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Image restoration problems can naturally be cast as constrained convex programming
problems in which the constraints arise from a priori information and the observation
of signals physically related to the image to be recovered. In this paper, the focus is

placed on the construction of constraints based on wavelet representations. Using a mix
of statistical and convex-analytical tools, we propose a general framework to construct

wavelet-based constraints. The resulting optimization problem is then solved with a
block-iterative parallel algorithm which offers great flexibility in terms of implementa-

tion. Numerical results illustrate an application of the proposed framework.
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1. Introduction

The classical linear restoration problem is to find the original form of an image x

in a real Hilbert space H from the observation of a degraded image

y = Lx+ u, (1.1)

where L:H → H is a bounded linear operator modeling the blurring process and u

models an additive noise perturbation (L = Id in denoising problems). Numerous

approaches have been developed over the past three decades to solve this problem
1,8,16,29,32,35,36. Despite their apparent disparity, these restoration problems can

typically be posed as optimization problems in which an appropriate objective
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function is minimized under certain constraints. Restricting ourselves to convex

problems, the goal is therefore to

find x̂ ∈ S =
m⋂

i=1

Si such that J(x̂) = inf J(S), (1.2)

where the objective J :H → ]−∞,+∞] is a convex function and the constraint sets

(Si)1≤i≤m are convex subsets of H. These constraints arise from a priori knowledge

about the model (1.1) and the original image x. Constraint sets can generally be

represented as level sets, i.e.,

(∀i ∈ {1, . . . ,m}) Si = lev≤δi fi, (1.3)

where fi:H → ]−∞,+∞] is a convex function and δi ∈ R. Examples of relevant

functions fi modeling spatial or spectral constraints can be found in 8,10,32.

In image denoising and restoration problems, the wavelet transform has been

used in a variety of prescriptions 2,4,5,18,22. The viewpoint adopted in the present

work is that the wavelet transform can be exploited to construct various constraints

on x̂ that can be used in conjunction with standard constraints to refine the feasi-

bility set S in (1.2). Our general constraint model is described in Section 2, where

we also review existing work. In Section 3, we introduce a new class of convex con-

straints arising from probabilistic information. These constraints are constructed

via Stein’s identity and turn out to be simple to handle numerically via projection

methods. In Section 4, the parallel block-iterative convex programming framework

of 9 is shown to provide a viable numerical scheme to solve the resulting opti-

mization problem. We illustrate the proposed approach through a numerical image

denoising application in Section 5.

2. Wavelet constraint model and previous work

2.1. Notation

In this paper, H will be either L2(R2) in analog models or `2(Z2) in discrete models.

The scalar product and norm of H are denoted by 〈· | ·〉 and ‖ · ‖, respectively. The

adjoint of a bounded linear operator T is denoted by T ∗. The level set of a function

fi:H → R at height δi ∈ R is lev≤δi fi =
{
x ∈ H | fi(x) ≤ δi

}
. The 2-D wavelet

transform 26 in a separable wavelet basis B is denoted by W Bj,d, where d ∈ {1, 2, 3} is

the orientation parameter and j ∈ Z (j ∈ Z− for discrete models) is the resolution

level (here, coarser resolutions are obtained as j → −∞). The wavelet coefficients

of x ∈ H are denoted by
(
wBj,d,k(x)

)
k∈Z2 ; in other words, WBj,d:H → `2(Z2):x 7→(

wBj,d,k(x)
)
k∈Z2 . As usual, N (0, 1) denotes a standard normal random variable. The

characteristic function of a set ∆ is denoted by 1∆. Finally, sign(t) takes value 1,

0, or −1, according as t > 0, t = 0, or t < 0.
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2.2. General constraint model

A wavelet-based constraint function fi in (1.3) can be constructed as follows. Let us

fix a separable wavelet basis B, a set I ⊂ Z× {1, 2, 3} containing the indices of the

retained scales j and directions d, and a convex function ϕ: `2(Z2) → ]−∞,+∞].

We consider constraint functions of the form

fi = ϕ ◦WBI (2.4)

or of the form

fi = ϕ ◦WBI ◦ L, (2.5)

where WBI = (WBj,d)(j,d)∈I . We thus obtain an inequality constraint on the wavelet

coefficients of an image x itself or of its blurred version Lx.

2.3. Previous work

Wavelet constraints have already been used in the literature in specific contexts.

An early development in that direction is 27, where the constraint imposed in the

wavelet domain can be written as

(WBx)1∆ = r1∆, (2.6)

where WB denotes the “entire” wavelet transform (i.e., W B = WBI , with I =

Z × {1, 2, 3} for analog models and I = Z− × {1, 2, 3} for discrete models), r is a

reference wavelet coefficient sequence, and the support region ∆ corresponds to the

location of local maxima. This constraint fits the convex inequality format described

by (1.3) and (2.4), where ϕ: z 7→ ‖(z − r)1∆‖2 and δi = 0. Related work can be

found in 30,31. The constraint model (2.6) also appears in 19,20, where ∆ is defined

through a thresholding operation.

Another type of wavelet constraint was considered in the multiple wavelet image

denoising approach of 6 where upper bounds were imposed on the Besov norm of

candidate solutions. The functions fi are of the form

fi:x 7→ ‖WBx‖qbsp,q (2.7)

where, for sufficiently regular wavelets, the norm

‖ · ‖bsp,q :WBx 7→
(∑

j

2jsq
(∑

k,d

|wBj,d,k(x)|p
)q/p

)1/q

(2.8)

is known to be equivalent to the norm of the Besov space Bσ
p,q when p ≥ 1, q ≥ 1,

and s = σ+1−2/p 28. A similar approach was adopted in 14 to solve one-dimensional

regression problems. Related formulations are investigated in 4,15,25.

In the Bayesian maximum entropy framework described in 24 the constraints

arise from upper bounds on the p-th (p ≥ 1) order absolute moments of the wavelet



June 25, 2004 20:43 WSPC/WS-IJWMIP sub2

4 Combettes and Pesquet

coefficient sequences. Such a constraint is therefore given by (2.4), where I is a

singleton and

ϕ: (γk)k∈Z2 7→
∑

k

|γk|p. (2.9)

Note that, in practice the summations in (2.7) and (2.9) are performed over a

finite range and, therefore, the associated function fi is finite.

2.4. Remarks

To further improve the range of applications of wavelet-constrained approaches, the

following directions should be explored.

• In certain simple scenarios, the solution to (1.2) can be computed in a

straightforward fashion. For instance, this situation occurs when J :x 7→
‖x − y‖2 is minimized subject to the single Besov ball constraint (2.7),

with p = 1, or q = 1, or p = q = 2 4,25. However, in general settings,

the resulting optimization problem (1.2) requires more sophisticated nu-

merical techniques. In particular, fast and flexible algorithms with parallel

processing capabilities should be adopted.

• The proposed framework should lend itself to the incorporation of a large

number of constraints and, in particular, should allow for the combination

of constraints arising in both the spatial and the wavelet domains.

• Critical to the effectiveness of a constraint set of type (1.3) is the deter-

mination of the bound δi. In some cases, such bounds are known a priori
8,37. In other cases, they must be estimated from the data, which is a diffi-

cult task in general. Therefore, one should investigate classes of constraints

amenable to reliable bound estimation methods.

This paper aims at addressing the above issues.

3. New constraints based on probabilistic information

3.1. Introduction

In order to refine the feasibility set in (1.2), one should incorporate as many convex

constraints as the available a priori knowledge and the observed data allow. Usually,

such constraints arise from information about x itself or about the noise process

u 7,8,12,32,34,37. In this section, we develop a procedure for constructing statistical

constraints in the wavelet domain. In our approach, Stein’s identity is used to

estimate reliably a bound δi in (1.3).

3.2. Constraint set construction via Stein’s identity

Our constraint construction scheme relies on the following fact, which is a con-

sequence of Stein’s identity 33. Henceforth, ψ is a real-valued function defined on

R.
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Proposition 3.1. Suppose that A and B are real-valued random variables such

that

(i) E|A|2 < +∞;

(ii) B −A is Gaussian with mean zero and variance σ2;

(iii) A and B −A are independent;

(iv) ψ is continuous, piecewise differentiable, and

(∀θ ∈ R) lim
|t|→+∞

ψ(t) exp
(
− (t− θ)2

2σ2

)
= 0; (3.10)

(v) E|ψ(B)|2 < +∞ and E|ψ′(B)| < +∞.

Then E(Aψ(B)) = E(Bψ(B))− σ2Eψ′(B).

Throughout, B is a wavelet basis of H. The decomposition of the data formation

model (1.1) in this basis is

(∀j ∈ Z)(∀d ∈ {1, 2, 3})(∀k ∈ Z2) wBj,d,k(y) = wBj,d,k(Lx) + wBj,d,k(u). (3.11)

Our standing assumptions are as follows.

Assumption 3.1. For every j ∈ Z and d ∈ {1, 2, 3}, the following conditions are

satisfied.

(i) u and Lx are independent random processes.

(ii) The random variables
(
wBj,d,k(u))k∈Z2 are independent and all distributed as a

zero-mean Gaussian random variable wBj,d(u) with standard deviation σBj,d.
(iii) The random variables

(
wBj,d,k(Lx))k∈Z2 are independent and all distributed as

a random variable wBj,d(Lx) with finite variance.

(iv) The function ψ is continuous, piecewise differentiable, and

(∀θ ∈ R) lim
|t|→+∞

|t|ψ(t)2 exp
(
− (t− θ)2

2(σBj,d)
2

)
= 0. (3.12)

(v) 0 < E
∣∣ψ
(
wBj,d(y)

)∣∣2 < +∞ and E
∣∣ψ′
(
wBj,d(y)

)∣∣2 < +∞, where

wBj,d(y) = wBj,d(Lx) + wBj,d(u). (3.13)

Remark 3.1. In image processing applications, the underlying spatial homogeneity

assumption on the noise in (ii) is quite standard and physically founded. In the case

of discrete models, if u is a zero mean i.i.d. Gaussian noise with standard deviation

σ, then Assumption 3.1(ii) is satisfied with σBj,d = σ.

Let us now fix a resolution level j ∈ Z (j ∈ Z− for discrete models) and an

orientation d ∈ {1, 2, 3}. Moreover, for every x ∈ H, let us define

TBj,d(x) = E

(
wBj,d(Lx)ψ(wBj,d(y))−wBj,d(y)ψ(wBj,d(y)) + (σBj,d)

2ψ′(wBj,d(y))

)
. (3.14)

The construction of the constraint will hinge on the following property.
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Proposition 3.2. TBj,d(x) = 0.

Proof. Let us first observe that (3.12) implies (3.10). Indeed, let us fix θ ∈ R.

Then, for |t| large enough,
∣∣∣∣ψ(t) exp

(
− (t− θ)2

2σ2

)∣∣∣∣
2

≤ |t|ψ(t)2 exp
(
− (t− θ)2

2σ2

)
→ 0. (3.15)

Now set A = wBj,d(Lx) and B = wBj,d(y). Then it follows from Assumption 3.1 that

all the properties required in Proposition 3.1 are satisfied. Therefore,

E
(
wBj,d(Lx)ψ(wBj,d(y))

)
= E

(
wBj,d(y)ψ(wBj,d(y))

)
− (σBj,d)

2Eψ′(wBj,d(y)), (3.16)

and the claim is proved.

The conceptual constraint T Bj,d(x) = 0 is not enforceable since the expectation

is not tractable. As a result, it must be replaced by the practical constraint

T
B,Kj
j,d (x) ≈ 0, (3.17)

where T
B,Kj
j,d (x) is a consistent estimate of T Bj,d(x) computed from a K2

j -point ob-

servation window Kj = {0, . . . ,Kj − 1}2 in the wavelet domain. For every x ∈ H,

let us define

(∀k ∈ Z2) zk(x) = wBj,d,k(Lx)ψ(wBj,d,k(y))− wBj,d,k(y)ψ(wBj,d,k(y))

+ (σBj,d)
2ψ′(wBj,d,k(y)) (3.18)

and

T
B,Kj
j,d (x) =

1

K2
j

∑

k∈Kj
zk(x). (3.19)

We now show that the empirical estimate T
B,Kj
j,d (x) is strongly consistent.

Proposition 3.3. The random variables (zk(x))k∈Z2 are independent and all dis-

tributed as the random variable

z(x) = wBj,d(Lx)ψ(wBj,d(y))− wBj,d(y)ψ(wBj,d(y)) + (σBj,d)
2ψ′(wBj,d(y)). (3.20)

Moreover, Ez(x) = 0 and

E|z(x)|2 = (σBj,d)
2E|ψ(wBj,d(y))|2 + (σBj,d)

4E|ψ′(wBj,d(y))|2 < +∞. (3.21)

Proof. The first claim follows from Assumption 3.1, whereas the identity Ez(x) = 0

follows from Proposition 3.2. Furthermore,

E|z(x)|2 = E|
(
wBj,d(y)− wBj,d(Lx)

)
ψ(wBj,d(y))− (σBj,d)

2ψ′(wBj,d(y))|2

= E|wBj,d(u)ψ(wBj,d(y))− (σBj,d)
2ψ′(wBj,d(y))|2

= E|wBj,d(u)ψ(wBj,d(y))|2 − 2(σBj,d)
2E
(
wBj,d(u)ψ(wBj,d(y))ψ′(wBj,d(y))

)

+ (σBj,d)
4E|ψ′(wBj,d(y))|2. (3.22)
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Per Assumption 3.1(ii), wBj,d(u) is Gaussian with mean zero and standard deviation

σBj,d. Let g be its density and let h = wBj,d(Lx). Hence, wBj,d(y) = wBj,d(u) + h and

we obtain

E|wBj,d(u)ψ(wBj,d(y))|2 = E

(
E
(
|wBj,d(u)ψ(wBj,d(u) + h)|2 | h

))

= E

∫

R
t2ψ(t+ h)2g(t)dt (3.23)

However, in view of Assumption 3.1(iv), an integration by parts yields
∫

R
t2ψ(t+ h)2g(t)dt = −(σBj,d)

2

∫

R
tψ(t+ h)2dg(t)

= (σBj,d)
2

∫

R
g(t)d

(
tψ(t+ h)2

)

= (σBj,d)
2

∫

R
g(t)

(
ψ(t+ h)2 + 2tψ(t+ h)ψ′(t+ h)

)
dt

= (σBj,d)
2E
(
ψ(wBj,d(u) + h)2 | h

)

+ 2(σBj,d)
2E
(
wBj,d(u)ψ(wBj,d(u) + h)ψ′(wBj,d(u) + h) | h

)
.

Thus, we derive from (3.23) that

E|wBj,d(u)ψ(wBj,d(y))|2 = (σBj,d)
2E|ψ(wBj,d(y))|2

+ 2(σBj,d)
2E
(
wBj,d(u)ψ(wBj,d(y))ψ′(wBj,d(y))

)
. (3.24)

In turn, combining this identity with (3.22) yields (3.21).

A straightforward application of the strong law of large numbers now furnishes

the announced strong consistency result.

Proposition 3.4. T
B,Kj
j,d (x)

a.s.−→ 0 as Kj → +∞.

In order to give (3.17) a precise statistical meaning, we need to investigate the

asymptotic distribution of T
B,Kj
j,d (x) as Kj becomes arbitrarily large. To this end,

let us define

V
B,Kj
j,d =

σBj,d
K2
j

√∑

k∈Kj
|ψ(wBj,d,k(y))|2 + (σBj,d)

2
∑

k∈Kj
|ψ′(wBj,d,k(y))|2. (3.25)

In view of (3.21), KjV
B,Kj
j,d is therefore the empirical standard deviation of z(x)

based on the observation window Kj .

Theorem 3.1. T
B,Kj
j,d (x)/V

B,Kj
j,d

d→ N (0, 1) as Kj → +∞.

Proof. It follows from Proposition 3.3 and the standard central limit theorem that

KjT
B,Kj
j,d (x)/

√
E|z(x)|2 d→ N (0, 1) as Kj → +∞. (3.26)
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On the other hand, it follows from Proposition 3.3 and the strong law of large

numbers that |KjV
B,Kj
j,d |2 a.s.−→ E|z(x)|2 as Kj → +∞. Since E|z(x)|2 6= 0 by As-

sumption 3.1(v) and (3.21), V
B,Kj
j,d 6= 0 for Kj large enough. Hence, we deduce from

Proposition 6.3.4 in 3 that
√

E|z(x)|2/(KjV
B,Kj
j,d )

d→ 1. (3.27)

We can now invoke Proposition 6.3.8(ii) in 3 to derive from (3.26) and (3.27) that

T
B,Kj
j,d (x)/V

B,Kj
j,d

d→ N (0, 1).

Remark 3.2. The proof of the above theorem is based on the a.s. convergence

of KjV
B,Kj
j,d toward the standard deviation of z(x). This property still holds if, in

(3.25), the variance σBj,d is replaced by a consistent estimate σ
B,Kj
j,d , that is

σ
B,Kj
j,d

a.s.−→ σBj,d as Kj → +∞. (3.28)

This shows that our approach is applicable when the variance of the noise is un-

known provided that it can be consistently estimated.

Remark 3.3. The conclusions of Proposition 3.4 and Theorem 3.1 are direct con-

sequences of the strong law of large number and of the central limit theorem. Conse-

quently, they remain valid under much weaker assumptions on
(
wBj,d,k(u))k∈Z2 and(

wBj,d,k(Lx))k∈Z2 than those adopted in Assumptions 3.1(ii) and (iii). In particular,

by applying sharper asymptotic results (see for instance 23), mixing assumptions

on the wavelet coefficients of the image of interest make it possible to extend the

scope of our results, while providing more realistic models for natural images.

The practical significance of Theorem 3.1 is the following. Let us fix a confidence

level pi ∈ ]0, 1[ and let erf: τ 7→ (2/
√
π)
∫ τ

0
e−t

2

dt be the error function. Then,

assuming that Kj is large enough so that the normal approximation is legitimate,

|TB,Kjj,d (x)/V
B,Kj
j,d | will not exceed

√
2 erf−1(pi) with probability pi. Accordingly, for

Kj sufficiently large, the true image x lies in the set

Si =
{
x ∈ H

∣∣∣
∣∣TB,Kjj,d (x)

∣∣ ≤
√

2V
B,Kj
j,d erf−1(pi)

}
, (3.29)

to within the confidence level pi. Now put

ηi =
∑

k∈Kj
wBj,d,k(y)ψ(wBj,d,k(y))− (σBj,d)

2ψ′(wBj,d,k(y)). (3.30)

Then the constraint set Si is readily seen to fit the general format described by

(1.3) and (2.5) with I = {(j, d)},

ϕ: (µk)k∈Z2 7→

∣∣∣∣∣∣
∑

k∈Kj
µkψ(wBj,d,k(y))− ηi

∣∣∣∣∣∣
, (3.31)

and

δi =
√

2K2
j V
B,Kj
j,d erf−1(pi). (3.32)
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In view of (3.25), the bound δi is computable entirely from the observed image

y. Geometrically, Si is simply described as a hyperslab, i.e., a set of the form

Si =
{
x ∈ H | β1 ≤ 〈x | a〉 ≤ β2}, where a ∈ H and (β1, β2) ∈ R2.

3.3. Confidence analysis

In Section 3.2, the constraint (3.17) has been enforced through a statistical test that

led to the construction of the set Si in (3.29). As a result, Si is a confidence region

which contains the original image x to within the confidence level pi. In practice,

several statistical constraints of this type can be used simultaneously, since one has

the option of considering several wavelet bases B, several resolution levels j, several

directions d, and several functions ψ. Suppose that q sets (Si)1≤i≤q of type (3.29)

are to be used. In order to guarantee the reliability of the solutions to problem (1.2),

one should select the confidence levels (pi)1≤i≤q so as to achieve a preset confidence

level c on
⋂q
i=1 Si. Following the analysis of 11, we can invoke Bonferroni’s inequality

c ≥ 1−
q∑

i=1

(1− pi) (3.33)

to adjust the individual parameters (pi)1≤i≤q. For instance, if all these parameters

are taken to be equal to p, then choosing

p ≥ 1− (1− c′)/q (3.34)

will guarantee a global confidence level c on the intersection of the sets of at least

c′.

3.4. Choice of ψ

Among the many possible choices for ψ, let us mention a few functions of interest.

• ψ: t 7→ |t|p−1sign(t), where p > 1. In this case, E
(
wBj,d(y)ψ

(
wBj,d(y)

))
=

E|wBj,d(y)|p, which is similar to the p-th order absolute moment constraint in

(2.9) when L = Id. In particular, when p = 2, ψ: t 7→ t and the associated set

Si corresponds to a constraint on the correlation between wBj,d(Lx) and wBj,d(y).

In this simple case, (3.16) reduces to

E
(
wBj,d(Lx)wBj,d(y)

)
= E|wBj,d(y)|2 − (σBj,d)

2 = E|wBj,d(Lx)|2 (3.35)

and, therefore, a constraint is placed on the energy of the wavelet coefficients

of Lx in a given subband (j, d).

• ψ: t 7→ tanh(t/α) where α ∈ ]0,+∞[. This function provides a smooth approx-

imation to the sign function. When α ↓ 0, E
(
wBj,d(y)ψ(wBj,d(y))

)
→ E|wBj,d(y)|

and the associated constraint is akin to an absolute moment constraint.

• ψ: t 7→ t
(

tanh((t + χ)/α) − tanh((t − χ)/α)
)
/2 where α ∈ ]0,+∞[ and χ ∈

]0,+∞[. When α ↓ 0, ψ(t) → t1]−χ,χ[(t). We thus enforce a constraint on

the correlation between wBj,d(Lx) and wBj,d(y) with absolute values below the
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threshold χ. In practice, χ may be chosen as the so-called universal threshold
17. In the same vein, another pertinent choice is ψ: t 7→ tanh(t/α)

(
tanh((t +

χ)/α)− tanh((t− χ)/α)
)
/2.

4. Numerical algorithm

4.1. Subgradient projections

We review a few basic facts, see 10 and the references therein for details.

Let Si be a nonempty closed and convex subset of H and let x be a point in

H. Then there exists a unique point Pix ∈ Si, called the projection of x onto Si,

such that ‖x − Pix‖ = dSi(x), where dSi(x) = inf ‖x − Si‖. Now suppose that Si
is given by (1.3), where fi is continuous and convex (since Si = lev≤0 dSi , such a

representation always exists). The subdifferential of fi at x ∈ H is

∂fi(x) =
{
gi ∈ H | (∀z ∈ H) 〈z − x | gi〉+ fi(x) ≤ fi(z)

}
. (4.36)

Now, fix x ∈ H, a subgradient gi ∈ ∂fi(x), and define

Hx =

{{
z ∈ H | 〈z − x | gi〉 ≤ δi − fi(x)

}
, if fi(x) > δi;

H, if fi(x) ≤ δi.
(4.37)

Then Si ⊂ Hx and the projection of x onto Hx, i.e.,

Gix = PHxx =




x+

δi − fi(x)

‖gi‖2
gi, if fi(x) > δi;

x, if fi(x) ≤ δi,
(4.38)

is called a subgradient projection of x onto Si. We note that computing Gix requires

only the availability of a subgradient (a gradient in the differentiable case) of fi at

x and is therefore much more economical than computing the exact projection Pix,

as the latter amounts to solving a constrained quadratic minimization problem.

However, when Pix is easy to compute, one can set fi = dSi and obtain Gix = Pix.

Now suppose that ϕ is (convex and) lower semicontinuous and that there exists

a point x ∈ H such that ϕ is finite and continuous at W BI x. Then, for the constraints

described in (2.4) and (2.5), standard convex calculus yields 21

∂fi(x) = (WBI )∗∂ϕ(WBI x) (4.39)

and

∂fi(x) = L∗(WBI )∗∂ϕ(WBI Lx), (4.40)

respectively. When B is an orthonormal basis of H, (W BI )∗ is directly related to the

inverse wavelet transform since (W B)∗ = (WB)−1. For instance, if the Besov ball

constraint defined through (2.7) is expressed in an orthonormal wavelet basis B, a

subgradient gi of fi at x ∈ H is obtained component-wise in the wavelet domain as

wBj,d,k(gi) = 2jsqq‖WBIj‖q−pp |wBj,d,k(x)|p−1sign(wBj,d,k(x)), (4.41)
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where Ij = {j} × {1, 2, 3}. This expression can then be fed back directly into

(4.38) to obtain a subgradient projection. On the other hand, computing an exact

projection in this case would require solving a constrained quadratic programming

iteratively.

4.2. Algorithm

The objective is to solve our basic problem (1.2) efficiently under the constraint rep-

resentation (1.3). To this end, we shall use the following block-iterative algorithm

proposed in 9. The convergence of this algorithm has been studied in a general

setting in 9. In order to avoid technical digressions, we state only the finite di-

mensional convergence result of interest in the context of the subsequent numerical

simulations. Thus, images are assumed to be sampled on a finite K ×K grid and

the image space is therefore the Euclidean space RN , where N = K2. Our detailed

set of assumptions is as follows.

Assumption 4.1.

(i) H = RN and (Si)1≤i≤m are defined by (1.3), where the functions (fi)1≤i≤m are

finite and convex, and S =
⋂m
i=1 Si 6= Ø.

(ii) J :RN → ]−∞,+∞] is convex and lower semicontinuous.

(iii) There exists z ∈ S such that J(z) < +∞, C = lev≤J(z) J is bounded, and J is

differentiable and strictly convex on C.

Let us observe that, under assumption (i), properties (ii) and (iii) hold in par-

ticular when J :RN → R is strictly convex, differentiable, and coercive in the sense

that lim‖x‖→+∞ J(x) = +∞.

Algorithm 4.1.

À Fix ε ∈ ]0, 1/m[ . Let x0 be the minimizer of J over H and set n = 0.

Á Take a nonempty index set In ⊂ {1, . . . ,m}.
Â For every i ∈ In, take gi,n ∈ ∂fi(xn) and compute the subgradient projection

pi,n =




xn +

δi − fi(xn)

‖gi,n‖2
gi,n, if fi(xn) > δi;

xn, if fi(xn) ≤ δi.

Ã Set zn = xn + λn
(∑

i∈In ωi,npi,n − xn
)
, where

(a) (ωi,n)i∈In lies in ]ε, 1] and
∑
i∈In ωi,n = 1;

(b) λn =





∑
i∈Inωi,n‖pi,n − xn‖2∥∥∑
i∈In ωi,npi,n − xn

∥∥2 , if max
i∈In

(
fi(xn)− δi

)
> 0;

1, otherwise.

Ä Set

{
Dn =

{
x ∈ H | 〈xn − x | ∇J(xn)〉 ≤ 0

}

Hn =
{
x ∈ H | 〈zn − x | zn − xn〉 ≤ 0

}
.

Å Let xn+1 be the minimizer of J over Dn ∩Hn.
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Æ Set n = n+ 1 and go to Á.

Theorem 4.1. 9 Suppose that Assumption 4.1 is satisfied and that there exists a

strictly positive integer M such that, for every i ∈ {1, . . . ,m} and every n ∈ N,

i ∈ ⋃n+M−1
k=n Ik. Then every sequence generated by Algorithm 4.1 converges to the

unique solution x̂ to (1.2).

4.3. Remarks

To determine the update xn+1 at iteration n of Algorithm 4.1, one first computes

simultaneously the subgradient projections (pi,n)i∈In of xn onto the selected sets

(Si)i∈In and then forms a relaxed convex average of these projections. This step

can be decomposed on a parallel architecture by assigning the computation of a

subgradient projection to each processor. The next important step is Å, which

amounts to minimizing J over the intersection of (at most) two half-spaces. This is

a simple convex program with (one or) two affine constraints, and it can sometimes

be solved in closed form 9,10.

The algorithm offers great flexibility in the choice of the constraints to be ac-

tivated at each iteration. It is therefore possible to match the computational load

of each iteration with the parallel architecture at hand. In particular, constraints

expressed in several domains (e.g., time, frequency, and several wavelet domains)

can be processed independently and concurrently. Added flexibility is supplied by

the fact that the weights and the relaxations can vary at each iteration.

As discussed in 9,10, although no convergence rate can be computed for this type

of nonlinear programming method in general, it displays nice convergence patterns

due to the deep cuts induced by the surrogate half-space Hn at Step Ä (see Fig. 8

for an illustration). Moreover, in terms of stopping rule, feasibility with respect to

the constraints can be used since xn is the solution x̂ to (1.2) if and only if xn ∈ S;

see Proposition 3.1(v) in 9.

5. Numerical example

The image y of Fig. 2 is obtained by adding i.i.d. zero mean Gaussian noise u to

the 256 × 256 8-bit Lena image x shown in Fig. 1. The image space is therefore

H = RN , where N = 2562. The mean-square error (MSE) between the original and

the degraded image is 900 (the signal-to-noise ratio is 11.92 dB). The variance of

the noise is assumed to be known. The constraint set arising from the knowledge

of the pixel range values is S1 = [0, 255]N . The objective function is

J :x 7→ ‖x− y‖2, (5.42)

which corresponds to the classical maximum likelihood criterion.

Different wavelet-based constraints are evaluated considering two separable or-

thonormal wavelet representations (using symlets 13 of length 8 and 12) which are

performed over 4 resolution levels j. The resulting optimization problem is solved
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with Algorithm 4.1 (see 10 for the closed-form implementation of Step Å allowed

by (5.42)).

In the first experiment the sets S2 and S3 are the Besov balls arising from (2.7),

where p = 1.1, q = 1.2, and s = 0.7. The wavelet basis B used in the construction of

these sets is the length-8 symlet basis for the set S2, and the length-12 symlet basis

for the set S3. We observe that no efficient solution technique has been proposed for

this particular setting in the literature. The image displayed in Fig. 3 is obtained

with the exact Besov bounds computed directly from the original image. Next, we

show in Figs. 4 and 5 the images obtained when the radii of the Besov balls are

underestimated by a factor 0.2 and overestimated by a factor 3, respectively. It is

clear that the quality of the restoration depends strongly on the reliable estimation

of the radii which, in the presence of noisy data, constitutes a challenging problem.

The second experiment focuses on the proposed approach with the constraint

sets of (3.29). Besov ball constraints are not involved in this experiment. Based on

the discussion of Section 3.4, three functions ψ are considered, namely

• ψ: t 7→ tanh(t/a),

• ψ: t 7→ t
(

tanh((t+ χ)/a)− tanh((t− χ)/a)
)
,

• ψ: t 7→ tanh(t/a)
(

tanh((t+ χ)/a)− tanh((t− χ)/a)
)
,

where a = 10 and χ = 100. Since 12 subbands (j, d) ∈ {−1,−2,−3,−4} × {1, 2, 3}
are used for the detail coefficients, we have a total of 3×4×3 = 36 sets (Si)2≤i≤37.

We choose a fixed confidence level p on these sets. The value of p is derived from

(3.34) so as to achieve a global confidence level of at least c′ = 0.8. As pointed out in

Section 3.2, the parameters defining the sets (Si)2≤i≤37 are entirely determined from

the data y. The denoised image is shown in Fig. 6. For comparison purposes, the

image produced by the SUREshrink thresholding method 18 with a length-8 symlet

basis is shown in Fig. 7. An inspection of the last two figures and of the values of the

mean square errors reveals that the proposed wavelet-based constraints lead to an

improvement in the quality of the recovery. It is worth mentioning that using only

the length-8 symlet basis in this experiment would lead to a lower performance

(MSE = 175.6) that would however still outperform the SUREshrink approach.

Let us also point out that, since the sample sizes used to compute the empirical

statistics is relatively large, the MSE displays little sensitivity with respect to the

choice of the confidence level c′ in a neighborhood of the level 0.8 used in this

experiment. Thus, the MSE varies monotonically from 149.46 for c′ = 0.7 to 150.05

for c′ = 0.9. Finally, from a numerical standpoint, the method has been found to

converge rapidly. For instance, the decibel value of the normalized mean square

error pattern in the case of the restoration obtained in Fig. 6 is plotted in Fig. 8.
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Fig. 1. Original 256× 256 Lena image.

Fig. 2. Noisy image – MSE = 900.
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Fig. 3. Besov-constrained denoising with exact bounds – MSE = 179.

Fig. 4. Besov-constrained denoising with underestimated bounds – MSE = 268.
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Fig. 5. Besov-constrained denoising with overestimated bounds – MSE = 700.

Fig. 6. Proposed wavelet-constrained denoising – MSE = 150.
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Fig. 7. SUREshrink denoising – MSE = 202.
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Fig. 8. 20 log10(‖xn − x‖/‖x‖) versus the iteration index n.


