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Abstract—The formulation of a wide variety of image recovery problems
leads to the minimization of a convex objective over a convex set represent-
ing the constraints derived from a priori knowledge and consistency with
the observed signals. In recent years, nondifferentiable objectives have be-
come popular due in part to their ability to capture certain features such
as sharp edges. They also arise naturally in minimax inconsistent set the-
oretic recovery problems. At the same time, the issue of developing reli-
able numerical algorithms to solve such convex programs in the context of
image recovery applications has received little attention. In this paper, we
address this issue and propose an adaptive level set method for nondifferen-
tiable constrained image recovery. The asymptotic properties of the method
are analyzed and its implementation is discussed. Numerical experiments
illustrate applications to total variation and minimax set theoretic image
restoration and denoising problems.

Keywords— Image recovery, level set method, nondifferentiable opti-
mization, reconstruction, restoration, total variation.

I. INTRODUCTION

A broad range of digital image restoration, reconstruction,
and denoising problems can be formulated as constrained con-
vex optimization problems of the form

Find x∗ ∈ S such that J(x∗) = inf J(S), (1)

where S is a closed convex set in the standard N -dimensional
Euclidean space RN describing image constraints derived from
a priori knowledge and consistency with the observed signals,
and J : RN → R is a convex function. Typically, the feasibility
set S represents information known a priori about the image to
be recovered and the physical system that generated the mea-
sured data [11], [14], [37], [39], [43], while J allows for the
selection of an image in the feasibility set [5], [12], [14], [27],
[29], [31], [35].

The relative ease of implementation of smooth minimization
methods has traditionally favored the use of differentiable ob-
jectives in (1), e.g., [5], [9], [12], [27], [38]. In recent years,
however, it has emerged from various theoretical and experi-
mental studies that nondifferentiable objectives were more ap-
propriate in certain signal and image recovery problems, due
in part to their ability to restitute sharp features [3], [4], [10],
[23], [29], [35], [41]. As will be seen in Section V, nondiffer-
entiable objectives also arise naturally in minimax formulations
for inconsistent set theoretic image recovery problems. At the
same time, there has been limited activity towards the design of
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reliable numerical algorithms for solving the nondifferentiable
convex program (1) in the context of image recovery applica-
tions.

In nonsmooth optimization problems, gradients may not be
defined and the usual recourse is to use subgradients. Unfortu-
nately the latter contain much less information than the former
and, for that reason, nonsmooth minimization problems must be
tackled with specific algorithms. While it may be tempting to
just employ a smooth optimization algorithm to solve (1) with
a nondifferentiable objective, such a practice should be strongly
discouraged as it may lead to dramatic failures [24], [28], [36].
An alternative is to approximate J in (1) by a smooth function
and to employ a smooth minimization scheme to solve the ap-
proximate problem (this approach was adopted in the total varia-
tion problems of [10], [41]). Although conceptually simple, this
smooth approximation approach has three serious shortcomings:
• There is no systematic procedure to construct smooth approx-
imations to nondifferentiable functions.
• By smoothing the original objective, one forfeits the theoreti-
cal justification that precisely led to the selection of a nondiffer-
entiable cost function since it is in general unclear how well a
solution to the perturbed problem approximates, in a physically
meaningful sense, those of the exact problem.
• A good smooth approximation to a nondifferentiable func-
tion is “stiff”, i.e., its gradient varies continuously but rapidly.
As demonstrated in [24, Section VIII.3.3, Vol. I], stiff func-
tions are hard to minimize via smooth optimization techniques
and should actually be handled as nondifferentiable functions.
For instance, the range of the step-size of the projected gradient
method for solving (1) with a κ-Lipschitz objective is bounded
by 2/κ [7, Prop. 3.3.4]. As κ is large for stiff functions, the
method is unviable numerically.1 More technical pitfalls of
smooth approximation techniques are discussed in [30] in the
context of phase recovery problems.
Other alternatives have been explored in specific signal recovery
problems. For instance, in the quadratically constrained total
variation image denoising problem of [35], the scheme which
is used is akin to a projected gradient method in which iter-
ates are perturbed to avoid points of nondifferentiability. This
heuristic approach is straightforward to implement but lacks a
sound mathematical basis. In the quadratically constrained im-
age restoration problem of [29], a variant of the total variation
objective led to an `1 problem that was solved by an affine scal-
ing Newton method whose computational load is a handicap for
large images. It should also be noted that several standard non-
smooth minimization methods are practical only in small-scale

1As a simple illustration, consider the smooth approximation Jε : x 7→p
‖x‖2 + ε to the nondifferentiable function J : x 7→ ‖x‖ for a small parame-

ter ε > 0. The Lipschitz constant of Jε is 1/
√
ε and step-sizes must therefore

be less than 2
√
ε.
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problems [24], [36] and are therefore ruled out in image recov-
ery applications.

The goal of this paper is to propose an implementable, practi-
cal, and reliable algorithm for solving the constrained image re-
covery problem (1) with nondifferentiable objectives. The prin-
ciple of the proposed adaptive level set algorithm is common
to several state-of-the-art schemes in nonsmooth optimization,
e.g., [25], [26], that have evolved from Polyak’s projected sub-
gradient method [32]. Unlike the methods currently in use in
image recovery, only mild assumptions on the objective J (con-
vexity) and the constraint set S (convexity and compactness) are
required, and (1) is solved without being altered. As a result, the
algorithm is applicable to a wide range of recovery problems.
In addition, several aspects of the practical implementation of
the algorithm are discussed, with special emphasis on stopping
rules.

In Section II, the necessary mathematical background is
briefly reviewed. We then describe Polyak’s method itself as
well as two variants that will be essential ingredients in the de-
sign of our algorithm. In Section III, we present the algorithm,
establish its convergence, and discuss its implementation. We
report on numerical applications to total variation image restora-
tion and denoising in Section IV and to minimax set theoretic
image restoration in Section V. Appendix A contains the proofs
of technical results.

II. MATHEMATICAL FOUNDATION

A. Basic facts
We recall here some basic facts; details can be found in [24],

[33], [34].
Let J : RN → R be a convex function. Then J is continuous

on RN and, for every α ∈ R, its lower level set at height α,
lev≤α J =

{
x ∈ RN | J(x) ≤ α

}
, is closed and convex. A

vector t ∈ RN is a subgradient of J at x ∈ RN if (∀y ∈ RN )
〈y − x | t〉 + J(x) ≤ J(y). The set of all subgradients of J at
x is the subdifferential of J at x; it is nonempty and denoted by
∂J(x). If J is differentiable at x, then its gradient ∇J(x) is its
unique subgradient: ∂J(x) = {∇J(x)}. In addition, x ∈ RN
is a global minimizer of J if and only if 0 ∈ ∂J(x).

Now let C be a nonempty closed convex set in RN . Then, for
every x ∈ RN , there exists a unique point PC(x) ∈ C such that
‖x−PC(x)‖ = d(x,C) = inf

y∈C
‖x−y‖. The point PC(x) is the

projection of x onto C. The projector PC : RN → C satisfies

(∀x ∈ RN )(∀y ∈ C) ‖PC(x)−y‖2 ≤ ‖x−y‖2−‖PC(x)−x‖2
(2)

and the distance function d(·, C) is convex and differentiable at
every point x ∈ RN r C with

∇d(x,C) =
x− PC(x)

d(x,C)
. (3)

B. Subgradient projection
A tutorial account of subgradient projections can be found in

[15].
Let J : RN → R be a convex function, α a real number, and

g a selection of ∂J , i.e., (∀x ∈ RN ) g(x) ∈ ∂J(x). Then

lev≤α J ⊂ Hg
α(x) =

{
y ∈ RN | 〈x− y | g(x)〉 ≥ J(x)− α

}
.

The subgradient projection Ggα(x) of x onto lev≤α J is

Ggα(x) =




x if J(x) ≤ α or g(x) = 0

x− J(x)− α
‖g(x)‖2 g(x) otherwise.

(4)
As seen above, the situation g(x) = 0 may occur only when x
is a global minimizer of J . If lev≤α J 6= Ø, then Ggα(x) is the
projection of x onto the closed halfspaceHg

α(x). Since the com-
putation ofGgα(x) requires only a subgradient g(x) (the gradient
∇J(x), in the differentiable case) of J at x, subgradient projec-
tions are significantly easier to implement than exact projections
and have been used for solving a wide range of feasibility prob-
lems [6], [14], [15]. For subsequent use, we record the fact that
subgradient projections satisfy a property akin to (2), namely

(∀x ∈ RN )(∀y ∈ lev≤α J) ‖Ggα(x)− y‖2 ≤
‖x− y‖2 − ‖Ggα(x)− x‖2. (5)

C. Standing assumptions
Throughout the paper our assumptions regarding problem (1)

are as follows. J : RN → R is a convex function and S is a
nonempty compact convex subset of RN . Consequently, α∗ =
inf J(S) > −∞ and the solution set S∗ = S ∩ lev≤α∗ J is
compact, convex, and nonempty [33]. In addition, g designates
an arbitrary selection of ∂J .

D. Polyak’s subgradient projection method
The subgradient projection method is governed by the itera-

tive process

x0 ∈ S and (∀n ∈ N)




xn+1 = PS

(
xn − σn

g(xn)

‖g(xn)‖

)
,

σn > 0.
(6)

For this algorithm, a typical convergence condition on the step-
sizes (σn)n≥0 is

∑
n≥0 σn = +∞ and

∑
n≥0 σ

2
n < +∞, e.g.,

[33]. This condition implies that the step-sizes must converge
rapidly to zero, which translates into slow convergence. To cir-
cumvent this problem, Polyak proposed a different type of step-
sizes under the assumption that the optimal value α∗ = inf J(S)
is known [32], [36]. He showed that a sequence (xn)n≥0 con-
verging to some x ∈ S∗ can be generated by (6) where (∀n ∈ N)
σn = (J(xn) − α∗)/‖g(xn)‖. With these step-sizes, (6) be-
comes

x0 ∈ S and (∀n ∈ N) xn+1 = PS ◦Ggα∗(xn) (7)

Polyak’s algorithm consists in alternating a subgradient projec-
tion onto lev≤α∗ J and an exact projection onto S and is there-
fore a special case of the general subgradient projection schemes
of [6], [15]. Unfortunately, it is implementable only in those rare
instances when α∗ is known.

When α∗ is unknown, a general strategy is to replace (7) by
the adaptive level set method

x0 ∈ S and (∀n ∈ N) xn+1 = PS ◦Ggαn(xn), (8)
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where (αn)n≥0 is a sequence of level estimates [2], [25], [26]
(cf. Fig. 1). If an upper bound α on α∗ is available, an approxi-
mate solution to (1) can be constructed as follows.

Theorem 1 [25] Suppose α ≥ α∗ and x0 ∈ S. Let (xn)n≥0

be a sequence generated by (8) with αn ↓ α. Then (xn)n≥0

converges to a point in S ∩ lev≤α J .

Now suppose that we know a lower bound α on α∗. Then, as
S ∩ lev≤α J = Ø, a sequence generated by (8) with αn ≡ α
cannot converge. It nonetheless possesses a property that will
prove very useful.

Theorem 2 [2] Suppose α < α∗ and x0 ∈ S. Let (xn)n≥0

be a sequence generated by (8) with (∀n ∈ N) αn = α. Then(
∀ε ∈ ]0,+∞[

)
(∃m ∈ N) J(xm) ≤ α∗ + (α∗ − α) + ε.

Theorems 1 and 2 imply that if a reasonably tight estimate
of α∗ is available then (1) can be solved approximately by (8).
While these two theorems can usually not be used directly in
practice for lack of a good approximation to α∗, they describe
general principles that constitute the foundation of the algo-
rithms presented in [20], [25], [26] and of the algorithm pro-
posed in this paper.

III. ALGORITHM

A. Description
Adaptive level set methods are based on the following princi-

ple. Let α be a guess of the optimal level value α∗. Then (cf.
Fig. 2):
• If x ∈ S∩ lev≤α J can be found, we infer that S∩ lev≤α J 6=
Ø and therefore that α ≥ α∗.
• If S ∩ lev≤α J = Ø is detected, we infer that α < α∗.
Theorems 1 and 2 can be exploited to transform (8) into an adap-
tive level set method. First note that, since (xn)n≥0 lies in S,
infn≥0 J(xn) ≥ α∗. Therefore, if we define

α0 = J(x0) and (∀n ∈ N) αn+1 = min{J(xn+1), αn},
(9)

then

(∀n ∈ N) αn ≥ αn+1 = min
0≤m≤n+1

J(xm) ≥ α∗. (10)

Now fix 0 < λ < 1, ε > 0, and η0 > λε. Define two sequences
(αn)n≥0 and (ηn)n≥0 in R by

(∀n ∈ N) αn = αn − ηn and

ηn+1 =





ηn if S ∩ lev≤αn J 6= Ø
ηn if S ∩ lev≤αn J = Ø is not detected
ληn if S ∩ lev≤αn J = Ø is detected.

(11)

Then

(∀n ∈ N)

{
ηn+1 ≤ ηn
(∃m ∈ {0, . . . , n}) ηn = λmη0.

(12)

As we shall see, with such a construction, αn approaches α∗
from above whereas ηn approaches 0 from above. Whence, αn

approaches α∗. In view of (10)–(11) and the fact that the update
ηn+1 = ληn takes place only if infeasibility S ∩ lev≤αn J = Ø
(αn < α∗) is detected, the occurrence of the inequality ηn ≤
λε can be used as a termination criterion, where ε > 0 is a
preset tolerance on α∗ (cf. proof of Theorem 4). As seen in
Section II-A, if g(xn) = 0, then xn is a global minimizer of J
and a fortiori a solution to (1), which justifies using g(xn) = 0
as a second stopping rule. On the other hand, if g(xn) 6= 0,
since J(xn) > αn by (9) and (11), (4) yields Ggαn(xn) = xn +
(αn−J(xn))g(xn)/‖g(xn)‖2. These considerations lead to the
following conceptual algorithm.

Algorithm 3 Fix v ∈ RN , ε > 0, and 0 < λ < 1.
Step 0. Set x0 = PS(v), η0 > λε, α0 = J(x0), and n = 0.
Step 1. If ηn ≤ λε, terminate.
Step 2. Obtain gn ∈ ∂J(xn). If gn = 0, terminate.
Step 3. Set αn = αn − ηn.
Step 4. Set xn+1 = PS

(
xn + (αn − J(xn))gn/‖gn‖2

)
.

Step 5. If S ∩ lev≤αn J = Ø is detected, go to Step 6; Other-
wise, go to Step 7.

Step 6. Set ηn+1 = ληn, αn+1 = αn, xn+1 = xn, n = n+ 1,
and go to Step 1.

Step 7. Set ηn+1 = ηn, αn+1 = min{J(xn+1), αn}, n =
n+ 1, and go to Step 2.

The basic mechanism to refine adaptively the approximate
levels (αn)n is the following. At iteration n, αn ≥ α∗ is avail-
able and we construct the new estimate αn by decreasing αn by
a factor ηn > 0 (Step 3). If it can be detected that S ∩ lev≤αn J
is empty, then we deduce that αn < α∗ and therefore that ηn
is too large. We then scale ηn down by a factor λ (Step 6) and
re-execute this loop with this smaller value of ηn. Otherwise,
we update αn to a lower value (Step 7) and rerun the loop with
the same value of ηn.

It is important to note that if infeasibility occurs at iteration n
(i.e., S ∩ lev≤αn J = Ø or, equivalently, αn < α∗) but is not
detected, then αn is updated to a value αn+1 ≤ αn since

αn+1 = αn+1 − ηn+1 = min{J(xn+1), αn} − ηn
≤ αn − ηn = αn. (13)

Thus, if we define the infeasibility gap at iteration n by δn =
α∗ − αn, any undetected infeasibility leads to another infeasi-
bility with a gap δn+1 at least as wide. Our basic premise is that
every infeasibility can be eventually detected in the sense that

If S ∩ lev≤αn J = Ø, then
(∃ k ∈ N) S ∩ lev≤αn+k

J = Ø is detected. (14)

It will be justified by concrete detection rules in Section III-C.1.

B. Main result
Our main result states that Algorithm 3 produces a signal in S

that satisfies any preset tolerance on the constrained objective,
i.e., an approximate solution to (1) that is feasible and can be
made arbitrarily close to optimal.

Theorem 4 Fix ε > 0. Then, under assumption (14), Algo-
rithm 3 generates a point xn in S such that J(xn) ≤ α∗ + ε.
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C. Implementation
The implementation of Algorithm 3 is straightforward except

for the infeasibility detection condition (14) and the computa-
tion of the projection onto S. We now address these issues.

C.1 Infeasibility detection
Given αn < α∗, the problem is to devise a numerical scheme

to detect S ∩ lev≤αn+k
J = Ø for some k ∈ N. To this end

define, for every m ∈ N, Nm =
{
n ∈ N | ηn = λmη0

}
. In

other words, Nm is the interval of iteration indices over which
the parameter ηn is not updated and kept at value λmη0 because
infeasibility is not detected (whether or not it actually occurs).
We shall denote by lm the smallest integer in Nm, i.e., the index
of the iteration of the mth infeasibility detection. We also need
to define (cf. Fig. 1 for a geometric interpretation)

(∀n ∈ Nm) ρn = ‖Ggαn(xn)− xn‖2+

‖PS ◦Ggαn(xn)−Ggαn(xn)‖2. (15)

Proposition 5 For every m ∈ N, the following holds.
(i) (αn)n∈Nm is nonincreasing and (∃n ∈ Nm) αn < α∗.
(ii) If Nm is infinite, then

∑

n∈Nm
ρn = +∞.

(iii) For every n ∈ Nm and γm ≥ d(xlm , S
∗), if

n∑

k=lm

ρk > ‖xlm − xn+1‖
(
2γm − ‖xlm − xn+1‖

)
, (16)

then S ∩ lev≤αn J = Ø.

Item (i) asserts that

(∀m ∈ N)(∃n ∈ Nm) S ∩ lev≤αn J = Ø (17)

and, consequently, that infeasibility does occur if ηn is kept
constant. Moreover, the accumulation of the squared steps∑n
k=lm

ρk grows indefinitely large as n increases (item (ii))
and signals infeasibility precisely when it exceeds the value
‖xlm − xn+1‖(2γm − ‖xlm − xn+1‖) (item (iii)). This result
provides us with a practical detection rule to implement Step 5
of Algorithm 3. Naturally, our goal is to detect infeasibility as
soon as possible after it occurs, which means that the parameter
γm in (16) should be a tight approximation to d(xlm , S

∗). Since
d(xlm , S

∗) = ‖PS∗(xlm) − xlm‖ ≤ sup(x,y)∈S2 ‖x − y‖ =
diamS, a conservative choice for γm is to use an upper bound
on the diameter of S. In most problems, however, one will be
able to use tighter estimates of d(xlm , S

∗) based on prior expe-
rience and theoretical or heuristic considerations. For instance,
if J is strongly convex, a tight bound γm can be derived from
the results of [25].

The practical detection rule (16) leads to the following imple-
mentable version of Algorithm 3.

Algorithm 6 Fix v ∈ RN , ε > 0, and 0 < λ < 1.
Step 0. Set x0 = PS(v), η0 > λε, α0 = J(x0), and n = 0.
Step 1. Set ρ = 0, y = xn, and γ ≥ d(y, S∗). If ηn ≤ λε,

terminate.
Step 2. Obtain gn ∈ ∂J(xn). If gn = 0, terminate.

Step 3. Set αn = αn − ηn.
Step 4. Setw = xn+(αn−J(xn))gn/‖gn‖2, xn+1 = PS(w),

and ρ = ρ+ ‖w − xn‖2 + ‖xn+1 − w‖2.
Step 5. Set β = ‖y − xn+1‖. If ρ > β(2γ − β) go to Step 6;

Otherwise, go to Step 7.
Step 6. Set ηn+1 = ληn, αn+1 = αn, xn+1 = xn, n = n+ 1,

and go to Step 1.
Step 7. Set ηn+1 = ηn, αn+1 = min{J(xn+1), αn}, n =

n+ 1, and go to Step 2.

C.2 Projection onto S

As with any variant of the projected subgradient algorithm,
the performance of our algorithm is sensitive to the cost of com-
puting the projection onto the feasibility set S at Step 4. If S is
derived from a single constraint, the projection onto it is often
known in closed form (see [14], [37], [43] for standard exam-
ples). On the other hand, if S is specified as an intersection
of closed convex sets (Ci)1≤i≤r, the projection problem must
be decomposed into elementary problems relative to each Ci.
Several iterative methods of this type were reviewed in [12],
which require only the ability to project onto each set Ci in-
dividually and have essentially the same numerical complexity
as the cyclic projection (POCS) method of [8] (see also [43]).
When the projectors onto the individual sets (Ci)1≤i≤r cannot
be implemented in a straightforward fashion, these methods may
be demanding numerically and one should turn to the method
recently proposed in [16, Section 6.5], which requires only sub-
gradient projections and can therefore construct the projection
onto S quite efficiently.

D. Comparisons with existing level set methods

Although the general structure of Algorithm 3 is akin to that
of those presented in [20], [25], [26], it differs from these algo-
rithms in several respects. In the algorithm proposed in [20], the
level αn is of the form (11) and α∗ = −∞ is allowed. However,
since the update of ηn is not based on infeasibility detection as
in Algorithm 3, it is not clear how to devise a tractable termi-
nation rule. On the other hand, the algorithm proposed in [25]
features a different scheme to implement infeasibility detection
at Step 5. Finally, in [26], instead of using the subgradient
projection Ggαn(xn) at Step 4, the projections onto successive
approximations to lev≤αn J derived from several accumulated
subgradient of J or their aggregates are used. We emphasize
that, since

{∑n
k=lm

ρk ≥
∑n
k=lm

‖Ggαk(xk)− xk‖2
γ2
m ≥ ‖xlm − xn+1‖

(
2γm − ‖xlm − xn+1‖

)
,

(18)

our detection rule (16) is tighter than that of [25], namely,∑n
k=lm

‖Ggαk(xk) − xk‖2 > γ2
m. It is also tighter than that of

[26], namely,
∑n
k=lm

ρk > ζ, where ζ ≥ (diamS)2
(
≥ γ2

m

)
.

IV. APPLICATION TO TOTAL VARIATION IMAGE RECOVERY

A. Total variation

Under suitable assumptions (cf. [19] for theoretical details),
the total variation of a real-valued function x defined on a
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smooth open subset Ω ⊂ R2 is

Jtv(x) =

∫

Ω

|∇x(ω)|2dω, (19)

where | · |2 denotes the Euclidean norm in R2. This function
has been proposed in [35] as an optimality criterion for image
denoising and then used as an optimality criterion for image
restoration, e.g., [1], [10], [29], [41]. The motivation for min-
imizing Jtv in such problems lies in that it does not penalize
discontinuities and tends to preserve the location of the edges
of the original image. It is therefore appropriate for piecewise
smooth images and, in particular, for images that have block
features [10], [35], [41].

Now consider a compactly supported two-dimensional image
x which has been discretized on an M × M grid. The total
variation of the discretized image matrix x ∈ RM×M can be
obtained through the approximations




x(ω)→ xi,j

|∇x(ω)|2 →
√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2∫

→∑
,

(20)

where xi,j denotes the (i, j)th pixel of x. Taking into account
boundary effects, the total variation of x is defined as

Jtv(x) =
M−2∑

i=0

M−2∑

j=0

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2

+
M−2∑

i=0

|xi+1,M−1 − xi,M−1|

+
M−2∑

j=0

|xM−1,j+1 − xM−1,j |. (21)

To study the properties of Jtv it is more convenient to employ
the usual column stacking isometry xi,j ↔ xi+Mj [5] and deal
with x as a vector in RN , where N = M2. In turn, upon intro-
ducing suitable difference matrices (Li,j)0≤i,j≤M−2 in R2×N ,
(Li,M−1)0≤i≤M−2 inR1×N , and (LM−1,j)0≤j≤M−2 inR1×N ,
the total variation of x ∈ RN is given by

Jtv(x)=
M−2∑

i=0

M−2∑

j=0

|Li,jx|2+
M−2∑

i=0

|Li,M−1x|+
M−2∑

j=0

|LM−1,jx|.

(22)
Since the norms are convex, the composition of the norms with
linear operators is also convex and so is their sum. This shows
that Jtv is a convex function. Let us now turn to its differen-
tiability properties. Since the Euclidean norm is differentiable
except at the origin, Jtv is not differentiable at x if any of the
following conditions holds:
(a) For some 0 ≤ i, j ≤ M − 2, Li,jx = 0, i.e., pixel-wise,
xi+1,j = xi,j = xi,j+1.
(b) For some 0 ≤ i ≤ M − 2, Li,M−1x = 0, i.e., pixel-wise,
xi+1,M−1 = xi,M−1.
(c) For some 0 ≤ j ≤ M − 2, LM−1,jx = 0, i.e., pixel-wise,
xM−1,j+1 = xM−1,j .

Step 2 of Algorithm 6 requires the computation of a subgradi-
ent gn of Jtv at xn. By the subdifferential sum theorem [24,
Thm. VI.4.1.1], it suffices to add subgradients for each of the
individual terms making up the sum in (22). Regarding the con-
tribution of the term |Li,jxn|2 to gn, there are two alternatives:
• If (a) holds, x 7→ |Li,jx|2 is nondifferentiable and its subdif-
ferential at xn is given by ∂|Li,jxn|2 = LTi,j

(
B2(0; 1)

)
, where

B2(0; 1) is the closed unit disk in R2 [34, Section 23]. Since
0 ∈ ∂|Li,jxn|2, we may elect to ignore the contribution of this
term.
• If (a) does not hold, x 7→ |Li,jx|2 is differentiable at xn and
∇|Li,jxn|2 = LTi,jLi,jxn/|Li,jxn|2 is its unique subgradient.
A term of the form |Li,M−1xn| (resp. |LM−1,jxn|) can be
treated similarly: if condition (b) (resp. (c)) holds, 0 is an ac-
ceptable subgradient and the contribution of |Li,M−1xn| (resp.
|LM−1,jxn|) may therefore be ignored; otherwise, the contribu-
tion is simply∇|Li,M−1xn| (resp. ∇|LM−1,jxn|).

B. Experiments
In this section we consider image restoration and denois-

ing problems in which the degradation model is given by y =
Lx+ u. In this model x, y, and u are, respectively, the original
image, the recorded image, and the additive noise, while L is a
known linear operator which reduces to the identity operator in
denoising problems. The images have size 128 × 128 and are
column-stacked to be represented in RN (N = 1282). In each
experiment, the statistical hypotheses on the components of u
are used to construct the closed and convex constraint set [18],
[39]

S =
{
z ∈ RN | ‖Lz − y‖2 ≤ δ

}
. (23)

If L is not invertible, S is not bounded, which, strictly speaking,
violates the compactness assumption of Section II-C. However,
to comply with this assumption, it will suffice to replace S by
B∩S, where B is a large closed ball. Knowing that the original
image has block features, the total variation objective is cho-
sen as the optimality criterion. The image restoration/denoising
problem then takes the form of the constrained total variation
minimization program

Find x∗ ∈ S such that Jtv(x∗) = inf Jtv(S). (24)

We solve this program with Algorithm 6. Let us emphasize that
in the literature the standard approach to solve (24) is to modify
it in order to apply a conventional algorithm e.g., [10], [29],
[35], [41]. Here, there is no need to simplify, approximate, or
otherwise alter (24) since Algorithm 6 can handle it as is.

Algorithm 6 is initialized with v = 0, ε = 200, and λ = 0.5.
In the restoration experiment, the degraded image of Fig. 4 is
obtained by convolving the original image shown in Fig. 3 with
a 7 × 7 uniform blurring kernel and adding zero mean Gaus-
sian white noise. The blurred image-to-noise ratio is 23.25 dB
and the projector PS is implemented by the method described
in [39]. The restored image is shown in Fig. 5. In the denois-
ing experiment, the noisy image shown in Fig. 6 is obtained by
adding a zero mean Gaussian white noise to the original image
shown in Fig. 3. The image-to-noise ratio is 5.65 dB and PS is
simply the projector onto a closed ball, e.g., [14]. The denoised
image is shown in Fig. 7.



COMBETTES AND LUO: NONDIFFERENTIABLE CONSTRAINED IMAGE RECOVERY 7

V. APPLICATION TO MINIMAX SET THEORETIC IMAGE
RECOVERY

A. General principle
The convex feasibility approach in image recovery consists

of finding an image that satisfies all the convex constraints the
image to be estimated is known to possess [11], [14], [37], [39],
[43]. If (Si)0≤i≤m are the closed convex subsets of RN repre-
senting these constraints, the problem is to

Find x∗ ∈
m⋂

i=0

Si. (25)

Since the constraint sets may be constructed from inaccurate
a priori information and uncertain measurements, the convex
feasibility problem (25) may turn out to be inconsistent, i.e.,⋂m
i=0 Si = Ø [13], [17], [21], [42]. It was shown in [17] that the

two distinct approaches to inconsistent signal set theoretic prob-
lems of [21], [42] on the one hand, and [13] on the other hand,
could be unified and extended through the single formulation

Find x∗ ∈ S0 such that Jls(x
∗) = inf Jls(S0),

with Jls : x 7→ 1

2

m∑

i=1

ωid(x, Si)
2, (26)

where
∑m
i=1 ωi = 1 and {ωi}1≤i≤m ⊂ ]0, 1]. In this formula-

tion, S0 represents the hard constraint for the problem, i.e., one
that must imperatively be enforced, while Jls is the least-squares
proximity function relative to the remaining sets (Si)1≤i≤m rep-
resenting the soft constraints. A solution to (26) is therefore
an image that satisfies exactly the hard constraint and that best
satisfies, in a least square distance sense, the soft constraints.

In some problems, a more conservative handling of constraint
inconsistency may be more appropriate. Thus, instead of min-
imizing the average square distance to the soft constraint sets,
one may seek to minimize the worst soft constraint violation.
This is tantamount to replacing (26) by

Find x∗ ∈ S0 such that Jmax(x∗) = inf Jmax(S0), (27)

where Jmax : x 7→ max1≤i≤m d(x, Si). Henceforth, we denote
by (Pi)0≤i≤m the projectors associated with (Si)0≤i≤m.

Proposition 7 The function Jmax : RN → R is convex and its
subdifferential at x ∈ RN r⋂1≤i≤m Si is given by

∂Jmax(x) =





x−
∑

i∈I(x)

µiPi(x)

max
1≤i≤m

d(x, Si)
|
{
{µi}i∈I(x) ⊂ [0, 1]∑
i∈I(x) µi = 1




,

where I(x) =
{

1 ≤ i ≤ m | d(x, Si) = max1≤j≤m d(x, Sj)
}

is the set of indices of the most remote sets from x.

On the basis of the above result, the computation ofGgαn(xn),
as needed at Step 4 of Algorithm 6, is quite straightforward and
requires only the projection of xn onto any of the most remote
sets. Indeed, take an arbitrary in ∈ I(xn). Then Jmax(xn) =

d(xn, Sin) and it follows from Proposition 7 that we can for
instance select gn = (xn − Pin(xn))/d(xn, Sin) ∈ ∂Jmax(xn)
at Step 2. Consequently, Step 4 can be executed as

xn+1 = P0

(
xn +

(
1− αn

d(xn, Sin)

)(
Pin(xn)− xn

))
.

(28)

B. Connections with other image recovery algorithms
We describe two instances in which we can set αn ≡ 0 in Al-

gorithm 6. In view of (28), it therefore reduces to the alternating
projection scheme

x0 ∈ S0 and (∀n ∈ N) xn+1 = P0

(
Pin(xn)

)
,

where d(xn, Sin) = max
1≤i≤m

d(xn, Si). (29)

B.1 Two-set inconsistent problems
Suppose that m = 1 in (27), i.e., there is only one soft con-

straint. This type of two-set inconsistent signal feasibility prob-
lem was first investigated in [21]. Here, Jmax : x 7→ d(x, S1),
which is differentiable outside S1 (cf. (3)). It can then be shown
that (27) is equivalent to a fixed point problem, which allows us
to set αn ≡ 0 [17]. Thus, we recover (29) with in ≡ 1, i.e.,

x0 ∈ S0 and (∀n ∈ N) xn+1 = P0

(
P1(xn)

)
. (30)

This is precisely the algorithm described in [21] and further dis-
cussed in [42] to construct an image in S0 which lies at mini-
mum distance from the images in S1 (see also [22, Thm. 2]).

B.2 Consistent problems
Suppose that we are dealing with a consistent set theoretic

recovery problem of type (25) with m constraints. In this case,
there is no need to specify a hard constraint and we put S0 =
RN , whence P0 = Id . Thus the problem reads

Find x∗ ∈ S∗ =
m⋂

i=1

Si. (31)

Since it is consistent, α∗ = inf Jmax(RN ) = 0 and we can
indeed set αn ≡ 0. Thus (29) becomes

x0 ∈ RN and (∀n ∈ N) xn+1 = Pin(xn),

where d(xn, Sin) = max
1≤i≤m

d(xn, Si). (32)

This scheme consists of projecting the current iterate onto one
of the most distant sets from it. The convergence of (32) to a
point in S∗ was established in [8, Thm. 2]. In the same paper [8,
Thm. 1], Brègman also proved the convergence to a point in S∗
of the periodic projection scheme

x0 ∈ RN and (∀n ∈ N) xn+1 = Pin(xn),

where in = n(modulom ) + 1, (33)

which was popularized by [43] and became known as POCS in
the signal processing community.
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C. Experiment
As in Section IV, all images have size 128 × 128 and are

column-stacked to be represented in RN (N = 1282). The orig-
inal image x of Fig. 8 is degraded by convolutional blur with a
uniform 7×7 point spread function b and addition of noise. The
noise samples are distributed in the interval [0, R] (R = 5) and
the resulting blurred image-to-noise ratio is 33 dB. The degraded
image y is shown in Fig. 9. It can be written as y = Lx + u,
where L is the N × N block-Tœplitz matrix associated with b
[5] and u is a noise vector.

Let us now construct the constraint sets for this problem.
First, the property that the pixel values are nonnegative and do
not exceed χ = 255 yields the hard constraint for the prob-
lem. The associated set is the compact convex set S0 = [0, χ]N .
Next, we assume that the point spread function matrix L is
known but that the range of the noise samples is incorrectly es-
timated to be [β1, β2], where β1 = 3/2 and β2 = 7/2. This
information leads to the N hyperslabs

Sp+1 =
{
z ∈ RN | β1 ≤ yp − 〈Lp | z〉 ≤ β2

}
(34)

where yp is the pth component of y and Lp is the pth row of
L for 0 ≤ p ≤ N − 1 [18]. Finally, it is assumed that the
discrete Fourier transform (DFT), x̂, of x is known over the low
frequency range

K ′ =
{

(k, l) ∈ {0, . . . , 127}2 | 0 ≤ k, l ≤ F
}
, where F = 3.

(35)
Recall that the DFT of the real image x possesses the conjugate-
symmetry properties





x̂(k, 0) = x̂(F − k, 0) if k 6= 0

x̂(0, l) = x̂(0, F − l) if l 6= 0

x̂(k, l) = x̂(F − k, F − l) if kl 6= 0

(36)

for all (k, l) ∈ {0, · · · , 127}2. Accordingly, the set K ′ must
be extended to a set K including all the symmetric pairs. Thus,
Sm =

{
z ∈ RN | ẑ 1K = x̂ 1K

}
, where m = N + 1 and

1K is the characteristic function of the set K, which takes value
1 on K and 0 on its complement. The projectors onto the sets
(Si)0≤i≤m are straightforward and can be found in [14].

The above set theoretic formulation is rendered inconsistent
by the fact that the bounds on the amplitude of the noise are
incorrect. The problem is set up as (27) and solved by Algo-
rithm 6, where v = 0, ε = 10−3, and λ = 0.5. The restored
image is shown in Fig. 10.

VI. CONCLUSION

The use of nondifferentiable objectives has been advocated
in various image recovery studies. In this paper, we have pro-
posed a reliable, general-purpose algorithm for recovering an
image by minimizing a nondifferentiable convex function over
a convex feasibility set. Its principle is to alternate a subgradi-
ent projection onto an adaptively refined approximation to the
optimal level set of the objective and an exact projection onto
the feasibility set. Unlike the methods typically in use in im-
age recovery, the proposed algorithm is not tailored to a specific
kind of nondifferentiable objective and does not require any al-
teration of the problem formulation. Numerical applications to

image denoising and restoration problems have confirmed the
efficiency of the method. For problems in which the feasibility
set is complex, eliminating the reliance on projections to enforce
feasibility would further enhance the efficiency of the method
and constitutes a high priority for further work.

APPENDIX A – PROOFS

Proof of Theorem 4: In view of (17), the ability to detect
infeasibility at Step 5 implies that Step 6 will be executed re-
peatedly until we get ηn+1 ≤ λε at Step 1 and terminate the
algorithm at iteration n + 1 with xn as a solution. Note that
ηn = ηn+1/λ ≤ ε and that, since infeasibility has been detected
at iteration n, αn < α∗. Consequently, it follows from (9) and
(11) that J(xn) ≤ αn = αn + ηn ≤ α∗ + ε. �

Proof of Proposition 5: (i): Fix m ∈ N. It follows from
(11) and the definition of Nm that, for every n ∈ Nm, αn =
αn − λmη0. Hence, since (αn)n∈Nm is nonincreasing by (10),
so is (αn)n∈Nm . To prove the second claim, we proceed by con-
tradiction. Suppose that, for some m ∈ N, we have (∀n ∈ Nm)
αn ≥ α∗. Then (∀n ∈ Nm) S ∩ lev≤αn J 6= Ø and therefore
Nm is infinite by (11). Since (αn)n∈Nm is nonincreasing and
bounded from below by α∗, it converges to some α ≥ α∗. It
follows from Theorem 1 that (xn)n∈Nm converges to some x ∈
S ∩ lev≤α J and, from the continuity of J , that (J(xn))n∈Nm
converges to J(x) ≤ α. On the other hand, (11) and (9) yield

(∀n ∈ Nm) αn = αn − λmη0 ≤ J(xn)− λmη0. (A1)

Hence, by passing to the limit, we obtain α ≤ J(x) − λmη0.
Altogether, α < J(x) ≤ α, which is absurd.

(ii): Suppose that Nm is infinite. Then (∀n ∈ Nm) αn =
αn−λmη0 ≥ α∗−λmη0 and it follows from (i) that (αn)n∈Nm
converges to some α ∈ ]−∞, α∗[. Since (xn)n∈Nm lies in the
compact set S, it contains a subsequence (xkn)n≥0 converging
to some point x ∈ S and it follows from the continuity of J that

limJ(xkn)− αkn = J(x)− α. (A2)

Let us now show that
∑
n∈Nm ρn = +∞. Given β ∈ R, we

shall use the notation β+ = max{0, β}. First, let us note that,
since (xkn)n≥0 is bounded, [34, Thm. 24.7] implies that

sup
n≥0
‖g(xkn)‖ < +∞. (A3)

Hence,
∑
n∈Nm ρn < +∞ ⇒ ρkn → 0 ⇒ [by (15)]

Ggαkn (xkn)−xkn → 0⇒ [by (4)]
(
J(xkn)−αkn

)+
/‖g(xkn)‖

→ 0 ⇒ [by (A3)]
(
J(xkn) − αkn

)+ → 0 ⇒ [continuity of
β 7→ β+]

(
limJ(xkn) − αkn

)+
= 0 ⇒ [by (A2)]

(
J(x) −

α
)+

= 0⇒ J(x) ≤ α. However this is absurd since x ∈ S ⇒
J(x) ≥ α∗ > α.

(iii): Fix n ∈ Nm, k ∈ {lm, . . . , n}, and set x∗ = PS∗(xlm).
If S ∩ lev≤αk J 6= Ø, then x∗ ∈ S∗ = S ∩ lev≤α∗ J ⊂ S ∩
lev≤αk J . It then follows from (5) and (2) that

ρk = ‖Ggαk(xk)− xk‖2 + ‖PS ◦Ggαk(xk)−Ggαk(xk)‖2

≤ ‖xk − x∗‖2 − ‖Ggαk(xk)− x∗‖2 + ‖Ggαk(xk)− x∗‖2

−‖PS ◦Ggαk(xk)− x∗‖2

= ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (A4)
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Now suppose S ∩ lev≤αn J 6= Ø. Then S ∩⋂nk=lm
lev≤αk J 6=

Ø and (A4) implies

n∑

k=lm

ρk ≤ ‖xlm − x∗‖2 − ‖xn+1 − x∗‖2. (A5)

Consequently,

‖xlm − x∗‖2 − ‖xn+1 − x∗‖2

= 2〈xlm − x∗ | xlm − xn+1〉 − ‖xlm − xn+1‖2
≤ 2‖xlm − x∗‖ · ‖xlm − xn+1‖ − ‖xlm − xn+1‖2
≤ 2γm‖xlm − xn+1‖ − ‖xlm − xn+1‖2. (A6)

Thus, S ∩ lev≤αn J 6= Ø implies

n∑

k=lm

ρk ≤ ‖xlm − xn+1‖(2γm − ‖xlm − xn+1‖). (A7)

�
Proof of Proposition 7: Let convQ be the convex hull of a

set Q in RN , i.e., the smallest convex set containing Q, and
let (Ji)1≤i≤m be convex functions from RN into R. Then by
[24, Thm. VI.4.4.2] J = max1≤i≤m Ji is convex and, for every
x ∈ RN , ∂J(x) = conv

⋃
i∈I(x) ∂Ji(x), where I(x) =

{
1 ≤

i ≤ m | Ji(x) = J(x)
}

. Hence the claim follows from (3). �
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Fig. 1. Ggαn(xn) is a subgradient projection of xn onto levαn J and ρn =
a2 + b2 (here αn < α∗).
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Fig. 2. Level sets of the function J for α ≤ α∗ ≤ α. x∗ is an optimal solution
and x a point in S ∩ lev≤α J .
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Fig. 3. Original image.

Fig. 4. Degraded image.

Fig. 5. Restored image.

Fig. 6. Noisy image.

Fig. 7. Denoised image.

Fig. 8. Original image.
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Fig. 9. Degraded image.

Fig. 10. Restored image.


