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Convex Set Theoretic Image
Recovery by Extrapolated Iterations
of Parallel Subgradient Projections

Patrick L. Combettes,Senior Member, IEEE

Abstract—Solving a convex set theoretic image recovery prob-
lem amounts to finding a point in the intersection of closed and
convex sets in a Hilbert space. The projection onto convex sets
(POCS) algorithm, in which an initial estimate is sequentially
projected onto the individual sets according to a periodic sched-
ule, has been the most prevalent tool to solve such problems.
Nonetheless, POCS has several shortcomings: It converges slowly,
it is ill suited for implementation on parallel processors, and it
requires the computation of exact projections at each iteration.
In this paper, we propose a general parallel projection method
(EMOPSP) that overcomes these shortcomings. At each iteration
of EMOPSP, a convex combination of subgradient projections
onto some of the sets is formed and the update is obtained via
relaxation. The relaxation parameter may vary over an iteration-
dependent, extrapolated range that extends beyond the interval
]0,2] used in conventional projection methods. EMOPSP not
only generalizes existing projection-based schemes, but it also
converges very efficiently thanks to its extrapolated relaxations.
Theoretical convergence results are presented as well as numer-
ical simulations.

I. INTRODUCTION

T HE IMAGE recovery problem is to estimate an image
from signals physically or mathematically related to it.

For instance, in image restoration the goal is to estimate
the original form of a degraded image, whereas in image
reconstruction the goal is to estimate an image from partial
information pertaining to one (or several) of its transforms,
e.g., Fourier, Radon, or wavelet transform. Classical point
estimation theory, in which one seeks a solution that is
optimal in some sense, offers standard solution techniques
that have been employed extensively in image recovery, e.g.,
[3] and [27]. This framework, however, often provides lim-
ited flexibility in the objective and rational incorporation of
constraints, especially when they arise from nonprobabilistic
a priori knowledge. On that score, set theoretic estimation,
which revolves around the notion of feasibility, constitutes a
solid alternative [13].

In convex set theoretic image recovery the solution space
is a Hilbert space in which the original image is described

solely by a family of convex constraints arising from
a priori knowledge about the problem and from the observed
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data. A family of closed and convex property sets is
constructed as

satisfies (1)

so that the recovery problem reduces to the convex feasibility
problem

Find (2)

Detailed accounts of set theoretic signal and image recovery
can be found in [13] and [41]; recent work includes [12],
[14], [32], [34], and [37]. Although the range of applications
of set theoretic image recovery has expanded tremendously
over the past two decades, most studies have relied on a
single solution method for solving (2), namelyprojections onto
convex sets(POCS). Assuming that the family of sets is finite,
say , POCS generates an image inas the
weak limit of a sequence of periodic projections onto
the sets, that is

(3)

where designates the operator of projection onto. The
popularity of POCS somewhat overshadows the following
theoretical and numerical shortcomings:

• POCS converges slowly;
• POCS can process only one set per iteration and it is

therefore not well suited for parallel computing;
• POCS requires the computation of an exact projection at

each iteration, an often numerically involved subproblem;
• POCS is limited to problems with a finite number of

constraints.

The purpose of this paper is to introduce a general parallel
projection method that overcomes the above limitations of
POCS. In this iterative method, which will be calledextrap-
olated method of parallel subgradient projections(EMOPSP),
a sequence of images is constructed as follows. At
iteration , approximate projections of the
current iterate onto a subfamily of property sets
are computed simultaneously and averaged via convex com-
bination to form . The approximate
projections are implemented as subgradient projections, so that
all the projection operations actually become linear (affine)
ones. An extrapolation parameter is then determined
and the update is obtained as , where
the relaxation parameter lies in the interval . As this
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relaxation range extends well beyond the range used in
conventional methods, EMOPSP converges very efficiently.

The scope of this work is quite general, as we pose
the recovery problem in an abstract Hilbert space in which
countably many convex constraints are available to define the
original image. Although applications in image recovery are
emphasized, our results apply to any convex set feasibility
problem, such as the set theoretic estimation and design
problems described in [13]. The remainder of the paper is
organized as follows. Some basic notations, assumptions, and
definitions are given in Section II. Section III is a review of the
projection methods that have been used in signal recovery. In
Section IV, the convex feasibility problem (2) is reexamined
in a product space and a first approximate projection method
is proposed. EMOPSP is then fully developed in Section V.
Section VI is devoted to numerical applications to image
recovery problems, in which EMOPSP is compared to existing
methods. The conclusion appears in Section VII. Finally,
Appendix A contains the proofs of our results and Appendix
B a list of acronyms.

II. PRELIMINARIES

A. General Notations

is the set of real numbers, the set of nonnegative real
numbers, the set of positive real numbers, the set of
nonnegative integers, and the set of positive integers. The
cardinality of a set is denoted by card, its complement by

, and its characteristic function by , i.e., if
and if . The transpose of a matrix

is denoted by and the complex conjugate of by . The
underlying image space is a real Hilbert spacewith scalar
product , norm , and distance . The zero vector in

is denoted by and the closed ball of center and radius

by is the interior of a set .

B. Convex Analysis

Convex analysis plays a prominent role in this paper, and
we need to review key results. Complements and details will
be found in [4], [20] and, for finite dimensional spaces, [36].

In , a sequence converges to a point strongly
if converges to , and weakly if, for every
in converges to . A subset of is
boundedly compact if its intersection with every closed ball is
compact. Now let be a nonempty closed and convex subset
of . Then is weakly closed. The distance from a point

to is . There exists
a unique point such that ,
which is called the projection of onto . The projection
operator is characterized by

(4)

Take an affine half-space (where
and ) such that . Then the affine

hyperplane separates and and

(5)

Fig. 1. Geometrical interpretation of subgradients in� � .

If in addition , then supports at .
Let be a functional and let be the canonical

hilbertian product space. The-level curve ( -section
( , graph, and epigraph of are, respectively, defined as

lev
sec
gr
epi

(6)

is lower semicontinuous (l.s.c.) if epiis closed or, equiv-
alently, if the sets sec are closed. We shall say
that is lower semiboundedly-compact (l.s.b.co.) if the sets
sec are boundedly compact. From now on,is

convex, i.e., epi is convex or, equivalently
. Then

the sets sec are convex and is continuous if
dim ; if is l.s.c., it is continuous. A vector is
called a subgradient ofat if the continuous affine functional

, which has “slope” and takes the
same value as at , minorizes on .1 In geometrical terms,
gr is an affine hyperplane supporting epiat in

(see Fig. 1). The subdifferential of at is the set of
its subgradients, i.e.,2

(7)

If is continuous at , then it is subdifferentiable at :
Ø; if is (Gâteaux) differentiable at, then there is a

unique subgradient, , called gradient .
We have

(8)

1The general theory of subdifferentiability is relatively recent [31].
2In particular, ifg : ! , the subdifferential@g(a) is the set of all slopes

t of straight lines through(a; g(a)) which lie below grg. Thus,g : a 7! jaj
is not differentiable at 0 but (7) gives@g(0) = [�1; 1].
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C. Assumptions

The image to be estimated,, belongs to , where it is
described by a nonvoid finite or countably infinite family3

of closed and convex property sets. The solution set
for the problem is the feasibility set . The set
theoretic formulation is consistent, i.e., Ø.
The associated proximity function is the (continuous and
convex) functional

(9)

where

and (10)

In words, measures the degree of infeasibility of an
image . Note that . The operators
of projection onto the sets are denoted by .

III. PROJECTIONMETHODS IN IMAGE RECOVERY

In this section, we give a brief account of the projection
methods which have been used in convex set theoretic signal
and image recovery (more details can be found in [13]). We
assume here that is a finite family of sets.

A. POCS: Periodic Projections onto Convex Sets

In image recovery, the iterative scheme (3) was first pro-
posed in [23] under the name algebraic reconstruction tech-
nique (ART) to find a finite dimensional image in the inter-
section of affine hyperplanes. In its general form, POCS is
described by the algorithm

(11)

where the relaxation parameters satisfy

with (12)

The convergence properties of POCS are discussed in the
classical paper [24]. While [29] seems to be the first general
image recovery application of (11)–(12), the popularity of
the method owes much to the expository work [44]. As
was mentioned in Section I, a serious drawback of POCS
is slow convergence, which is illustrated in Fig. 2: As the
angle between the two sets decreases, the progression of
the iterates becomes extremely slow. This so-called “angle
problem” of POCS had already been pointed out in [24]. POCS
has been used mostly in the unrelaxed form (3), i.e.,
in (11); however, each iteration can be either underrelaxed,
i.e., , or overrelaxed, i.e., . Unfortunately,
this flexibility cannot be exploited to accelerate the iterations.
Thus, even in the simple case of affine half-spaces, there
is no systematic answer as to whether underrelaxations are
faster than overrelaxations or vice-versa [25], [30]. Likewise,
in the studies reported in [41], only heuristic rules for specific
problems are given.

3Meaning Ø6= I � .

Fig. 2. POCS algorithm.

B. SIRT: Simultaneous Iterative Reconstruction Technique

The simultaneous iterative reconstruction technique (SIRT)
was developed for tomographic image reconstruction in [22].
In this method, which can be regarded as the parallel coun-
terpart of ART, the projections of the current iterate onto all
the sets (hyperplanes in this case) are averaged to form the
update, that is

(13)

It was soon recognized that, although SIRT gave better results
than ART in noisy environments, it did not converge as fast
[2], [25]. The fact that SIRT can be slower than POCS is also
reported in [43] and illustrated in Fig. 3.

C. PPM: Parallel Projection Method

The parallel projection method (PPM) is a generalization of
SIRT governed by the recursion

(14)

where (10) and (12) are in force. It was developed for
inconsistent feasibility problems in [14]. It was shown there
that, when Ø, POCS gives poor solutions while PPM
converges to a minimizer of the proximity functionof (9),
i.e., it yields a weighted least-squares solution.4 In consistent
problems, of course, PPM solves (2) and it converges faster
with overrelaxations [14].

D. MOPP: Method of Parallel Projections

Although PPM is quite useful for inconsistent problems, it is
not very flexible as a parallel method in that it requires that all
the sets be activated at each iteration. As a result, if the number
of sets exceeds the number of concurrent processors available,

4This, in passing, explains the better behavior of SIRT compared to ART
in noisy tomographic reconstruction problems [2], [25], as noisy data often
give rise to nonintersecting families of hyperplanes.
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the implementation will not be optimal. In order to efficiently
spread the computational load of each iteration among the
processors and obtain a truly parallel algorithm, it is desirable
to have the possibility of activating variable subfamilies of
sets. The method of parallel projections (MOPP) meets this
requirement. It is described by the algorithm

(15)

where (12) is in force, where the control sequence
imposes that every set be activated at least once over any
cycle of consecutive iterations, i.e.,

Ø and (16)

and where the weights on the projections satisfy

(17)

for some . MOPP contains as special cases
the previous algorithms. Thus, POCS is obtained by letting

, whereas PPM is
obtained by letting and

, where satisfies (10). MOPP also generalizes the
accelerated nonlinear Cimmino algorithm (ANCA) of [26],
which is obtained by letting

if card
otherwise.

(18)

ANCA was studied for finite dimensional spaces in [26], where
it was shown to be faster than SIRT. A general study of the
convergence properties of MOPP is presented in [16]. The first
study of recursions of type (15) in Hilbert spaces was provided
in [33], and a review of the medical imaging applications of
parallel algorithms that process blocks of constraints over the
iterations is given in [9].

E. Discussion

Intuitively, it would seem that a parallel projection algorithm
is numerically more efficient than a serial one such as POCS
since the projections can be processed simultaneously as
opposed to sequentially. Unfortunately, this is not always
the case for unrelaxed methods such as SIRT which are
often slower than POCS. On the positive side, an asset of
parallel projection methods is that they can be accelerated
via overrelaxations, as reported in various experimental and
theoretical studies [7], [14], [16], [19], [26], [35]. Since the
relaxation parameters in MOPP are confined to the interval

, this suggests that even greater accelerations could be
achieved by pushing the relaxations beyond 2. A key step
to prove the convergence of the various methods that have
been proposed to solve (2) is to establish the so-called Fejér-
monotonicity property

(19)

Fig. 3. SIRT algorithm.

When only one set is activated at iteration , as in
(11), (19) implies that cannot lie beyond the reflection

of with respect to , which imposes
. On the other hand, with a parallel scheme such

as (15) where several sets are activated simultaneously, one
can contemplate the possibility of extrapolating the relaxations
beyond 2 and still maintain (19). The question of determining
the relaxation range allowable at each iteration is addressed
in the next section.

IV. CONVEX FEASIBILITY IN A PRODUCT SPACE

A. Preamble

In this section, card . is the
-fold Cartesian product of the original image space

and is structured as a Hilbert space with the scalar product
, where is as in (10)

and where is a generic -tuple of images in .
The associated norm and distance are denoted by and ,
respectively. In optimization theory, the product space formal-
ism has been used to decompose minimization problems with
multiple constraints into a sequence of elementary problems
with a single constraint [8]. The formulation of the feasibility
problem (2) as a two-set problem in is due to Pierra [35]
and was used in [14] to solve inconsistent signal feasibility
problems. It also provides a convenient framework to develop
extrapolated projection methods.

B. EPPM: Extrapolated Parallel Projection Method

Following Pierra [35], we first observe that in the product
space , the original feasibility problem (2) is equivalent to
the simpler two-set problem

Find (20)

where S X
is the Cartesian product of the property sets and
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Fig. 4. EPPM algorithm in the product space.

the diagonal vector subspace. In-
deed,

. To solve (20), fix
and construct a sequence via the alternating
projections scheme

(21)

Since this algorithm is a particular instance of POCS, we
obtain immediately the following result.

Proposition 1: Every sequence constructed as in
(21) with relaxation strategy (12) converges weakly to a point
in

In order to define an alternative relaxation strategy consider
Fig. 4, where and .
Let be the affine hyperplane supporting at . Then

separates from and intersects at . Note that
is attained in (21) by letting take the value of

the extrapolation coefficient

(22)

In addition, any update on the segment is closer
to any point in the solution set than , i.e., the
Fej́er monotonicity property (19) is satisfied. This suggests
the relaxation scheme

with (23)

Proposition 2: [35] Every sequence constructed as
in (21) with relaxation strategy (23) converges weakly to a
point in

To recast these results in the original image space, note
that [35]

(24)

and that the mapping defines an isomorphism from
into . Hence, (21) in the product space yields (14)

in the original space and Proposition 1 implies the weak
convergence of PPM.

Fig. 5. EPPM algorithm in the original space.

Proposition 3: Every orbit of PPM converges
weakly to a point in

On the other hand, thanks to (24), (22) and (23) become

(25)

where

(26)

By coupling (14) with (25), we obtain Pierra’s extrapolated
parallel projection method (EPPM), whose weak convergence
follows from Proposition 2.

Proposition 4: [35] Every orbit of EPPM con-
verges weakly to a point in

It was observed in [35] that the fast convergence of EPPM
was due to the large overrelaxations allowed by (25), as

can attain values much larger than 2 and eliminate the
“angle problem” of the methods of Section III. For the same
problem as in Figs. 2 and 3, Fig. 5 shows the initial portion
of an orbit of EPPM obtained with and

. Besides fast convergence, this figure
also reveals that the orbit has a tendency to “zig-zag,” which
reduces the effectiveness of the algorithm. To mitigate this
phenomenon, it was suggested in [35] to recenter the orbit
every three iterations by halving the extrapolations, namely

if modulo
otherwise

(27)

This amounts to taking a smaller step every three iterations,
which places the corresponding iterate in a more central
position with respect to all the sets than a full extrapolation
would.

C. EPPM2: A Generalization of EPPM

In this section we extend EPPM in two directions. We first
note that each iteration of EPPM requires the computation
of exact projections. As such constrained quadratic mini-
mization subproblems are often difficult to solve, approximate
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projections will be employed. Next, we observe that EPPM
does not generalize PPM in that the extrapolation parameter

is certainly at least equal to 1 thanks to the convexity of
in (26), but not necessarily greater than 2. Hence, to unify

and extend both PPM and EPPM, relaxations up to will
be considered. A practical consequence of this extension will
be to achieve faster convergence in certain problems through
the use of larger overrelaxations than those allowed by PPM
and EPPM.

We first generalize (21) by replacing the exact projection of
onto by an approximate projection , namely

(28)

where and where is a sequence of closed
and convex subsets of such that

and (29)

In words, is a superset of , which contains only when
does. Next, to double the relaxation ranges, we replace (23)

by

(30)

where

(31)

Following [5], we shall say that algorithm (28)–(31) is focus-
ing if for every suborbit it generates we have

weak.lim
(32)

We observe that, by construction, lies in . Since
is weakly closed, in (32).

Theorem 1: If algorithm (28)–(31) is focusing, then every
orbit it generates converges weakly to a point in

Algorithm (28)–(31) in yields a parallel projection
method in that we shall call EPPM2. By virtue of (24),
EPPM2 is defined by the recursion

(33)

where

(34)

with

(35)

and where, for every , is a sequence of
projection operators onto closed and convex sets
such that

and (36)

Moreover, in view of (32), EPPM2 will be focusing if, for
every suborbit it generates and every , we have5

weak.lim
(37)

The following statement, which is a direct consequence of
Theorem 1, generalizes Propositions 3 and 4.

Theorem 2: If EPPM2 is focusing, then every orbit
it generates converges weakly to a point in

D. Discussion

The advantage of EPPM2 over MOPP resides in its ability
to use approximate projections and larger relaxations, which
means that EPPM2 converges in fewer iterations and that the
computational cost of each iteration is lower. On the other
hand, MOPP is more flexible than EPPM2 in that it can process
a variable number of sets at each iteration. In the next section,
we introduce a general projection scheme (EMOPSP), which
combines the advantageous features of MOPP and EPPM2.
Moreover, it employs subgradient projections, which provides
a simple way of explicitly computing the approximate projec-
tions. The relationships between EMOPSP and the methods
discussed so far are shown below.

ART SIRT

POCS ANCA PPM EPPM

MOPP EPPM2

EMOPSP

(38)

V. EXTRAPOLATED METHOD OF PARALLEL

SUBGRADIENT PROJECTIONS(EMOPSP)

A. Subgradient Projections

Each convex constraint is usually formulated through a
convex inequality and the associated property setcan be
written as the -section

sec (39)

of a convex, (lower semi-)continuous functional .
This representation of a property set is in fact quite general as
one can certainly choose . The projection
of an image is typically obtained by solving

subject to (40)

In some instances, this program is easily solved and admits
a closed-form solution, e.g., [44]. In many cases, however,
the exact projection operators are not known, e.g., [11],
[40], [42]. In Section IV-C, projections onto approximating
supersets were proposed to circumvent the computation of
exact projections. A natural choice for the approximating
superset is an affine half-space containing but not .

is then simply the projection onto the hyperplane
5Note that, in particular, (37) holds iflimn!+1 d(an; Si;n) = 0
) limn!+1 d(an; Si) = 0.
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Fig. 6. Projection onto a separating hyperplane.

delimiting and which separates and , as
shown in Fig. 6. The nonlinear problem (40) thus becomes
an affine one. Methods involving projections onto separating
hyperplanes have been proposed previously in connection
with less general projection algorithms in [1] and [21]. A
practical concern with this conceptually simple approach is
to determine efficiently the separating hyperplane . We
shall now see that, thanks to (39), the fundamental inequality
defining subgradients in (7) can be used to determine
and explicitly.

Consider the half-space

(41)

where . Notice that
. Moreover, if we take , then

and, by (7),
. Hence, . We conclude

that is a valid approximation of in the sense of (36).
From (5) and (41), the projection of onto is
then simply given by

(42)

and is called asubgradient projection. This process is illus-
trated geometrically in Fig. 7. Thus, only the computation of
a subgradient is required to activate the set instead
of the exact projection . In practice, will often
be differentiable, so that . When is
tractable, one can take and (42) yields the
exact projection thanks to (8). Whence, upon defining the
subgradient projection of an arbitrary point by

if

otherwise
(43)

Fig. 7. Subgradient projection. This figure shows various level
curves lev(gi; �) of gi. The vector ti;n is a subgradient (unique
here) of gi at an. Note that ti;n is normal to sec(gi; gi(an))
at an: (8a 2 sec(gi; gi(an))) ha � an j ti;ni � 0. Indeed,
a 2 sec(gi; gi(an)) ) gi(a) � gi(an) � 0 and, therefore, (7)
)ha � an j ti;ni � 0. Gi;n = fa 2 � j han � a j ti;ni = 0g
is a hyperplane tangent to sec(gi; gi(an)) at an.
Hi;n = fa 2 � j han � a j ti;ni = gi(an)g is a hyperplane
parallel toGi;n and separatingSi and an. It delimits the half-spaceSi;n
of (41), which containsSi but not an. The subgradient projection ofan
onto Si is the projectionpi;n of an onto Hi;n.

where , we obtain a generalization of the notion
of projection.

B. Algorithm

The algorithm we propose here has a structure similar to
that introduced in [15] to construct common fixed points of
firmly nonexpansive operators.

Given an initial point and numbers ,
, and , EMOPSP is defined by the iterative

process

(44)

where at each iteration

• the family of indices of selected sets satisfies

Ø and card (45)

• the subgradient projections are defined by
(43);

• the aggregating weights conform to (17);
• the relaxation parameter lies in , where

if

otherwise.
(46)
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At iteration the image is given and the updating process
is performed as follows. First, one selects the subfamily

of sets to be activated. Then, one takes subgradients
of at and computes simultaneously

the subgradient projections . Next, one forms
a convex combination of these
projections and computes the extrapolation parameter. The
position of the new iterate on the ray emanating from
and going through is determined by the positive relaxation
parameter , which can take values up to . The set
will be said to be violated at iteration if . Since
nonviolated sets can be assigned a weight of 0 by (17), they
can always be considered as selected. When only one set is
violated (a fortiori when only one set is selected), then
and the relaxation range reverts to the conventional interval

. Therefore, extrapolations can take place only when
card .

Proposition 5: Every orbit of EMOPSP satisfies
(19).

Thus, every iteration of EMOPSP brings the update closer to
any solution. This is an important property since, in practice,
the algorithm will be interrupted after a finite number of steps,
when some stopping criterion is satisfied.

C. Control

The control sequence determines the subfamilies
of sets which are processed at each iteration. Naturally, for
the iterates to converge to a solution of (2), suitable condi-
tions must be imposed to ensure that every set is activated
repeatedly. We shall say that the control is

• serial if

card (47)

• static if

(48)

• cyclic if

(49)

• admissibleif

(50)

• chaotic if

(51)

Under static control, all the sets must be processed at each
iteration, whereas under cyclic control all the sets must be used
at least once within any consecutive iterations. For instance,
we have seen that EPPM2 operates under static control and
MOPP under cyclic control. These control modes are restricted
to finite families of sets, since all the sets must be activated
over a finite number of iterations. On the other hand, under
admissible control, a countably infinite number of sets can

be handled. It requires that, for every , the set be
activated at least once within any consecutive iterations.
When card , the admissible control mode coincides
with the cyclic mode with . Following is
an example of admissible control sequence with and
card , and where the sets with indices and
are activated every iterations.

Finally, under chaotic control, every set must be used infinitely
often, but in any order. Following is an example of chaotic
(but not admissible) control sequence with and
card .

We have: static cyclic admissible chaotic.

D. Convergence

We now present our main convergence results relevant to
the theory and the applications of convex set theoretic image
recovery. Recall that the family is finite or countable
and that it is defined as in (39), where is a family of
real-valued, convex, (lower semi-)continuous functions. These
functions are therefore subdifferentable and we shall say that
their subdifferentials are locally uniformly bounded if

(52)

As noted in [5], (52) implies that (37) is verified for the half-
space (41). Whence, if (52) holds, we obtain at once from
Theorem 2 the weak convergence to a point inof any orbit
of EMOPSP with constant weights and static control. Actually,
much more is true.

Theorem 3: Suppose that the subdifferentials of are
locally uniformly bounded. Then, under admissible control,
every orbit of EMOPSP converges weakly to a point
in

The next theorem pertains to strong convergence under the
most flexible type of control, namely chaotic control, at the
expense of additional hypotheses.
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Fig. 8. Original image.

Theorem 4: Suppose that the subdifferentials of are
locally uniformly bounded. Then, under chaotic control, every
orbit of EMOPSP converges strongly to a point in
if either of the following conditions is satisfied:

1) Ø ;
2) card and one of the functionals, say, is lower

semiboundedly-compact.

To our knowledge, these results are the most general ones
available. Thus, particular cases of Theorem 3 can be found in
[5], [6], and [16],6 while particular cases of Theorem 4(i) can
be found in [5] and [33].7 On the other hand, the following
corollary of Theorem 4(ii) generalizes results of [10] and [19].8

Corollary 1: Suppose that dim and card .
Then, under chaotic control, every orbit of EMOPSP
converges to a point in

This corollary is of utmost importance for practical digital
image recovery applications. Indeed, in such applications,
the number of constraints is finite. Furthermore, images are
discretized over a bounded domain and therefore represented
by a point in the euclidean space. Loosely speaking, Corollary
1 then states that, for any family of convex9 functionals

, any sequence generated by EMOPSP converges to
a feasible image as long as all the sets are used repeatedly in
any order.

6[5] considered cyclic control and relaxation range (12); [6] considered
exact projections and serial control; [16] considered exact projections, cyclic
control, and relaxation range (12).

7[5] considered cardI < +1 and relaxation range (12); [33] considered
exact projections and relaxation range (23).

8[10] considered serial, cyclic control; [19] considered static control. While
revising this paper, it came to our attention that Corollary 1 has been
established independently in [28].

9They are, therefore, continuous since dim� < +1.

Fig. 9. Degraded image.

VI. NUMERICAL SIMULATIONS

A. Generalities

In this section, we apply EMOPSP to standard digital
image restoration problems in order to provide a numerical
illustration of its properties and of its performance compared to
conventional methods, especially POCS. We have performed
numerical comparisons in a variety of signal and image
processing problems and the limited results we present here
are quite representative of the performance of EMOPSP.

All images have pixels ( 128) and will be
represented using stacked-vector notations [3].is the usual

-dimensional euclidean space and the pertinent conver-
gence result is therefore Corollary 1.is the two-dimensional
(2-D) discrete Fourier transform (DFT) operator, i.e.,

, where for every in

(53)

The original image of Fig. 8 is degraded by convolutional
blur with a uniform kernel and addition of uniform
purely white noise with range resulting in a blurred
image-to-noise ratio of 35 dB. The degraded imageis shown
in Fig. 9. It can be written as , where is
the block-Toeplitz matrix associated with the point spread
function . The problem is to estimate given and some
a priori information about , and . The first property set

arises from the nonnegativity of pixel values.
Next, it is assumed that the DFT of is known on one
fourth of its support for low frequencies in both directions.
The associated property set is ,
where contains the set of frequency pairs
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Fig. 10. Scenario 1: EMOPSP versus POCS, SIRT, and PPM.

Fig. 11. Scenario 1: EMOPSP with centering versus POCS.

as well as all those resulting from the symmetry properties of
the 2-D DFT of real images (a similar set was used in [38]).
The projections of an image onto and are given by
the closed-form expressions

(54)
To complete the set theoretic formulation, two scenarios will
be considered. They both assume knowledge ofbut differ
in the information available to describe the noise. The first
scenario will give rise to a three-set problem in which subgra-
dient projections will be used. The second scenario will give
rise to a large scale problem requiring the use of nonstatic
control. Every algorithm will be initialized with and
the progression of its orbit will be tracked by plotting
the normalized decibel values of
the proximity function (9), where

card (55)

Fig. 12. Scenario 1: restored image.

As a practical stopping rule to compare performance, we shall
use the criterion

card (56)

B. Scenario 1: A Three-Set Problem

It is assumed here that the information available about the
noise vector is that its components are independent and all
distributed as a random variable with known second and
fourth moments. As shown in [18], with a 95% confidence
coefficient, this information leads to the property set

(57)

where

E E E

This set has proven quite useful in a number of applications,
e.g., [17] and [42], but unfortunately its projection opera-
tor must be approximated iteratively via a costly procedure
[42]. By contrast, using (43) and the fact that

, we simply process
the set at iteration with the subgradient projection

if

otherwise
(59)

where . Using standard arguments [3], the upper
expression in (59) can be evaluated in the frequency domain
efficiently via the 2-D fast Fourier transform (FFT) as

(60)

where . The approximate computation of
proposed in [42] typically requires 10 to 20 iterations of much
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Fig. 13. Scenario 2 with 4 parallel processors.

Fig. 14. Scenario 2 with 16 parallel processors.

higher complexity than (60). Consequently, the subgradient
projection reduces the cost of processing by at least an
order of magnitude.

The set theoretic formulation for this problem is
. In the results shown in Fig. 10, POCS

is implemented as in (3), SIRT as in (13), PPM as in
(14) with (55) and 1.9. Furthermore,

3 parallel processors are available. The49 dB
mark corresponding to (56) was reached by POCS in 1185
iterations. Since only three sets are present, EMOPSP is
implemented with static control, fixed weights as in (55),
and relaxation strategy . POCS is faster
than SIRT and comparable to PPM, but clearly outperformed
by EMOPSP, which uses extrapolated relaxations. Fig. 11
shows that EMOPSP can be further accelerated by using the
centering technique (27), resulting in a dramatic improvement
over POCS. The restored image obtained in this case appears
in Fig 12. Let us observe that these results show performance
only in terms of the number of iterations required to reach a
given degree of infeasibility. However, to fully appreciate the

Fig. 15. Scenario 2 with 64 parallel processors.

numerical superiority of EMOPSP, it must be borne in mind
that to process the set , POCS, SIRT, and PPM must use
the costly projection onto whereas EMOPSP needs only
the approximate projection (59).

C. Scenario 2: A 16 386-Set Problem

We now assume that no probabilistic information is avail-
able about the noise vector and that it is known only that
its components lie in . This information leads to the
property sets [18]

(61)

where is the th row of . According to (5), we have

if

if
otherwise.

(62)

The set theoretic formulation is . Similar
problems generating a large number of sets are reported in
[34], [39], and [42], where they were solved with POCS. Here,
we implement POCS (3) by skipping the nonviolated sets so
that each iteration actually produces an update. The58 dB
mark corresponding to (56) was reached by POCS in 76 000
iterations. To implement EMOPSP, computer architectures
with 4, 16, and 64 parallel processors are considered.
At each iteration , the control selects sets as follows:
and if they are violated and a block of consecutive violated
sets in (61), starting with ( modulo ),
where is the last set used at iteration . More-
over, three values of are considered: , and .
In Figs. 13–15, the corresponding algorithms are labeled as
EMOPSP(1), EMOPSP(L), and EMOPSP(1.9L), respectively.
POCS starts slowly and approaches the performance of the
unrelaxed algorithm EMOPSP(1) after about 7000 iterations.
EMOPSP(L) is much faster and EMOPSP(1.9L), which further
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Fig. 16. Scenario 2: restored image.

exploits the large relaxation range allowed by our analysis,
is even faster. The restoration obtained by EMOPSP(1.9) is
shown in Fig. 16.

D. Remarks

EMOPSP is very versatile as all of its parameters can be
changed at each iteration (sets selected, approximating super-
sets, weights on the projections, relaxations). Hence, the above
implementations of EMOPSP are somewhat conservative in
the sense that they do not fully exploit the flexibility of
the method. Although no general conclusion is intended, our
intensive simulations with EMOPSP in various problems has
revealed the following behavior. When a small number of sets
is used, very large extrapolations (say )
often create a lot of zig-zagging and are not as effective as
the centered extrapolations (27). On the other hand, large
extrapolations accelerate the iterations significantly in more
sizeable problems. Let us also note that the above results
assume that 1 parallel processors are available. By
multiplying the number of iterations needed to obtain a certain
level of the proximity function by , one can easily see
that EMOPSP is still faster than POCS in single-processor
environments.

We have seen in Section VI-B that the subgradient projec-
tion reduced the computational burden associated with the use
of the set in (57) by at least an order of magnitude compared
to the projection derived in [42]. Let us add that in [42] the
blur was assumed to be space invariant, which made it possible
to carry out large matrix inversions efficiently in the frequency
domain via circulant approximations. When the blur is space
variant, the matrices must be inverted directly which, as noted
in [34], makes the use of practically impossible. On the
other hand, (59) does not involve any matrix inversions and
can be computed easily regardless of the structure of. This,

therefore, opens the possibility of using in space-varying
blur problems.

VII. CONCLUSION

We have presented a general projection method (EMOPSP)
for solving convex set theoretic image feasibility problems.
It proceeds by extrapolated relaxations of convex combina-
tions of subgradient projections onto variable groups of sets.
EMOPSP is superior to the widely used POCS algorithm on
four counts: it converges very efficiently, it does not require
the computation of exact projections, it can be implemented
on concurrent processors in a very flexible fashion, and it can
solve problems involving an infinite number of constraints. In
view of its overwhelming computational advantages, EMOPSP
can be anticipated to become a prominent tool in set theoretic
image recovery.

APPENDIX A
PROOFS

Proof of Theorem 1:Since is a closed vector subspace
of is linear and (4) yields

(A1)

Now, fix , and note that .
Whence, (A1) and (4) yield

(A2)

Using (30), (31), and (A2), we then obtain

(A3)

(A4)

(A5)

It follows from (A4) that

(A6)

However, converges by virtue of (A5)
and therefore converges to 0. In addition,

is bounded and it admits a subsequence
converging weakly to some point . It then

follows from (32) that . Finally, since (A5) implies
that can have at most one weak cluster point in
[6], we conclude that converges weakly to
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Proof of Proposition 5: At iteration , if we rederive (A3)
in the Hilbertian product space with norm

and bring it back to , we
obtain directly that for every

(A7)

(A8)

The assertion is then proved by taking
Proof of Theorem 3:Fix and define

. Note that Proposition 5 entails
that converges to . Thanks to (52), we can find

such that . Therefore,
for every integer , (43), (A8), and (17) yield

(A9)

Thanks to (A7), we also have

(A10)

As in the proof of Theorem 1, Proposition 5 implies that
possesses a subsequence converging

weakly to some point and it remains to show . Fix
. According to (50) there exists a sequence

such that and .
In addition, for every integer , (A10) yields

(A11)

However, since converges to ,
converges strongly to and, therefore, converges
weakly to . On the other hand, converges to in
(A9) and it follows that converges weakly
to in the Hilbert space . However, thanks to
(A9), epi and, since is convex and
l.s.c., epi is closed and convex and, thereby, weakly closed.
Consequently, epi , i.e., . We thus obtain

and, since is arbitrary,

Proof of Theorem 4:(i) Fix . Because of (51), there
exists an increasing sequence such that

. Since any sequence that satisfies (19) whereØ
converges strongly [5], Proposition 5 implies that
converges strongly to some point. It follows from (A9) that

epi converges strongly to in .
Since epi is closed, we get epi and, therefore,

. As is arbitrary, we conclude . (ii) Fix and
let . As in (i), there exists a suborbit

such that . In view of Proposition
5 and (A9), lies in sec ,
which is compact since is l.s.b.co. We can therefore extract
a subsequence converging strongly to some point
. It remains to show for Proposition 5 will then

automatically guarantee that the whole sequence
converges strongly to. Suppose to the contrary that
and define , and

. Take as in the proof of Theorem
3. We derive from (A8) the inequalities

(A12)

Now, fix . Note that belongs to sec , which
is open since is l.s.c. Hence, we can find such that

(A13)

Let us fix an integer such that . Then .
Let us show that . Indeed, if we had , it would
follow from (A12) and (A13) that, for sufficiently small

(A14)

However, this would contradict Proposition 5, which implies
that . Hence, . Since is arbitrary,

Ø . (A12)
then yields , i.e., .
Thus, the above arguments can be replicated for index
to give , and, by induction,

. But this is absurd since the control is chaotic.
Accordingly, we conclude

Proof of Corollary 1: If dim , the subdifferential
of each is bounded on closed and bounded sets [36]. Since
card , it follows that the family satisfies (52).
Finally, each is l.s.b.co. since, in finite dimensional spaces,
every closed set is boundedly compact.

APPENDIX B
ACRONYMS

ANCA Accelerated nonlinear Cimmino algorithm (15)
+ (18).

ART Algebraic reconstruction technique (3).
EMOPSP Extrapolated method of parallel subgradient pro-

jections (17) + (43) + (44) + (45) + (46).
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EPPM Extrapolated parallel projection method (10) +
(14) + (25) + (26).

EPPM2 (Generalized) extrapolated parallel projection
method (10) + (33) + (34) + (35).

MOPP Method of parallel projections (12) + (15) + (16)
+ (17).

POCS Projection onto convex sets (11) + (12).
PPM Parallel projection method (10) + (12) + (14).
SIRT Simultaneous iterative reconstruction technique

(13).
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[8] J. Céa,Optimisation - Th´eorie et Algorithmes. Paris: Dunod, 1971.
[9] Y. Censor, “Parallel application of block-iterative methods in medical

imaging and radiation therapy,”Math. Programming,vol. 42, pp.
307–325, 1988.

[10] Y. Censor and A. Lent, “Cyclic subgradient projections,”Math. Pro-
gramming, vol. 24, pp. 233–235, 1982.
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