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A quasi-Fejér sequence is a sequence which satisfies the standard Fejér monotonicity
property to within an additional error term. This notion is studied in detail in a Hilbert
space setting and shown to provide a powerful framework to analyze the convergence of a
wide range of optimization algorithms in a systematic fashion. A number of convergence
theorems covering and extending existing results are thus established. Special emphasis
is placed on the design and the analysis of parallel algorithms.

1. INTRODUCTION

The convergence analyses of convex optimization algorithms often follow standard pat-
terns. This observation suggests the existence of broad structures within which these
algorithms could be recast and then studied in a simplified and unified manner.

One such structure relies on the concept of Fejér monotonicity: a sequence (xn)n≥0 in a
Hilbert space H is said to be a Fejér (monotone) sequence relative to a target set S ⊂ H
if

(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖xn − x‖. (1)

In convex optimization, this basic property has proven to be an efficient tool to analyze
various optimization algorithms in a unified framework, e.g., [ 8], [ 9], [ 10], [ 13], [ 20], [
22], [ 29], [ 30], [ 31], [ 45], [ 54], [ 63], [ 64], [ 69]; see also [ 24] for additional references
and an historical perspective. In this context, the target set S represents the set of
solutions to the problem under consideration and (1) states that each iterate generated
by the underlying solution algorithm cannot be further from any solution point than its
predecessor.

In order to derive unifying convergence principles for a broader class of optimization
algorithms, the notion of Fejér monotonicity can be extended in various directions. In
this paper, the focus will be placed on three variants of (1).

Definition 1.1 Relative to a nonempty target set S ⊂ H, a sequence (xn)n≥0 in H is
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• Quasi-Fejér of Type I if

(∃ (εn)n≥0 ∈ `+ ∩ `1)(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖xn − x‖+ εn. (2)

• Quasi-Fejér of Type II if

(∃ (εn)n≥0 ∈ `+ ∩ `1)(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖xn − x‖2 + εn. (3)

• Quasi-Fejér of Type III if

(∀x ∈ S)(∃ (εn)n≥0 ∈ `+ ∩ `1)(∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖xn − x‖2 + εn. (4)

The concept of quasi-Fejér sequences goes back to [ 34], where it was introduced through
a property akin to (4) for sequences of RN -valued random vectors (see also [ 33] for more
recent developments in that direction). Instances of quasi-Fejér sequences of the above
three types also appear explicitly in [ 2], [ 47], and [ 49].

The goal of this paper is to study the properties of the above types of quasi-Fejér
sequences and to exploit them to derive convergence results for numerous optimization
algorithms. Known results will thus be recast in a common framework and new extensions
will be obtained in a straightforward fashion. In Section 2, it is shown that most common
types of nonlinear operators arising in convex optimization belong to a so-called T class
whose properties are investigated. The asymptotic properties of quasi-Fejér sequences are
discussed in Section 3. In particular, necessary and sufficient conditions for weak and
strong convergence are established and convergence estimates are derived. In Section 4, a
generic quasi-Fejér algorithm is constructed by iterating T -class operator with errors and
introducing relaxation parameters. Convergence results for this algorithm are obtained
through the analysis developed in Section 3 and applied to specific optimization prob-
lems in Section 5. In Section 6, a general inexact, parallel, block-iterative algorithm for
countable convex feasibility problems is derived from the generic algorithm constructed in
Section 4 and analyzed. All the algorithms discussed up to this point are essentially per-
turbed Fejér monotone algorithms. Section 7 concerns the projected subgradient method
and constitutes a different field of applications of the analysis of Section 3.

Notation. Throughout H is a real Hilbert space with scalar product 〈· | ·〉, norm ‖ · ‖,
and distance d. Given x ∈ H and ρ ∈ ]0, +∞[, B(x, ρ) is the closed ball of center x and
radius ρ. The expressions xn ⇀ x and xn → x denote respectively the weak and strong
convergence to x of a sequence (xn)n≥0 in H, W(xn)n≥0 its set of weak cluster points,
and S(xn)n≥0 its set of strong cluster points. aff S, conv S, and conv S are respectively
the closed affine hull, the closed convex hull, and the convex hull of a set S. dS is the
distance function to the set S and, if S is closed and convex, PS is the projector onto
S. The sets dom A = {x ∈ H | Ax 6= Ø}, ran A = {u ∈ H | (∃x ∈ H) u ∈ Ax}, and
grA = {(x, u) ∈ H2 | u ∈ Ax} are respectively the domain, the range, and the graph
of a set-valued operator A : H → 2H; the inverse A−1 of A is the set-valued operator
with graph {(u, x) ∈ H2 | u ∈ Ax}. The subdifferential of a function f : H → R is the
set-valued operator

∂f : H → 2H : x 7→ {
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)

}
(5)
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and the elements of ∂f(x) are the subgradients of f at x. The lower level set of f at
height η ∈ R is lev≤η f = {x ∈ H | f(x) ≤ η}. Fix T = {x ∈ H | Tx = x} denotes the set
of fixed points of an operator T : H → H. Finally, `+ denotes the set of all sequences in
[0, +∞[ and `1 [resp. `2] the space of all absolutely [resp. square] summable sequences in
R.

2. NONLINEAR OPERATORS

Convex optimization algorithms involve a variety of (not necessarily linear) operators.
In this respect, recall that an operator T : H → H with dom T = H is firmly nonexpansive
if

(∀(x, y) ∈ H2) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(T − Id )x− (T − Id )y‖2; (6)

nonexpansive if

(∀(x, y) ∈ H2) ‖Tx− Ty‖ ≤ ‖x− y‖; (7)

and quasi-nonexpansive if

(∀(x, y) ∈ H × Fix T ) ‖Tx− y‖ ≤ ‖x− y‖. (8)

Clearly, (6) ⇒ (7) ⇒ (8). Now let A : H → 2H be a monotone operator. Then the
resolvent of index γ ∈ ]0, +∞[ of A is (the single-valued operator) (Id + γA)−1. Next, let
f : H → R be a continuous convex function such that lev≤0 f 6= Ø and let g be a selection
of ∂f . Then the operator

Gg
f : x 7→





x− f(x)

‖g(x)‖2
g(x), if f(x) > 0

x if f(x) ≤ 0
(9)

is a subgradient projector onto lev≤0 f .
The above operators are closely related to the so-called class T of [ 9]. Given (x, y) ∈ H2,

we shall use the notation

H(x, y) =
{
u ∈ H | 〈u− y | x− y〉 ≤ 0

}
. (10)

Definition 2.1 [ 9, Def. 2.2] T =
{
T : H → H|dom T =H, (∀x∈H) Fix T ⊂ H(x, Tx)

}
.

Proposition 2.2 [ 9, Prop. 2.3] Consider the following statements:

(i) T is the projector onto a nonempty closed and convex subset of H.

(ii) T is the resolvent of a maximal monotone operator A : H → 2H.

(iii) dom T = H and T is firmly nonexpansive.
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(iv) T is a subgradient projector onto lev≤0 f , where f : H → R is a continuous convex
function such that lev≤0 f 6= Ø.

(v) dom T = H and 2T − Id is quasi-nonexpansive.

(vi) T ∈ T .

Then:

(i) ⇒ (ii) ⇔ (iii)
⇓ ⇓

(iv) ⇒ (v) ⇔ (vi).

Some properties of T -class operators are described below.

Proposition 2.3 Every T in T satisfies the following properties.

(i) (∀(x, y) ∈ H × Fix T ) ‖Tx− x‖2 ≤ 〈y − x | Tx− x〉.
(ii) Put T ′ = Id +λ(T − Id ), where λ ∈ [0, 2]. Then (∀(x, y) ∈ H×Fix T ) ‖T ′x−y‖2 ≤

‖x− y‖2 − λ(2− λ)‖Tx− x‖2.

(iii) (∀x ∈ H) ‖Tx− x‖ ≤ dFix T (x).

(iv) Fix T =
⋂

x∈H H(x, Tx).

(v) Fix T is closed and convex.

(vi) (∀λ ∈ [0, 1]) Id + λ(T − Id ) ∈ T .

Proof. From Definition 2.1, we get

(∀(x, y) ∈ H × Fix T ) 〈y − Tx | x− Tx〉 ≤ 0. (11)

and (i) ensues. (ii): Fix (x, y) ∈ H × Fix T . It follows from (i) that

‖T ′x− y‖2 = ‖x− y‖2 − 2λ〈y − x | Tx− x〉+ λ2‖Tx− x‖2

≤ ‖x− y‖2 − λ(2− λ)‖Tx− x‖2. (12)

(iii): Fix x ∈ H. Then (ii) with λ = 1 implies

(∀y ∈ Fix T ) ‖Tx− x‖ ≤ ‖y − x‖. (13)

Now take the infimum over all y ∈ Fix T (with the usual convention inf Ø = +∞). (iv)-
(vi): See [ 9, Prop. 2.6].

The next proposition provides a generalization of the operator averaging process de-
scribed in item (vi) that will be an essential component in the design of block-iterative
parallel algorithms in Section 6.
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Proposition 2.4 Let I be a countable index set, (Ti)i∈I a family of operators in T , and
(ωi)i∈I strictly positive real numbers such that

∑
i∈I ωi = 1. Suppose that

⋂
i∈I Fix Ti 6= Ø

and let

T : H → H : x 7→ x + λ(x)L
(
x, (Ti)i∈I , (ωi)i∈I

)
(∑

i∈I

ωiTix− x

)
, (14)

where, for every x ∈ H, λ(x) ∈ ]0, 1] and

L
(
x, (Ti)i∈I , (ωi)i∈I

)
=





1 if x ∈ ⋂
i∈I Fix Ti∑

i∈I ωi‖Tix− x‖2

‖∑
i∈I ωiTix− x‖2

otherwise.
(15)

Then Fix T =
⋂

i∈I Fix Ti and T ∈ T .

Proof. Fix (x, y) ∈ H×⋂
i∈I Fix Ti. We first observe that the series

∑
i∈I ωi(Tix − x)

converges absolutely since, by (13),
∑

i∈I ωi‖Tix− x‖ ≤ ‖y − x‖. Moreover, by Proposi-
tion 2.3(i),

(∀i ∈ I) ‖Tix− x‖2 ≤ 〈y − x | Tix− x〉. (16)

Hence, since the function ‖ · ‖2 is convex and continuous, we arrive at the chain of in-
equalities

∥∥∥∥∥
∑
i∈I

ωiTix− x

∥∥∥∥∥

2

≤
∑
i∈I

ωi‖Tix− x‖2 ≤
〈

y − x

∣∣∣∣∣
∑
i∈I

ωiTix− x

〉

≤ ‖y − x‖ ·
∥∥∥∥∥
∑
i∈I

ωiTix− x

∥∥∥∥∥ , (17)

from which we deduce that

x ∈ Fix
∑
i∈I

ωiTi ⇔
∥∥∥∥∥
∑
i∈I

ωiTix− x

∥∥∥∥∥ = 0 ⇔
∑
i∈I

ωi‖Tix− x‖2 = 0

⇔ x ∈
⋂
i∈I

Fix Ti. (18)

Hence, L(x) in (15) is a well-defined number in [1, +∞[ and

Fix T = Fix
∑
i∈I

ωiTi =
⋂
i∈I

Fix Ti. (19)

Since dom T = H, it remains to show that Fix T ⊂ H(x, Tx) to establish that T ∈ T . To
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this end, we derive from (16) that

〈y − x | Tx− x〉 = λ(x)L(x)
∑
i∈I

ωi〈y − x | Tix− x〉

≥ λ(x)L(x)
∑
i∈I

ωi‖Tix− x‖2

=
1

λ(x)

(
λ(x)L(x)

∥∥∥∥∥
∑
i∈I

ωiTix− x

∥∥∥∥∥

)2

= ‖Tx− x‖2/λ(x)

≥ ‖Tx− x‖2. (20)

It follows that 〈y − Tx | x− Tx〉 ≤ 0 and, in turn, that y ∈ H(x, Tx). Since by virtue of
(19) y is an arbitrary fixed point of T , we conclude that Fix T ⊂ H(x, Tx).

Remark 2.5 Taking λ(x) = 1/L(x) in (14) yields
∑

i∈I ωiTi ∈ T .

A couple of additional definitions will be required. An operator T : H → H is said to
be demiclosed at y ∈ H if for every x ∈ H and every sequence (xn)n≥0 in H such that
xn ⇀ x and Txn → y, we have Tx = y [ 13]; demicompact [resp. demicompact at y ∈ H]
if, for every bounded sequence (xn)n≥0 such that (Txn − xn)n≥0 converges strongly [resp.
converges strongly to y], we have S(xn)n≥0 6= Ø [ 57].

Remark 2.6 Take an operator T : H → H. Then:

• If T is nonexpansive, then T − Id is demiclosed on H [ 13].

• One will easily check that T is demicompact if its range is boundedly compact
(its intersection with any closed ball is compact), e.g., T is the projector onto a
boundedly compact convex set. Other examples will be found in [ 57].

3. PROPERTIES OF QUASI-FEJÉR SEQUENCES

As we shall find in this section, most of the asymptotic properties of Fejér sequences
remain valid for quasi-Fejér sequences.

3.1. Basic properties
First, we need

Lemma 3.1 Let χ ∈ ]0, 1], (αn)n≥0 ∈ `+, (βn)n≥0 ∈ `+, and (εn)n≥0 ∈ `+ ∩ `1 be such
that

(∀n ∈ N) αn+1 ≤ χαn − βn + εn. (21)

Then
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(i) (αn)n≥0 is bounded.

(ii) (αn)n≥0 converges.

(iii) (βn)n≥0 ∈ `1.

(iv) If χ 6= 1, (αn)n≥0 ∈ `1.

Proof. Put ε =
∑

n≥0 εn and α = lim αn. (i): We derive from (21) that

(∀n ∈ N) 0 ≤ αn+1 ≤ χn+1α0 + γn, where γn =
n∑

k=0

χn−kεk. (22)

Hence, (αn)n≥0 lies in [0, α0 + ε]. (ii): It follows from the previous inclusion that α ∈
[0, α0 + ε]. Now extract from (αn)n≥0 a subsequence (αkn)n≥0 such that α = lim αkn and
fix δ ∈ ]0, +∞[. Then we can find n0 ∈ N such that αkn0

−α ≤ δ/2 and
∑

m≥kn0
εm ≤ δ/2.

However, by (21),

(∀n ≥ kn0) 0 ≤ αn ≤ αkn0
+

∑

m≥kn0

εm ≤ δ/2 + α + δ/2 = α + δ. (23)

Hence lim αn ≤ lim αn + δ and, since δ can be arbitrarily small in ]0, +∞[, the whole
sequence (αn)n≥0 converges to α. (iii): It follows from (21) that, for every N ∈ N,
βN ≤ αN − αN+1 + εN and, in turn,

∑N
n=0 βn ≤ α0 − αN+1 +

∑N
n=0 εn ≤ α0 + ε. Hence∑

n≥0 βn ≤ α0 + ε. (iv): Suppose χ ∈ ]0, 1[. Then the sequence (γn)n≥0 of (22) is the
convolution of the two `1-sequences (χn)n≥0 and (εn)n≥0. As such, it is therefore in `1 and
the inequalities in (22) force (αn)n≥0 in `1 as well.

Let us start with some basic relationships between (2), (3), and (4).

Proposition 3.2 Let (xn)n≥0 be a sequence in H and let S be a nonempty subset of H.
Then the three types of quasi-Fejér monotonicity of Definition 1.1 are related as follows:

(i) Type I ⇒ Type III ⇐ Type II.

(ii) If S is bounded, Type I ⇒ Type II.

Proof. It is clear that Type II ⇒ Type III. Now suppose that (xn)n≥0 satisfies (2). Then

(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖2 ≤ (‖xn − x‖+ εn

)2

≤ ‖xn − x‖2 + 2εn sup
l≥0

‖xl − x‖+ ε2
n. (24)

Hence, since (∀x ∈ S) supl≥0 ‖xl − x‖ < +∞ by Lemma 3.1(i) and (εn)n≥0 ∈ `1 ⊂ `2, (4)
holds. To show (ii), observe that (24) yields

(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖xn − x‖2 + 2εn sup
z∈S

sup
l≥0

‖xl − z‖+ ε2
n. (25)
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Therefore, if S is bounded, supz∈S supl≥0 ‖xl − z‖ < +∞ and (3) ensues.

Our next proposition collects some basic properties of quasi-Fejér sequences of Type
III.

Proposition 3.3 Let (xn)n≥0 be a quasi-Fejér sequence of Type III relative to a nonempty
set S in H. Then

(i) (xn)n≥0 is bounded.

(ii) (xn)n≥0 is quasi-Fejér of Type III relative to conv S.

(iii) For every x ∈ conv S, (‖xn − x‖)n≥0 converges.

(iv) For every (x, x′) ∈ (conv S)2, (〈xn | x− x′〉)n≥0 converges.

Proof. Suppose that (xn)n≥0 satisfies (4). (i) is a direct consequence of Lemma 3.1(i).
(ii): Take x ∈ conv S, say x = αy1 + (1 − α)y2, where (y1, y2) ∈ S2 and α ∈ [0, 1]. Then
there exist two sequences (ε1,n)n≥0 and (ε2,n)n≥0 in `+ ∩ `1 such that

(∀n ∈ N)

{
‖xn+1 − y1‖2 ≤ ‖xn − y1‖2 + ε1,n

‖xn+1 − y2‖2 ≤ ‖xn − y2‖2 + ε2,n.
(26)

Now put (∀n ∈ N) εn = max{ε1,n, ε2,n}. Then (εn)n≥0 ∈ `+ ∩ `1 and

(∀n ∈ N) ‖xn+1 − x‖2 = ‖α(xn+1 − y1) + (1− α)(xn+1 − y2)‖2

= α‖xn+1 − y1‖2 + (1− α)‖xn+1 − y2‖2 − α(1− α)‖y1 − y2‖2

≤ α‖xn − y1‖2 + (1− α)‖xn − y2‖2 − α(1− α)‖y1 − y2‖2 + εn

= ‖α(xn − y1) + (1− α)(xn − y2)‖2 + εn

= ‖xn − x‖2 + εn. (27)

(iii): Start with y ∈ conv S, say y = αy1 + (1 − α)y2, where (y1, y2) ∈ S2 and α ∈
[0, 1]. Then (‖xn − y1‖)n≥0 and (‖xn − y2‖)n≥0 converge by Lemma 3.1(ii) and so does
(‖xn − y‖)n≥0 since

(∀n ∈ N) ‖xn − y‖2 = α‖xn − y1‖2 + (1− α)‖xn − y2‖2 − α(1− α)‖y1 − y2‖2. (28)

Next, take x ∈ conv S, say yk → x where (yk)k≥0 lies in conv S. It remains to show
that (‖xn − x‖)n≥0 converges. As just shown, for every k ∈ N, (‖xn − yk‖)n≥0 converges.
Moreover,

(∀k ∈ N) − ‖yk − x‖ ≤ lim ‖xn − x‖ − lim n‖xn − yk‖
≤ lim ‖xn − x‖ − lim n‖xn − yk‖
≤ ‖yk − x‖. (29)

Taking the limit as k → +∞, we conclude that limn ‖xn−x‖ = lim k limn ‖xn−yk‖. (iv):
Fix (x, x′) ∈ (conv S)2. Then

(∀n ∈ N) 〈xn | x− x′〉 =
(‖xn − x′‖2 − ‖xn − x‖2 − ‖x− x′‖2

)
/2 + 〈x | x− x′〉. (30)
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However, as the right-hand side converges by (iii), we obtain the claim.

Not unexpectedly, sharper statements can be formulated for quasi-Fejér sequences of
Types I and II.

Proposition 3.4 Let (xn)n≥0 be a quasi-Fejér sequence of Type II relative to a nonempty
set S in H. Then (xn)n≥0 quasi-Fejér of Type II relative to conv S.

Proof. Suppose that (xn)n≥0 satisfies (3). By arguing as in the proof of Proposition 3.3(ii),
we obtain that (xn)n≥0 is quasi-Fejér of Type II relative to conv S with the same error
sequence (εn)n≥0. Now take x ∈ conv S, say yk → x where (yk)n≥0 lies in conv S. Then,
for every n ∈ N, we obtain

(∀k ∈ N) ‖xn+1 − yk‖2 ≤ ‖xn − yk‖2 + εn (31)

and, upon taking the limit as k → +∞, ‖xn+1 − x‖2 ≤ ‖xn − x‖2 + εn.

A Fejér monotone sequence (xn)n≥0 relative to a nonempty set S may not converge, even
weakly: a straightforward example is the sequence ((−1)nx)n≥0 which is Fejér monotone
with respect to S = {0} and which does not converge for any x /∈ S. Nonetheless, if S is
closed and convex, the projected sequence (PSxn)n≥0 always converges strongly [ 8, Thm.
2.16(iv)], [ 24, Prop. 3] (see also [ 65, Rem. 1], where this result appears in connection
with a fixed point problem). We now show that quasi-Fejér sequence of Types I and II
also enjoy this remarkable property.

Proposition 3.5 Let (xn)n≥0 be a quasi-Fejér sequence of Type I relative to a nonempty
set S in H with error sequence (εn)n≥0. Then the following properties hold.

(i) (∀n ∈ N) dS(xn+1) ≤ dS(xn) + εn.

(ii) (dS(xn))n≥0 converges.

(iii) If (∃χ ∈ ]0, 1[)(∀n ∈ N) dS(xn+1) ≤ χdS(xn) + εn, then (dS(xn))n≥0 ∈ `1.

(iv) If S is closed and convex, then

(a) (xn)n≥0 is quasi-Fejér of Type II relative to the set {PSxn}n≥0 with error se-
quence (ε′n)n≥0, where

(∀n ∈ N) ε′n = 2εn sup
(l,k)∈N2

‖xl − PSxk‖+ ε2
n. (32)

(b) (PSxn)n≥0 converges strongly.

Proof. (i): Take the infimum over x ∈ S in (2). (i) ⇒ (ii): Use Lemma 3.1(ii). (iii):
Use Lemma 3.1(iv). (iv): (a): Since (xn)n≥0 is bounded by Proposition 3.3(i) and PS

is (firmly) nonexpansive by Proposition 2.2, {PSxn}n≥0 is bounded. The claim therefore
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follows from Proposition 3.2(ii) and (25). (b): By Proposition 2.2, PS ∈ T . Therefore
Proposition 2.3(ii) with λ = 1 yields

(∀(m,n) ∈ N2) ‖PSxn+m − PSxn‖2 ≤ ‖xn+m − PSxn‖2 − dS(xn+m)2. (33)

On the other hand, we derive from (a) that

(∀(m,n) ∈ N2) ‖xn+m − PSxn‖2 ≤ ‖xn − PSxn‖2 +
n+m−1∑

k=n

ε′k. (34)

Upon combining (33) and (34), we obtain

(∀(m,n) ∈ N2) ‖PSxn+m − PSxn‖2 ≤ dS(xn)2 − dS(xn+m)2 +
∑

k≥n

ε′k. (35)

However, since (ε′n)n≥0 ∈ `+ ∩ `1, lim
∑

k≥n ε′k = 0. It therefore follows from (ii) that
limm,n ‖PSxn+m − PSxn‖ = 0, i.e, (PSxn)n≥0 is a Cauchy sequence.

Proposition 3.6 Let (xn)n≥0 be a quasi-Fejér sequence of Type II relative to a nonempty
set S in H with error sequence (εn)n≥0. Then the following properties hold.

(i) (∀n ∈ N) dS(xn+1)
2 ≤ dS(xn)2 + εn.

(ii) (dS(xn))n≥0 converges.

(iii) If (∃χ ∈ ]0, 1[)(∀n ∈ N) dS(xn+1)
2 ≤ χdS(xn)2 + εn, then (dS(xn))n≥0 ∈ `2.

(iv) If S is closed and convex, then (PSxn)n≥0 converges strongly.

Proof. Analogous to that of Proposition 3.5, except that (ε′n)n≥0 = (εn)n≥0 in (iv).

3.2. Weak convergence
The following proposition records some elementary weak topology properties of quasi-

Fejér sequences.

Proposition 3.7 Let (xn)n≥0 be a quasi-Fejér sequence of Type III relative to a nonempty
set S in H. Then

(i) W(xn)n≥0 6= Ø.

(ii)
(∀(x, x′) ∈ (W(xn)n≥0)

2
)
(∃α ∈ R) S ⊂ {

y ∈ H | 〈y | x− x′〉 = α
}
.

(iii) If aff S = H (for instance int S 6= Ø), then (xn)n≥0 converges weakly.

(iv) If xn ⇀ x ∈ conv S, then (‖xn − y‖)n≥0 converges for every y ∈ H.
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Proof. (i) follows from Proposition 3.3(i). (ii): Take two points x and x′ in W(xn)n≥0,
say xkn ⇀ x and xln ⇀ x′, and y ∈ S. Since

(∀n ∈ N) ‖xn − y‖2 − ‖y‖2 = ‖xn‖2 − 2〈y | xn〉, (36)

it follows from Proposition 3.3(iii) that β = lim ‖xn−y‖2−‖y‖2 is well defined. Therefore

β = lim ‖xkn‖2 − 2〈y | x〉 = lim ‖xln‖2 − 2〈y | x′〉 (37)

and we obtain the desired inclusion with α = (lim ‖xkn‖2 − lim ‖xln‖2)/2. (iii): In view
of (ii), if aff S = H then

(∀(x, x′) ∈ (W(xn)n≥0)
2
)
(∃α ∈ R)(∀y ∈ H) 〈y | x− x′〉 = α. (38)

Consequently W(xn)n≥0 reduces to a singleton. Since (xn)n≥0 lies in a weakly compact
set by virtue of Proposition 3.3(i), it therefore converges weakly. (iv): Take y ∈ H. Then
the identities

(∀n ∈ N) ‖xn − y‖2 = ‖xn − x‖2 + 2〈xn − x | x− y〉+ ‖x− y‖2 (39)

together with Proposition 3.3(iii) imply that (‖xn − y‖)n≥0 converges.

The following fundamental result has been known for Fejér monotone sequences for
some time [ 13, Lem. 6]. In the present context, it appears in [ 2, Prop. 1.3].

Theorem 3.8 Let (xn)n≥0 be a quasi-Fejér sequence of Type III relative to a nonempty
set S in H. Then (xn)n≥0 converges weakly to a point in S if and only if W(xn)n≥0 ⊂ S.

Proof. Necessity is straightforward. To show sufficiency, suppose W(xn)n≥0 ⊂ S and take
x and x′ in W(xn)n≥0. Since (x, x′) ∈ S2, Proposition 3.7(ii) asserts that 〈x | x − x′〉 =
〈x′ | x− x′〉 (this identity could also be derived from Proposition 3.3(iv)), whence x = x′.
In view of Proposition 3.3(i), the proof is complete.

3.3. Strong convergence
There are known instances of Fejér monotone sequences which converge weakly but not

strongly to a point in the target set [ 7], [ 9], [ 38], [ 42]. A simple example is the following:
any orthonormal sequence (xn)n≥0 in H is Fejér monotone relative to {0} and, by Bessel’s
inequality, satisfies xn ⇀ 0; however, 1 ≡ ‖xn‖ 6→ 0. The strong convergence properties
of quasi-Fejér sequences must therefore be investigated in their own rights. We begin this
investigation with some facts regarding the strong cluster points of quasi-Fejér sequences
of Type III. The first two of these facts were essentially known to Ermol’ev [ 32].

Proposition 3.9 Let (xn)n≥0 be a quasi-Fejér sequence of Type III relative to a nonempty
set S in H. Then

(i)
(∀(x, x′) ∈ (S(xn)n≥0)

2
)

S ⊂ {
y ∈ H | 〈y − (x + x′)/2 | x− x′〉 = 0

}
.
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(ii) If aff S = H (for instance int S 6= Ø), then S(xn)n≥0 contains at most one point.

(iii) (xn)n≥0 converges strongly if there exist x ∈ S, (εn)n≥0 ∈ `+ ∩ `1, and ρ ∈ ]0, +∞[
such that

(∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖xn − x‖2 − ρ‖xn+1 − xn‖+ εn. (40)

Proof. (i): Take x and x′ in S(xn)n≥0, say xkn → x and xln → x′, and y ∈ S.
Then lim ‖xkn − y‖ = ‖x − y‖ and lim ‖xln − y‖ = ‖x′ − y‖. Hence, by Proposi-
tion 3.3(iii), ‖x − y‖ = ‖x′ − y‖ or, equivalently, 〈y − (x + x′)/2 | x − x′〉 = 0. Since
S(xn)n≥0 ⊂ W(xn)n≥0, this identity could also be obtained through Proposition 3.7(ii)
where α = (‖x‖2−‖x′‖2)/2. (ii) follows from (i) or, alternatively, from Proposition 3.7(iii).
(iii): By virtue of Lemma 3.1(iii), (‖xn+1−xn‖)n≥0 ∈ `1 and (xn)n≥0 is therefore a Cauchy
sequence.

We now extend to quasi-Fejér sequences of Types I and II a strong convergence property
that was first identified in the case of Fejér sequences in [ 64] (see also [ 8, Thm. 2.16(iii)]
and the special cases appearing in [ 53] and [ 55, Sec. 6]).

Proposition 3.10 Let (xn)n≥0 be a quasi-Fejér sequence of Type I or II relative to a set
S in H such that int S 6= Ø. Then (xn)n≥0 converges strongly.

Proof. Take x ∈ S and ρ ∈ ]0, +∞[ such that B(x, ρ) ⊂ S. Proposition 3.2(ii) asserts
that (xn)n≥0 is quasi-Fejér of Type II relative to the bounded set B(x, ρ). Hence,

(∃ (εn)n≥0 ∈ `+ ∩ `1)(∀z ∈ B(x, ρ))(∀n ∈ N) ‖xn+1 − z‖2 ≤ ‖xn − z‖2 + εn. (41)

Now define a sequence (zn)n≥0 in B(x, ρ) by

(∀n ∈ N) zn =





x if xn+1 = xn

x− ρ
xn+1 − xn

‖xn+1 − xn‖ otherwise.
(42)

Then (41) yields (∀n ∈ N) ‖xn+1 − zn‖2 ≤ ‖xn − zn‖2 + εn and, after expanding, we
obtain

(∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖xn − x‖2 − 2ρ‖xn+1 − xn‖+ εn. (43)

The strong convergence of (xn)n≥0 then follows from Proposition 3.9(iii).

For quasi-Fejér sequences, a number of properties are equivalent to strong convergence
to a point in the target set. Such equivalences were already implicitly established in [ 41]
for Fejér monotone sequences relative to closed convex sets (see also [ 8] and [ 24]).

Theorem 3.11 Let (xn)n≥0 be a quasi-Fejér sequence of Type III relative to a nonempty
set S in H. Then the following statements are equivalent:

(i) (xn)n≥0 converges strongly to a point in S.



13

(ii) W(xn)n≥0 ⊂ S and S(xn)n≥0 6= Ø.

(iii) S(xn)n≥0 ∩ S 6= Ø.

If S is closed and (xn)n≥0 is quasi-Fejér of Type I or II relative to S, each of the above
statements is equivalent to

(iv) lim dS(xn) = 0.

Proof. (i) ⇒ (ii): Clearly, xn → x ∈ S ⇒ W(xn)n≥0 = S(xn)n≥0 = {x} ⊂ S. (ii) ⇒ (iii):
Indeed, S(xn)n≥0 ⊂ W(xn)n≥0. (iii) ⇒ (i): Fix x ∈ S(xn)n≥0 ∩ S. Then x ∈ S(xn)n≥0

⇒ lim ‖xn − x‖ = 0. On the other hand, x ∈ S, and it follows from Proposition 3.3(iii)
that (‖xn − x‖)n≥0 converges. Thus, xn → x.
Now assume that S is closed. (iv) ⇒ (i): If (xn)n≥0 is quasi-Fejér of Type I with error
sequence (εn)n≥0 then

(∀x ∈ S)(∀(m,n) ∈ N2) ‖xn − xn+m‖ ≤ ‖xn − x‖+ ‖xn+m − x‖

≤ 2‖xn − x‖+
n+m−1∑

k=n

εk (44)

and therefore

(∀(m,n) ∈ N2) ‖xn − xn+m‖ ≤ 2dS(xn) +
∑

k≥n

εk. (45)

Likewise, if (xn)n≥0 is quasi-Fejér of Type II with error sequence (εn)n≥0 then

(∀x ∈ S)(∀(m,n) ∈ N2) ‖xn − xn+m‖2 ≤ 2
(‖xn − x‖2 + ‖xn+m − x‖2

)

≤ 4‖xn − x‖2 + 2
n+m−1∑

k=n

εk (46)

and therefore

(∀(m,n) ∈ N2) ‖xn − xn+m‖2 ≤ 4dS(xn)2 + 2
∑

k≥n

εk. (47)

Now suppose lim dS(xn) = 0. Then Propositions 3.5(ii) and 3.6(ii) yield lim dS(xn) = 0 in
both cases. On the other hand, by summability, lim

∑
k≥n εk = 0 and we derive from (45)

and (47) that (xn)n≥0 is a Cauchy sequence in both cases. It therefore converges strongly
to some point x ∈ H. By continuity of dS, we deduce that dS(x) = 0, i.e., x ∈ S = S. (i)
⇒ (iv): Indeed, (∀x ∈ S)(∀n ∈ N) dS(xn) ≤ ‖xn − x‖.

Remark 3.12 With the additional assumption that S is convex, the implication (iv)
⇒ (i) can be established more directly. Indeed, Propositions 3.5(ii) and 3.6(ii) yield
xn − PSxn → 0 while Propositions 3.5(iv)(b) and 3.6(iv) guarantee the existence of a
point x ∈ S such that PSxn → x. Altogether, xn → x.
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3.4. Convergence estimates
In order to compare algorithms or devise stopping criteria for them, it is convenient to

have estimates of their speed of convergence. For quasi-Fejér sequences of Type I or II it
is possible to derive such estimates.

Theorem 3.13 Let (xn)n≥0 be a quasi-Fejér sequence of Type I [resp. Type II] relative
to a nonempty set S in H with error sequence (εn)n≥0. Then

(i) If (xn)n≥0 converges strongly to a point x ∈ S then

(∀n ∈ N) ‖xn − x‖ ≤ 2dS(xn) +
∑

k≥n

εk

[
resp. (∀n ∈ N) ‖xn − x‖2 ≤ 4dS(xn)2 + 2

∑

k≥n

εk

]
.

(48)

(ii) If S is closed and

(∃χ ∈ ]0, 1[)(∀n ∈ N) dS(xn+1) ≤ χdS(xn) + εn,
[
resp. (∃χ ∈ ]0, 1[)(∀n ∈ N) dS(xn+1)

2 ≤ χdS(xn)2 + εn

]
,

(49)

then (xn)n≥0 converges strongly to a point x ∈ S and

(∀n ∈ Nr {0}) ‖xn − x‖ ≤ 2χndS(x0) + 2
n−1∑

k=0

χn−k−1εk +
∑

k≥n

εk

[
resp. (∀n ∈ Nr {0}) ‖xn − x‖2 ≤ 4χndS(x0)

2 + 4
n−1∑

k=0

χn−k−1εk + 2
∑

k≥n

εk

]
.

(50)

Proof. (i): Take the limit as m → +∞ in (45) [resp. in (47)]. (ii): It follows from
(49) and Proposition 3.5(iii) [resp. Proposition 3.6(iii)] that lim dS(xn) = 0. There-
fore, by Theorem 3.11, there exists a point x ∈ S such that xn → x. For every
n ∈ N, we obtain from (22) the estimate dS(xn+1) ≤ χn+1dS(x0) +

∑n
k=0 χn−kεk [resp.

dS(xn+1)
2 ≤ χn+1dS(x0)

2 +
∑n

k=0 χn−kεk] which, together with (i), provides (50).

For Type I sequences, item (i) appears in [ 47, Thm. 5.3]. Item (ii) owes its relevance
to the fact that the right-hand side of (50) converges to zero as n → +∞ since (εn)n≥0 ∈
`+ ∩ `1 and χ ∈ ]0, 1[ (as seen in the proof of Lemma 3.1(iv), its two first terms belong to
`1). Sharper estimates require additional assumptions on (εn)n≥0.

Corollary 3.14 Let (xn)n≥0 be a quasi-Fejér sequence of Type I relative to a nonempty
closed and convex set S in H with error sequence (εn)n≥0, and let (ε′n)n≥0 be as in (32).
Then

(i) If (xn)n≥0 converges strongly to a point x ∈ S then

(∀n ∈ N) ‖xn − x‖2 ≤ 4dS(xn)2 + 2
∑

k≥n

ε′k. (51)
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(ii) If (∃χ ∈ ]0, 1[)(∀n ∈ N) dS(xn+1)
2 ≤ χdS(xn)2 +ε′n, then (xn)n≥0 converges strongly

to a point x ∈ S and

(∀n ∈ Nr {0}) ‖xn − x‖2 ≤ 4χndS(x0)
2 + 4

n−1∑

k=0

χn−k−1ε′k + 2
∑

k≥n

ε′k. (52)

Proof. The claim follows from Proposition 3.5(iv)(a) and Theorem 3.13 since (∀n ∈ N)
dS(xn) = d{PSxk}k≥0

(xn).

In the case of Fejér monotone sequences, Corollary 3.14 captures well-known results
that originate in [ 41] (see also [ 8] and [ 24]). Thus, (i) furnishes the estimate (∀n ∈ N)
‖xn − x‖ ≤ 2dS(xn) while (ii) states that if

(∃χ ∈ ]0, 1[)(∀n ∈ N) dS(xn+1) ≤ χdS(xn), (53)

then (xn)n≥0 converges linearly to a point in S: (∀n ∈ N) ‖xn − x‖ ≤ 2χndS(x0).

4. ANALYSIS OF AN INEXACT T -CLASS ALGORITHM

Let S ⊂ H be the set of solutions to a given problem and let Tn be an operator in
T such that Fix Tn ⊃ S. Then, for every point xn in H and every relaxation parameter
λn ∈ [0, 2], Proposition 2.3(ii) guarantees that xn + λn(Tnxn − xn) is not further from
any solution point than xn is. This remark suggests that a point in S can be constructed
via the iterative scheme xn+1 = xn + λn(Tnxn − xn). Since in some problems one may
not want – or be able – to evaluate Tnxn exactly, a more realistic algorithmic model is
obtained by replacing Tnxn by Tnxn + en, where en accounts for some numerical error.

Algorithm 4.1 At iteration n ∈ N, suppose that xn ∈ H is given. Then select Tn ∈ T ,
λn ∈ [0, 2], and set xn+1 = xn + λn(Tnxn + en − xn), where en ∈ H.

The convergence analysis of Algorithm 4.1 will be greatly simplified by the following
result, which states that its orbits are quasi-Fejér relative to the set of common fixed
points of the operators (Tn)n≥0.

Proposition 4.2 Suppose that F =
⋂

n≥0 Fix Tn 6= Ø and let (xn)n≥0 be an arbitrary
orbit of Algorithm 4.1 such that (λn‖en‖)n≥0 ∈ `1. Then

(i) (xn)n≥0 is quasi-Fejér of Type I relative to F with error sequence (λn‖en‖)n≥0.

(ii)
(
λn(2− λn)‖Tnxn − xn‖2

)
n≥0

∈ `1.

(iii) If lim λn < 2, then (‖xn+1 − xn‖)n≥0 ∈ `2.

Proof. Fix x ∈ F and put, for every n ∈ N, zn = xn + λn(Tnxn − xn). (i): For every
n ∈ N, x ∈ Fix Tn and, since Tn ∈ T , Proposition 2.3(ii) yields

‖zn − x‖2 ≤ ‖xn − x‖2 − λn(2− λn)‖Tnxn − xn‖2. (54)
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Whence,

(∀n ∈ N) ‖zn − x‖ ≤ ‖xn − x‖ (55)

and therefore

(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖zn − x‖+ λn‖en‖ ≤ ‖xn − x‖+ λn‖en‖, (56)

which shows that (xn)n≥0 satisfies (2). (ii): Set

(∀n ∈ N) ε′n(x) = 2λn‖en‖ sup
l≥0

‖xl − x‖+ λ2
n‖en‖2. (57)

Then it follows from the assumption (λn‖en‖)n≥0 ∈ `1 and from Proposition 3.3(i) that
(ε′n(x))n≥0 ∈ `1. Using (56), (54), and (55), we obtain

(∀n ∈ N) ‖xn+1 − x‖2 ≤ (‖zn − x‖+ λn‖en‖
)2

≤ ‖xn − x‖2 − λn(2− λn)‖Tnxn − xn‖2 + ε′n(x) (58)

and Lemma 3.1(iii) allows us to conclude (λn(2 − λn)‖Tnxn − xn‖2)n≥0 ∈ `1. (iii): By
assumption, there exist δ ∈ ]0, 1[ and N ∈ N such that (λn)n≥N lies in [0, 2− δ]. Hence,
for every n ≥ N , λn ≤ (2− δ)(2− λn)/δ and, in turn,

‖xn+1 − xn‖2 ≤ (
λn‖Tnxn − xn‖+ λn‖en‖

)2

≤ 2λ2
n‖Tnxn − xn‖2 + 2λ2

n‖en‖2

≤ 2(2− δ)

δ
λn(2− λn)‖Tnxn − xn‖2 + 2λ2

n‖en‖2. (59)

In view of (ii) and the fact that (λn‖en‖)n≥0 ∈ `2, the proof is complete.

We are now ready to prove

Theorem 4.3 Suppose that Ø 6= S ⊂ ⋂
n≥0 Fix Tn and let (xn)n≥0 be an arbitrary orbit

of Algorithm 4.1. Then (xn)n≥0 converges weakly to a point x in S if

(i) (λn‖en‖)n≥0 ∈ `1 and W(xn)n≥0 ⊂ S.

The convergence is strong if any of the following assumptions is added:

(ii) S is closed and lim dS(xn) = 0.

(iii) int S 6= Ø.

(iv) There exist a strictly increasing sequence (kn)n≥0 in N and an operator T : H → H
which is demicompact at 0 such that (∀n ∈ N) Tkn = T and

∑
n≥0 λkn(2 − λkn) =

+∞.
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(v) S is closed and convex, (λn)n≥0 lies in [δ, 2− δ], where δ ∈ ]0, 1[, and

(∃χ ∈ ]0, 1])(∀n ∈ N) ‖Tnxn − xn‖ ≥ χdS(xn). (60)

In this case, for every integer n ≥ 1, we have

‖xn − x‖2 ≤ 4(1− δ2χ2)ndS(x0)
2 + 4

n−1∑

k=0

(1− δ2χ2)n−k−1ε′k + 2
∑

k≥n

ε′k, (61)

where ε′k = 2λk‖ek‖ sup(l,m)∈N2 ‖xl − PSxm‖+ λ2
k‖ek‖2.

Proof. First, we recall from Propositions 4.2(i) and 3.2(i) that (xn)n≥0 is quasi-Fejér of
Types I and III relative to S. Hence, (i) is a direct consequence of Theorem 3.8. We
now turn to strong convergence. (ii) follows from Theorem 3.11. (iii) is supplied by
Proposition 3.10. (iv): Proposition 4.2(ii) yields
∑
n≥0

λkn(2− λkn)‖Txkn − xkn‖2 < +∞. (62)

Since
∑

n≥0 λkn(2 − λkn) = +∞, it therefore follows that lim ‖Txkn − xkn‖ = 0. Hence,
the demicompactness of T at 0 gives S(xn)n≥0 6= Ø, and the conclusion follows from
Theorem 3.11. (v): The assumptions imply

(∀n ∈ N) λn(2− λn)‖Tnxn − xn‖2 ≥ δ2χ2dS(xn)2. (63)

Strong convergence therefore follows from Proposition 4.2(ii) and (ii). On the other hand,
(58) yields

(∀(k, n) ∈ N2) ‖xn+1 − PSxk‖2 ≤ ‖xn − PSxk‖2

−λn(2− λn)‖Tnxn − xn‖2 + ε′n (64)

where, just as in Proposition 3.5(iv)(a), (ε′n)n≥0 ∈ `1. Hence, we derive from (63) and
(64) that

(∀n ∈ N) dS(xn+1)
2 ≤ ‖xn+1 − PSxn‖2

≤ ‖xn − PSxn‖2 − λn(2− λn)‖Tnxn − xn‖2 + ε′n
≤ (1− δ2χ2)dS(xn)2 + ε′n. (65)

Corollary 3.14(ii) can now be invoked to complete the proof.

Remark 4.4 The condition (λn‖en‖)n≥0 ∈ `1 cannot be removed in Theorem 4.3. Indeed
take (∀n ∈ N) Tn = Id , λn = 1, and en = x0/(n+1) in Algorithm 4.1. Then ‖xn‖ → +∞.

Remark 4.5 Suppose that en ≡ 0. Then Algorithm 4.1 describes all Fejér monotone
methods [ 9, Prop. 2.7]. As seen in Theorem 4.3, stringent conditions must be imposed
to achieve strong convergence to a point in the target set with such methods. In [ 9], a
slight modification of Algorithm 4.1 was proposed that renders them strongly convergent
without requiring any additional restrictions on the constituents of the problem.
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5. APPLICATIONS TO PERTURBED OPTIMIZATION ALGORITHMS

Let S be a nonempty set in H representing the set of solutions to an optimization prob-
lem. One of the assumptions in Theorem 4.3 is that S ⊂ ⋂

n≥0 Fix Tn. This assumption
is certainly satisfied if

(∀n ∈ N) Fix Tn = S. (66)

In this section, we shall consider applications of Algorithm 4.1 in which (66) is fulfilled.
In view of Proposition 2.3(v), S is therefore closed and convex.

5.1. Krasnosel’skĭı-Mann iterates
Let T be an operator in T with at least one fixed point. To find such a point, we shall

use a perturbed version of the Krasnosel’skĭı-Mann iterates.

Algorithm 5.1 At iteration n ∈ N, suppose that xn ∈ H is given. Then select λn ∈ [0, 2],
and set xn+1 = xn + λn(Txn + en − xn), where en ∈ H.

Theorem 5.2 Let (xn)n≥0 be an arbitrary orbit of Algorithm 5.1. Then (xn)n≥0 converges
weakly to a fixed point x of T if

(i) (‖en‖)n≥0 ∈ `1, T − Id is demiclosed at 0, and (λn)n≥0 lies in [δ, 2− δ] for some
δ ∈ ]0, 1[.

The convergence is strong if any of the following assumptions is added:

(ii) lim dFix T (xn) = 0.

(iii) int Fix T 6= Ø.

(iv) T is demicompact at 0.

(v) (∃χ ∈ ]0, 1])(∀n ∈ N) ‖Txn − xn‖ ≥ χdFix T (xn). In this case, the convergence
estimate (61) holds with S = Fix T .

Proof. It is clear that Algorithm 5.1 is a special case of Algorithm 4.1 and that Theorem 5.2
will follow from Theorem 4.3 if “T − Id is demiclosed at 0 and (λn)n≥0 lies in [δ, 2− δ]” ⇒
W(xn)n≥0 ⊂ Fix T . To show this, take x ∈ W(xn)n≥0, say xkn ⇀ x. Since (∀n ∈ N) δ ≤
λkn ≤ 2−δ ⇒ λkn(2−λkn) ≥ δ2, it follows from Proposition 4.2(ii) that (T − Id )xkn → 0.
The demiclosedness of T − Id at 0 therefore implies x ∈ Fix T .

Remark 5.3 For T firmly nonexpansive and λn ≡ 1, Theorem 5.2(i) is stated in [ 49,
Rem. 5.6.4].



19

5.2. Successive approximations with a nonexpansive operator
Let R : H → H be a nonexpansive operator with dom R = H and Fix R 6= Ø. Then

a fixed point of R can be obtained via Theorem 5.2 with T = (Id + R)/2, which is
firmly nonexpansive [ 39, Thm. 12.1] (hence in T by Proposition 2.2 and, furthermore,
nonexpansive so that T − Id is demiclosed on H by Remark 2.6) with Fix R = Fix T .
This substitution amounts to halving the relaxations in Algorithm 5.1 and leads to

Algorithm 5.4 At iteration n ∈ N, suppose that xn ∈ H is given. Then select λn ∈ [0, 1],
and set xn+1 = xn + λn(Rxn + en − xn), where en ∈ H.

A direct application of Theorem 5.2 would require the relaxation parameters to be
bounded away from 0 and 1. We show below that the nonexpansivity of R allows for a
somewhat finer relaxation strategy.

Theorem 5.5 Let (xn)n≥0 be an arbitrary orbit of Algorithm 5.4. Then (xn)n≥0 converges
weakly to a fixed point of R if

(i) (λn‖en‖)n≥0 ∈ `1 and
(
λn(1− λn)

)
n≥0

/∈ `1.

The convergence is strong if any of the following assumptions is added:

(ii) lim dFix R(xn) = 0.

(iii) int Fix R 6= Ø.

(iv) R is demicompact at 0.

Proof. R − Id is demiclosed on H by Remark 2.6 and an inspection of the proof of
Theorem 5.2 shows that it is sufficient to demonstrate that

Rxn − xn → 0. (67)

By Proposition 4.2(ii)
∑

n≥0 λn(1−λn)‖Rxn−xn‖2 < +∞. Hence,
∑

n≥0 λn(1−λn) = +∞
⇒ lim ‖Rxn − xn‖ = 0. However,

(∀n ∈ N) Rxn+1 − xn+1 = Rxn+1 −Rxn + (1− λn)(Rxn − xn)− λnen (68)

and therefore

(∀n ∈ N) ‖Rxn+1 − xn+1‖ ≤ ‖Rxn+1 −Rxn‖+ (1− λn)‖Rxn − xn‖+ λn‖en‖
≤ ‖xn+1 − xn‖+ (1− λn)‖Rxn − xn‖+ λn‖en‖
≤ ‖Rxn − xn‖+ 2λn‖en‖. (69)

Consequently, as
∑

n≥0 λn‖en‖ < +∞, Lemma 3.1(ii) secures the convergence of the se-
quence (‖Rxn − xn‖)n≥0 and (67) is established.

Remark 5.6 When en ≡ 0, Theorem 5.5 is related to several known results:
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• The weak convergence statement corresponds to the Hilbert space version of [ 40,
Cor. 3] (see also [ 65]).

• For constant relaxation parameters, strong convergence under condition (ii) covers
the Hilbert space version of [ 58, Cor. 2.2] and strong convergence under condition
(iv) corresponds to the Hilbert space version of [ 58, Cor. 2.1].

• Strong convergence under condition (iii) was obtained in [ 53] and [ 64] by replacing
“
(
λn(1− λn)

)
n≥0

/∈ `1” by “λn ≡ 1” in (i).

Remark 5.7 Theorem 5.5 authorizes nonsummable error sequences. For instance, for n
large, suppose that ‖en‖ ≤ (1 +

√
1− 1/n)/nκ, where κ ∈ ]0, 1], and that the relaxation

rule is λn = (1 −
√

1− 1/n)/2. Then
∑

n≥0 ‖en‖ may diverge but
∑

n≥0 λn‖en‖ < +∞
and

∑
n≥0 λn(1− λn) = +∞.

5.3. Gradient method
In the error-free case (en ≡ 0), it was shown in [ 24] that convergence results could be

derived from Theorem 5.5 for a number of algorithms, including the Forward-Backward
and Douglas-Rachford methods for finding a zero of the sum of two monotone operators,
the prox method for solving variational inequalities, and, in particular, the projected gra-
dient method. Theorem 5.5 therefore provides convergence results for perturbed versions
of these algorithms. As an illustration, this section is devoted to the case of the perturbed
gradient method. A different analysis of the perturbed gradient method can be found in
[ 51].

Consider the unconstrained minimization problem

Find x ∈ H such that f(x) = f̄ , where f̄ = inf f(H). (70)

The standing assumption is that f : H → R is a continuous convex function and that the
set S of solutions of (70) is nonempty, as is the case when f is coercive; it is also assumed
that f is differentiable and that, for some α ∈ ]0, +∞[, α∇f is firmly nonexpansive (it
follows from [ 6, Cor. 10] that this is equivalent to saying that ∇f is (1/α)-Lipschitz, i.e.,
that α∇f is nonexpansive).

Algorithm 5.8 Fix γ ∈ ]0, 2α] and, at iteration n ∈ N, suppose that xn ∈ H is given.
Then select λn ∈ [0, 1] and set xn+1 = xn − λnγ

(∇f(xn) + en

)
, where en ∈ H.

Theorem 5.9 Let (xn)n≥0 be an arbitrary orbit of Algorithm 5.8. Then (xn)n≥0 converges
weakly to point in S if (λn‖en‖)n≥0 ∈ `1 and

(
λn(1− λn)

)
n≥0

/∈ `1.

Proof. Put R = Id − γ∇f . Then

(∀(x, y) ∈ H2) ‖Rx−Ry‖2 = ‖x− y‖2 − 2γ〈x− y | ∇f(x)−∇f(y)〉
+ γ2‖∇f(x)−∇f(y)‖2

≤ ‖x− y‖2 − γ(2α− γ)‖∇f(x)−∇f(y)‖2. (71)

Hence R is nonexpansive and Algorithm 5.8 is a special case of Algorithm 5.4. As
Fix R = (∇f)−1({0}) = S, the claim follows from Theorem 5.5(i).
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Remark 5.10 Strong convergence conditions can be derived from Theorem 5.5(ii)-(iv).
Thus, it follows from item (ii) that weak convergence in Theorem 5.9 can be improved to
strong convergence if we add the correctness condition [ 23], [ 48]:

lim f(xn) = f̄ ⇒ lim dS(xn) = 0. (72)

Indeed, by convexity

(∀x ∈ S)(∀n ∈ N) 0 ≤ f(xn)− f̄ ≤ 〈xn − x | ∇f(xn)〉 ≤ sup
l≥0

‖xl − x‖ · ‖∇f(xn)‖. (73)

Consequently, with the same notation as in the above proof, it follows from (72) that (67)
⇔ ∇f(xn) → 0 ⇒ f(xn) → f̄ ⇒ lim dS(xn) = 0.

5.4. Inconsistent convex feasibility problems
Let (Si)i∈I be a finite family of nonempty closed and convex sets in H. A standard

convex programming problem is to find a point in the intersection of these sets. In
instances when the intersection turns out to be empty, an alternative is to look for a
point which is closest to all the sets in a least squared distance sense, i.e., to minimize
the proximity function

f =
1

2

∑
i∈I

ωid
2
Si

, where (∀i ∈ I) ωi > 0 and
∑
i∈I

ωi = 1. (74)

The resulting problem is a particular case of (70). We shall denote by S the set of
minimizers of f over H and assume that it is nonempty, as is the case when one of
the sets in (Si)i∈I is bounded since f is then coercive. Naturally, if

⋂
i∈I Si 6= Ø, then

S =
⋂

i∈I Si.
To solve the (possibly inconsistent) convex feasibility problem (70)/(74), we shall use

the following parallel projection algorithm.

Algorithm 5.11 At iteration n ∈ N, suppose that xn ∈ H is given. Then select λn ∈
[0, 2] and set xn+1 = xn + λn

( ∑
i∈I ωi(PSi

xn + ei,n)− xn

)
, where (ei,n)i∈I lies in H.

Theorem 5.12 Let (xn)n≥0 be an arbitrary orbit of Algorithm 5.11. Then (xn)n≥0 con-
verges weakly to point in S if (λn‖

∑
i∈I ωiei,n‖)n≥0 ∈ `1 and

(
λn(2− λn)

)
n≥0

/∈ `1.

Proof. We have ∇f =
∑

i∈I ωi(Id − PSi
). Since the operators (PSi

)i∈I are firmly nonex-
pansive by Proposition 2.2, so are the operators (Id − PSi

)i∈I and, in turn, their convex
combination ∇f . Hence, Algorithm 5.11 is a special case of Algorithm 5.8 with α = 1,
γ = 2, and (∀n ∈ N) en =

∑
i∈I ωiei,n. The claim therefore follows from Theorem 5.9.

Remark 5.13 Let us make a couple of comments.

• Theorem 5.12 extends [ 18, Thm. 4], where ei,n ≡ 0 and the relaxations parameters
are bounded away from 0 and 2 (see also [ 27] where constant relaxation parameters
are assumed).
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• Algorithm 5.8 allows for an error in the evaluation of each projection. As noted in
Remark 5.7, the average projection error sequence (

∑
i∈I ωiei,n)n≥0 does not have to

be absolutely summable.

Remark 5.14 Suppose that the problem is consistent, i.e.,
⋂

i∈I Si 6= Ø.

• If ei,n ≡ 0, λn ≡ 1, and ωi = 1/card I, Theorem 5.12 was obtained in [ 4] (see also [
66, Cor. 2.6] for a different perspective).

• If I is infinite (and possibly uncountable), a more general operator averaging process
for firmly nonexpansive operators with errors is studied in [ 35] (see also [ 16] for
an error-free version with projectors).

• If the projections can be computed exactly, a more efficient weakly convergent paral-
lel projection algorithm to find a point in

⋂
i∈I Si is that proposed by Pierra in [ 59],

[ 60]. It consists in taking T in Algorithm 5.1 as the operator defined in (14) with
(∀i ∈ I) Ti = PSi

and relaxations parameters in ]0, 1]. The large values achieved
by the parameters (L(xn))n≥0 result in large step sizes that significantly accelerate
the algorithm, as evidenced in various numerical experiments (see Remark 6.2 for
specific references). This type of extrapolated scheme was first employed in the
parallel projection method of Merzlyakov [ 52] to solve systems of affine inequalities
in RN ; the resulting algorithm was shown to be faster than the sequential projection
algorithms of [ 1] and [ 54]. An alternative interpretation of Pierra’s algorithm is
the following: it can be obtained by taking T in Algorithm 5.1 as the subgradi-
ent projector defined in (9), where f is the proximity function defined in (74). A
generalization of Pierra’s algorithm will be proposed in Section 6.1.

5.5. Proximal point algorithm
Many optimization problems – in particular (70) – reduce to the problem of finding a

zero of a monotone operator A : H → 2H, i.e., to the problem

Find x ∈ H such that 0 ∈ Ax. (75)

It will be assumed henceforth that 0 ∈ ran A and that A is maximal monotone.
The following algorithm, which goes back to [ 50], is known as the (relaxed) inexact

proximal point algorithm.

Algorithm 5.15 At iteration n ∈ N, suppose that xn ∈ H is given. Then select λn ∈
[0, 2], γn ∈ ]0, +∞[, and set xn+1 = xn + λn

(
(Id + γnA)−1xn + en − xn

)
, where en ∈ H.

Theorem 5.16 Let (xn)n≥0 be an arbitrary orbit of Algorithm 5.15. Then (xn)n≥0 con-
verges weakly to point in A−10 if (‖en‖)n≥0 ∈ `1, infn≥0 γn > 0, and (λn)n≥0 lies in
[δ, 2− δ], for some δ ∈ ]0, 1[.

Proof. It follows from Proposition 2.2 that Algorithm 5.15 is a special case of Algo-
rithm 4.1. Moreover, (∀n ∈ N) Fix (Id + γnA)−1 = A−10. Hence, in view of Theo-
rem 4.3(i), we need to show W(xn)n≥0 ⊂ A−10. For every n ∈ N, define yn = (Id +
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γnA)−1xn and vn = (xn − yn)/γn, and observe that (yn, vn) ∈ grA. In addition, since
infn≥0 λn(2 − λn) ≥ δ2, it follows from Proposition 4.2(ii) that xn − yn → 0. Therefore,
since infn≥0 γn > 0, we get vn → 0. Now take x ∈ W(xn)n≥0, say xkn ⇀ x. Then ykn ⇀ x
and vkn → 0. However, as A is maximal monotone, grA is weakly-strongly closed, which
forces 0 ∈ Ax.

Remark 5.17 Theorem 5.16 can be found in [ 28, Thm. 3] and several related results
can be found in the literature.

• The unrelaxed version (i.e., λn ≡ 1) is due to Rockafellar [ 68, Thm. 1]. There, it
was also proved that xn+1 − xn → 0. This fact follows immediately from Proposi-
tion 4.2(iii).

• Perturbed proximal point algorithms are also investigated in [ 3], [ 12], [ 14], [ 44],
[ 46], and [ 55].

Remark 5.18 As shown in [ 42], an orbit of the proximal point algorithm may converge
weakly but not strongly to a solution point. In this regard, two comments should be
made.

• Strong convergence conditions can be derived from Theorem 4.3(ii)-(v). Thus, the
convergence is strong in Theorem 5.16 in each of the following cases:

–
∑

n≥0 ‖(Id + γnA)−1xn − xn‖2 < +∞ ⇒ lim dA−10(xn) = 0. This condition
follows immediately from item (ii). For accretive operators in nonhilbertian
Banach spaces and λn ≡ 1, a similar condition was obtained in [ 55, Sec. 4].

– int A−10 6= Ø. This condition follows immediately from item (iii) and can be
found in [ 55, Sec. 6].

– dom A is boundedly compact. This condition follows from item (iv) if (γn)n≥0

contains a constant subsequence and, more generally, from the argument given
in the proof of Theorem 6.9(iv).

Additional conditions will be found in [ 12] and [ 68].

• A relatively minor modification of the proximal point algorithm makes it strongly
convergent without adding any specific condition on A. See [ 71] and Remark 4.5
for details.

6. APPLICATIONS TO BLOCK-ITERATIVE PARALLEL ALGORITHMS

6.1. The algorithm
A common feature of the algorithms described in Section 5 is that (∀n ∈ N) Fix Tn = S.

These algorithms therefore implicitly concern applications in which the target set S is
relatively simple. In many applications, however, the target set is not known explicitly
but merely described as a countable (finite or countably infinite) intersection of closed
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convex sets (Si)i∈I in H. The underlying problem can then be recast in the form of the
countable convex feasibility problem

Find x ∈ S =
⋂
i∈I

Si. (76)

Here, the tacit assumption is that for every index i ∈ I it is possible to construct relatively
easily at iteration n an operator Ti,n ∈ T such that Fix Ti,n = Si. Thus, S is not dealt with
directly but only through its supersets (Si)i∈I . In infinite dimensional spaces, a classical
method fitting in this framework is Bregman’s periodic projection algorithm [ 11] which
solves (76) iteratively in the case I = {1, . . . ,m} via the sequential algorithm

(∀n ∈ N) xn+1 = PSn (mod m)+1
xn. (77)

As discussed in Remark 5.14, an alternative method to solve this problem is Auslender’s
parallel projection scheme [ 4]

(∀n ∈ N) xn+1 =
1

m

m∑
i=1

PSi
xn. (78)

Bregman’s method utilizes only one set at each iteration while Auslender’s utilizes all
of them simultaneously and is therefore inherently parallel. In this respect, these two
algorithms stand at opposite ends in the more general class of parallel block-iterative
algorithms, where at iteration n the update is formed by averaging projections of the
current iterate onto a block of sets (Si)i∈In⊂I . The practical advantage of such a scheme
is to provide a flexible means to match the computational load of each iteration to the
distributed computer resources at hand.

The first block parallel projection algorithm in a Hilbert space setting was proposed by
Ottavy [ 56] with further developments in [ 15] and [ 22]. Variants and extensions of (77)
and (78) involving more general operators such as subgradient projectors, nonexpansive
and firmly nonexpansive operators have also been investigated [ 5], [ 13], [ 17], [ 36], [ 63],
[ 72] and unified in the form of block-iterative algorithms at various levels of generality in
[ 8], [ 19], [ 21], and [ 43]. For recent extensions of (77) in other directions, see [ 67] and
the references therein.

Building upon the framework developed in [ 8], a general block-iterative scheme was pro-
posed in [ 45, Algo. 2.1] to bring together the algorithms mentioned above. An essentially
equivalent algorithm was later devised in [ 23, Algo. 7.1] within a different framework.
The following algorithm employs yet another framework, namely the T operator class,
and, in addition, allows for errors in the computation of each operator.

Algorithm 6.1 Fix (δ1, δ2) ∈ ]0, 1[2 and x0 ∈ H. At every iteration n ∈ N,

xn+1 = xn + λnLn

(∑
i∈In

ωi,n(Ti,nxn + ei,n)− xn

)
(79)

where:
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À Ø 6= In ⊂ I, In finite.

Á (∀i ∈ In) Ti,n ∈ T and Fix Ti,n = Si.

Â (∀i ∈ In) ei,n ∈ H and ei,n = 0 if xn ∈ Si.

Ã (∀i ∈ In) ωi,n ∈ [0, 1],
∑

i∈In
ωi,n = 1, and

(∃ j ∈ In)

{‖Tj,nxn − xn‖ = max
i∈In

‖Ti,nxn − xn‖
ωj,n ≥ δ1.

Ä λn ∈ [δ2/Ln, 2− δ2], where

Ln =





∑
i∈In

ωi,n‖Ti,nxn − xn‖2

‖∑
i∈In

ωi,nTi,nxn − xn‖2
if xn /∈ ⋂

i∈In
Si and

∑
i∈In

ωi,n‖ei,n‖ = 0,

1 otherwise.

Remark 6.2 The incorporation of errors in the above recursion calls for some comments.

• The vector ei,n stands for the error made in computing Ti,nxn. With regard to the
convergence analysis, the global error term at iteration n is λn

∑
i∈In

ωi,nei,n. Thus,
the individual errors (ei,n)i∈In are naturally averaged and can be further controlled
by the relaxation parameter λn.

• If ei,n ≡ 0, Algorithm 6.1 essentially relapses to [ 23, Algo. 7.1] and [ 45, Algo. 2.1].
If we further assume that at every iteration n the index set In is a singleton, then
it reduces to the exact T -class sequential method of [ 9, Algo. 2.8].

• If, for some index j ∈ In, it is possible to verify that ‖Tj,nxn−xn‖ 6= maxi∈In ‖Ti,nxn−
xn‖, the associated error ej,n can be neutralized by setting ωj,n = 0.

• Suppose that
∑

i∈In
ωi,n‖ei,n‖ = 0, meaning that for each selected index i, either

Ti,nxn is computed exactly or the associated error ei,n is neutralized (see previous
item). Then extrapolated relaxations up to (2 − δ2)Ln can be used, where Ln

can attain very large values. In numerical experiments, this type of extrapolated
overrelaxations has been shown to induce very fast convergence [ 20], [ 21], [ 25], [
37], [ 52], [ 60], [ 61].
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6.2. Convergence
Let us first recall a couple of useful concepts.

Definition 6.3 [ 19] The control sequence (In)n≥0 in Algorithm 6.1 is admissible if there
exist strictly positive integers (Mi)i∈I such that

(∀(i, n) ∈ I × N) i ∈
n+Mi−1⋃

k=n

Ik. (80)

Definition 6.4 [ 8, Def. 3.7] Algorithm 6.1 is focusing if for every index i ∈ I and every
generated suborbit (xkn)n≥0,





i ∈ ⋂
n≥0 Ikn

xkn ⇀ x

Ti,knxkn − xkn → 0

⇒ x ∈ Si. (81)

The notion of a focusing algorithm can be interpreted as an extension of the notion
of demiclosedness at 0. Along the same lines, it is convenient to introduce the following
extension of the notion of demicompactness at 0.

Definition 6.5 Algorithm 6.1 is demicompactly regular if there exists an index i ∈ I such
that, for every generated suborbit (xkn)n≥0,





i ∈ ⋂
n≥0 Ikn

supn≥0 ‖xkn‖ < +∞
Ti,knxkn − xkn → 0

⇒ S(xkn)n≥0 6= Ø. (82)

Such an index is an index of demicompact regularity.

The most relevant convergence properties of Algorithm 6.1 are summarized below. This
theorem appears to be the first general result on the convergence of inexact block-iterative
methods for convex feasibility problems.

Theorem 6.6 Suppose that S 6= Ø in (76) and let (xn)n≥0 be an arbitrary orbit of Algo-
rithm 6.1. Then (xn)n≥0 converges weakly to a point in S if

(i)
(
λn‖

∑
i∈In

ωi,nei,n‖
)

n≥0
∈ `1, Algorithm 6.1 is focusing, and the control sequence

(In)n≥0 is admissible.

The convergence is strong if any of the following assumptions is added:

(ii) Algorithm 6.1 is demicompactly regular.

(iii) int S 6= Ø.

(iv) There exists a suborbit (xkn)n≥0 and a sequence (χn)n≥0 ∈ `+ r `2 such that

(∀n ∈ N) max
i∈Ikn

‖Ti,knxkn − xkn‖2 ≥ χndS(xkn). (83)
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Proof. We proceed in several steps. Throughout the proof, y is a fixed point in S and
β(y) = supn≥0 ‖xn − y‖. If β(y) = 0, all the statements are trivially true; we therefore
assume otherwise.

Step 1: Algorithm 6.1 is a special instance of Algorithm 4.1.
Indeed, for every n ∈ N, we can write (79) as

xn+1 = xn + λn(Tnxn + en − xn), (84)

where

en =
∑
i∈In

ωi,nei,n (85)

and

Tnxn = xn + Ln

(∑
i∈In

ωi,nTi,nxn − xn

)
. (86)

It follows from the definition of Ln in Ä that the operator Tn takes one of two forms,
namely





Tn : x 7→
∑
i∈In

ωi,nTi,nx if
∑
i∈In

ωi,n‖ei,n‖ 6= 0

Tn : x 7→ x + L
(
x, (Ti,n)i∈In , (ωi,n)i∈In

)
(∑

i∈In

ωi,nTi,nx− x

)
otherwise,

(87)

where the function L is defined in (15). In view of Á, Ã, Proposition 2.4, and Remark 2.5,
we conclude that in both cases Tn ∈ T .

Step 2: S ⊂ ⋂
n≥0 Fix Tn.

It follows from (76), (80), Á, and Proposition 2.4 that

S =
⋂
i∈I

Si =
⋂
n≥0

⋂
i∈In

Si ⊂
⋂
n≥0

⋂
i∈In

ωi,n>0

Fix Ti,n =
⋂
n≥0

Fix Tn. (88)

Step 3: (‖xn+1 − xn‖)n≥0 ∈ `2.

The claim follows from Step 1, (85), and Proposition 4.2(iii) since Ä ⇒ lim λn < 2.
Step 4: lim maxi∈In ‖Ti,nxn − xn‖ = 0.

To see this, we use successively Ä, (86), and the inequality Ln ≥ 1 to derive

(∀n ∈ N) λn(2− λn)‖Tnxn − xn‖2 ≥ δ2
2

Ln

‖Tnxn − xn‖2

= δ2
2Ln

∥∥∥∥∥
∑
i∈In

ωi,nTi,nxn − xn

∥∥∥∥∥

2

≥ δ2
2

∥∥∥∥∥
∑
i∈In

ωi,nTi,nxn − xn

∥∥∥∥∥

2

. (89)
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By virtue of Step 1 and Proposition 4.2(i), (xn)n≥0 is a quasi-Fejér sequence of Type I
relative to S and therefore β(y) < +∞. Moreover, Á implies that, for every n ∈ N,
(Ti,n)i∈In lies in T and y ∈ ⋂

i∈In
Fix Ti,n. Hence, we can argue as in (17) to get

(∀n ∈ N)

∥∥∥∥∥
∑
i∈In

ωi,nTi,nxn − xn

∥∥∥∥∥ ≥ 1

β(y)

∑
i∈In

ωi,n‖Ti,nxn − xn‖2

≥ δ1

β(y)
max
i∈In

‖Ti,nxn − xn‖2, (90)

where the second inequality is deduced from Ã. Now, since Proposition 4.2(ii) implies that
lim λn(2−λn)‖Tnxn− xn‖2 = 0, it follows from (89) that lim ‖∑

i∈In
ωi,nTi,nxn− xn‖ = 0

and then from (90) that lim maxi∈In ‖Ti,nxn − xn‖ = 0.
Step 5: W(xn)n≥0 ⊂ S.

Fix i ∈ I and x ∈ W(xn)n≥0, say xkn ⇀ x. Then it is enough to show x ∈ Si. By (80),
there exist an integer Mi > 0 and a strictly increasing sequence (pn)n≥0 in N such that

(∀n ∈ N) kn ≤ pn ≤ kn + Mi − 1 and i ∈ Ipn . (91)

Hence, by Cauchy-Schwarz,

(∀n ∈ N) ‖xpn − xkn‖ ≤
kn+Mi−2∑

l=kn

‖xl+1 − xl‖ ≤
√

Mi − 1

√∑

l≥kn

‖xl+1 − xl‖2 (92)

and Step 3 yields xpn − xkn → 0. Thus, xpn ⇀ x, while i ∈ ⋂
n≥0 Ipn and, by Step 4,

Ti,pnxpn − xpn → 0. Therefore, (81) forces x ∈ Si.
Step 6: Weak convergence.

Combine Steps 1, 2, and 5, Theorem 4.3(i), and (85).
Step 7: Strong convergence.

(ii): Let i be an index of demicompact regularity. According to (80), there exists a
strictly increasing sequence (kn)n≥0 in N such that i ∈ ⋂

n≥0 Ikn , where i is an index
of demicompact regularity, and Step 4 implies Ti,knxkn − xkn → 0. Since (xkn)n≥0 is
bounded, (82) yields S(xkn)n≥0 6= Ø. Therefore, strong convergence results from Step
5 and Theorem 3.11. (iii) follows from Step 1 and Theorem 4.3(iii). (iv) follows from
Theorem 4.3(ii). Indeed, using (89), (90), and (83), we get

(
β(y)

δ1δ2

)2 ∑
n≥0

λkn(2− λkn)‖Tknxkn − xkn‖2 ≥
∑
n≥0

χ2
ndS(xkn)2. (93)

Hence, since
∑

n≥0 λn(2−λn)‖Tnxn−xn‖2 < +∞ by Proposition 4.2(ii) and (χn)n≥0 /∈ `2

by assumption, we conclude that lim dS(xkn) = 0.

6.3. Application to a mixed convex feasibility problem
Let (fi)i∈I(1) be a family of continuous convex functions fromH into R, (Ri)i∈I(2) a family

of firmly nonexpansive operators with domain H and into H, and (Ai)i∈I(3) a family of
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maximal monotone operators from H into 2H. Here, I(1), I(2), and I(3) are possibly empty,
countable index sets.

In an attempt to unify a wide class of problems, we consider the mixed convex feasibility
problem

Find x ∈ H such that





(∀i ∈ I(1)) fi(x) ≤ 0

(∀i ∈ I(2)) Rix = x

(∀i ∈ I(3)) 0 ∈ Aix,

(94)

under the standing assumption that it is consistent. Problem (94) can be expressed as

Find x ∈ S =
⋂
i∈I

Si, where I = I(1) ∪ I(2) ∪ I(3)

and (∀i ∈ I) Si =





lev≤0 fi if i ∈ I(1)

Fix Ri if i ∈ I(2)

A−1
i 0 if i ∈ I(3).

(95)

In this format, it is readily seen to be a special case of problem (76) (the closedness and
convexity of Si in each case follows from well known facts).

To solve (94), we shall draw the operators Ti,n in Algorithm 6.1 from a pool of sub-
gradient projectors, firmly nonexpansive operators, and resolvents. Since such operators
conform to Á in Algorithm 6.1 by Proposition 2.2, this choice is legitimate.

Algorithm 6.7 In Algorithm 6.1 set for every i ∈ I the operators (Ti,n)n≥0 as follows.

• If i ∈ I(1), (∀n ∈ N) Ti,n = Ggi

fi
, where gi is a selection of ∂fi (see (9)).

• If i ∈ I(2), (∀n ∈ N) Ti,n = Ri.

• If i ∈ I(3), (∀n ∈ N) Ti,n = (Id + γi,nAi)
−1, where γi,n ∈ ]0, +∞[.

The next assumption will ensure that Algorithm 6.7 is well behaved asymptotically.

Assumption 6.8 The subdifferentials (∂fi)i∈I(1) map bounded sets into bounded sets
and, for every i ∈ I(3) and every strictly increasing sequence (kn)n≥0 in N such that
i ∈ ⋂

n≥0 Ikn , infn≥0 γi,kn > 0.

Theorem 6.9 Suppose that S 6= Ø in (95) and let (xn)n≥0 be an arbitrary orbit of Algo-
rithm 6.7. Then (xn)n≥0 converges weakly to a point in S if

(i)
(
λn‖

∑
i∈In

ωi,nei,n‖
)

n≥0
∈ `1, Assumption 6.8 is satisfied, and the control sequence

(In)n≥0 is admissible.

The convergence is strong if any of the following assumptions is added:

(ii) For some i ∈ I(1) and some η ∈ ]0, +∞[, lev≤η fi is boundedly compact.
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(iii) For some i ∈ I(2), Ri is demicompact at 0.

(iv) For some i ∈ I(3), dom Ai is boundedly compact.

Proof. Since Algorithm 6.7 is a special case of Algorithm 6.1, we shall derive this theorem
from Theorem 6.6. (i): It suffices to show that Assumption 6.8 implies that Algorithm 6.7
is focusing. To this end, fix i ∈ I and a suborbit (xkn)n≥0 such that i ∈ ⋂

n≥0 Ikn , xkn ⇀ x,
and Ti,knxkn − xkn → 0. According to (81), we must show x ∈ Si. Let us consider three
cases.

(a) i ∈ I(1): we must show fi(x) ≤ 0. Put α = lim f(xkn). Then, since f is weak lower
semicontinuous, fi(x) ≤ α and it is enough to show that α ≤ 0. Let us extract
from (xkn)n≥0 a subsequence (xlkn

)n≥0 such that lim fi(xlkn
) = α and (∀n ∈ N)

fi(xlkn
) > 0 (if no subsequence exists then clearly α ≤ 0). Then, by Assump-

tion 6.8, Ti,knxkn − xkn → 0 ⇒ Ggi

fi
xlkn

− xlkn
→ 0 ⇒ lim fi(xlkn

)/‖gi(xlkn
)‖ = 0 ⇒

lim fi(xlkn
) = 0, where the last implication follows from the boundedness of (xlkn

)n≥0

and Assumption 6.8. Therefore α ≤ 0.

(b) i ∈ I(2): we must show x ∈ Fix Ri. Certainly Ti,knxkn−xkn → 0⇒ (Ri−Id )xkn → 0.
Since Ri is firmly nonexpansive, it is nonexpansive. Ri− Id is therefore demiclosed
by Remark 2.6 and the claim ensues.

(c) i ∈ I(3): we must show (x, 0) ∈ grAi. For every n ∈ N, define yn = (Id +
γi,knAi)

−1xkn and vn = (xkn−yn)/γi,kn . Then
(
(yn, vn)

)
n≥0

lies in grAi and Ti,knxkn−
xkn → 0 ⇒ yn − xkn → 0 ⇒ yn ⇀ x. On the other hand, Assumption 6.8 ensures
that yn − xkn → 0 ⇒ vn → 0. Since grAi is weakly-strongly closed, we conclude
that (x, 0) ∈ grAi.

Let us now show that the three advertised instances of strong convergence yield demi-
compact regularity and are therefore consequences of Theorem 6.6(ii). Let us fix i ∈ I, a
closed ball B, and a suborbit (xkn)n≥0 such that i ∈ ⋂

n≥0 Ikn , B contains (xkn)n≥0, and

Ti,knxkn − xkn → 0. We must show S(xkn)n≥0 6= Ø. (ii): As shown in (a), lim f(xkn) ≤ 0
and therefore the tail of (xkn)n≥0 lies in the compact set B ∩ lev≤η fi. (iii) is clear. (iv):
Define (yn)n≥0 as in (c) and recall that yn − xkn → 0. Hence (yn)n≥0 lies in some closed
ball B′ and S(xkn)n≥0 = S(yn)n≥0. Moreover,

(∀n ∈ N) yn ∈ ran (Id + γi,knAi)
−1 = dom (Id + γi,knAi) = dom Ai. (96)

Hence, (yn)n≥0 lies in the compact set B′ ∩ dom Ai and the desired conclusion ensues.

Remark 6.10 To place the above result in its proper context, a few observations should
be made.

• Theorem 6.9 combines and, through the incorporation of errors, generalizes various
results on the convergence of block-iterative subgradient projection (for I(2) = I(3) =
Ø) and firmly nonexpansive iteration (for I(1) = I(3) = Ø) methods [ 8], [ 19], [ 21],
[ 22], [ 45].
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• For I(1) = I(2) = Ø, the resulting inexact block-iterative proximal point algorithm
appears to be new. If, in addition, I(3) is a singleton Theorem 6.9(i) reduces to Theo-
rem 5.16; if we further assume that λn ≡ 1, Theorem 6.9 captures some convergence
properties of Rockafellar’s inexact proximal point algorithm [ 68].

• Concerning strong convergence, although we have restricted ourselves to special
cases of Theorem 6.6(ii), it is clear that conditions (iii) and (iv) in Theorem 6.6 also
apply here. At any rate, these conditions are certainly not exhaustive.

• To recover results on projection algorithms, one can set (fi)i∈I(1) = (dSi
)i∈I(1) ,

(Ri)i∈I(2) = (PSi
)i∈I(2) , and (Ai)i∈I(3) = (NCi

)i∈I(3) , where NCi
is the normal cone

to Si.

7. PROJECTED SUBGRADIENT METHOD

The algorithms described in Section 4–6 are quasi-Fejér of Type I. In this section, we
shall investigate a class of nonsmooth constrained minimization methods which are quasi-
Fejér of Type II. As we shall find, the analysis developed in Section 3 will also be quite
useful here to obtain convergence results in a straightforward fashion.

Throughout, f : H → R is a continuous convex function, C is a closed convex subset of
H, and f̄ = inf f(C). Under consideration is the problem

Find x ∈ C such that f(x) = f̄ (97)

under the standing assumption that its set S of solutions is nonempty, as is the case when
lev≤η f ∩ C is nonempty and bounded for some η ∈ R.

In nonsmooth minimization, the use of projected subgradient methods goes back to
the 1960’s [ 70]. Our objective here is to establish convergence results for a class of
relaxed, projected approximate subgradient methods in Hilbert spaces. Recall that, given
ε ∈ [0, +∞[, the ε-subdifferential of f at x ∈ H is obtained by relaxing (5) as follows

∂εf(x) =
{
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y) + ε

}
. (98)

Algorithm 7.1 At iteration n ∈ N, suppose that xn ∈ H is given. Then select αn ∈
[0, +∞[, εn ∈ [0, +∞[, λn ∈ [0, 2], un ∈ ∂εnf(xn), and set

xn+1 = xn − αnun + λn

(
PC(xn − αnun)− xn + αnun

)
. (99)

Let us open the discussion with some basic facts about this algorithm.

Proposition 7.2 Let (xn)n≥0 be an arbitrary orbit of Algorithm 7.1 such that

(
α2

n‖un‖2 + 2αn

(
f̄ − f(xn)

)+
+ 2αnεn

)

n≥0

∈ `1. (100)

Then
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(i) (xn)n≥0 is quasi-Fejér of Type II relative to S.

(ii)
(
λn(2− λn)dC(xn − αnun)2

)
n≥0

∈ `1.

(iii) If (αn)n≥0 /∈ `1, lim εn = 0, and lim αn‖un‖2 = 0, then lim f(xn) ≤ f̄ .

Proof. (i): Fix x ∈ S and set (∀n ∈ N) yn = xn − αnun. Then (98) yields

(∀n ∈ N) ‖yn − x‖2 = ‖xn − x‖2 + α2
n‖un‖2 − 2αn〈xn − x | un〉

≤ ‖xn − x‖2 + α2
n‖un‖2 + 2αn

(
f̄ − f(xn) + εn

)
. (101)

On the other hand, since x ∈ S ⊂ C = Fix PC and PC ∈ T by Proposition 2.2, Proposi-
tion 2.3(ii) yields

(∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖yn − x‖2 − λn(2− λn)dC(yn)2. (102)

Altogether

(∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖xn − x‖2 − λn(2− λn)dC(yn)2 + α2
n‖un‖2

+ 2αn

(
f̄ − f(xn)

)
+ 2αnεn. (103)

In view of (100), (xn)n≥0 satisfies (3). (ii) follows from (103), (100), and Lemma 3.1(iii).
(iii): We derive from (103) that

(∀n ∈ N) αn

(
2(f(xn)− f̄)− 2εn − αn‖un‖2

) ≤ ‖xn − x‖2 − ‖xn+1 − x‖2. (104)

Hence,

∑
n≥0

αn

(
2(f(xn)− f̄)− 2εn − αn‖un‖2

) ≤ ‖x0 − x‖2 (105)

and, since
∑

n≥0 αn = +∞ by assumption, we get lim 2(f(xn)− f̄)− 2εn − αn‖un‖2 ≤ 0.

The remaining assumptions impose lim f(xn) ≤ f̄ .

The following theorem describes a situation in which weak and strong convergence can
be achieved in Algorithm 7.1.

Theorem 7.3 Let (xn)n≥0 be an arbitrary orbit of Algorithm 7.1. Then (xn)n≥0 converges
weakly to a point in S and lim f(xn) = f̄ if

(i) (αn)n≥0 ∈ `∞r`1, (εn)n≥0 ∈ `1, and, furthermore, there exist δ ∈ ]0, 1[, κ ∈ ]0, +∞[,
(βn)n≥0 ∈ `+ ∩ `1, and (γn)n≥0 ∈ `+ ∩ `1 such that

(∀n ∈ N) f̄ − γn+1 ≤ f(xn+1) ≤ f(xn)− καn‖un‖2 + βn (106)

and (∀n ∈ N) δ ≤ λn ≤ 2− δ.

The convergence is strong if any of the following assumptions is added:

(ii) int S 6= Ø.
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(iii) C is boundedly compact.

(iv) For some z ∈ C, lev≤f(z) f is boundedly compact.

Proof. Set ζ = f̄ − supn≥0 γn. Then (106) yields

(∀n ∈ N) 0 ≤ f(xn+1)− ζ ≤ (
f(xn)− ζ

)− καn‖un‖2 + βn. (107)

Hence, it follows from Lemma 3.1(ii) that (f(xn))n≥0 converges and from Lemma 3.1(iii)
that (αn‖un‖2)n≥0 ∈ `1. Hence, since for every n ∈ Nr {0} f̄ − f(xn) ≤ γn,

∑
n≥1

αn‖un‖2 + 2
(
f̄ − f(xn)

)+
+ 2εn ≤

∑
n≥1

αn‖un‖2 + 2γn + 2εn < +∞ (108)

and we deduce from the boundedness of (αn)n≥0 that (100) holds. In view of Propo-
sition 7.2(i), Proposition 3.2(i), and Theorem 3.8, to establish weak convergence to a
solution, we must show W(xn)n≥0 ⊂ S. Fix x ∈ W(xn)n≥0, say xkn ⇀ x. Note that the
assumptions on (λn)n≥0 and Proposition 7.2(ii) imply that lim dC(xn − αnun) = 0. On
the other hand, since (αn)n≥0 ∈ `∞ and lim αn‖un‖2 = 0, we have lim αn‖un‖ = 0 and,
therefore, xkn−αknukn ⇀ x. However, since C is convex, dC is weak lower semicontinuous
and it follows that dC(x) ≤ lim dC(xkn − αknukn) = 0. As C is closed, we obtain x ∈ C
and, in turn, f̄ ≤ f(x). The weak lower semicontinuity of f then yields

f̄ ≤ f(x) ≤ lim f(xkn) = lim f(xn) ≤ f̄ , (109)

where the last inequality is furnished by Proposition 7.2(iii). Consequently f(x) = f̄ =
lim f(xn). Since x ∈ C, we have thus shown x ∈ S, which completes the proof of (i).

Let us now prove the strong convergence statements. By virtue of Theorem 3.11,
since W(xn)n≥0 ⊂ S, it is enough to show S(xn)n≥0 6= Ø. (ii) Apply Proposition 3.10.
(iii): As seen above, PCxn − xn → 0. On the other hand, PC is demicompact (see Re-
mark 2.6). Hence S(xn)n≥0 6= Ø. (iii): Let B be a closed ball containing (xn)n≥0. Since
lim f(xn) = f̄ ≤ f(z), the tail of (xn)n≥0 lies in the compact set B ∩ lev≤f(z) f and there-
fore S(xn)n≥0 6= Ø.

Remark 7.4 A few comments are in order.

• Theorem 7.3 generalizes [ 26, Prop. 2.2], in which dimH < +∞, C = H (hence
γn ≡ 0), and βn ≡ 0.

• The second inequality in (106) with βn ≡ 0 was interpreted in [ 26] as an approximate
Armijo rule.

• The first inequality in (106) is trivially satisfied with γn ≡ 0 if (xn)n≥0 lies in C.
This is true in particular when λn ≡ 1.
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Remark 7.5 Suppose that inf f(C) > inf f(H) and fix (γn)n≥0 ∈ `+∩ `2r `1. A classical
subgradient projection method is described by the recursion [ 70]

x0 ∈ C and (∀n ∈ N) xn+1 = PC

(
xn − γn

‖un‖un

)
, where un ∈ ∂f(xn). (110)

This algorithm is readily seen to be a particular implementation of Algorithm 7.1 with
εn ≡ 0, λn ≡ 1, and αn = γn/‖un‖. Moreover, (αn‖un‖)n≥0 ∈ `2 and, since (f(xn))n≥0

lies in
[
f̄ , +∞[

, (100) holds. Consequently, Proposition 7.2(i) asserts that any sequence
(xn)n≥0 conforming to (110) is quasi-Fejér of Type II relative to S. Moreover, if ∂f maps
the bounded subsets of C to bounded sets, then (αn)n≥0 /∈ `1 and lim αn‖un‖2 = 0. As a
result, Proposition 7.2(iii) implies that lim f(xn) = f̄ . Thus, if C is boundedly compact,
we can extract a subsequence (xkn)n≥0 such that lim f(xkn) = f̄ and which converges
strongly to some point x ∈ C. Hence, x ∈ S(xn)n≥0∩S and it follows from Theorem 3.11
that xn → x. For dimH < +∞ and C = H, this result was established in [ 26, Prop.
5.1]. One will also find in [ 2] a convergence analysis of the ε-subgradient version of (110).

Remark 7.6 A third method for solving (97) is Polyak’s subgradient method [ 62], which
assumes that f̄ is known. It proceeds by alternating a relaxed subgradient projection
onto lev≤f̄ f with a projection onto C and can therefore be regarded as a special case of
Algorithm 6.1 with two sets.
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5. J.-B. Baillon, Comportement asymptotique des contractions et semi-groupes de con-
tractions Doctoral thesis (Université Paris 6, France, 1978).
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imization, in: M. Théra and R. Tichatschke, eds., Ill-Posed Variational Problems and
Regularization Techniques Lecture Notes in Economics and Mathematical Systems
477, 137–150 (Springer-Verlag, New York, 1999).

45. K. C. Kiwiel and B. ÃLopuch, Surrogate projection methods for finding fixed points of
firmly nonexpansive mappings, SIAM Journal on Optimization 7 (1997) 1084–1102.

46. B. Lemaire, Coupling optimization methods and variational convergence, in: K.
H. Hoffmann, J. B. Hiriart-Urruty, C. Lemaréchal, and J. Zowe, eds., Trends in
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