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Introduction Monotone Splitting Simu

Notation

H, G, etc are real Hilbert spaces

B(H,G) is the space of bounded linear operators from H to
G; B(H) = B(H,H)

Synthetic problem: given f : H → ]−∞,+∞],

minimize
x∈H

f (x) (1)
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B(H,G) is the space of bounded linear operators from H to
G; B(H) = B(H,H)

Synthetic problem: given f : H → ]−∞,+∞],

minimize
x∈H

f (x) (1)

Convex optimization refers to the case when f in (1) is
proper, lower semicontinuous, and convex, which we de-
note by f ∈ Γ0(H)

We interpret (1) in the strict sense of producing a point in
Argmin f , not in the looser sense of making f small

Minimizing sequences may have little to do with actually ap-
proaching a point in Argmin f as we can have for p > 2
(even in H = R

2): f (xn) − min f (H) = 1/(n + 1)p ↓ 0 and
dArgmin f (xn) ↑ +∞

Patrick L. Combettes Monotone Operators in Convex Optimization 2/39



Introduction Monotone Splitting Simu
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sults, not a constructive theory
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A few words on nonconvex minimization

1. Nonconvex optimization is
an unstructured corpus of re-
sults, not a constructive theory

2. Moving permanently away
from solutions in descent meth-
ods:

Hb

solutiondescent directions

bb b b

3. Loose connections with
other branches of nonlinear
analysis

4. Algorithms may yield trivial
solutions:

Let f : H → {0, . . . ,p} be l.s.c.
(e.g., rank etc.), let C 6= Ø.
Then any point in C is a local
minimizer of:

minimize
x∈C

f (x)

J.-B. Hiriart-Urruty, When only

global optimization matters, J.

Global Optim., vol. 56, pp. 761–

763, 2013
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Convex minimization

Synthetic problem: given f ∈ Γ0(H),

minimize
x∈H

f (x)

A more structured version

minimize
xi∈Hi , i∈I

∑

i∈I

(
fi(xi)− 〈xi | z∗i 〉

)
+
∑

k∈K

gk

(∑

i∈I

Lkixi − rk

)

where fi ∈ Γ0(Hi), gk ∈ Γ0(Gk ), Lki ∈ B(Hi ,Gk )
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Convex minimization

Synthetic problem: given f ∈ Γ0(H),

minimize
x∈H

f (x)

A more structured version

minimize
xi∈Hi , i∈I

∑

i∈I

(
fi(xi)− 〈xi | z∗i 〉

)
+
∑

k∈K

gk

(∑

i∈I

Lkixi − rk

)

where fi ∈ Γ0(Hi), gk ∈ Γ0(Gk ), Lki ∈ B(Hi ,Gk )

To analyze and solve such complex minimization problem,
one must borrow tools from functional and numerical anal-
ysis

Our main message is that monotone operator theory plays
an increasingly central role in convex optimization and that
both fields maintain a tight and productive interplay
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• Topological vector spaces

• Linear operators

• Duality
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1950’s
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Functional analysis: Historical overview

Linear functional analysis

• Topological vector spaces

• Linear operators

• Duality

• Theory of distributions

• etc.

1950’s

Nonlinear functional analysis:outgrowths of linear analysis

Early 1960’s

Monotone operators

Convex analysis

Nonexpansive operators

These new structured theories, which often revolve around turn-
ing equalities in classical linear analysis into inequalities, benefit
from tight connections between each other.
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Convex analysis (Moreau, Rockafellar, 1962+)

Γ0(H): lower semicontinuous convex functions f : H →
]−∞,+∞] such that dom f =

{
x ∈ H | f (x) < +∞

}
6= Ø

f ∗ : x∗ 7→ supx∈H 〈x | x∗〉 − f (x) is the conjugate of f ; if f ∈
Γ0(H), then f ∗ ∈ Γ0(H) and f ∗∗ = f

The subdifferential of f at x ∈ H is

∂f (x) =
{

x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉+ f (x)︸ ︷︷ ︸
fx,x∗ (y)

6 f (y)
}

gra f

epi f

gra fx,x∗gra fx,x∗

gra 〈· | x∗〉

x

f (x)

R

H

f ∗(x∗)
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Γ0(H): lower semicontinuous convex functions f : H →
]−∞,+∞] such that dom f =

{
x ∈ H | f (x) < +∞

}
6= Ø

f ∗ : x∗ 7→ supx∈H 〈x | x∗〉 − f (x) is the conjugate of f ; if f ∈
Γ0(H), then f ∗ ∈ Γ0(H) and f ∗∗ = f

The subdifferential of f at x ∈ H is

∂f (x) =
{

x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉+ f (x)︸ ︷︷ ︸
fx,x∗ (y)

6 f (y)
}

gra f

epi f

gra fx,x∗gra fx,x∗

gra 〈· | x∗〉

x

f (x)

R

H

f ∗(x∗)

Infimal convolution of
f ,g : H → ]−∞,+∞]:
(f �g) : x 7→ infy∈Hf (y) + g(x − y)

Fermat’s rule:
x minimizes f ⇔ 0 ∈ ∂f (x)
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Nonexpansive operators (Browder, Minty)

T ∈ B(H) is an isometry if (∀x ∈ H) ‖Tx‖ = ‖x‖, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖Tx − Ty‖ = ‖x − y‖.

T : H → H is nonexpansive if

(∀x ∈ H)(∀y ∈ H) ‖Tx − Ty‖ 6 ‖x − y‖,

firmly nonexpansive if

(∀x ∈ H)(∀y ∈ H) ‖Tx−Ty‖2+‖(Id−T )x−(Id−T )y‖2 6 ‖x−y‖2.

and α-averaged (α ∈ ]0, 1[), if

(∀x ∈ H)(∀y ∈ H) ‖Tx−Ty‖2+
1 − α

α
‖(Id−T )x−(Id−T )y‖2 6 ‖x−y‖2
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Monotone operators (Kačurovskĭı, Minty,

Zarantonello, 1960)

A ∈ B(H) is skew if (∀x ∈ H) 〈x | Ax〉 = 0 and it is positive if
(∀x ∈ H) 〈x | Ax〉 > 0, i.e.,

(∀x ∈ H)(∀y ∈ H) 〈x − y | Ax − Ay〉 > 0. (2)

In 1960, Kačurovskĭı, Minty, and Zarantonello independently
called monotone a nonlinear operator A : H → H that satis-
fies (2)

More generally, a set-valued operator A : H → 2H with
graph gra A =

{
(x , x∗) ∈ H×H | x∗ ∈ Ax

}
is monotone if

(∀(x , x∗) ∈ gra A)(∀(y, y∗) ∈ gra A) 〈x − y | x∗ − y∗〉 > 0,

and maximally monotone if there is no monotone operator
B : H → 2H such that gra A ⊂ gra B 6= gra A
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H

H

H

H

H

H

H

H

H

H

H

H

monotone, not monotone

monotone, max. monotone

max. monotone, max. monotone

Minty’s theorem: A monotone is
max. monotone ⇔ ran(Id + A) = H
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First examples of maximally monotone operators

A : R → R is a continuous increasing function

A ∈ B(H) is a skew operator

(Moreau) f ∈ Γ0(H) and A = ∂f

C is a nonempty closed convex subset of H and

(∀x ∈ H) Ax =

{{
u ∈ H | (∀y ∈ C) 〈y − x | u〉 6 0

}
if x ∈ C

Ø if x /∈ C

A is the normal cone operator of C

V is a closed vector subspace of H and

(∀x ∈ H) Ax =

{
V⊥ if x ∈ V

Ø if x /∈ V

Patrick L. Combettes Monotone Operators in Convex Optimization 10/39



Introduction Monotone Splitting Simu

What is a maximally monotone operator in

general?

Who knows? ...certainly a complicated object

The Asplund decomposition

A = ∂f + something (acyclic)

is not fully understood

In the Borwein-Wiersma decomposition, “something” is the
restriction of a skew operator

Jon Borwein’s conjecture was that in general “something” is
locally the restriction (localization) of a skew linear relation
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Convexity/Nonexpansiveness/Monotonicity
If f ∈ Γ0(H), A = ∂f is maximally monotone

If T : H → H is nonexpansive, A = Id − T is max. mon. and Fix T =
{

x ∈ H | Tx = x
}

is closed and convex and Fix T = zer A

If A : H → 2H is max. mon., (∀x ∈ H) Ax is closed and convex;
zer A = A−1(0) is closed and convex

If A : H → 2H is maximally monotone, int dom A, dom A, int ran A,
and ran A are convex

(Minty) If T : H → H is firmly nonexpansive, then T = JA for some
maximally monotone A : H → 2H and Fix T = zer A

(Minty) If A : H → 2H is maximally monotone, the resolvent JA =
(Id + A)−1 is firmly nonexpansive with dom JA = H, and the re-
flected resolvent RA = 2JA − Id is nonexpansive

If T : H → H is an α-averaged (α 6 1/2) nonexpansive operator, it
is maximally monotone

If A = βB is firmly nonexpansive (hence max. mon.), 0 < γ < 2β,
and α = γ/(2β), then Id − γB is an α-averaged nonexpansive op-
erator
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Moreau’s proximity operator

In 1962, Jean Jacques Moreau (1923–2014) introduced the
proximity operator of f ∈ Γ0(H)

proxf : x 7→ argmin
y∈H

f (y) +
1

2
‖x − y‖2

and derived all its main properties

Set q = ‖ · ‖2/2. Then f �q + f ∗�q = q and

proxf = ∇(f + q)∗ = ∇(f ∗ �q) = Id − proxf∗ = (Id + ∂f )−1

proxf = J∂f , hence

Fix proxf = zer ∂f = Argmin f
(proxf x , x − proxf x) ∈ gra ∂f
‖proxf x − proxf y‖2 + ‖proxf∗x − proxf∗y‖2 6 ‖x − y‖2

This suggests that (Martinet’s proximal point algorithm,
1970/72) xn+1 = proxf xn ⇀ x ∈ Argmin f
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Subdifferentials as Maximally Monotone Operators

Rockafellar (1966) has fully characterized subdifferentials as
those maximally monotone operators which are cyclically
maximally monotone

Moreau (1965) has fully characterized proximity operators
as those (firmly) nonexpansive operators which are gradi-
ents of convex functions

Moreau (1963) showed that a convex average of proximity
operator is again a proximity operator. A number of addi-
tional “proximity preserving” transformations are identified
in the accompanying paper [PLC, 2018], which lead to:

A new example of weakly but not strongly convergent
proximal iteration
New explicit expressions for proximity operators of cer-
tain composite functions
A study of self-dual classes of firmly nonexpansive op-
erators
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The need for monotone operators in optimization

They of course offer a synthetic framework to formulate,
analyze, and solve optimization problems but, more impor-
tantly,...
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The need for monotone operators in optimization

They of course offer a synthetic framework to formulate,
analyze, and solve optimization problems but, more impor-
tantly,...

... some key maximal monotone operators arising in the
analysis and the numerical solution of convex minimization
problems are not subdifferentials, for instance:

(Rockafellar, 1970) The saddle operator

A : (x1, x2) 7→ ∂L(·, x2)(x1)× ∂(−L(x1, ·))(x2)

associated with a closed convex-concave function L
(Spingarn, 1983) The partial inverse of a maximally
monotone operator (and even of a subdifferential)
Some operators which arise in the perturbation of opti-
mization problems are no longer subdifferentials
Skew linear operators arising in composite primal-dual
minimization problems (PLC et al., 2011+)
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Interplay: The proximal point algorithm

First derived by Martinet (1970/72) for f ∈ Γ0(H) with con-
stant proximal parameters, and then by Brézis-Lions (1978)

xn+1 = proxγnf xn ⇀ x ∈ Argmin f if
∑

n∈N

γn = +∞ (3)

Then extended to a maximally monotone operator A by
Rockafellar (1976) and Brézis-Lions (1978)

xn+1 = JγnAxn ⇀ x ∈ zer A if
∑

n∈N

γ2
n = +∞ (4)

Note that (3) has more general parameters. However (4) is
considerably more useful to optimization than (3)
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Interplay: The proximal point algorithm

(Rockafellar, 1976) Applying the general proximal point al-
gorithm (4) to the saddle operator leads to various mini-
mization algorithms (e.g., the proximal method of multipliers
in the case of the ordinary Lagrangian)

Applying the general proximal point algorithm (4) to the
partial inverse of a suitably constructed partial inverse
makes it possible to solve (Alghamdi, Alotaibi, PLC, Shahzad,
2014)

minimize
(∀i∈I) xi∈Hi

∑

i∈I

(
fi(xi)− 〈xi | zi〉

)
+ g

(
∑

i∈I

Lixi − r

)
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Periodic projection methods: inconsistent case

b

C2

C3

C1

x0

x2

x1

x3

x4

x5

y2

y3

y1

b

b

b

Basic feasibility problem: find a common point of nonempty
closed convex sets (Ci)16i6m by the method of periodic pro-
jections xmn+1 = proj1 · · ·projmxmn

If the sets turn out not to intersect, the method produces a
cycle (y1, y2, y3)
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Periodic projection methods: inconsistent case

Denote by cyc(C1, . . . ,Cm) is the set of cycles of (C1, . . . ,Cm),
i.e.,

cyc(C1, . . . ,Cm) =
{
(y1, . . . , ym) ∈ Hm

∣∣ y1 = proj1y2, . . . ,

ym−1 = projm−1ym, ym = projmy1

}
.

Question (Gurin-Polyak-Raik, 1967): Let m > 3 be an inte-
ger. Does there exist a function Φ: Hm → R such that, for
every ordered family of nonempty closed convex subsets
(C1, . . . ,Cm) of H, cyc(C1, . . . ,Cm) is the set of solutions to
the variational problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym) ?
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Cyclic projection methods

Theorem (Baillon, PLC, Cominetti, 2012): Suppose that
dimH > 2 and let N ∋ m > 3. There exists no function
Φ: Hm → R such that, for every ordered family of nonempty
closed convex subsets (C1, . . . ,Cm) of H, cyc(C1, . . . ,Cm) is
the set of solutions to the variational problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym).
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Cyclic projection methods

Theorem (Baillon, PLC, Cominetti, 2012): Suppose that
dimH > 2 and let N ∋ m > 3. There exists no function
Φ: Hm → R such that, for every ordered family of nonempty
closed convex subsets (C1, . . . ,Cm) of H, cyc(C1, . . . ,Cm) is
the set of solutions to the variational problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym).

However, cycles do have a meaning: if we denote by L the
circular left shift, they solve the inclusion

(0, . . . , 0) ∈ NC1×···×Cm︸ ︷︷ ︸
subdifferential

(y1, . . . , ym)+ (Id − L)︸ ︷︷ ︸
not a subdifferential

(y1, . . . , ym),

which involves two maximally monotone operators
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Splitting structured problems: 3 basic methods
A, B : H → 2H maximally monotone, solve 0 ∈ Ax + Bx .

Douglas-Rachford splitting (1979)








yn = JγBxn

zn = JγA(2yn − xn)
xn+1 = xn + zn − yn

B :H→H 1/β-cocoercive: forward-backward splitting (1979+)









0 < γn < 2/β
yn = xn − γnBxn

xn+1 = JγnAyn

B :H→H µ-Lipschitzian: forward-backward-forward splitting (2000)
















0 < γn < 1/µ
yn = xn − γnBxn

zn = JγnAyn

rn = zn − γnBzn

xn+1 = xn − yn + rn

Patrick L. Combettes Monotone Operators in Convex Optimization 23/39
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Splitting structured problems: 3 basic methods

A large number of minimization methods are special cases
of these monotone operator splitting methods in a suitable
setting that may involve

product spaces
dual spaces
primal-dual spaces
renormed spaces
or a combination thereof

The simplifying reformulations typically involve monotone
operators which are not subdifferentials
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Proximal splitting methods in convex optimization

f ∈ Γ0(H), ϕk ∈ Γ0(Gk ), ℓk ∈ Γ0(Gk ) strongly convex, Lk : H →
Gk linear bounded, ‖Lk‖ = 1, h : H → R convex and smooth:

minimize
x∈H

f (x) +

p∑

k=1

(ϕk � ℓk)(Lk x − rk ) + h(x)

where: ϕk � ℓk : x 7→ infy∈H

(
ϕk (y) + ℓk(x − y)

)

Example: multiview total variation image recovery from ob-
servations rk = Lkx + wk :

minimize
x∈H

∑

k∈N

φk (〈x | ek〉) +
p−1∑

k=1

αk dCk︸︷︷︸
ιC � ‖·‖

(Lk x − rk ) + β‖∇x‖1,2

A splitting algorithm activates each function and each lin-
ear operator individually
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Proximal splitting methods in convex optimization

A = ∂f , C = ∇h, Bk = ∂gk , and Dk = ∂ℓk

K = H⊕ G1 ⊕ · · · ⊕ Gp

Subdifferential: M : K → 2K : (x , v1, . . . , vp) 7→
(−z+Ax)× (r1+B−1

1 v1)× · · · × (rp+B−1
p vp)

Not a subdifferential: Q : K → K : (x , v1, . . . , vp) 7→(
Cx +

∑p
k=1L∗k vk ,−L1x+D−1

1 v1, . . . ,−Lpx+D−1
p vp

)

M and Q are maximally monotone, Q is Lipschitzian, the ze-
ros of M + Q are primal-dual solutions

Solve 0 ∈ Mx + Qx, where x = (x , v1, . . . , vp) via Tseng’s
forward-backward-forward splitting algorithm



yn = xn − Qxn

pn = (Id + M)−1 yn

qn = pn − Qpn

xn+1 = xn − yn + qn
in K to get...
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Proximal splitting methods in convex optimization

Algorithm:
for n = 0, 1, . . .
































y1,n = xn −
(

∇h(xn) +
∑m

k=1 L∗k vk,n

)

p1,n = proxf y1,n

For k = 1, . . . ,p












y2,k,n = vk,n + (Lkxn −∇ℓ∗k (vk,n))
p2,k,n = proxg∗

k
(y2,k,n − rk )

q2,k,n = p2,k,n + (Lkp1,n −∇ℓ∗k (p2,k,n))
vk,n+1 = vk,n − y2,k,n + q2,k,n

q1,n = p1,n −
(

∇h(p1,n) +
∑m

k=1 L∗k p2,k,n

)

xn+1 = xn − y1,n + q1,n

(xn)n∈N converges weakly to a solution (PLC, 2013)
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Some limitations of the state-of-the-art

We present a new framework that circumvents simultaneously
the limitations of current methods, which require:

inversions of linear operators or knowledge of bounds on
norms of all the Lki

the proximal parameters must be the same for all the subd-
ifferential operators

activation of the proximal operators of all the functions: im-
possible in huge-scale problems

synchronicity: all proximity operator evaluations must be
computed and used during the current iteration

and, in general,

converge only weakly
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Composite convex optimization problem

Let F be the set of solutions to the problem

minimize
xi∈Hi , i∈I

∑

i∈I

(
fi(xi)− 〈xi | z∗i 〉

)
+
∑

k∈K

gk

(∑

i∈I

Lkixi − rk

)

where fi ∈ Γ0(Hi), gk ∈ Γ0(Gk ), Lki ∈ B(Hi ,Gk )
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Composite convex optimization problem

Let F be the set of solutions to the problem

minimize
xi∈Hi , i∈I

∑

i∈I

(
fi(xi)− 〈xi | z∗i 〉

)
+
∑

k∈K

gk

(∑

i∈I

Lkixi − rk

)

where fi ∈ Γ0(Hi), gk ∈ Γ0(Gk ), Lki ∈ B(Hi ,Gk )

Let F
∗ be the set of solutions to the dual problem

minimize
v∗

k ∈Gk , k∈K

∑

i∈I

f ∗i

(
z∗i −

∑

k∈K

L∗kiv
∗
k

)
+
∑

k∈K

(
g∗

k (v
∗
k ) + 〈v∗

k | rk〉
)
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Composite convex optimization problem

Let F be the set of solutions to the problem

minimize
xi∈Hi , i∈I

∑

i∈I

(
fi(xi)− 〈xi | z∗i 〉

)
+
∑

k∈K

gk

(∑

i∈I

Lkixi − rk

)

where fi ∈ Γ0(Hi), gk ∈ Γ0(Gk ), Lki ∈ B(Hi ,Gk )

Let F
∗ be the set of solutions to the dual problem

minimize
v∗

k ∈Gk , k∈K

∑

i∈I

f ∗i

(
z∗i −

∑

k∈K

L∗kiv
∗
k

)
+
∑

k∈K

(
g∗

k (v
∗
k ) + 〈v∗

k | rk〉
)

Associated Kuhn-Tucker set

Z =

{(
(x i)i∈I , (v

∗
k)k∈K

) ∣∣∣∣ x i ∈ Hi and z∗i −
∑

k∈K

L∗kiv
∗
k ∈ ∂fi(x i),

v
∗
k ∈ Gk and

∑

i∈I

Lkix i − rk ∈ ∂g∗
k (v

∗
k)

}
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Underlying geometry: The Kuhn-Tucker set

H1 ⊕ · · · ⊕ Hm

G1 ⊕ · · · ⊕ Gp

Z

F

F∗

Choose suitable points in the graphs of (∂fi)i∈I and (∂gk)k∈K

to construct a half-space Hn containing Z

Algorithm: (xn+1, v
∗
n+1) = PHn

(xn, v
∗
n) ⇀ (x, v∗) ∈ Z ⊂ F × F∗
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Underlying geometry: The Kuhn-Tucker set

H1 ⊕ · · · ⊕ Hm||
xnxn+1

Hn

v∗

n

v∗

n+1−

− •

G1 ⊕ · · · ⊕ Gp

Z

F

F∗

Choose suitable points in the graphs of (∂fi)i∈I and (∂gk)k∈K

to construct a half-space Hn containing Z

Algorithm: (xn+1, v
∗
n+1) = PHn

(xn, v
∗
n) ⇀ (x, v∗) ∈ Z ⊂ F × F∗
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Asynchronous block-iterative proximal splitting

(PLC, Eckstein, 2018)

for n = 0, 1, . . .






























































































for every i ∈ In








l∗i,n =
∑

k∈K L∗ki v
∗

k,ci (n)

(ai,n, a∗

i,n) =
(

prox
γi,ci (n)

fi

(

xi,ci (n)
+ γi,ci (n)

(zi − l∗i,n)
)

, γ
−1
i,ci (n)

(xi,ci (n)
− ai,n) − l∗i,n

)

for every i ∈ I r In
⌊

(ai,n, a∗

i,n) = (ai,n−1, a∗

i,n−1)

for every k ∈ Kn








lk,n =
∑

i∈I Lki xi,dk (n)

(bk,n, b∗

k,n) =
(

rk + prox
µk,dk (n)gk

(

lk,n + µk,dk (n)
v∗

k,dk (n)
− rk

)

, v∗

k,dk (n)
+ µ

−1
k,dk (n)

(lk,n − bk,n)
)

for every k ∈ K r Kn
⌊

(bk,n, b∗

k,n) = (bk,n−1, b∗

k,n−1)
(

(t∗i,n)i∈I , (tk,n)k∈K

)

=
(

(a∗

i,n +
∑

k∈K L∗ki b
∗

k,n)i∈I , (bk,n −
∑

i∈I Lki ai,n)k∈K

)

τn =
∑

i∈I ‖t∗i,n‖
2 +

∑

k∈K ‖tk,n‖
2

if τn > 0
∣

∣

∣

∣

∣

θn =
λn

τn

max

{

0,
∑

i∈I

(

〈xi,n | t
∗

i,n〉 − 〈ai,n | a
∗

i,n〉
)

+
∑

k∈K

(

〈tk,n | v
∗

k,n〉 − 〈bk,n | b
∗

k,n〉
)

}

else θn = 0
for every i ∈ I
⌊

xi,n+1 = xi,n − θnt∗i,n
for every k ∈ K
⌊

v∗

k,n+1 = v∗

k,n − θntk,n
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Numerical example

The problem is to

minimize
x∈C

6‖∇x‖1,2 + 5d2
D(x) + 10‖H1x − y1‖2

2 + 10‖H2x − y2‖2
2,

where

C = [0, 255]N , N = 128 × 128

‖∇‖1,2 : R
N → R is the total variation

D =
{

x ∈ R
N | x̂1K = x̂1K

}
where the set K contains the fre-

quencies in {0, . . . ,
√

N/8 − 1}2 (+ symmetries)

H1 and H2 model convolution blurs of size 3 × 11 and 7 × 5,
y1 and y2 are noisy observations
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Fully proximal implementations of splitting

algorithms

The problem

minimize
x∈C

6‖∇x‖1,2 + 5d2
D(x) + 10‖H1x − y1‖2 + 10‖H2x − y2‖2

2

contains 3 smooth terms

However each proxgk
in the gk ◦Lk terms has an explicit prox

Although some of the primal dual FB and FBF (see below)
algorithms can exploit smoothness, a fully proximal imple-
mentation turned out to be faster
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We apply these algorithms with

f = ιC

g1 = 6‖ · ‖1,2 and L1 = ∇

g2 = 5d2
D and L2 = Id

g3 = 10‖H1 · −y1‖2
2 and L3 = Id

g4 = 10‖H2 · −y2‖2
2 and L4 = Id

and

FBF Imp, FB Imp, and KT Imp: I = {1, 2, 3, 4} and J = Ø

FBF Expl, FB Expl, and KT Expl: I = {1} and J = {2, 3, 4}
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Parameters

Set β =
√∑

k∈K ‖Lk‖2 and:

FBF Imp: γn ≡ 0.99β

FBF Expl: γn ≡ 0.99β

FB Imp: σ1,n ≡ 3/(2β), σ2,n ≡ 3/(2β), σ3,n ≡ 1/(10β),
σ4,n ≡ 1/(10β), τn ≡ 1/β, and λn ≡ 1

FB Expl: σ1,n ≡ 3/(2β), τn ≡ 1/(10β), and λn ≡ 1

KT Imp : γn ≡ 0.4, µ1,n ≡ 1, µ2,n ≡ 1, µ3,n ≡ 1,µ4,n ≡ 3/2, and
λn ≡ 1

KT Expl : γn ≡ 1.5, µ1,n ≡ 0.04, µ2,n ≡ 0.04, µ3,n ≡ 0.09,
µ4,n ≡ 0.5, and λn ≡ 1
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Numerical results
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Numerical results

Original Degraded 1

Degraded 2 Restored
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Outlook

Just like in the early 1960s the frontier separating linear from
noninear problems was not a useful one, the current di-
chotomy between the class of convex/monotone problems
and its complement (“everything else”) is not pertinent.

One must define a structured extension of the remarkably
efficient convexity/nonexpansiveness/monotonicity trio that
would ideally enjoy similar rich connections. This is an ex-
trememely challenging task.
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