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Abstract

A new iterative method for finding the projection onto the intersection of two closed convex
sets in a Hilbert space is presented. It is a Haugazeau-like modification of a recently proposed
averaged alternating reflections method which produces a strongly convergent sequence.
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1 Introduction

Throughout this paper,

X is a real Hilbert space with inner product (- |-) and induced norm || - ||, (1)

and
A and B are two closed convex sets in X such that C = AN B # @. (2)

Given a point x € X, the problem under consideration is the best approximation problem
find ¢ € C such that |z —c¢|| =inf|z—C|. (3)

This problem, which was already studied by von Neumann in the 1930s in this general Hilbert space
setting, is of fundamental importance in applied mathematics (see [5] for historical references, recent
applications, algorithms, and further references).
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The aim of this note is to present a new strongly convergent method — termed Haugazeau-like Av-
eraged Alternating Reflections (HAAR) — for finding the solution of (3) iteratively. This algorithm
is a modification of the Averaged Alternating Reflections (AAR) scheme, which we recently intro-
duced in [4]. To describe AAR, we require some notation from convex analysis. Given any nonempty
closed convex set S in X, denote the projector (best approximation operator) onto S by Pg. Further,
let I be the identity operator on X and let Rg = 2Pg — I be the reflector with respect to S. We re-
call that the normal cone to S at « € S is defined by Ng(z) = {2* € X | (Vs € S) (z*|s—z) <0}.
Both AAR and HAAR rely upon the operator

T = %RARB + %I, (4)
and their analyses require the nonempty closed convex cone
K = Ng_4(0). (5)
We are now ready to describe AAR and its asymptotic behavior (see also [4] for background).

Fact 1.1 (AAR) Suppose that x € X. Then the sequence of averaged alternating reflections
(AAR) (T"x)pen converges weakly to a point in

FixT={zeX|Tz=2} =C+K. (6)

Moreover, the sequence (PRT"x)nen is bounded and each of its weak cluster points lies in C.

Proof. The identity (6) was proved in [4, Corollary 3.9]. The statements regarding weak convergence
and weak cluster points follows from [8, Theorem 1] applied to the normal cone operators N4 and
Np. (See also [3, Fact 5.9] and [4, Theorem 3.13(ii)].) O

Fact 1.1 implies that the weak cluster points of the sequence (PpT"x),ecn solve the conver
feasibility problem
find ce C. (7)

Although such points solve (7), they may nonetheless be neither strong cluster points nor the
solution of the best approximation problem (3) (see [4, Section 1] for a counterexample). These
shortcomings of AAR motivated us to look for variants of AAR with better convergence properties.
In Section 2, we investigate the relative geometry of the sets A and B, culminating in the formula
PpPc+ i = Po (see Corollary 2.9). This identity, Fact 1.1, and a consequence of the weak-to-strong
convergence principle [2] lead in Section 3 to the precise formulation of HAAR. A crucial ingredient
of HAAR is Haugazeau’s [7] explicit projector onto the intersection of two halfspaces. Our main
result (Theorem 3.3) guarantees strong convergence to the nearest point in C, i.e., to the solution
of (3).

2 Relative geometry of two sets

We shall utilize the following notions from fixed point theory; see, e.g., [6].



Definition 2.1 Suppose that R: X — X. Then:

(i) R is firmly nonexpansive, if
(Vz € X)(Vy € X) |[Re — Ryl +||(I = R)z — (I - R)y|* < [l= — y|*. (8)
(ii) R is nonexpansive, if

(Vo € X)(vy € X) [[Rz — Ry|| < [lz —y|. (9)

It is well known, for example, that the projector onto a nonempty closed convex set is firmly
nonexpansive.

Fact 2.2 Suppose that R: X — X. Then R is firmly nonexpansive if and only if 2R — I is
NONETPANSIVE.

Proof. See [6, Theorem 12.1]. O

Fact 2.3 Suppose that S is a nonempty closed convex set in X and that x € X. Then there exists
a unique point Psx € S such that ||x — Psz|| = inf ||x — S||. The point Psx is characterized by

Psz e S and (Vse€S) (s— Psx|xz— Psx)<0. (10)

The induced operator Ps: X — S: x — Pgx is called the projector onto S; it is firmly nonexpansive
and consequently, the reflector Rg = 2Pg — I is nonexpansive.

The following property will be utilized repeatedly.

Fact 2.4 Suppose that S is a nonempty closed convex set in X and that z € X. Then for every
x € X, we have P,ygx = z + Ps(xz — 2).

Proof. Use (10). O

We record two additional auxiliary results.

Fact 2.5 Suppose that U and V' are two nonempty closed convex sets in X. Suppose further that
u € U and that v € V. Then Nyiy(u+v) = Ny(u) N Ny (v).

Proof. See, e.g., [1, Section 4.6]. O

Proposition 2.6 Suppose that U and V are two nonempty closed convex sets in X such that ULV .
Then U +V 1is closed and Py4+yv = Py + Py.



Proof. Suppose that (up)nen and (vy,)nen are sequences in U and V', respectively, such that (u, +
Un)nen converges. For every {m,n} C N, we have ||(t,+vn) — (tm+vm)||? = ||t —tm ||>+||vn—vm]?.
Hence (un)nen and (v, )nen are both Cauchy sequences, since (uy, + vy )nen is. Thus (up)nen and
(Un)nen are both convergent, which implies that lim,ey uy, + v, € U + V.

Now let x € X, u € U, and v € V. Since {u — Pyx,—Pyz}L{v — Pyx, —Pyx}, Fact 2.3 implies
that

(u+v—Pyx — Pyx|x — Pyx — Pyx) = (u— Pyx |z — Pyz) + (u— Pyx | —Pyx)

(

+ (v—Pyzx|x— Pyz)+ (v— Pyz | —Pyzx)

(u— Pyx |z — Pyxz) + (v— Pyx |x — Pyx)

<. (11)

Using Fact 2.3 again, it follows that Py iyx = Pyxz + Pyz. O

Proposition 2.7 Suppose that c € C. Then K = Np(c) N (— Na(c)) C (C - C)*.

Proof. Using (5) and Fact 2.5, we deduce that
K = Np_4(0) = Ngy(—a)(c+ (—¢c)) = Np(c) N N_a(—c) = Np(c) N (— Na(c)). (12)

Let z € K. By (12), sup (z | B —¢) <0 and sup (—z | A —¢) <0. Since C = AN B, it follows that
sup (x |C — ¢) < 0 and that sup (—z |C — ¢) < 0. Therefore, z € (C —¢)* = (C - C)*. O

Theorem 2.8 Suppose that x € X and that ¢ € C. Then Poygx = Pox + Pr(x — c).

Proof. Set L = C — C. Then C — ¢ C L and, by Proposition 2.7, K C L*. Corollary 2.4 and
Proposition 2.6 yield

Poire = Pey((0—o)+K)
=c+ Po-_¢rx(@—c)
=c+ Po_c(x —c¢)+ Pg(z —¢)
= Pox + Pg(z — ¢), (13)

which completes the proof. O

Corollary 2.9 Suppose that x € X. Then PpPcoigx = Pox.

Proof. Since Pox € C, Theorem 2.8 implies that Poyxx = Pox + Px(x — Pox). Hence, using
Proposition 2.7, we deduce that

Poygr — Pox = Pg(x — Pox) € K C Np(Peox). (14)

As Pox € B, this shows that PpPoyxx = Pox. O
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3 Main result

Definition 3.1 Suppose that (z,y,z) € X? satisfies

fweX|(w-ylz—y)<0}n{weX|(w—=z2]y—2) <0} #2. (15)
Set
r=(e—yly—=2), p=lr—yl* v=Ily—zI? p=pw - (16)
and further
z, if p=0and ™ > 0;
Qa,y,2) = { o+ (14 7/v)( — y), ifp >0 and 7w > p; (17)

y+ w/p)(m(z—y)+uz—y)), ifp>0andnv <p.

In [7], Haugazeau introduced the operator @ as an explicit description of the projector onto the
intersection of the two halfspaces defined in (15). He proved in [7, Théoréme 3-2] that the sequence
(Yn)nen defined by yo = = and

(Vn € N) Yn+1 = Q($, Q(ZE, Yn, PByn)7PAQ(x7ynv PB?/n)) (18)

converges strongly to Pox. The next result is a particular application of the weak-to-strong con-
vergence principle of [2], which will be used to reach the same conclusion for the proposed HAAR
method.

Fact 3.2 Suppose that R: X — X is nonexpansive and that Fix R # &. Suppose further that
x € X and that (An)nen @S a sequence in ]O 1] such that inf,ey Ay > 0. Set yo = x and define

)
(Yn)nen by
(VneN) ypy1 = Q(m,yn, (1= Xp)yn + )\nRyn). (19)

Then (yn)nen converges strongly to Prix RT.
Proof. This follows from [2, Corollary 6.6(ii)]. O

We are now in a position to introduce HAAR and to establish its convergence properties.

Theorem 3.3 (HAAR) Suppose that © € X and that (jin)nen is a sequence in |0,1] such that
inf,en pn, > 0. Define the sequence (Yn)nen generated by Haugazeau-like averaged alternating re-
flections by yo = = and

(VTL € N) Yn+1 = Q(x, Yn, (1 - Nn)yn + ,UJnTyn)- (20)

Then (yn)nen converges strongly to Poyrx. Moreover, (Ppyn)nen converges strongly to Pox.



Proof. Since the reflectors R4 and Rp are both nonexpansive (see Fact 2.3), so is their composition
R = R4Rp. Consequently, Fact 2.2 implies that T is firmly nonexpansive. Moreover, by Fact 1.1,
Fix R = Fix (%R + %I) = FixT = C + K. The statement about strong convergence of (yn)nen
follows from Fact 3.2 (with A, = p,/2). Since y, — Poixx and Pp is continuous, we further
deduce that (Ppyn)nen converges strongly to PgPoy i@, which is equal to Pox by Corollary 2.9. O

Remark 3.4 Several comments on Theorem 3.3 are in order.

(i)

While a detailed numerical study of HAAR lies outside the scope of this paper, we nonethe-
less briefly discuss a numerical example demonstrating the potential of HAAR. As in [4,
Section 1] for AAR, we consider the case when X = R? A = {(£,&) € X | & <0}, and
B ={(&,%) e X | & <&} Let z = (8,4) so that Pox = (0,0). Let (yn)nen be a se-
quence constructed as in Theorem 3.3 with p, = 1. Then yo = z = (8,4), y1 = (6,—2),
and y, = (0,0), for every n € {2,3,...}. Therefore, Pgyg = (6,6), Ppy; = (2,2), and
Py, = (0,0), for every n € {2,3,...}. Thus HAAR converges to the solution Pcx = (0,0)
in just two steps. On the other hand, Dykstra’s algorithm, which is a popular best approxi-
mation method (see, e.g., [5, Chapter 9]), requires infinitely many steps in this setting.

It is important to monitor the sequence (Ppyp)nen rather than (y,)nen in order to approx-
imate Pox. Indeed, let A = B = {0} and x € X \ {0}. Then K = X and thus (yn)nen
converges to Poyxx = Pxx = x but not to Pocx = {0}.

Theorem 3.3 can be utilized to handle best approximation problems with more than two sets.
Suppose that Ci,...,C; are finitely many closed convex sets in X such that

C=Cn---NCy+02. (21)

As in our corresponding discussion for AAR in [4, Section 4], we employ Pierra’s product
space technique [9]. Let us take (w;)i<;<s in ]0, 1] such that ijl w; = 1, and let us denote
by X the Hilbert space X” with the inner product ((z;)1<;j<s, (yj)1<j<s) — 23'121 w;(xj, yj)-
Set

A={(z,....,2)eX:ze X} and B=C x---xCy, (22)

and observe that the set C' = ﬂjzl Cj in X corresponds to the set C = AN B in X. The
projections of x = (z;)1<j<s € X onto A and B are given by

Pax = (ijlexj, e Z}]:N)jl‘j) and Ppx = (Pc,x1,...,Pc,xy), (23)

respectively. Thus we have explicit formulae for Ro = 2PA — I and Rg = 2Pg — I, where 1
denotes the identity operator on X. Let

T = 1(RaRg +1), (24)
let x € X, and set yg = (z,x,...,z) € X. Define the sequence (y,)nen recursively by

Yn+1 = Q(y0,¥n, Tyn), (25)



where Q is defined on X? analogously to how @ is defined on X? in Definition 3.1. Then The-
orem 3.3 (with u, = 1) implies that (Ppyn)nen converges strongly Pcyo = (Pex, ..., Pox).
Consequently, (Pa Pyn)nen converges strongly to Pcyp as well. Since this last sequence lies
in A, we identify it with some sequence (a,)pen in X via (PAPBYn)neny = (Gn, ..., an)neN-
Altogether, the sequence (ay)nen converges strongly to Pox.
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