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Image Restoration Subject to a
Total Variation Constraint

Patrick L. Combettes, Senior Member, IEEE, and Jean-Christophe Pesquet, Senior Member, IEEE

Abstract—Total variation has proven to be a valuable concept in
connection with the recovery of images featuring piecewise smooth
components. So far, however, it has been used exclusively as an ob-
jective to be minimized under constraints. In this paper, we pro-
pose an alternative formulation in which total variation is used as
a constraint in a general convex programming framework. This
approach places no limitation on the incorporation of additional
constraints in the restoration process and the resulting optimiza-
tion problem can be solved efficiently via block-iterative methods.
Image denoising and deconvolution applications are demonstrated.

I. PROBLEM STATEMENT

THE CLASSICAL linear restoration problem is to find the
original form of an image in a real Hilbert space

from the observation of a degraded image

(1)

where is a bounded linear operator modeling the
blurring process and models an additive noise com-
ponent. Numerous approaches have been developed over the
past three decades to solve this problem (see, for instance, [2],
[9], [16], [33], [35], [39], and the references therein). Roughly
speaking, restoration problems are typically posed as optimiza-
tion problems in which an appropriate objective function is
minimized under certain constraints. Restricting ourselves to
convex problems, a general formulation is, therefore

Find such that (2)

where the objective is a convex function
and the constraint sets are closed convex subsets of

. These constraints arise from a priori knowledge about the
model (1) and the original image . For instance, the classical
formulation of [21] concerns problems with smooth images in
which the energy of the noise is known. The goal is then to
find the smoothest image in terms of some high-pass filtering
operator which is consistent with (1) and the
noise information, hence and
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in (2). In the Sobolev space ,
where is an open subset of , the formulation of [21] reads

minimize subject to (3)

where denotes the Laplacian of . In ,
smoothness can also be enforced with the objective

, where denotes the Eu-
clidean norm in and the gradient of [20], [22], [34].

A. Total Variation Restoration

For images with sharp contours and block features, it was pro-
posed in [32] (see also [26] and [31]) to formulate the restoration
problem as

minimize subject to (4)

If , the quantity

(5)

is the total variation of ; physically, is a measure of the
amount of oscillations in . It should be noted that, under cer-
tain assumptions [7], Lagrangian theory provides a conceptual
equivalence between (4) and the unconstrained problem

minimize (6)

which is often implemented in practice (see also [30] for alterna-
tive Lagrangian formulations). However, finding the exact La-
grange parameter is a computationally intensive task. As a
result, the numerical value of in (6) is typically set in an ad
hoc manner, e.g., [23], [38], which can have a significant impact
on the solution [1].

The formulation (4), and its variant (6), has proven particu-
larly effective in denoising problems for piecewise smooth im-
ages, and it has been the focus of a great deal of attention in recent
years in the image processing and applied mathematics commu-
nities, e.g., [1], [5]–[8], [12], [14], [19], [23], [24], [28], [30], and
[38]. At the same time, it has some inherent limitations.

• Staircase effect: The intensity levels of images produced
by total variation minimization tend to cluster in patches.
These artifacts have been observed by several authors, e.g.,
[8], [39], and investigated for one-dimensional discrete
models in [25]. An explanation for the staircase effect is
that the algorithm produces a restored image whose total
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variation can be significantly below that of the original
image .

• Knowledge of noise environment: The construction of
the bound in (4) requires specific assumptions and in-
formation about the noise [15], [36]. In some problems,
such conditions may not be met.

In connection with the question of solving (4) exactly via nu-
merical algorithms, it should also be noted that the nondiffer-
entiable optimization algorithms currently in use are not easily
amenable to the incorporation of additional complex constraints
[14].

B. Proposed Approach

The goal of this paper is to propose an alternative framework
for incorporating total variation in the restoration process. Our
starting point is the observation that, in the spirit of feasibility
methods [9], [36], [40], one would ideally like to obtain a re-
stored image in the convex set of im-
ages whose total variation is consistent with that of the original
image . Of course, in practice, is usually unknown, but
a reasonable upper bound may be available for certain classes
of images based on statistics of databases. Thus, under suitable
assumptions, if is a binary image, then is the length of
the boundary of its support [18, example 1.4]; if is a gray-level
image, then is obtained by integrating the length of the
level curves with respect to [41, theorem
2.7.1] (see also [41, theorem 5.4.4]). Hence, constitutes a
geometrical attribute that can be expected to exhibit limited vari-
ance over certain classes of images, e.g., views of similar urban
areas in satellite imaging, tomographic reconstructions of similar
cross sections in tomography, fingerprint images, text images, or
face images. For instance, on a database of 564 images showing
different (from 19 to 48) views of 20 different human faces [37],
we have computed the average value of the total variation for
each person as well as the proportion of views whose total vari-
ation lies between 0.8 and 1.2 (as will be seen in Section
IV-A.3, this typically corresponds to the kind of deviation which
is acceptable in our framework). Fig. 1 shows that the propor-
tion of images between these bounds is around 99%.

The information restricts the solutions to the
convex set

(7)

Given a pertinent objective , this set can be incorporated in
(2) in conjunction with additional constraints arising
from a priori knowledge. This framework departs from the tra-
ditional formulation (4) in that total variation is now used as
a constraint rather than an objective. Under mild assumptions
on , the resulting optimization problem (2) is much more at-
tractive since, as a constraint, total variation can be efficiently
processed via subgradient projections in the context of block-it-
erative outer approximation methods [11]. Furthermore, this ap-
proach places no restriction on the number of constraints or
on their analytical complexity.

It should be noted that the idea of using an upper bound on
the total variation of images also appears in [27] as a stopping
criterion in a PDE-driven restoration scheme.

Fig. 1. For 20 different data sets, the percentage of images whose total
variation falls within 20% of the average total variation of the set.

C. Organization of the Paper

In Section II, we provide the necessary background material.
In Section III, the proposed problem formulation is formally
stated and a block-iterative parallel algorithm is described to
solve it. Two numerical applications are considered in Section
IV, namely deconvolution of satellite images and denoising in
the presence of non-Gaussian noise. The proofs of technical re-
sults are placed in the Appendix.

II. BACKGROUND

A. Notation

The underlying image space is a real Hilbert space with
scalar product and norm . The distance from an image

to a nonempty set is . Given
a continuous convex function and , the closed
and convex set

(8)

is the lower level set of at height . A vector is a
subgradient of at if

(9)

As is continuous, it always possesses at least one subgradient
at each point . If is (Gâteaux) differentiable at , then it
possesses a unique subgradient at this point, namely its gradient

. The set of all subgradients of at is the subdifferential
of at and is denoted by . For background on convex
analysis, see [17] and [29].

B. Subgradient Projections

The reader will find a more detailed account of subgradient
projections in [4], [9], and [10]; we provide only the essential
facts here.

Let be a nonempty closed and convex subset of and let
be a point in . Then, there exists a unique point such
that is called the projection of onto

. Now, suppose that , where is
continuous and convex (the identity shows that
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such a representation always exists). Fix , a subgradient
, and define

if
if

(10)

Then, and the projection of onto , i.e.

if

if
(11)

is called a subgradient projection of onto . We note that com-
puting requires only the knowledge of a subgradient of
at and is, therefore, much more economical than computing
the exact projection , as the latter amounts to solving a con-
strained quadratic minimization problem. However, when
is easy to compute, one can set and obtain .

C. Image Spaces and Total Variation

Complements on functional spaces and total variation will be
found in [18] and [41].

Let be an open subset of , let , and let
be a generic point in . As usual, denotes the

space of infinitely differentiable functions with compact support
in , and is the space of functions whose th power is
absolutely integrable on . Given and ,
the function is the weak partial derivative of

with respect to if
; the (weak) gradient of is

. The Sobolev space of index is
is

a Hilbert space. Likewise,
.

It will, henceforth, be assumed that is a nonempty
bounded open set. An analog image is modeled as an element in

. Since is bounded, and the total
variation of an image is finite and given by (5).

On the other hand, in the discrete setting that prevails in nu-
merical applications, analog images are discretized on a finite

sampling grid. The total variation of the discrete image
is obtained by discretizing (5)

into (see [14])

(12)

Now, set . As is customary, a discrete image
will be dealt with as a vector

in the usual Euclidean space through the column
stacking isometry [2]. In turn, upon intro-
ducing suitable difference matrices in

in , and in ,
the total variation of can be expressed as

(13)

Proposition 1: Let be either or . Then,
is a continuous convex function.

III. NUMERICAL METHOD

A. Assumptions

As formulated in Section I-B, the restoration problem is to
solve (2) in a Hilbert space , where is a
convex function, is given by (7), and are closed
convex sets in . We saw in Section II-C that is either
or , according as we consider the theoretical analog model
or the discrete model. As in [10] and [13], it is convenient to
model the constraint sets as level sets, say

(14)

where are continuous convex functions from to .
In view of Proposition 1, the set can also be put in this format
by setting . The problem is, therefore, to

minimize subject to (15)

We shall use the general convex programming framework de-
veloped in [11], which is particularly well adapted to problems
of the type specified by (2) and (14). In order to avoid tech-
nical complications, we shall focus on the numerical results of
immediate computational interest in (the reader can
refer to [11] for the infinite dimensional results pertinent to the
convergence analysis in ). We now state our assumptions
formally.

Assumption 2:

1) is defined by (7), by (14), where
the functions are finite and convex, and

.
2) is convex and lower semicontin-

uous.
3) There exists such that

is bounded and is differentiable and strictly
convex on .

Proposition 3: Suppose that and that
is strictly convex, differentiable, and coercive, that is,

. Then items 2)–3) in Assump-
tion 2 are satisfied.

B. Solution Algorithm

Recall from (11) that, if is a subgradient of at ,
the subgradient projection of onto associated with is

if

if
(16)
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Given and convex weights , define

if

otherwise
(17)

We are now ready to describe the algorithm.

Algorithm 4
Fix . Let be the minimizer of over

and set .
Take a nonempty index set .
Set , where

a) for every is as in (16);
b) lies in and ;
c) is as in (17).

Set and
.

Let be the minimizer of over .
Set and go to .

Theorem 5: Suppose that Assumption 2 is satisfied and that
there exists a strictly positive integer such that, for every

and every . Then, every
sequence generated by Algorithm 4 converges to the unique so-
lution to (2) or, equivalently, to (15).

The key step in the algorithm is Step , in which the up-
date is obtained as the minimizer of over the intersec-
tion of the two half spaces and , which contains . Spe-
cific implementations of this basic minimization problem under
two affine inequality constraints will be discussed in Sections
IV-A.2 and IV-B.2. Let us note that if one bypasses Step and
replaces Step by , one recovers an algorithm pro-
posed in [10]. However, in this case, converges to an
unspecified image in the feasibility set [10, theorem 3].

C. Practical Considerations

A few remarks are in order.

1) If the total variation set of (7) is selected at iteration ,
the subgradient projection of is required. In view
of (16) and (13), we have

if

if
(18)

Fig. 2. Original image. Pixel range [0, 255].

where the subgradient can be taken to be
(see Section IV-A in [14])

(19)

with (20), as shown at the bottom of the page.
2) The condition on imposes merely that every

index be used at least once within any consecutive it-
erations. As a result, Algorithm 4 is very flexible in terms
of parallel implementation. For instance, if parallel
processors are available, one can choose to use all the
sets simultaneously at iteration , i.e., ;
if only one processor is available, one can sweep through
the sets periodically as in the POCS algorithm [40], i.e.,

modulo . Intermediate block-iterative
sweeping rules are described in [10].

3) If the projection of onto a selected set is easy
to compute, one can take , which amounts
to setting .

IV. SIMULATIONS RESULTS

A. Application to Satellite Imaging

1) Experiments: The original image shown in Fig. 2 is
a SPOT-5 256 256 satellite image, hence , where

. The degraded image shown in Fig. 3 is obtained

if
otherwise
if
otherwise
if
otherwise

(20)
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Fig. 3. Degraded image. Pixel range [4, 263].

Fig. 4. Standard total variation deconvolution by (4). Pixel range [0, 267].

by convolving with a 7 7 uniform blur and adding Gaussian
white noise. The blurred-image to noise ratio is 30 dB. The
degradation model is, therefore, (1), where the convolution ma-
trix is assumed to be known.

First, we assume that the above mentioned characteristics of
the noise are known. The bound of (4) can, therefore, be de-
rived from these informations [15], [36]. The standard total vari-
ation problem (4) is solved using the adaptive level set method
of [14] and its solution is shown in Fig. 4. The total variation of
the restored image is , which is much below the true
value .

We now turn to an alternative scenario, in which no informa-
tion is available about the noise but a bound is available on the
total variation of the original image (e.g., as estimated from
a pool of similar satellite images), which makes it possible to
set up the problem in the proposed format (2). The objective is
chosen to be , where .

Fig. 5. Quadratic deconvolution with bounded total variation. Pixel range
[�55, 316].

Fig. 6. Quadratic deconvolution with bounded total variation and additional
constraints. Pixel range [0, 259].

Note that since is not invertible, the residual energy function
is not strictly convex. We, therefore, introduce

the term to make strictly convex, in compliance with
item 3) in Assumption 2. Assuming no further information on
leads to the minimization of over . The solution produced
by Algorithm 4 in this case has total variation and is
shown in Fig. 5. Next, we assume that additional information is
available about , namely amplitude bounds and mean. Hence,
we use the set of (7), as well as the sets and

in (2), where is the vector whose
entries are all equal to 1. The minimizer of over , ob-
tained by Algorithm 4, has total variation and is
shown in Fig. 6. It is apparent that the incorporation of additional
information has improved the restoration. Finally, to provide ev-
idence of the value of total variation information, we display in
Fig. 7 the image obtained by minimizing over , i.e.,
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Fig. 7. Quadratic deconvolution with no total variation constraint. Pixel range
[0, 257].

Fig. 8. tv(x )=tv(�x) versus the iteration index n.

without the total variation constraint. This image has total vari-
ation .

2) Implementation of Algorithm 4 and Convergence Pat-
terns: Exact projections onto and are used since they
are easily computed, whereas a subgradient projection onto
is employed. Now, let . Then, the initial point
is seen to be . Moreover, since the objective
is quadratic, the expression of at Step of Algorithm 4
can be obtained in closed form [13]. Thus, the th iteration can
be executed as described in the following pseudocode, where
the subscript has been dropped (see Section IV-C in [13] for
details).

1) For every , set , where
, if otherwise.

2) Choose convex weights conforming to Step b).
Set and .

3) If , exit iteration. Otherwise, set
, and .

Fig. 9. kx � �xk=k�xk versus the iteration index n.

Fig. 10. Normalized error kx � x k=kx k as a function of �=�� .

4) Set .
5) Set , and

.
6) Set

if and
if and

if and

To illustrate the convergence behavior of the method in the
case of the last experiment corresponding to Fig. 6, we display
the evolution of the total variation and of the root mean-square
error in Figs. 8 and 9. Both indicate that convergence occurs
roughly around the 50th iteration.

3) Sensitivity Assessment: In practice, the value of may
not be known precisely and it is, therefore, important to eval-
uate its impact on the solution. Let us denote by the solution
produced by the algorithm with the constraint sets
for a given bound in (7) and by the true bound.
The normalized root mean square error as a
function of is displayed in Fig. 10. This curve shows that
the method is robust in the sense that, as varies from 0.82
to 1.21, the resulting error does not exceed 5%.



COMBETTES AND PESQUET: IMAGE RESTORATION SUBJECT TO A TOTAL VARIATION CONSTRAINT 1219

Fig. 11. Original image. Pixel range [0, 255].

Fig. 12. Noisy image. Pixel range [�261, 460].

B. Denoising Application

1) Experiments: Adding i.i.d. Laplacian noise to the orig-
inal 128 128 gray-level image shown in Fig. 11 results in
the image shown in Fig. 12. The image-to-noise ratio is 1 dB.
Here, , where .

We first assume knowledge of the noise statistics and no
knowledge of the total variation bound. This corresponds to the
standard total variation problem (4), whose solution, obtained
by the method of [14], is shown in Fig. 13.

A second scenario consists of assuming no probabilistic
knowledge of the noise and applying Algorithm 4 with the same
constraints sets as in Section IV-A.1. A common objective in
denoisingproblemsis the thpowerof the normof theresidual,
namely

(21)

Fig. 13. Standard total variation denoising by (4). Pixel range [�113, 307].

Fig. 14. ` denoising with bounded total variation. Pixel range [�156, 277].

The impulsive nature of the noise naturally suggests choosing
a value of close to 1. We set , which secures that
Assumption 2 is satisfied by Proposition 3. The solution to (2),
obtained by Algorithm 4 with the total variation constraint set

alone is shown in Fig. 14. The restoration displayed in Fig. 15
is obtained by using the sets in (2). This experiment
illustrates the benefits of added information. The important role
played by the total variation constraint set can be seen in Fig.
16, which shows the image obtained by minimizing over

. The total variation of the images is in Fig. 11,
in Fig. 13, in Fig. 14, in

Fig. 15, and in Fig. 16.
2) Implementation of Algorithm 4 and Convergence Patterns:

Here, we have . The main difference with the
experiment of Section IV-A.1 is that an explicit solution at
Step of Algorithm 4 is not available. We can, however,
employ a Lagrangian formulation to reduce the problem to the
minimization of a convex function of only two nonnegative
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Fig. 15. ` denoising with bounded total variation and additional constraints.
Pixel range [�1, 255].

Fig. 16. ` denoising with no total variation constraint. Pixel range [�4, 255].

real variables. Indeed, standard convex programming results
[29, section 28] show that the solution and the associated
Karush–Kuhn–Tucker vector are
solutions to the saddle-point problem

(22)

Since the gradient of the objective is bijective,
we can express the solution to the above minimization problem
as a function of , namely

(23)

We then deduce as the solution to the following simple convex
minimization problem in

Fig. 17. tv(x )=tv(�x) versus the iteration index n.

Fig. 18. kx � �xk=k�xk versus the iteration index n.

which can be solved by standard numerical methods. In turn, we
obtain .

The asymptotic behavior of the algorithm in the experiment
corresponding to Fig. 15 is illustrated in Figs. 17 and 18, where
we show the evolution of the total variation and of the root mean-
square error, respectively. Convergence is achieved in roughly
350 iterations.

APPENDIX

APPENDIX–PROOFS

Proof of Proposition 1: First, suppose that .
Then, tv is defined by (5) and finite on (see Section II-C).
Now, take and in and . Then, by linearity of

. Hence,
, which proves

the convexity of tv. Next, since tv is finite and convex, it suffices
to show that it is sequentially lower semicontinuous to establish
its continuity [17, Cor. I.2.5]. To this end, let be a se-

quence in such that and set . Then,
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we must show that . Let us extract a subsequence
such that . Then

(24)

Hence, . Therefore, it follows from [3, theo-
rems 2.5.1 and 2.5.3] that we can extract a further subsequence

such that . It now follows from
Fatou’s lemma [3, Lem. 1.6.8] that

(25)

which yields the desired inequality. Finally, when , tv
is defined by (13) and, by [17, Cor. I.2.3], it is enough to show its
convexity. This follows at once from the convexity of the norms
and the linearity of the operators involved in (13).

Proof of Proposition 3: Since is convex and finite, it is
continuous [17, Cor. I.2.3] and 2) holds. Furthermore, the coer-
civity of implies that all its lower level sets are bounded, so
that 3) also holds.

Proof of Theorem 5: The result is an application of [11,
theorem 6.4(i)]. First, it follows from [11, (6.10)] and Step
c) that at Step of Algorithm 4 can be written as

(26)

Moreover, by construction, lies in [11, Prop. 3.1(ii)].
Hence, in view of [11, (5.4)] and item 3) in Assumption 2, Algo-
rithm 4 is a special case of [11, Algorithm 6.4]. Next, it follows
from Assumption 2, [11, Prop. 2.1(i)] and [11, Prop. 2.2(ii)],
that assumptions [11, (A1)–(A3)] are satisfied with .
We conclude by observing that, by [11, Prop. 4.7(ii)] and [29,
theorem 24.7], all the conditions of [11, theorem 6.4(i)] are ful-
filled.
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