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Convex Set Theoretic Image
Recovery by Extrapolated Iterations
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Abstract—Solving a convex set theoretic image recovery prob- data. A family of closed and convex property se);cy is
lem amounts to finding a point in the intersection of closed and constructed as
convex sets in a Hilbert space. The projection onto convex sets
(POCS) algorithm, in which an initial estimate is sequentially (Vi c I) S; = {a c= | a Satisfies\I/i} @
projected onto the individual sets according to a periodic sched-
ule, has been the most prevalent tool to solve such problems.so that the recovery problem reduces to the convex feasibility
Nonetheless, POCS has several shortcomings: It converges slowlyproplem
it is ill suited for implementation on parallel processors, and it
requires the computation of exact projections at each iteration. Finda* € § = ﬂ S;. 2)
In this paper, we propose a general parallel projection method
(EMOPSP) that overcomes these shortcomings. At each iteration
of EMOPSP, a convex combination of subgradient projections Detailed accounts of set theoretic signal and image recovery
onto some of the sets is formed and the update is obtained via can pe found in [13] and [41]; recent work includes [12],

relaxation. The relaxation parameter may vary over an iteration- S
dependent, extrapolated range that extends beyond the interval [14], [32], [34], and [37]. Although the range of applications

10,2] used in conventional projection methods. EMOPSP not Of Set theoretic image recovery has expanded tremendously
only generalizes existing projection-based schemes, but it alsoover the past two decades, most studies have relied on a
converges very efficiently thanks to its extrapolated relaxations. single solution method for solving (2), namgdgojections onto
Theoretical convergence results are presented as well as numer-cqonyex set§POCS). Assuming that the family of sets is finite
ical simulations. sayl = {1,---,m}, POCS generates an image $has the
weak limit of a sequencés, ), >o Of periodic projections onto
|. INTRODUCTION the sets. that is -
HE IMAGE recovery problem is to estimate an image
from signals physically or mathematically related to it. (¥n € N) 1 = P (modutom)+1(an) (3)

For instance, in image restoration the goal is to estimajghere P, designates the operator of projection omto The

the original form of a degraded image, whereas in imag@pularity of POCS somewhat overshadows the following
reconstruction the goal is to estimate an image from parti@leoretical and numerical shortcomings:

information pertaining to one (or several) of its transforms, ,
e.g., Fourier, Radon, or wavelet transform. Classical point,
estimation theory, in which one seeks a solution that is
optimal in some sense, offers standard solution techniqueg
that have been employed extensively in image recovery, e.g.,
[3] and [27]. This framework, however, often provides lim-
ited flexibility in the objective and rational incorporation of
constraints, especially when they arise from nonprobabilistic
a priori knowledge. On that score, set theoretic estimation

which revolves around the notion of feasibility, constitutes OCS. In this iterative method, which will be callestrap-

solid alternative [13]. ) _—
In convex set theoretic image recovery the solution spagleme(JI method of parallel subgradient projectiofiMOPSP),

= is a Hilbert space in which the original image is describe? sequencéan)nzo_of images |s_constructed as follows. At
: : .- iteration n, approximate projection§?F; . (ay))icr, Of the
solely by a family of convex constrain{d; );cr arising from current iteratar onto a subfamily of property se § ‘
a priori knowledge about the problem and from the observey " y ot property ( iict.c
are computed simultaneously and averaged via convex com-
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el

POCS converges slowly;

POCS can process only one set per iteration and it is
therefore not well suited for parallel computing;

POCS requires the computation of an exact projection at
each iteration, an often numerically involved subproblem;
¢ POCS is limited to problems with a finite number of
constraints.

The purpose of this paper is to introduce a general parallel
tojection method that overcomes the above limitations of
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relaxation range extends well beyond the raj@e[ used in R
conventional methods, EMOPSP converges very efficiently.

The scope of this work is quite general, as we pose
the recovery problem in an abstract Hilbert space in which
countably many convex constraints are available to define the
original image. Although applications in image recovery are g(b)
emphasized, our results apply to any convex set feasibility gr far
problem, such as the set theoretic estimation and design
problems described in [13]. The remainder of the paper is g(a)
organized as follows. Some basic notations, assumptions, a@dﬁ a )+ g(a)
definitions are given in Section Il. Section Il is a review of the
projection methods that have been used in signal recovery. In
Section IV, the convex feasibility problem (2) is reexamined
in a product space and a first approximate projection method
is proposed. EMOPSP is then fully developed in Section V.
Section VI is devoted to numerical applications to image b a
recovery problems, in which EMOPSP is compared to existing
methods. The conclusion appears in Section VII. Finally, g 1. Geometrical interpretation of subgradientsSink R.
Appendix A contains the proofs of our results and Appendix
B a list of acronyms.

gryg

epiyg

(11

If in addition P4(a) € H, then H supportsA at P4(a).

Il. PRELIMINARIES Letg: = — R be afunctional and IeZ x R be the canonical
hilbertian product space. Thelevel curve ¢ € R), n-section
A. General Notations (n € R), graph, and epigraph @f are, respectively, defined as
R is the set of real number® . the set of nonnegative real lev(g,n) = {a€Z=]|g(a)=n}
numbers,R’ the set of positive real numberdy the set of sedg,n) = {a€cZ]gla)<n}
nonnegative integers, aid* the set of positive integers. The grg = {(a,n) €Ex R | g(a) = n} (6)
cardinality of a set4 is denoted by catd, its complement by epig = {(a,n) €= xR|gla) <}

CA, and its characteristic function b, i.e., 1.4(a) = 1 if

a€ Aandly(a) =0if a ¢ A The transpose of a matrik  is lower semicontinuous (I.s.c.) if epiis closed or, equiv-
is denoted by'L and the complex conjugate afby z. The alently, if the sets(sedg,n)),cr are closed. We shall say
underlying image space is a real Hilbert spacevith scalar that ¢ is lower semiboundedly-compact (l.s.b.co.) if the sets
prOdUCt<' | '>, norm || . ||, and distancel. The zero vector in (sec(g7 W))neﬂ are bounded|y compact. From now Og]’is
= is denoted boy) and the closed ball of centerand radius convex, i.e., epj is convex or, equivalently¥(«,a,b) €
v by B(a,7). A is the interior of a setA. [0,1] x 22) g(aa + (1—a)b) < agla) + (1—a)g(b). Then
the sets(sedg,7)),cr are convex andy is continuous if
B. Convex Analysis dim= < +o0; if ¢ is Ls.c., it is continuous. A vector is
afs lled a subgradient gfat « if the continuous affine functional
Mﬁt :b— (b—a | ty+g(a), which has “slope’t and takes the
same value ag at a, minorizesg on =.! In geometrical terms,
ar fo+ is an affine hyperplane supporting gpat (a, g(a)) in
= x R (see Fig. 1). The subdifferential gfat a is the set of
its subgradients, i.&.,

Convex analysis plays a prominent role in this paper,
we need to review key results. Complements and details
be found in [4], [20] and, for finite dimensional spaces, [36]

In =, a sequencéa,,),>o converges to a point strongly
if (||a, — al])n>0 converges ta), and weakly if, for everyb
in 2, ({a, — a | b))p>0 converges ta. A subsetA of = is
boundedly compact if its intersection with every closed ball is - -
compact. Now let4d be a nonempty closed and convex subset?9(®) = {t € E[ (VD€ E) (b—alt) <g(b) - gla)}. (7)
of =. Then A is weakly closed. The distance from a point . . o ) )
a€ZtoAisda, A = inf{d(a,b) | b€ A}. There exists If ¢ is continuous Aata, thep it is .subdlfferentlable ab:
a unique pointP,(a) € A such thatd(a, Pa(a)) = d(a, A), 8g_(a) # @, if g is (Gateaux) differentiable at, then there is a
which is called the projection of onto A. The projection Unique subgradientyg(a), called gradientig(a) = {Vg(a)}.
operatorP, is characterized by We have

(V(a,b) € 22) (a = Pa(a) | Pa(b) = Pa(a)) <0.  (4)

Take an affine half-spac® = {h € = | (h | b) < xk} (Where
b # 0 andx € R) such thata ¢ @ > A. Then the affine

hyperplaneH — {h c= | (h | b) — ,i} separateg, and A and 1The general theory of subdifferentiability is relatively recent [31].
b 2|n particular, ifg : R — R, the subdifferentiadg(«) is the set of all slopes
K —{a | >b (5) t of straight lines throughia, g(a)) which lie below grg. Thus,g : a — |a|
||b||2 is not differentiable at 0 but (7) give®y(0) = [—1,1].

a — Pa(a)

(Va € CA) Vd(a, A) = Ta = Pata)l

(8)

Py(a) = Prla)=a+
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C. Assumptions

The image to be estimated, belongs to=, where it is
described by a nonvoid finite or countably infinite fardily
(S:)ier of closed and convex property sets. The solution set
for the problem is the feasibility sef = [),;S;. The set
theoretic formulation(Z, (S;);cr) is consistent, i.e.S # @.
The associated proximity function is the (continuous and
convex) functional

.2 - Rt
1 2 9
a 2 Zwid(a, Si) © a
el
where
Zwi =1land(Vi € I) w; > 0. (10)
icl

S

In words, ®(a) measures the degree of infeasibility of an 2

image a. Note that®(a) = 0 < «a € S. The operators Fig. 2. POCS algorithm.
of projection onto the setsS;);cr are denoted by, ).

B. SIRT: Simultaneous Iterative Reconstruction Technique
I1l. PROJECTIONMETHODS IN IMAGE RECOVERY

The simultaneous iterative reconstruction technique (SIRT)
s developed for tomographic image reconstruction in [22].
his method, which can be regarded as the parallel coun-
part of ART, the projections of the current iterate onto all
the sets (hyperplanes in this case) are averaged to form the
update, that is

In this section, we give a brief account of the projectioul
methods which have been used in convex set theoretic sigma
and image recovery (more details can be found in [13]). VYSr
assume here thdlS; )<z is a finite family ofm sets.

A. POCS: Periodic Projections onto Convex Sets

1
In image recovery, the iterative scheme (3) was first pro- (Vn €N) apy1 = - Z-Pi(an)- (13)
posed in [23] under the name algebraic reconstruction tech- i€l
nique (ART) to find a finite dimensional image in the interit was soon recognized that, although SIRT gave better results
section of affine hyperplanes. In its general form, POCS {§an ART in noisy environments, it did not converge as fast
described by the algorithm [2], [25]. The fact that SIRT can be slower than POCS is also

(¥ € N) a1 = an + AP (modutom)1(an) — an) (11) reported in [43] and illustrated in Fig. 3.

where the relaxation parameters satisfy C. PPM: Parallel Projection Method

(VneN) e< )\, <2—¢ With 0<e<1. (12) The parallel projection method (PPM) is a generalization of
SIRT governed by the recursion
The convergence properties of POCS are discussed in the
classical paper [24]. While [29] seems to be the first general (V7 € N) ani1 = an + A (O wiPilan) — an)  (14)
image recovery application of (11)-(12), the popularity of i€l
the method owes much to the expository work [44]. Aghere (10) and (12) are in force. It was developed for
was mentioned in Section |, a serious drawback of POGgonsistent feasibility problems in [14]. It was shown there
is slow convergence, which is illustrated in Fig. 2: As thénat, whenS = @, POCS gives poor solutions while PPM
angle between the two sets decreases, the progressiorcdiverges to a minimizer of the proximity functidn of (9),
the iterates becomes extremely slow. This so-called “angle., it yields a weighted least-squares solutidn. consistent
problem” of POCS had already been pointed out in [24]. POGspoblems, of course, PPM solves (2) and it converges faster
has been used mostly in the unrelaxed form (3), Ag.= 1 with overrelaxations [14].
in (11); however, each iteration can be either underrelaxed,
i.e, A, < 1, or overrelaxed, i.e.A, > 1. Unfortunately, p. MOPP: Method of Parallel Projections
Thus, even in the simpe. case of afine. hatt-spaces, therd1oUgh PPM is uite useful orinconsistent problems, i
very flexible as a parallel method in that it requires that all

. . . not
is no systematic answer as to whether underrelaxations Pe ) . . .
Y ﬁ1e sets be activated at each iteration. As a result, if the number

faster than overrelaxations or vice-versa [25], [30]. LikewiseT sets exceeds the number of concurrent processors available
in the studies reported in [41], only heuristic rules for specif@ P '

problems are given. 4This, in passing, explains the better behavior of SIRT compared to ART
in noisy tomographic reconstruction problems [2], [25], as noisy data often
3Meaning @# I C N. give rise to nonintersecting families of hyperplanes.
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the implementation will not be optimal. In order to efficiently
spread the computational load of each iteration among the
processors and obtain a truly parallel algorithm, it is desirable
to have the possibility of activating variable subfamilies of
sets. The method of parallel projections (MOPP) meets this
requirement. It is described by the algorithm

(Yn eN) apy1=an+ )\n(ZwimPi(an) —a,) (15)
€1,

S

where (12) is in force, where the control sequeli£g),,>o
imposes that every set be activated at least once over aiy,
cycle of M consecutive iterations, i.e.,

n+M-—1
(VneN) @#I,cland I= |J I (16)

k=n

and where the weights on the projections satisfy

Eieln Wi =1 Fig. 3. SIRT algorithm.
(¥n €N) {(w 1) wip > 6lpg (a) LD

for some 6 €]0,1/m]. MOPP contains as special case¥vhen only one setS., is activated at iteratiom, as in
the previous algorithms. Thus, POCS is obtained by lettif$1), (19) implies that,; cannot lie beyond the reflection
(vn € N) I, = {n(modulom) + 1}, whereas PPM is 2P;,)(an) — an Of a, with respect t0S;(,), which imposes
obtained by lettingvn e N) I, =T and(Vi € I,,) w;,, = A, < 2. On the other hand, with a parallel scheme such
w;, where (w;);cr satisfies (10). MOPP also generalizes thas (15) where several sets are activated simultaneously, one
accelerated nonlinear Cimmino algorithm (ANCA) of [26]can contemplate the possibility of extrapolating the relaxations
which is obtained by letting beyond 2 and still maintain (19). The question of determining
A, = 1 the relaxation range allowable at each iteration is addressed

Li={icI|and S} in the next section.

wi/ Y e, wy  if cardl, > 2 (18)
W; otherwise. IV. CONVEX FEASIBILITY IN A PRODUCT SPACE

(VneN)

Wy n =

ANCA was studied for finite dimensional spaces in [26], Whel:% Preamble
it was shown to be faster than SIRT. A general study of the

convergence properties of MOPP is presented in [16]. The firstin this section, card = m < +oco. & = E™ is the
study of recursions of type (15) in Hilbert spaces was providewd-fold Cartesian product of the original image spage

in [33], and a review of the medical imaging applications oind is structured as a Hilbert space with the scalar product
parallel algorithms that process blocks of constraints over th | b)) = >,y wi{a; | b;), where (w;);cs is as in (10)

iterations is given in [9]. and wherea = (a;);cr iS @ genericm-tuple of images irng.
The associated norm and distance are denotdd 4} andd,
E. Discussion respectively. In optimization theory, the product space formal-

. . L ... _ism has been used to decompose minimization problems with
Intuitively, it would seem that a parallel projection algorithm_ " . L
ltiple constraints into a sequence of elementary problems

is numerically more efficient than a serial one such as PO With a single constraint [8]. The formulation of the feasibility

since the projections can be processed simultaneously 3Splem (2) as a two-set problem B is due to Pierra [35]
opposed to sequentially. Unfortunately, this is not alwa)Ps

the case for unrelaxed methods such as SIRT which aarréd was used in [14]. to solve |ncan|stent signal feasibility

. . problems. It also provides a convenient framework to develop

often slower than POCS. On the positive side, an asset Q L
L . e>étrapolated projection methods.

parallel projection methods is that they can be accelerate

via overrelaxations, as reported in various experimental and _ L

theoretical studies [7], [14], [16], [19], [26], [35]. Since theB. EPPM: Extrapolated Parallel Projection Method

relaxation parameters in MOPP are confined to the intervalFollowing Pierra [35], we first observe that in the product

]0,2][, this suggests that even greater accelerations could dpegiceZ, the original feasibility problem (2) is equivalent to

achieved by pushing the relaxations beyond 2. A key stéipe simpler two-set problem

to prove the convergence of the various methods that have ) .

been proposed to solve (2) is to establish the so-callegr+ej Finda* € 8 ﬂD (20)

monotonicity proper
y property where S = XieISi = {a = | (\V/L € I) a; € Sz}

(Vn e N)(Vec € S) |lant1 — || < |lan —¢||.  (19) is the Cartesian product of the property sets dnd =
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Fig. 4. EPPM algorithm in the product space.

{(a,---,a) € E | a € E} the diagonal vector subspace. In-

deed,SﬂD = {(a,---,a) c = | (Vi c ]) a € Si} = Fig. 5. EPPM algorithm in the original space.
{(a;--+,a) €E | a €);c; Si}. To solve (20), fixagp € D

and construct a sequenge,,),>o C D via the alternating Proposition 3: Every orbit (a,).=0 0of PPM converges

projections scheme weakly to a point inS. O
(Vn € N) apt1 = a, + A (Pp o Ps(an) —a,).  (21) On the other hand, thanks to (24), (22) and (23) become
Since this algorithm is a particular instance of POCS, we (Vn€N) e <A < Ly (25)
obtain immediately the following result. where
Proposition 1: Every sequencéa,,),>o constructed as in P 5
(21) with relaxation strategy (12) converges weakly to a point L, = >ier willPilan) — an|l _ (26)
in SN D. O 1225 wili(an) — anl?

_In order to define an alternative relaxation strategy considg{) coupling (14) with (25), we obtain Pierra’s extrapolated
Fig. 4, wheres,, = Ps(a,) andd, = Fp(sn) = Ppols(an).  parallel projection method (EPPM), whose weak convergence
Let H, be the affine hyperplane supportitgyat s,. Then ¢40ws from Proposition 2.

H,, separatesy, from S and intersectd) at e,. Note that Proposition 4: [35] Every orbit (a,),>0 of EPPM con-

Apt1 =€, IS gttained in .(21) by letting,,, take the value of verges weakly to a point is. 0
the extrapolation coefficient It was observed in [35] that the fast convergence of EPPM
llen — anl|] Il|sn — an|||? was due to the large overrelaxations allowed by (25), as
L,= i = 2] = [l — 2|2 L, can attain values much larger than 2 and eliminate the

I11Ps () — |2 “angle problem” of the methods of Section IIl. For the same
= SP" " 5 (22) problem as in Figs. 2 and 3, Fig. 5 shows the initial portion
117D 0 Ps(an) — aull| of an orbit of EPPM obtained withy; = wy, = 1/2 and

In addition, any update,,,; on the segmerja,,, e, ] is closer (¥n € N) A, = L,. Besides fast convergence, this figure
to any point in the solution se$ (D than a,, i.e., the also reveals that the orbit has a tendency to “zig-zag,” which
Fejer monotonicity property (19) is satisfied. This suggesteduces the effectiveness of the algorithm. To mitigate this
the relaxation scheme phenomenon, it was suggested in [35] to recenter the orbit

every three iterations by halving the extrapolations, namely

(YneN) e< N\, <L, with 0<e<1. (23)

_ [L,/2 if n=2modulo3
Proposition 2: [35] Every sequencéa,, ),>o constructed as (yn €N) A, = {Ln otherwise 27)
in (21) with relaxation strategy (23) converges weakly to ah_ Ki I h . .
point in SO D. [ This amounts to taking a smaller step every three iterations,

which places the corresponding iterate in a more central

To recast these results in the original image sgaceote ” ) :
position with respect to all the sets than a full extrapolation

that [35] would
{(\faeD) Ps(a) = (Pi(@)icr. (24) |
(Va€s) Pp(a) = (Zie[ Wilkiy = Zie[ w;a;) C. EPPM2: A Generalization of EPPM

and that the mapping — « defines an isomorphism from In this section we extend EPPM in two directions. We first
D into =. Hence, (21) in the product spa@ vyields (14) note that each iteration of EPPM requires the computation
in the original spacé&z and Proposition 1 implies the weakof m exact projections. As such constrained quadratic mini-
convergence of PPM. mization subproblems are often difficult to solve, approximate
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projections will be employed. Next, we observe that EPPMoreover, in view of (32), EPPM2 will be focusing if, for
does not generalize PPM in that the extrapolation parameésery suborbifa,, )i>o it generates and eveiye I, we havé

L, is certainly at least equal to 1 thanks to the convexity of .
{Weak.llrrk_,Jroo Un, = @

-|I? in (26), but not necessarily greater than 2. Hence, to uni .
[|-]I? in (26) yg fy Bt sood(r s Shne ) = 0

and extend both PPM and EPPM, relaxations upgfg will
be considered. A practical consequence of this extension willThe following statement, which is a direct consequence of
be to achieve faster convergence in certain problems througfieorem 1, generalizes Propositions 3 and 4.

the use of larger overrelaxations than those allowed by PPMTheorem 2: If EPPM2 is focusing, then every orlit,, ),,>0

and EPPM. it generates converges weakly to a pointsin
We first generalize (21) by replacing the exact projection of

a, onto S by an approximate projectiofis, (a,,), hamely D. Discussion

= a€S. @7

(Vn € N) ani1 =an + M\(Pp o Ps, (an) —a,)  (28) The advantage of EPPM2 over MOPP resides in its ability
" to use approximate projections and larger relaxations, which
whereag € D and where(S,,).>o is a sequence of closedmeans that EPPM2 converges in fewer iterations and that the

and convex subsets & such that computational cost of each iteration is lower. On the other
hand, MOPP is more flexible than EPPM2 in that it can process
(vneN) ScS,, and a, ¢S, \ S. (29) a variable number of sets at each iteration. In the next section,

we introduce a general projection scheme (EMOPSP), which
In words,S,, is a superset o8, which containsa,, only when combines the advantageous features of MOPP and EPPM2.
S does. Next, to double the relaxation ranges, we replace (#greover, it employs subgradient projections, which provides
by a simple way of explicitly computing the approximate projec-
tions. The relationships between EMOPSP and the methods
(vne€N) e <A < (2-e)Ln (30)  giscussed so far are shown below.

where ART SIRT
y 1 1 N\
L, = MPs.(an) —anfl® (31) POCS ANCA PPM  EPPM
[[[Pp o Ps, (an) — ax||? N 7\ ! (38)
Following [5], we shall say that algorithm (28)—(31) is focus- MOP\P 5PPM2
ing if for every suborbit(a,,, )x>o it generates we have EMOPSP
weak.liny_ 1. a,, =
{limkﬁ::? d(:\nk?sl R i g = ac&s. (32) V. EXTRAPOLATED METHOD OF PARALLEL

SUBGRADIENT PROJECTIONS(EMOPSP)
We observe that, by constructiofa,, ),,>o lies inD. SinceD
is weakly closeda € D in (32). A. Subgradient Projections

Theorem 1:1f algorithm (28)—(31) is focusing, then every Each convex constraink; is usually formulated through a
orbit (a,)n>o it generates converges weakly to a point igonyvex inequality and the associated property Setan be

SOD. _ . ~ U written as the0-section
Algorithm (28)—(31) in E yields a parallel projection
method inZ that we shall call EPPM2. By virtue of (24), S; = setyg;,0) ={a € E| g;(a) < 0} (39)

EPPM2 is defined by the recursion . . . -
of a convex, (lower semi-)continuous functiongl: = — R.

_ This representation of a property set is in fact quite general as
(vn ) Gnty = ant (Zw ln) = an) — (33) one can certainly choosg = d(-, S;). The projectionP;(a,,)

e of an imageu,, € [S; is typically obtained by solving
where 1
min — ||lan — b||? subject tog;(b) = 0. (40)
(VneN) e <\, < (2—¢)L, (34) bes 2
In some instances, this program is easily solved and admits
with a closed-form solution, e.g., [44]. In many cases, however,
EielwiH‘Pi,n(an)_anHQ the exact projection operators are not known, e.g., [11],

L, = IS wiPon(an) —an]? (35) [40], [42]. In Section IV-C, projections onto approximating
pEL e LA " supersets were proposed to circumvent the computation of
and where, for every € I, (Pi,)nso i @ sequence of exact projections. A natural choice for the approximating
projection operators onto closed and convex $8tS, )0 superseﬁim is an afnne half-spa_ce gontalnlrﬁj but nota,,.
such that = P, n(an) is then simply the projection onto the hyperplane

SNote that, in particular, (37) holds ifim,— oo d(an,Sin) = 0
(VvneN) S, S, and a, ¢S5, \Si. (36) = lim,—atoo d(an,S;) =0.
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Fig. 6. Projection onto a separating hyperplane.

Fig. 7. Subgradient projection. This figure shows various level
curves leyg;,n) of g;. The vector t; , is a subgradient (unique
H;, delimiting S;, and which separates,, and S;, as ner®) of ¢ at a.. Note thatt;,, is normal to se@i. gi(an))

; . . at an: (Va € sedgi,gi(an))) (a — an | t») < 0. Indeed,
shown in Fig. 6. The nonlinear problem (40) thus becomes ¢ secy,.g;(an)) = gi(a) — gi(an) < 0 and, therefore, (7)

an affine one. Methods involving projections onto separating{ac — a.» | tin) < 0. G, = {a € = L (an — a))l tin) = 0}
; ; i a hyperplane tangent to oc, gi(an at  anp.
hyperplanes have been proposed previously in connectl nn — e € = | (an—d | tin) = gi(an)} i a hyperplane

with less general projection algorithms in [1] and [21]. Aparallel t0G;,,, and separating; anda.,. It delimits the half-spaces; ,,
practical concern with this conceptually simple approach @ (41), which containsS; but not .. The subgradient projection af,

to determine efficiently the separating hyperplatig,. We ©N© i is the projection;,, of a. onto H; .
shall now see that, thanks to (39), the fundamental inequality
defining subgradients in (7) can be used to deternfifig, wheret; ,, € 9g;(a,,), we obtain a generalization of the notion
and S; , explicitly. of projection.
Consider the half-space

Sim={a €2 | (an—a|tin) > gi(a,)}  (41) B-Algorithm
) The algorithm we propose here has a structure similar to
wheret;, € dgi(an). Notice thata, ¢ Si = gi(an) > 0 that introduced in [15] to construct common fixed points of
= an ¢ S;». Moreover, if we takez € S;, theng;(a) < 0 firmly nonexpansive operators.
and, by (7).tin € 9gi(an) = (an —a | tin) = gi(an) - Given an initial pointay € Z and numbersC € N*,

gi(a) 2 gi(an) = an € Sin. Hence,S; C ;. We conclude €]0,1/CJ, ande €]0, 1[, EMOPSP is defined by the iterative
that S; ,, is a valid approximation of; in the sense of (36).

1alio >9)- process
From (5) and (41), the projection af, ¢ 0S; onto Sin IS
then simply given by (Y €N) app1 = an + M(D_winPin(an) — an) (44)
iEl,
_ gi(an) )
Pip(an) = an — —Hti n||2t%n (42) where at each iteration

and is called asubgradient projectionThis process is illus- * the family Z,, of indices of selected sets satisfies

trated geometrically in Fig. 7. Thus, only the computation of @ #17, cI and cardi€l,|a, ¢ S} <C (45)
a subgradient; ,, is required to activate the sef; instead _ o _

of the exact projection;(a,). In practice, g; will often * the subgradient projectiont$’; .(ax))icr, are defined by
be differentiable, so that;,, = Vg;(a,). When P;(a,) is (43); _ .

tractable, one can take, = d(-,S;) and (42) yields the * the aggregating weightSu; ,);cs, conform to (17);
exact projection thanks to (8). Whence, upon defining the* the relaxation paramete, lies in[e, (2 — ) L,,], where

subgradient projection of an arbitrary poimnt € = by >icr. Winl| Pinlan) — anl? .
el ; ; | an ) Si7
. — 9i(an) tif a. (S, Ln= 1 e, winPin(an) — anl? §Z Meer.
Ppay)=3"" It nll? v " v (43) 1 otherwise.
an otherwise (46)
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At iterationn the imagez,, is given and the updating procesde handled. It requires that, for eveiye I, the setS; be
is performed as follows. First, one selects the subfamifctivated at least once within any; consecutive iterations.
(S:)icr, Of sets to be activated. Then, one takes subgradieiithen card < +o0, the admissible control mode coincides
(tin)icr, Of (gi)ier, at a, and computes simultaneouslywith the cyclic mode withA/ = max;c7 M;. Following is
the subgradient projection&; ,,(a,,))icz,. Next, one forms an example of admissible control sequence witk N* and
a convex combinationd,, = Zieln w; o P n(ay) of these cardl, = 2, and where the sets with indic@s+ 1 and2i + 2
projections and computes the extrapolation paran&tehe are activated everg*! iterations.
position of the new iterate,; on the ray emanating from,
and going through,, is determined by the positive relaxation (In)nzo = ({1,2},{3,4},{1, 2}, {5,6},{1,2},

parameter),,, which can take values up tL,,. The setS; {3,4},{1,2},{7,8},{1, 2}, {3, 4},
will be said to be violated at iteration if a, ¢ S;. Since (1,2}, {5,6},{1,2}, {3,4},{1,2}
nonviolated sets can be assigned a weight of 0 by (17), they T e
can always be considered as selected. When only one set is 19,10}, {1, 2}, {3,4},{1,2}, {5,6},
violated @ fortiori when only one set is selected), thep = 1 {1,2},{3,4}, {1, 2}, {7, 8}, {1,2},
and the relaxation range reverts to the conventional interval {3,4},{1,2},{5,6},{1,2},{3,4},
[e,2 — ¢]. Therefore, extrapolations can take place only when (1,2}, {11,12}, {1,2}, {3,4},{1,2}
Card - In n SZ > 2. 7 7 7 7 7 7 7 7 7 7
b lmé 52 - (5.6} {12}, {34}, {1,2}, {7,8},--).
Proposition 5: Every orbit (a,,),>o of EMOPSP satisfies
(19).

O Finally, under chaotic control, every set must be used infinitel
Thus, every iteration of EMOPSP brings the update closer t Y, ' y y

any solution. This is an important property since, in practic
the algorithm will be interrupted after a finite number of step
when some stopping criterion is satisfied.

?ten, but in any order. Following is an example of chaotic
ut not admissible) control sequence with = N* and
cardl, = 4.

(ITL)NZO = ({17 27 37 4}7 {17 27 37 4}7 {57 67 77 8}7
{17 27 37 4}7 {57 67 77 8}7 {97 107 117 12}7
{17 27 37 4}7 {57 67 77 8}7 {97 107 117 12}7

C. Control

The control sequencél,),>o determines the subfamilies
of sets which are processed at each iteration. Naturally, for

the iterates to converge to a solution of (2), suitable condi- {13,14,15,16},{1,2,3,4},{5,6,7,8},
tions must be imposed to ensure that every set is activated {9,10,11,12},{13, 14, 15,16},
repeatedly. We shall say that the control is {17,18,19,20}, - - -).
* serial if
We have: statics> cyclic = admissible=- chaotic.
(Vn eN) cardl, =1 47) v I yelie = ISsivie= I
* static if D. Convergence
(VneN) I, =1 (48) We now present our main convergence results relevant to
the theory and the applications of convex set theoretic image
* cyclic if recovery. Recall that the familgS; );c; is finite or countable
Nt M—1 and that it is defined as in (39), whefg; );cr is a family of
(AM e N )(VneN) I = U I (49) real-valued, convex, (lower semi-)continuous functions. These
—n functions are therefore subdifferentable and we shall say that
o their subdifferentials are locally uniformly bounded if
» admissibleif
G (V7€RY)ECERY) (Vi €D)(Ya€ B0,7))dgi(a) C B(0,0).
A(Mi)icr CNH(V(@n) e IxN) ie |J Ir (50)
) (52)
* chaotic if As noted in [5], (52) implies that (37) is verified for the half-
_ space (41). Whence, if (52) holds, we obtain at once from
(yneN) I = k! Iy (51) Theorem 2 the weak convergence to a poinsiof any orbit

of EMOPSP with constant weights and static control. Actually,
Under static control, all the sets must be processed at eamgtch more is true.

iteration, whereas under cyclic control all the sets must be usedrheorem 3: Suppose that the subdifferentials(gf);-; are

at least once within any/ consecutive iterations. For instancelocally uniformly bounded. Then, under admissible control,

we have seen that EPPM2 operates under static control @wery orbit(a,,),>o of EMOPSP converges weakly to a point

MOPP under cyclic control. These control modes are restrictadsS. |

to finite families of sets, since all the sets must be activatedThe next theorem pertains to strong convergence under the

over a finite number of iterations. On the other hand, undetost flexible type of control, namely chaotic control, at the

admissible control, a countably infinite number of sets caxpense of additional hypotheses.
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Fig. 8. Original image. Fig. 9. Degraded image.

Theorem 4: Suppose that the subdifferentials(gf);cr are V1. NUMERICAL SIMULATIONS

locally uniformly bounded. Then, under chaotic control, every
orbit (a,, )n>0 of EMOPSP converges strongly to a pointSn  a Generalities

if either of the following conditions is satisfied: . . L
In this section, we apply EMOPSP to standard digital

1) S# 9 _ _ image restoration problems in order to provide a numerical
2) cardl < +oo and one of the functionals, say, is lower jllustration of its properties and of its performance compared to
semiboundedly-compact. O conventional methods, especially POCS. We have performed

To our knowledge, these results are the most general omesnerical comparisons in a variety of signal and image
available. Thus, particular cases of Theorem 3 can be foundprocessing problems and the limited results we present here
[5], [6], and [16]¢ while particular cases of Theorem 4(i) carare quite representative of the performance of EMOPSP.
be found in [5] and [33]. On the other hand, the following All images haveN x N pixels (v = 128) and will be
corollary of Theorem 4(ii) generalizes results of [10] and [A9]represented using stacked-vector notations F3js the usual

Corollary 1: Suppose that difE < +oc and card < +oc.  NZ-dimensional euclidean space and the pertinent conver-
Then, under chaotic control, every orbit, ),,>o of EMOPSP gence result is therefore Corollary .is the two-dimensional
converges to a point ir§. L (2-D) discrete Fourier transform (DFT) operator, i.e.,

This corollary is of utmost importance for practical digitalVa € =) F(a) = @, where for everyk, 1) in {0,---, N —1}?
image recovery applications. Indeed, in such applications,

the number of constraints is finite. Furthermore, images are _ No1h-d i) o
discretized over a bounded domain and therefore representedi(k,1) = > > a9 exp(—i2n(ik + jl)/N).  (53)
by a point in the euclidean space. Loosely speaking, Corollary =0 j=0

1 then states that, for any family of conVefunctionals T iqinal i & of Fig. 8 is d ded b lutional
(9:)icz, @any sequence generated by EMOPSP converges F)e original imager ot ™g. © 1S degraded by convolutiona

a feasible image as long as all the sets are used repeatedlg W with a un|f(_)rm9 x 9 kernel £ and add.mon' of uniform
any order. urely white noisex with range[0, R] resulting in a blurred

image-to-noise ratio of 35 dB. The degraded imade shown
in Fig. 9. It can be written asx = Lh + u, where L is
the block-Toeplitz matrix associated with the point spread

6[5] considered cyclic control and relaxation range (12); [6] considereﬂmction /. The problem is to estimatg given + and some
exact projections and serial control; [16] considered exact projections, cyclic

control, and relaxation range (12). a priori inforzmat?on abouth, ¢, andw. Th_e _first pr(_)perty set
7[5] considered cardl < +oo and relaxation range (12); [33] consideredS; = (R, )" arises from the nonnegativity of pixel values.
exact projections and relaxation range (23). Next, it is assumed that the DFT df is known on one

8[10] considered serial, cyclic control; [19] considered static control. Whilfburth of its support for low frequencies in both directions
revising this paper, it came to our attention that Corollary 1 has be !

a . L Py
established independently in [28]. The associated property set$s = {a € Z | @l = hlg},
9They are, therefore, continuous since @m: +co. whereK contains the set of frequency paj&, - - -, N/8—1}2
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Fig. 10. Scenario 1: EMOPSP versus POCS, SIRT, and PPM.

Fig. 12. Scenario 1: restored image.

—~_20}

As a practical stopping rule to compare performance, we shall
use the criterion
®(a,) < 50/card!. (56)

EMOPSP

normalized proximity function (dB)
IS
=]

B. Scenario 1: A Three-Set Problem

It is assumed here that the information available about the
noise vector. is that its components are independent and all
. . . ‘ . ‘ distributed as a random variablé with known second and
10 20 80 g 50 60 70 fourth moments. As shown in [18], with a 95% confidence

coefficient, this information leads to the property set

Ss={a € E||lz — Lal]® < p} (57)

Fig. 11. Scenario 1: EMOPSP with centering versus POCS.

as well as all those resulting from the symmetry properties ¥here

the 2-D .DFjI' of real images (a similar set was use.d in [38]). p = N2E|UJ? + 1.96N /E|U|4 _ E2|U|2. (58)

The projections of an image, onto S; and S, are given by

the closed-form expressions This set has proven quite useful in a number of applications,

e.g., [17] and [42], but unfortunately its projection opera-

ot tor must be approximated iteratively via a costly procedure

{Pl(“ n) = af :A[max{o ai }]0<Z<N2 1= Pra(an), [42]. By contrast, using (43) and the fact th&tgs(a,)
Py(an) = 7 (hlk + @nlgy) = Pon(an). = V(||x = Lan||* = p) = —2'L(z — Lay,), we simply process

(54) [Pe setS3 at iterationn with the subgradient projection
To complete the set theoretic formulation, two scenarios will

be considered. They both assume knowledgée btt differ a, +nll” =P || Wl =p Lrn if |ral2 > p

in the information available to describe the noise. The first £3.n(an) = 2||"Lrn? . T (59)
scenario will give rise to a three-set problem in which subgra- n otherwise

dient projections will be used. The second scenario will giweherer,, = = — La,,. Using standard arguments [3], the upper
rise to a large scale problem requiring the use of nonstaéigpression in (59) can be evaluated in the frequency domain
control. Every algorithm will be initialized wittuy = = and efficiently via the 2-D fast Fourier transform (FFT) as

the progression of its orbiiz,, ),,>o will be tracked by plotting N )

the normalized decibel valu¢s0log, ,(®(a,)/®(a0)))n>0 Of Psp(an) =3 <6; + M 7 ) (60)

the proximity function (9), where 2||g7n||2

wherer,, = a?—Za;. The approximate computation &%(a,,)
(Viel) w; =1/(cardl). (55) proposed in [42] typically requires 10 to 20 iterations of much
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Fig. 13. Scenario 2 with 4 parallel processors. Fig. 15. Scenario 2 with 64 parallel processors.

. . . . . numerical superiority of EMOPSP, it must be borne in mind

POCS that to process the séft;, POCS, SIRT, and PPM must use
the costly projection ontés whereas EMOPSP needs only
the approximate projection (59).

EMOPSP(1)

C. Scenario 2: A 16 386-Set Problem

We now assume that no probabilistic information is avail-
able about the noise vectar and that it is known only that
its components lie iff0, R]. This information leads to th&?
property sets [18]

(Vi€ {0, N? = 1}) Sit3
={acz|0<zW —(a|L;)<R} (61)

EMOPSP(L)

normalized proximity function (dB)

EMOPSP(1.91)

where L; is theith row of L. According to (5), we have
ap + (29 = (an | Li))/I1Li]*)Ls

Fig. 14. Scenario 2 with 16 parallel processors. it (an | L) >z,
Piys(an) = qan + (29 = R = (an | Li)/IILi|P1L;  (62)
if (an | Li> < z® — R,
a, oOtherwise.

L . . L .
0 1000 2000 3000 4000 5000 6000
iteration index

higher complexity than (60). Consequently, the subgradient
projection reduces the cost of processifig by at least an
order of magnitude. The set theoretic formulation &=, (S;)1<;<n242). Similar

The set theoretic formulation for this problem igproblems generating a large number of sets are reported in
(2,(Si)1<i<3). In the results shown in Fig. 10, POCYH34], [39], and [42], where they were solved with POCS. Here,
is implemented as in (3), SIRT as in (13), PPM as iwe implement POCS (3) by skipping the nonviolated sets so
(14) with (55) and(vn € N) A, = 1.9. Furthermore, that each iteration actually produces an update. ¥68 dB
P = 3 parallel processors are available. Thet9 dB mark corresponding to (56) was reached by POCS in 76 000
mark corresponding to (56) was reached by POCS in 11B8rations. To implement EMOPSP, computer architectures
iterations. Since only three sets are present, EMOPSPwigh P = 4, 16, and 64 parallel processors are considered.
implemented with static control, fixed weights as in (55)At each iterationn, the control selectg” sets as follows:S;
and relaxation strateggvn € N) X, = L,. POCS is faster andS, if they are violated and a block of consecutive violated
than SIRT and comparable to PPM, but clearly outperformeets in (61), starting witts; (3 < j < 2+ N? modulo N?),
by EMOPSP, which uses extrapolated relaxations. Fig. Where S;_; is the last set used at iteration — 1. More-
shows that EMOPSP can be further accelerated by using thesr, three values of,, are consideredi, L,,, and 1.9L,,.
centering technique (27), resulting in a dramatic improvemelmt Figs. 13-15, the corresponding algorithms are labeled as
over POCS. The restored image obtained in this case appdaOPSP(1), EMOPSP(L), and EMOPSP(1.9L), respectively.
in Fig 12. Let us observe that these results show performarR®CS starts slowly and approaches the performance of the
only in terms of the number of iterations required to reachumrelaxed algorithm EMOPSP(1) after about 7000 iterations.
given degree of infeasibility. However, to fully appreciate thEMOPSP(L) is much faster and EMOPSP(1.9L), which further
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therefore, opens the possibility of usirf} in space-varying
blur problems.

VIl. CONCLUSION

We have presented a general projection method (EMOPSP)
for solving convex set theoretic image feasibility problems.
It proceeds by extrapolated relaxations of convex combina-
tions of subgradient projections onto variable groups of sets.
EMOPSP is superior to the widely used POCS algorithm on
four counts: it converges very efficiently, it does not require
the computation of exact projections, it can be implemented
on concurrent processors in a very flexible fashion, and it can
solve problems involving an infinite number of constraints. In
view of its overwhelming computational advantages, EMOPSP
can be anticipated to become a prominent tool in set theoretic
image recovery.

APPENDIX A
PrROOFS

Proof of Theorem 1:Since D is a closed vector subspace
of B, Pp is linear and (4) yields

(Vae E)(vb e D) ((b|a))={((b|p(a). (Al

exploits the large relaxation range allowed by our analysigow, fix ¢ € S(\D,n € N, and note thafa,,c) € D2.
is even faster. The restoration obtained by EMOPSP(1.9)\ihence, (A1) and (4) yield

shown in Fig. 16.
((an —c| Pp o Ps,(a,) — ay))

Fig. 16. Scenario 2: restored image.

D. Remarks ={{a, —c | Po(Ps, (a,) —a,)))
EMOPSP is very versatile as all of its parameters can be = ({an —c| Ps,(an) —an))

changed at each iteration (sets selected, approximating super- = —|||Ps, (an) — an|||2

sets, weights on the projections, relaxations). Hence, the above + ((Ps.(ay) — ¢ | Ps.(an) — an))

implementations of EMOPSP are somewhat conservative in 5
the sense that they do not fully exploit the flexibility of < =B, (an) = anlll*. (A2)
the method. Although no general conclusion is intended, oyking (30), (31), and (A2), we then obtain

intensive simulations with EMOPSP in various problems has

. . 2 __ 2
revealed the following behavior. When a small number of sets llan+1=cl|[* = [llan—<||[* + 2{({an—c | any1 —an))
is used, very large extrapolations (se$L,, < A, < 1.99L,,) +|||ansr —an]||?
often create a lot of zig-zagging and are not as effective as _ |||an_c|||2

the centered extrapolations (27). On the other hand, large

extrapolations accelerate the iterations significantly in more +2M{(an—c| Ip o Py, (an)—an))

)\2

sizeable problems. Let us also note that the above results + 2| Ps, (an)—an|||? < ||lan—c]||?

N L n (i T —_ T
assume thatP” > 1 parallel processors are available. By n \
multiplying the numb_er of |ter_at|ons needed to obtaln_a certain — (2= 21| Ps. (an) —an|||? (A3)
level of the proximity function byP, one can easily see Ly,
that EMOPSP s still faster than POCS in single-processor < |llan—cl|[*=€%d(a,, S,)? (A4)
environments. < ||lan—cl||*. (A5)

We have seen in Section VI-B that the subgradient projec-
tion reduced the computational burden associated with the liséllows from (A4) that
of the setS3 in (57) by at least an order of magnitude compared 2 2 2y /.2
to the projection derived in [42]. Let us add that in [42] the dfan,Sn)” < ([llan=el[” = [lJanss =el[IF)/e%. - (A6)
blur was assumed to be space invariant, which made it possiblewever, (|||a, — c||[?),>0 converges by virtue of (A5)
to carry out large matrix inversions efficiently in the frequencgind therefore(d(a,,, S,.))»>0 converges to 0. In addition,
domain via circulant approximations. When the blur is space,,),>0 C D is bounded and it admits a subsequence
variant, the matrices must be inverted directly which, as notéal,, ),>o converging weakly to some poirt € D. It then
in [34], makes the use af; practically impossible. On the follows from (32) thata € S D. Finally, since (A5) implies
other hand, (59) does not involve any matrix inversions anhat(a,),>o can have at most one weak cluster poin8ifi D
can be computed easily regardless of the structutk. dthis, [6], we conclude thata,,),,>o converges weakly ta. o



COMBETTES: CONVEX SET THEORETIC IMAGE RECOVERY 505

Proof of Proposition 5: At iteration n, if we rederive (A3) Proof of Theorem 4:(i) Fix ¢ € I. Because of (51), there
in the Hilbertian product spac&, = Zcad» with norm exists an increasing sequentey);>0 C N such thati €
lallln = (Cicy, winllail|*)/? and bring it back taE, we

< In, . Since any sequence that satisfies (19 w&ﬁe@o
obtain directly that for every,, € (,.; S; [ iz In Y oo (19

converges strongly [5], Proposition 5 implies th@t,)»>0

converges strongly to some poiat It follows from (A9) that
\ ((@n, » 7m0 C €pig; converges strongly t0z,0) in Zx R.

< —)\n(2—L—") Z Wi || Pin(an)—an||* (A7) Since epy; is closed, we geta,0) € epig; and, therefore,
" el a € S;. Asiis arbitrary, we conclude € S. (ii) Fix ¢ € S and

—e2 Z Wi || Pin(an)—anl|. (Ag) letn = ¢6=Y2e7|lag — ¢||- As in (i), there exists a suborbit
T (an, ) k>0 such thatj € (Vs Zn,. In view of Proposition

. . . 5 and (Ag)’ (ank)kZO lies in Se(cgjvn)ﬂB(chaO - CH),

The assertion is then proved by taking=c € 5. ¢ which is compact sincg; is I.s.b.co. We can therefore extract

Proof of Theorem 3:Fix ¢ € S and defingVn € N) 3 = a subsequencéu,, )i=o converging strongly to some point

(llan = €]l = llan+1 = cl[*)*/2. Note that Proposition 5 entails ; |t remains to showa € S for Proposition 5 will then

that (5, )n>0 converges to). Thanks to (52), we can find gytomatically guarantee that the whole sequeficg),>o

¢ € Ry such that(v(i, n) € I x N) ||t < . Therefore, conyerges strongly ta. Suppose to the contrary that¢ S

for every integerm, (43), (A8), and (17) yield and definel* = {s € I | a € 8}, I~ = I \ I*, and

p = min ;- g;(a) > 0. Take ¢ as in the proof of Theorem

3. We derive from (A8) the inequalities

(Vn € N)(Ven € (1) i) llanss — cal®
€1,
< llan = enl* = vmax gi(an)®. (A12)

lant1 = call® = llan = call®

IN

i€ly

max gi(an) < (max [|Pn(an) = an

< C(Z Wi p || Pin(an) — an||2/6)1/2

i€l
<(ETV2eTIB, 2, (A9)

Thanks to (A7), we also have
Now, fix I € I~. Note thata belongs tolsedg;, 11/2), which

2 _ 2 . . 2 ) . . .
lan+1 = anll” = ALl Z Wi Lin(an) = an is open sincey; is |.s.c. Hence, we can fingl € R% such that
i€l

A2 (Vb € B(a,v)) gi(b) = p1/2. (A13)

= 7. Z wi,nHPi,n(an) - an||2
"iel, Let us fix an integep such thata, € B(a,~). Thena, ¢ S;.

A2 32 Let us show thaf ¢ I,. Indeed, if we had € I, it would

< - M= N JLn) follow from (A12) and (A13) that, fory sufficiently small
2

< ﬁ . /3—" llap+1 — ol? < llap — ol* - Vgl(ap)2

2w b < G+ lla— cl)? = /4
S (25 bt 1)/371 (A].O) < ||CL _ C||2. (A14)

As in the proof of Theorem 1, Proposition 5 implie§ tha1t—|owever, this would contradict Proposition 5, which implies
(@n)n>o POSSesses a subsequente, )i>o CONVEIGING ot ol < [|a,y1 — c|l. Hencel ¢ I,. Sincel is arbitrary,

weakly to some point: and it remains to show € 5. Fix ¢, > Nl,=0=1I +
. : i p = p CIT = a€(gy, Si- (Al12)
¢ € I. According to (50) there exists a sequelige, x>0 C N then yields|jays1 —al| < [lap—al| < 7, .. apsr € B(a, 7).

isucf:j(tjhtc’?\(kae N) my, _Gt{”’“’k' ' A7118+M1Id_1} andi € Lo, . Thus, the above arguments can be replicated for indext
n addition, for every integek, (A10) yields to givel ¢ Ipi1, apt2 € B(a,v) and, by induction, ¢

1 Ui>o Ip+x- But this is absurd since the control is chaotic.
m, = angll < > llas — aill Accordingly, we conclude: € S. o
l=n; Proof of Corollary 1: If dimE < 40, the subdifferential
< Mi(25_1_1)1/2 max 3 of eachg; is bounded on closed and bounded sets [36]. Since
. eSS+ Mi—1 card] < +oc, it follows that the family(g;);c; satisfies (52).
= iy, (All) Finally, eachg; is I.s.b.co. since, in finite dimensional spaces,
However, SiNCe(By)nso CONVETGES 100, (am, — an, )0 every closed set is boundedly compact. o
converges strongly t@ and, therefore(a,,, )i>o0 converges
weakly toa. On the other handy,,, )x=o0 converges td) in APPENDIX B
- ACRONYMS

(A9) and it follows that((a., ,¥m, ) x>0 converges weakly
to (a,0) in the Hilbert spaceZ x R. However, thanks to  ANCA Accelerated nonlinear Cimmino algorithm (15)
(A9), ((am,,vm: k>0 C €pig; and, sincey; is convex and + (18).

l.s.c., epiy; is closed and convex and, thereby, weakly closed. ART Algebraic reconstruction technique (3).
Consequently(a,0) € epig;, i.e., gi(a) < 0. We thus obtain EMOPSP Extrapolated method of parallel subgradient pro-
a € S; and, since is arbitrary,a € S. o jections (17) + (43) + (44) + (45) + (46).
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(14) + (25) + (26). projections for finding the common point of convex set$3SSR Comput.
Math. Math. Phys.,vol. 7, pp. 1-24, 1967.

EPPM2  (Generalized) extrapolated parallel projectiops; . T. Herman,mage Reconstruction from Projections, the Fundamen-
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+ (17). 367-378, Aug. 1986.
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