to set theoretic estimation with unknown but bounded uncertainty.
This approach originated in the field of state estimation'® and applications and extensions have
been reported in various areas such as speech processing, !4 spectral estimation,'® control, !¢
system identification'”"'® and filtering.® In all these studies the feasibility set is approximated
(from inside or outside) by a geometrically simple set (e.g. an ellipsoid or a
hyperparallelepiped) which is updated with each data sample. Methods have also been
developed to characterize the feasibility set exactly for particular models.?°~?? In signal
deconvolution the bounding ellipsoid approach has been utilized in Reference 23, where the
centre of an ellipsoid bounding the intersection of the property sets was proposed as a solution.
It is important to note that such a methodology is not guaranteed to yield a feasible solution,
especially if the size of the signal to be recovered is large. Our set theoretic approach to
deconvolution departs from the above setting. A single feasible solution will be obtained via
the theory of convex projections in Hilbert spaces. This framework, which has been employed
in various signal recovery applications,* allows one to compute exact feasible signals for a wide
class of property sets and thereby offers great flexibility in the incorporation of a priori
knowledge.

The paper is organized as follows. The general bounded—error deconvolution problem is
posed in Section 2 and its set theoretic formulation is derived in Section 3. The theoretical and
practical aspects of bounded—error deconvolution and its relation to existing work are
discussed in Section 4. The approach is illustrated in Section 5§ with an application to discrete
signal recovery. Section 6 concludes the paper.

2. BOUNDED ERROR MODEL

2.1. Hilbert space setting

For the sake of generality we pose the deconvolution problem in an abstract Hilbert function
space. Particular cases of the analysis relevant to applied work will be discussed in Section 2.3.
Before proceeding with the analysis, we shall introduce our notation and recall a few basic
facts about #* spaces. Background on measure theory and integration can be found in
References 24 and 25.

Let (Q, %, p) be a measure space and let Z°(Q, %, 1) be the space of (classes of equivalence
of u-a.e. equal) real-valued, #measurable functions defined on the set . The £7(Q, &, u)
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spaces (&” for short) are defined as

gr - (18€2°@, F,p)| fa |a|” dp< o} if1<p<eo )
(ae 2°Q, Fu)| |a| < o a.el} if p=oo
Z7 is a Banach space with norm
(fa |a|? du)V'? ifl<p<eo
Vaer = 2
(e} i {inf[&eﬁ%l la| <dae] if p=oo @

(|| @ || is called the essential supremum of a). In particular, #? is a Hilbert space whose scalar
product is given by (a | b) = fa @b dy. Its norm will simply be denoted by || - || instead of || - ||2.

Throughout this paper 4 and T are two functions in 2. Mathematically the deconvolution
problem can be stated as that of determining & given T and a function x related to 4 via the
linear transformation '

(Vo€Q) x(w)= Sn T(w - n)hn)u(dn) 3)

which will simply be written as
x=Tx*h @

The physical interpretation of this equation is that T is the kernel of a linear shift-invariant
system whose input is the signal & and whose output is the signal x. The variable w represents
a physical dimension such as space or time. In practice the ideal model (4) is never exact, since
the data generation mechanism is inherently uncertain. A more realistic model should also
comprise an error term, i.e.

x=T+*h+u %)

The signal u will be referred to as the error signal. A shortcoming of such a global modelling
of the uncertainty surrounding the true system is that little information on u is likely to be
available. In order to structure the error, we shall assume that two major sources of
uncertainty are present: inaccuracies in the kernel of the linear system and additive
measurement noise. The exact kernel T of the system is taken to be of the form

(Y(w,7) €2%) T(w,n)=T(-1)+ T(e,n) )
In other words, 7 is an unknown shift-variant component which represents the unmodelled

dynamics of the system. This leads to the expression for the error signal

(VoeR) u(w)= Sﬂ T(w, m)h)p(dn) + v(w) )

where v is the measurement noise. We can rewrite (7) more compactly as
(Vo€Q) u(w)=<{(T.|h)+v(w) (8)
where Ty : 9~ T(w, 7).

2.2. Bounds on the error signal

The basic assumption vis-a-vis the uncertainty is that the terms T and v are totally unknown
except for bounds. The amplitude of the noise signal is assumed to be bounded by a known
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function g, i.e.
(Vwe) |v()| <Bw) <= ®

As to the component of  involving T, several bounds are possible depending on the nature
of the a priori knowledge. Let us define

0 if p=1
pllp=1) ifl<p<o (10)
1 if p=oo

Now let us fix an arbitrary w in Q. Assume that, for some p'in [1, %], 4 lies in £?> N %” and
that there exists a number ap(w) such that

I Tollp € aplw) < oo ‘ (11)
Then, by invoking Hélder’s inequality,>**° we get
(Tl | < Tohlli < N Tollor- N2 llp < ap(@)- Il Al (12)
It then follows from (8) and (9) that
|u(@) | < ap@).|| 7l + B(w) =v(w) (13)

Therefore the error signal is pointwise bounded: || < . At this point a few remarks are in
order apropos of the construction of the bounding signal ~. First, it is noticed that to allow
greater flexibility in the modelling of the disturbances f and v, the bound v is actually a
function of w. In many applications, though, the bound will be shift-invariant and v will
reduce to a constant. Now let us consider the type of information needed to compute v(w).
Besides the bound j on the noise, one needs information on the disturbance 7 and the input
31gna1 h. Thus for p =1 one needs the £'-norm of 4 and a bound on the essential supremum
of T, for p =2 one needs the energy of 4 and a bound on the energy of T.; finally, for p=
one needs the essential supremum of / and a bound on the £'-norm of T,. Of course, if a,(w)
and || & ||, are available for more than one value of p, one will choose that which yields the
tightest bounding. On the other hand, in some problems the only information on T, and A
may be ap(w) and || £ ||q, with p # g. If p(Q) < e, a bound can still be obtained in some cases
by noting that 23

(V(r,s)€[1,0]%)(vaeL’) r<s = |al-<|lalsp@)/7" 09 (14)

Hence, if p < g, one can use || A ||qu(@)* 7~ in lieu of || A ||, in (12).

2.3. Specific models

A quite general modelling has been carried out based on the powerful theory of #7 spaces.
We shall now consider two specific measure spaces (Q, % u) which are often employed in
applied work.

First let Q be a subset of R* (the set of real k-tuples), & the Borel subsets of Q, and u the
k-dimensional Lebesgue measure. Then £2 is the space L? of square-integrable functions of
k real variables 7 = (t1, ..., #) on a domain ©,?*** and 4 models a k-dimensional finite energy
analogue signal. Moreover, (5) and (7) lead to the model

(vie) x(B)= Sn T(t—s)h(s) ds + Sn T(t,5)h(s) ds + v(¢) (15)
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Now let @ = Z* (the set of k-tuples of integers), # be the class of all subsets of , and u the
counting measure. Then #2 is the space /> of square-summable k-dimensional sequences®**®
indexed on n=(ni,...,nx), and & models a k-dimensional finite energy discrete signal.
Moreover, (5) and (7) lead to the model

(vnezZ*) x(n)= Ez T(n—m)hm)+ >, T(n,m)h(m)+ v(n) (16)
mez* mezk

Since in practice the deconvolution is eventually performed on a digital computer, one must
consider discrete signals of finite extent and replace Z* by a finite subset Q. The signals x, A
and v can then be represented by finite k-dimensional tensors. One can then stack the columns
of the tensors to obtain vectors and put (16) in the vector—matrix form

x=Th+Th+v : (17)

3. SET THEORETIC FORMULATION

The information available about the deconvolution problem is associated with a collection of
property sets (S,).e7in £2. (£2, (S.).¢1) is called a set theoretic formulation and S =N,¢/S, the
feasibility set.” To construct the sets (S.).es, one can exploit information pertaining to the
error signal u as well as a priori knowledge about the input signal A.

3.1. Sets based on the error signal
For every signal @ in #? we can define a residual signal on Q as
Ya=x—Tx*a (18)

It follows at once from (5) that
Yn=u (19)

Therefore an estimate @ of 4 can be constrained to yield a residual y, consistent with every
known property of u. Let A C @ denote the domain over which the data are observed. Then,
upon imposing the boundedness property (13) of the error signal for every data point, the
estimates are forced to lie in the set

So= (N So, where S, ={ae 2| |x(w)— (T*a)(w)| < y(w)} (20)

wEA

According to (13), the construction of these sets also requires some knowledge of the input
signal, namely || / ||p.

Proposition

S. (and therefore Sp) is closed and convex.

Proof. Let H: a — (T* a) (w) and K: a - | x(w) — H(a) | be two operators on #>. From the
Cauchy—Schwarz inequality we get |H(a)|=|(T*a)(w)|<| T|-| @], whence H is
bounded, since || /| = sup{|H(a)| | ||a||=1} €| T|| < . Since H is linear and bounded,
it is continuous and so is K. Therefore S, =K '] — o, y(w)] is closed as the continuous
inverse image of a closed interval. To show that S, is convex, it is enough to show that K is
convex.
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This follows from the linearity of H: let 0 < p < 1 and let @ and b be two points in #?; then
K(pa+(1—-p)b)=|p(x(w)—H(a) +(1-p)(x(w)—H(Db))| < oK(a)+ (1 -p)K(D). ]

3.2. Sets based on the input signal

There is a wide range of prior knowledge on the input signal 4 that can easily be associated
with property sets in #2. First of all, # may be partially known in the spatial and/or Fourier
domains. The information which falls in this category includes region of support, Fourier
phase, Fourier magnitude, band limitedness as well as lower and upper bounds on amplitude,
energy and entropy (some of these sets are described in Reference 26). Subjective attributes
such as sparsity, smoothness, impulsiveness or maximum deviation from a prototype signal
can also be included.®"!2

3.3. Synthesis of a set theoretic solution

The solution of the set theoretic deconvolution problem is the set of all signals consistent
with all available information, i.e. the feasibility set. In this subsection we describe algorithms
to compute feasible signals. Given the set theoretic formulation (£2,(S.).¢), this problem is
written as

find a€S=ﬂ[SL (1)
L€
In the literature various methods have been proposed to solve (21) which depend on the
properties of the sets (S.). ¢z, the dimension of 22 and the cardinality of I (see Reference 5 for
a detailed account). Since (21) can usually not be solved in one step, these procedures are
iterative and proceed by activating the sets individually. For our Hilbertian deconvolution
problem, methods based on projections are well suited. Some of these projection algorithms
have already been employed in signal recovery problems. >:2¢
Let us recall that a projection of a point @ onto a subset S, of %7 is a point P,(a) in S, such
that

|la—Pu(a)| = inf(||a—b]| |beS.) 2)

If S. is closed and convex, P.(a) exists and is unique. Moreover, in % a sequence (@x)n >0
is said to converge to a strongly if (|| @ — a||)» >0 converges to zero and weakly if, for every
bin #%, ((an—a | bY)n >0 converges to zero. Strong convergence implies weak convergence,
and if #? has finite dimension, the converse is true.

Let us first assume that all the S, are closed and convex and that their intersection S is non-
empty. Let (A:)n =0 be a sequence of numbers in [e;, £2] C ]0,2[ and let ao be an arbitrary
signal in %2, Consider the sequence (,), > o defined by the recursion

An+1=an+ M(P,(an) — an) (23)

In other words, the update a,. lies on the line segment between the current iterate a, and its
reflection 2P,,(an) — a, with respect to S,. Then, if one lets t, be the index the most remote |
set from @, (@n)n >0 converges weakly to a signal in S.27 If the cardinal of [ is finite, say
I={1,...,m}, this conclusion also holds for other projection schemes, e.g. when the sets are
activated in a cyclic manner, i.e. 1, = n (modulo m) + 1.?” In practice it may happen that S = @,
e.g. when the bounds on the perturbations are underspecified. In such instances the
convergence properties of serial algorithms are not satisfactory.® An alternative scheme is to
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activate the sets in parallel at each iteration rather than in series. Such a method is described
by the recursion

Ani1=0an+ }\n(i wLPL(an)—an) (24)

=1

where the relaxation sequence (An)n>o0 lies in [e1, £2] C 10, 2[ and the weights satisfy
2 w=1, (Veefl,...,m}) w,>0 (25)
=1

In Reference 28 it was shown that this parallel algorithm converges weakly to a minimizer of
the functional ®: @ » £™ wd(a, S.)>. Hence, if S # @, it converges weakly to a feasible
signal, whereas if S=#, it converges weakly to a weighted least squares solution of the
inconsistent system of constraints. Another advantage of (24) is that it is easily implementable
on concurrent processors. However, it usually does not converge as fast as (23) in the
consistent case. Let us mention that strong convergence of these algorithms can also be
achieved when %2 has infinite dimension under additional conditions on the sets (see
References 28 and 29 for details). Finally, if at least one of the sets is not convex, convergence
to a feasible point for most of the above algorithms will hold locally, i.e. when ao belongs to
a prescribed region of the space.”!!

4. DISCUSSION

4.1. Deterministic versus probabilistic bounds

To derive a bound on the error signal of (8), we have assumed that deterministic bounds
were available for the norm of the unknown component of the kernel, the input signal and
the amplitude of the noise. In some problems, though, these quantities cannot be assumed to
be bounded and, strictly speaking, the above set theoretic framework cannot be applied. We
shall see that bounds can still be derived in such cases provided that some probabilistic
information is available to describe the uncertainty.

Suppose that the data process (5) has been observed over a finite domain of N points, say
A = {w1,,...,wn}, and assume that the samples (#(w:))1<i<n of the error signal are
independent, zero-mean, unbounded random variables with known distributions. Then for
every i in {1, ..., N} a number y(w;) can be found such that the interval [0, y(w;)] will contain
| u(w;)| with probability 1-—e¢, where € is a small positive number. Therefore the
hyperrectangle X7~,[0, y(w;)] will contain (| #(w:) |)1 <i <~ With probability (1 — &)™. It then
follows from (19) that an estimate a of 4 can be constrained, to within a confidence coefficient
(1 — &)™, to yield residual samples (| yo(wi) |)1 <i <~ Which lie in X}_;[0, y(wi)]. Hence Sp in
(20) now becomes the confidence region

N
Sp= q Si, where Si={a€ %?| |x(wi)— T*a)(wi)| < y(w)) (26)
.
If the distribution of u(w;) is not known but one of its absolute moments, say E | u(w;)|?, is
available, a probabilistic bound can still be derived via Markov’s inequality, which states that
the probability of |u(w;)| exceeding vy(w;) is at most & =E | u(w;) |?[y(wi)”.

In order to produce accurate set theoretic estimates, one should seek to obtain the smallest
possible Sp, in terms of an appropriate notion of set size (set functions relevant to the evaluation
of set theoretic estimates are discussed in Reference 5). If, as in Section 2, u(w;) were bounded,
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h would belong to S, with probability one, regardless of N. Since S, decreases monotonically
as N increases, one should therefore use as many samples as possible. This conclusion no
longer holds with an unbounded error and a trade-off arises as to the choice of N. The
objective is to achieve the smallest S, for a given confidence coefficient ¢ = (1 — &)* (typically
0-95 € ¢ < 0-99). To maintain ¢ constant as /N increases, one must decrease € and therefore
increase the bounds (y(wi))1<i<n. This makes Sp the intersection of a larger number of bigger
sets. Likewise, as N decreases, Sy is the intersection of fewer smaller sets. In general the
optimal value of N will depend on the distributions of the #(w;) and the set function selected
to evaluate the size of Sp.

4.2. Relation to set membership identification

The set theoretic approach in system identification with bounded but unknown uncertainty
has been the focus of a great deal of research and is often referred to as ‘set membership
identification’ (see References 18 and 30 for recent developments). The system identification
problem is closely related to that of deconvolution. For instance, in the context of the linear
model (4), the goal of the former is to estimate T whereas the goal of the latter is to estimate
h. In this section we compare the proposed set theoretic deconvolution framework with set
membership identification.

First of all, it is important to remark that the two frameworks share the same philosophy.
Both produce estimates based on a criterion of consistency with the data and prior knowledge
of bounds on the uncertain components of the model. In fact, in the identification problem
the property sets arising from the boundedness constraint take the same functional form as
(20). For example, for a discrete system with M parameters and N observations of the output
we would get

N —_
Sp= N (TeRY| |x(n) = T+ h)(n)| < y(m) @7

However, the two frameworks differ slightly in that set membership identification is more
geared towards determining the entire feasibility set whereas the basic objective in set theoretic
deconvolution is to produce a single feasible solution. In that respect the former gives a more
complete picture of the set theoretic estimation problem.

In set membership identification the estimation of the feasibility set is done sequentially and
the estimate is updated with the property set associated with each data sample. Recursive
schemes have been devised to compute the update efficiently and make the method amenable
to on-line processing. In the presence of a linear model the boundedness constraints yield the
polytope (27), which can be estimated exactly.?®~2? If the complexity of a direct evaluation of
the polytope is unsuitable, it can be approximated by a monotone sequence of simpler
supersets such as ellipsoids or hyperparallelepipeds. A shortcoming of this approach is that
even if the data record is long, the resulting approximation of the actual feasibility set may
be quite loose. Hence the feasibility of a point estimate is not guaranteed. On the other hand,
in the proposed projection-based set theoretic deconvolution method the property sets are
activated repeatedly (in series or in parallel) to construct a sequence converging to their
intersection and feasibility of a solution is therefore guaranteed. However, no particular
knowledge of the actual feasibility set is required. This feature is valuable as it makes the
incorporation of additional @ priori information about the problem easy (it amounts to adding
more property sets to the set theoretic formulation). On the other hand, this approach gives
little information about the solution set and therefore little insight into the quality of a feasible
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solution, which constitutes a separate issue.> It should be noted that the method requires that
all the sets be available simultaneously, which implies that the whole data record is needed
before processing. This is a minor problem, since deconvolution is usually done off-line.
Moreover, in many applications (e.g. image restoration) the whole data record is obtained at
once.

In system identification the size of the data record (the output signal) is usually large
compared with that of the unknown (the system kernel). However, in signal deconvolution the
data record has typically the same extent as the unknown (the input signal) (in digital image-
processing applications a number of unknowns N = 1024 x 1024 is common). Therefore,
although a loose approximation of the exact feasibility set may be acceptable for the former
problem, it will not be for the latter and a solution method which guarantees a feasible signal
is required.

Finally, let us remark that in set membership identification a bound on the global error
signal u is supposed to be known a priori. In this paper a bound has been derived by breaking
u up into a structural component which depends on the unknown and a measurement noise
component which models external, input-independent disturbances.

4.3. Applications

There are countless practical inverse problems in which the underlying linear system is
partially known and the data are corrupted by additive noise. Measurement noise is a common
instance in any data-collecting process and it need not be further discussed. Inaccurately
modelled linear systems arise in many situations. For instance, in geophysics the characteristics
of the system, in this case the earth, are partially known. In communications, linear channels
are often subject to uncontrollable factors which make their exact modelling impossible. In
image restoration the point spread function of the imaging system is often subject to unknown
perturbations, e.g. the random fluctuations of the index of refraction of the light propagation
medium in atmospheric imaging or the random scattering of the quanta in X-ray imaging.

The application of the proposed framework to such problems is contingent on the
availability of a bounding function for the error signal. If the sole source of uncertainty is the
noise (i.e. 7=0 in (6)), only the bound 8 of (9) is needed. If the model of the system is
uncertain, then the #”-norm of the input signal # and a bound on the #”-norm of the
disturbance T, are also needed for each observed data sample x(w). Of course, such
information is application-dependent. Fortunately, in a wide range of problems it will be
available. As an example, let us consider image deblurring. In this case k represents the original
image, whose norm may be available through the a priori knowledge or may be inferred from
the degraded image x. If the blur is due to an out-of-focus lens, the focus of an object is a
function of the distance to the lens, which varies widely in many common photographic scenes.
With information about the scene it is possible to bound the variation of the blur. If the blur
is caused by uniform motion, bounds on its extent can be made from knowledge about the
possible speed of objects or the relative motion of the camera. For example, a television system
set to monitor a highway can expect cars to be travelling within a few km h™! of the speed
limit. With this information, bounds on any #”-norm of 7. can be computed.

It is important to note that the amount of information required to construct the function
v bounding the error in (13) is usually less than is required by classical methods. For instance,
in the deconvolution approaches for uncertain models based on Wiener filtering! or Bayesian
analysis, ** a statistical description of the input signal A, the disturbance 7 and the noise v is
needed. Statistical knowledge of 7 and v is also required in the set theoretic approach of
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Reference 9. In addition, in order to be computationally efficient, these methods must be
implemented in the frequency domain via the fast Fourier transform, which imposes that the
uncertainty be stationary. This assumption can be relaxed in the bounded error framework,
thus providing a more general and realistic modelling of the uncertainty, since in most practical
instances the unknown fluctuations of the system are shift-variant.

5. A DISCRETE SIGNAL RECOVERY APPLICATION

The purpose of this section is to provide a detailed example of application of the above analysis
to a concrete deconvolution problem, namely the restoration of a blurred and noise-corrupted
one-dimensional discrete signal. The length of the signals is set to N =512 and the Hilbertian
solution space is R" endowed with the Euclidean distance. From (16) the nth sample of the
degraded signal x for a causal blur is given by '

x(n) = iﬂ T(n—m)h(m)+ Z':]D T(n, mYh(m) + v(n) -~ (28)

The original signal 4 is depicted in Figure 1. It is assumed that / is non-negative with maximum
value || 4 |- The blur is causal, of length L = 16, and its known component is rectangular and
shift-invariant.

/L ifogn<L-1

29
0 otherwise 29)

(vne(0,...,N-1)) T(n)=[
Physically f_ can be regarded as a one-dimensional linear motion blur. The unknown
component 7 of the blur is shift-variant with the same region of support as T and, for every
n, || Txll1 = aw < . The noise samples (v(n))o<n<n~-1 are uniformly distributed in the
interval [— 8, 8], where 8 =0-1. From this information the bound on the error signal samples
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Figure 1. Original signal
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given by (13) is y(n) =y =ax. || /|| + 8. The closed and convex property sets of (20) are
Se={aeRY| |x(n)- (T+a)(n)| <y} for0Sn<N-1 30)

Now let T, be the reflected and n-shifted version of T so that (T* a)(n) = {T,|a). We can
then write S, = {ae RV | x(n)— v < (T, | @) €< x(n)+ v}, which is simply a closed hyperslab
delimited by two hyperplanes. Hence the projection onto S, of a vector not in S, is given by
the projection onto the nearest hyperplane. Since the projection of a point a' onto the
hyperplane {a€R*|(a|b) =6} is a' + [(6— <a’ | b))/|| b||*]1b, the projection operator onto
Sn is given by

if (f,‘.!a’) >x(n)+y
if (Tala') <x(n)—~
otherwise

@'+ [(x(n) +y = (Ta| aN|| T2 |I*1 T
Pu(a)={a' + [(x(n)—y—<Ta|a')| T2 |21 T
al

€]

The last closed and convex set in the set theoretic formulation is based on the above
information on the amplitude of the input signal, namely

Sv={aeRY|(vne(0,....N=1}) 0<ar< | hlw) (32)
The projection operator onto this set is easily seen to be
0 if @ <0
(vne{0,...N=1}) [Pv(a)a={lhllo if ai> |kl (33)
an otherwise

A signal in the feasibility set S = N™.q S, is obtained via algorithm (23), activated under cyclic
control with \, = 1 and the degraded signal as an initial estimate. Convergence of (@nn+1))nz0
was typically achieved within 10—30 iterations. First we simulate an instance when the blur is
known exactly, i.e. o =0. The degraded signal is shown in Figure 2 and the restoration in
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Figure 3. It is seen that a large amount of information has been recovered. Then we introduce
shift-varying perturbations in the blurring kernel, with ow =0-04, to obtain the degraded
signal of Figure 4, whose restoration is shown in Figure 5. Clearly the added uncertainty has
increased the bound « and therefore the feasibility set, which results in a poorer restoration.

Besides the knowledge of the component T of the kernel, the information used in these set
theoretic restorations is limited to upper and lower bounds on the input signal and the noise
and an upper bound on the /'-norm of the disturbances of the kernel. It is noted that no
statistical assumption has been made and that the only conventional deconvolution method
that could be implemented with such little information would be inverse filtering, which is
known to give unacceptable results.?

6. CPNCLUSIONS

In this paper we have considered the general signal deconvolution problem in the presence of
unknown system kernel disturbances and measurement noise. From the prior knowledge of
bounds on these two sources of uncertainty, amplitude bounds on the error in the data
formation mechanism were derived. By constraining the estimation residual to be consistent
with these error bounds, sets were constructed in the solution space. Upon adding these sets
to those based on other a priori knowledge, one obtains a collection of sets whose intersection
is the set of feasible signals for the deconvolution problem. Projection methods were described
as a computationally efficient scheme to generate feasible solutions.

Such a framework for deconvolution is of particular interest whenever a probabilistic
description of uncertainty is either not appropriate or not available and bounds on the
unknown components of the data model are known. While the set theoretic formulation is
conceptually easy to formulate, the most important part of obtaining a meaningful solution
is the determination of accurate bounds for the error signal. If the bounds are too
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conservative, the intersection of the property sets will be large and the quality of a solution
will be poor. If the bounds are too small, the constraints on the residual samples will be
inconsistent and the feasibility set may be empty. Hence the task is to derive from the a priori
knowledge the tightest possible bounds that guarantee that the true solution is within the
feasibility set.

The method offers great flexibility with regard to the incorporation of a priori knowledge
and, unlike existing methods, can handle shift-variant perturbations on the kernel of the
system. The ability of the method to use only the knowledge that is available without requiring
questionable assumptions or estimations is another advantage. This paper has also discussed
the disadvantages of the method which may make it unsuitable for certain types of problems.
While no method is optimal for all problems, the set theoretic approach definitely constitutes
a reliable and efficient tool that will prove indispensable in a wide range of applications.
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