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Abstract

A new iterative method for finding the projection onto the intersection of two closed convex
sets in a Hilbert space is presented. It is a Haugazeau-like modification of a recently proposed
averaged alternating reflections method which produces a strongly convergent sequence.
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1 Introduction

Throughout this paper,

X is a real Hilbert space with inner product 〈· | ·〉 and induced norm ‖ · ‖, (1)

and
A and B are two closed convex sets in X such that C = A ∩B 6= ∅. (2)

Given a point x ∈ X, the problem under consideration is the best approximation problem

find c ∈ C such that ‖x− c‖ = inf ‖x− C‖. (3)

This problem, which was already studied by von Neumann in the 1930s in this general Hilbert space
setting, is of fundamental importance in applied mathematics (see [5] for historical references, recent
applications, algorithms, and further references).
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The aim of this note is to present a new strongly convergent method — termed Haugazeau-like Av-
eraged Alternating Reflections (HAAR) — for finding the solution of (3) iteratively. This algorithm
is a modification of the Averaged Alternating Reflections (AAR) scheme, which we recently intro-
duced in [4]. To describe AAR, we require some notation from convex analysis. Given any nonempty
closed convex set S in X, denote the projector (best approximation operator) onto S by PS . Further,
let I be the identity operator on X and let RS = 2PS − I be the reflector with respect to S. We re-
call that the normal cone to S at x ∈ S is defined by NS(x) =

{
x∗ ∈ X | (∀s ∈ S) 〈x∗ | s− x〉 ≤ 0

}
.

Both AAR and HAAR rely upon the operator

T = 1
2RARB + 1

2I, (4)

and their analyses require the nonempty closed convex cone

K = NB−A(0). (5)

We are now ready to describe AAR and its asymptotic behavior (see also [4] for background).

Fact 1.1 (AAR) Suppose that x ∈ X. Then the sequence of averaged alternating reflections
(AAR) (Tnx)n∈N converges weakly to a point in

FixT =
{
z ∈ X | Tz = z

}
= C + K. (6)

Moreover, the sequence (PBTnx)n∈N is bounded and each of its weak cluster points lies in C.

Proof. The identity (6) was proved in [4, Corollary 3.9]. The statements regarding weak convergence
and weak cluster points follows from [8, Theorem 1] applied to the normal cone operators NA and
NB. (See also [3, Fact 5.9] and [4, Theorem 3.13(ii)].)

Fact 1.1 implies that the weak cluster points of the sequence (PBTnx)n∈N solve the convex
feasibility problem

find c ∈ C. (7)

Although such points solve (7), they may nonetheless be neither strong cluster points nor the
solution of the best approximation problem (3) (see [4, Section 1] for a counterexample). These
shortcomings of AAR motivated us to look for variants of AAR with better convergence properties.
In Section 2, we investigate the relative geometry of the sets A and B, culminating in the formula
PBPC+K = PC (see Corollary 2.9). This identity, Fact 1.1, and a consequence of the weak-to-strong
convergence principle [2] lead in Section 3 to the precise formulation of HAAR. A crucial ingredient
of HAAR is Haugazeau’s [7] explicit projector onto the intersection of two halfspaces. Our main
result (Theorem 3.3) guarantees strong convergence to the nearest point in C, i.e., to the solution
of (3).

2 Relative geometry of two sets

We shall utilize the following notions from fixed point theory; see, e.g., [6].
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Definition 2.1 Suppose that R : X → X. Then:

(i) R is firmly nonexpansive, if

(∀x ∈ X)(∀y ∈ X) ‖Rx−Ry‖2 + ‖(I −R)x− (I −R)y‖2 ≤ ‖x− y‖2. (8)

(ii) R is nonexpansive, if

(∀x ∈ X)(∀y ∈ X) ‖Rx−Ry‖ ≤ ‖x− y‖. (9)

It is well known, for example, that the projector onto a nonempty closed convex set is firmly
nonexpansive.

Fact 2.2 Suppose that R : X → X. Then R is firmly nonexpansive if and only if 2R − I is
nonexpansive.

Proof. See [6, Theorem 12.1].

Fact 2.3 Suppose that S is a nonempty closed convex set in X and that x ∈ X. Then there exists
a unique point PSx ∈ S such that ‖x− PSx‖ = inf ‖x− S‖. The point PSx is characterized by

PSx ∈ S and (∀s ∈ S) 〈s− PSx |x− PSx〉 ≤ 0. (10)

The induced operator PS : X → S : x 7→ PSx is called the projector onto S; it is firmly nonexpansive
and consequently, the reflector RS = 2PS − I is nonexpansive.

The following property will be utilized repeatedly.

Fact 2.4 Suppose that S is a nonempty closed convex set in X and that z ∈ X. Then for every
x ∈ X, we have Pz+S x = z + PS(x− z).

Proof. Use (10).

We record two additional auxiliary results.

Fact 2.5 Suppose that U and V are two nonempty closed convex sets in X. Suppose further that
u ∈ U and that v ∈ V . Then NU+V (u + v) = NU (u) ∩NV (v).

Proof. See, e.g., [1, Section 4.6].

Proposition 2.6 Suppose that U and V are two nonempty closed convex sets in X such that U⊥V .
Then U + V is closed and PU+V = PU + PV .
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Proof. Suppose that (un)n∈N and (vn)n∈N are sequences in U and V , respectively, such that (un +
vn)n∈N converges. For every {m,n} ⊂ N, we have ‖(un+vn)−(um+vm)‖2 = ‖un−um‖2+‖vn−vm‖2.
Hence (un)n∈N and (vn)n∈N are both Cauchy sequences, since (un + vn)n∈N is. Thus (un)n∈N and
(vn)n∈N are both convergent, which implies that limn∈N un + vn ∈ U + V .

Now let x ∈ X, u ∈ U , and v ∈ V . Since {u− PUx,−PUx}⊥{v − PV x,−PV x}, Fact 2.3 implies
that

〈u + v − PUx− PV x |x− PUx− PV x〉 = 〈u− PUx |x− PUx〉+ 〈u− PUx | −PV x〉
+ 〈v − PV x |x− PV x〉+ 〈v − PV x | −PUx〉

= 〈u− PUx |x− PUx〉+ 〈v − PV x |x− PV x〉
≤ 0. (11)

Using Fact 2.3 again, it follows that PU+V x = PUx + PV x.

Proposition 2.7 Suppose that c ∈ C. Then K = NB(c) ∩
(
−NA(c)

)
⊂ (C − C)⊥.

Proof. Using (5) and Fact 2.5, we deduce that

K = NB−A(0) = NB+(−A)

(
c + (−c)

)
= NB(c) ∩N−A(−c) = NB(c) ∩

(
−NA(c)

)
. (12)

Let x ∈ K. By (12), sup 〈x |B − c〉 ≤ 0 and sup 〈−x |A− c〉 ≤ 0. Since C = A∩B, it follows that
sup 〈x |C − c〉 ≤ 0 and that sup 〈−x |C − c〉 ≤ 0. Therefore, x ∈ (C − c)⊥ = (C − C)⊥.

Theorem 2.8 Suppose that x ∈ X and that c ∈ C. Then PC+Kx = PCx + PK(x− c).

Proof. Set L = C − C. Then C − c ⊂ L and, by Proposition 2.7, K ⊂ L⊥. Corollary 2.4 and
Proposition 2.6 yield

PC+Kx = Pc+((C−c)+K)x

= c + P(C−c)+K(x− c)

= c + PC−c(x− c) + PK(x− c)
= PCx + PK(x− c), (13)

which completes the proof.

Corollary 2.9 Suppose that x ∈ X. Then PBPC+Kx = PCx.

Proof. Since PCx ∈ C, Theorem 2.8 implies that PC+Kx = PCx + PK(x − PCx). Hence, using
Proposition 2.7, we deduce that

PC+Kx− PCx = PK(x− PCx) ∈ K ⊂ NB(PCx). (14)

As PCx ∈ B, this shows that PBPC+Kx = PCx.
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3 Main result

Definition 3.1 Suppose that (x, y, z) ∈ X3 satisfies{
w ∈ X | 〈w − y |x− y〉 ≤ 0

}
∩

{
w ∈ X | 〈w − z | y − z〉 ≤ 0

}
6= ∅. (15)

Set
π = 〈x− y | y − z〉 , µ = ‖x− y‖2, ν = ‖y − z‖2, ρ = µν − π2, (16)

and further

Q(x, y, z) =


z, if ρ = 0 and π ≥ 0;
x + (1 + π/ν)(z − y), if ρ > 0 and πν ≥ ρ;
y + (ν/ρ)

(
π(x− y) + µ(z − y)

)
, if ρ > 0 and πν < ρ.

(17)

In [7], Haugazeau introduced the operator Q as an explicit description of the projector onto the
intersection of the two halfspaces defined in (15). He proved in [7, Théorème 3-2] that the sequence
(yn)n∈N defined by y0 = x and

(∀n ∈ N) yn+1 = Q
(
x,Q(x, yn, PByn), PAQ(x, yn, PByn)

)
(18)

converges strongly to PCx. The next result is a particular application of the weak-to-strong con-
vergence principle of [2], which will be used to reach the same conclusion for the proposed HAAR
method.

Fact 3.2 Suppose that R : X → X is nonexpansive and that FixR 6= ∅. Suppose further that
x ∈ X and that (λn)n∈N is a sequence in

]
0, 1

2

]
such that infn∈N λn > 0. Set y0 = x and define

(yn)n∈N by
(∀n ∈ N) yn+1 = Q

(
x, yn, (1− λn)yn + λnRyn

)
. (19)

Then (yn)n∈N converges strongly to PFix Rx.

Proof. This follows from [2, Corollary 6.6(ii)].

We are now in a position to introduce HAAR and to establish its convergence properties.

Theorem 3.3 (HAAR) Suppose that x ∈ X and that (µn)n∈N is a sequence in ]0, 1] such that
infn∈N µn > 0. Define the sequence (yn)n∈N generated by Haugazeau-like averaged alternating re-
flections by y0 = x and

(∀n ∈ N) yn+1 = Q
(
x, yn, (1− µn)yn + µnTyn

)
. (20)

Then (yn)n∈N converges strongly to PC+Kx. Moreover, (PByn)n∈N converges strongly to PCx.
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Proof. Since the reflectors RA and RB are both nonexpansive (see Fact 2.3), so is their composition
R = RARB. Consequently, Fact 2.2 implies that T is firmly nonexpansive. Moreover, by Fact 1.1,
FixR = Fix

(
1
2R + 1

2I
)

= Fix T = C + K. The statement about strong convergence of (yn)n∈N
follows from Fact 3.2 (with λn = µn/2). Since yn → PC+Kx and PB is continuous, we further
deduce that (PByn)n∈N converges strongly to PBPC+Kx, which is equal to PCx by Corollary 2.9.

Remark 3.4 Several comments on Theorem 3.3 are in order.

(i) While a detailed numerical study of HAAR lies outside the scope of this paper, we nonethe-
less briefly discuss a numerical example demonstrating the potential of HAAR. As in [4,
Section 1] for AAR, we consider the case when X = R2, A =

{
(ξ1, ξ2) ∈ X | ξ2 ≤ 0

}
, and

B =
{
(ξ1, ξ2) ∈ X | ξ1 ≤ ξ2

}
. Let x = (8, 4) so that PCx = (0, 0). Let (yn)n∈N be a se-

quence constructed as in Theorem 3.3 with µn ≡ 1. Then y0 = x = (8, 4), y1 = (6,−2),
and yn = (0, 0), for every n ∈ {2, 3, . . .}. Therefore, PBy0 = (6, 6), PBy1 = (2, 2), and
PByn = (0, 0), for every n ∈ {2, 3, . . .}. Thus HAAR converges to the solution PCx = (0, 0)
in just two steps. On the other hand, Dykstra’s algorithm, which is a popular best approxi-
mation method (see, e.g., [5, Chapter 9]), requires infinitely many steps in this setting.

(ii) It is important to monitor the sequence (PByn)n∈N rather than (yn)n∈N in order to approx-
imate PCx. Indeed, let A = B = {0} and x ∈ X r {0}. Then K = X and thus (yn)n∈N
converges to PC+Kx = PXx = x but not to PCx = {0}.

(iii) Theorem 3.3 can be utilized to handle best approximation problems with more than two sets.
Suppose that C1, . . . , CJ are finitely many closed convex sets in X such that

C = C1 ∩ · · · ∩ CJ 6= ∅. (21)

As in our corresponding discussion for AAR in [4, Section 4], we employ Pierra’s product
space technique [9]. Let us take (ωj)1≤j≤J in ]0, 1] such that

∑J
j=1 ωj = 1, and let us denote

by X the Hilbert space XJ with the inner product
(
(xj)1≤j≤J , (yj)1≤j≤J

)
7→

∑J
j=1 ωj〈xj , yj〉.

Set
A =

{
(x, . . . , x) ∈ X : x ∈ X

}
and B = C1 × · · · × CJ , (22)

and observe that the set C =
⋂J

j=1 Cj in X corresponds to the set C = A ∩ B in X. The
projections of x = (xj)1≤j≤J ∈ X onto A and B are given by

PAx =
(∑J

j=1ωjxj , . . . ,
∑J

j=1ωjxj

)
and PBx = (PC1x1, . . . , PCJ

xJ), (23)

respectively. Thus we have explicit formulae for RA = 2PA − I and RB = 2PB − I, where I
denotes the identity operator on X. Let

T = 1
2(RARB + I), (24)

let x ∈ X, and set y0 = (x, x, . . . , x) ∈ X. Define the sequence (yn)n∈N recursively by

yn+1 = Q(y0,yn,Tyn), (25)
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where Q is defined on X3 analogously to how Q is defined on X3 in Definition 3.1. Then The-
orem 3.3 (with µn ≡ 1) implies that (PByn)n∈N converges strongly PCy0 = (PCx, . . . , PCx).
Consequently, (PAPByn)n∈N converges strongly to PCy0 as well. Since this last sequence lies
in A, we identify it with some sequence (an)n∈N in X via (PAPByn)n∈N = (an, . . . , an)n∈N.
Altogether, the sequence (an)n∈N converges strongly to PCx.

Acknowledgment

H. H. Bauschke’s work was supported in part by the Natural Sciences and Engineering Research
Council of Canada.

References

[1] J.-P. Aubin, Optima and Equilibria, second edition, Springer-Verlag, Berlin, 1998.

[2] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejér-
monotone methods in Hilbert spaces, Math. Oper. Res., vol. 26, pp. 248–264, 2001.

[3] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Phase retrieval, error reduction algorithm,
and Fienup variants: A view from convex optimization, J. Opt. Soc. Amer. A, vol. 19, pp.
1334–1345, 2002.

[4] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Finding best approximation pairs relative
to two closed convex sets in Hilbert spaces, J. Approx. Theory, vol. 127, pp. 178–192, 2004.

[5] F. Deutsch, Best Approximation in Inner Product Spaces, Springer-Verlag, New York, 2001.

[6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press,
Cambridge, 1990.

[7] Y. Haugazeau, Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Con-
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