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Abstract

A common problem in applied mathematics is that of finding a function in a Hilbert space
with prescribed best approximations from a finite number of closed vector subspaces. In the
present paper we study the question of the existence of solutions to such problems. A finite
family of subspaces is said to satisfy the Inverse Best Approximation Property (IBAP) if there
exists a point that admits any selection of points from these subspaces as best approximations.
We provide various characterizations of the IBAP in terms of the geometry of the subspaces.
Connections between the IBAP and the linear convergence rate of the periodic projection
algorithm for solving the underlying affine feasibility problem are also established. The results
are applied to investigate problems in harmonic analysis, integral equations, signal theory, and
wavelet frames.

1 Introduction

A classical problem arising in areas such as harmonic analysis, optics, and signal theory is that
of finding a function x ∈ L2(RN ) with prescribed values on subsets of the space (or time) and
Fourier domains [10, 20, 23, 29, 37, 36]. In geometrical terms, this problem can be abstracted
into that of finding a function possessing prescribed best approximations from two closed vector
subspaces of L2(RN ) [39]. More generally, a broad range of problems in applied mathematics
can be formulated as follows: given m closed vector subspaces (Ui)1≤i≤m of a (real or complex)
Hilbert space H,

find x ∈ H such that (∀i ∈ {1, . . . ,m}) Pix = ui, (1.1)

where, for every i ∈ {1, . . . ,m}, Pi is the (metric) projector onto Ui and ui ∈ Ui. In connec-
tion with (1.1), a central question is whether a solution exists, irrespective of the choice of the
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prescribed best linear approximations (ui)1≤i≤m. The main objective of the present paper is to
address this question.

Definition 1.1 Let (Ui)1≤i≤m be a family of closed vector subspaces of H and let (Pi)1≤i≤m de-
note their respective projectors. Then (Ui)1≤i≤m satisfies the inverse best approximation property
(IBAP) if (∀(ui)1≤i≤m ∈×m

i=1Ui

)(∃x ∈ H)(∀i ∈ {1, . . . ,m}) Pix = ui. (1.2)

Moreover, for every (ui)1≤i≤m ∈×m
i=1Ui, we set

S(u1, . . . , um) =
m⋂

i=1

{
x ∈ H ∣∣ Pix = ui

}
, (1.3)

and, for every i ∈ {0, . . . ,m− 1},

Ui+ =
m∑

j=i+1

Uj , Pi+ = PUi+
, and P⊥i+ = PU⊥i+

. (1.4)

The paper is organized as follows. In Section 2, we first show that the linear independence
of the subspaces (Ui)1≤i≤m is necessary for satisfying the IBAP, but that it is not sufficient in
infinite dimensional spaces. The main result of Section 2 is Theorem 2.8, which provides various
characterizations of the IBAP. Several corollaries are derived and, in particular, we obtain in
Proposition 2.10 conditions for the consistency of affine feasibility problems. In Section 3, we
discuss minimum norm solutions and establish connections between the IBAP and the rate of
convergence of the periodic projection algorithm for solving (1.1). Finally, Section 4 is devoted to
applications to systems of integral equations, constrained moment problems, harmonic analysis,
wavelet frames, and signal recovery.

Remark 1.2 Since best approximations are well defined for nonempty closed convex subsets of
H, the IBAP could be considered in this more general context. However, useful results can be
expected to be scarce, even for two closed convex cones K1 and K2. Indeed, denote the projectors
onto K1 and K2 by P1 and P2, respectively. If k1 is a point on the boundary of K1 which is not
a support point of K1 (by the Bishop-Phelps theorem [33, Theorem 3.18(i)] support points are
dense in the boundary of K1), then the only point x ∈ H such that P1x = k1 is x = k1. Therefore,
there is no point x ∈ H such that P1x = k1 and P2x = k2 unless k2 = P2k1, which means that
the IBAP does not hold. Let us add that, even if every boundary point of K1 is a support point
(e.g., the interior of K1 is nonempty or H is finite dimensional), the IBAP can also trivially fail:
take for instance H = R2, K1 = [0,+∞[ × [0,+∞[, K2 =

{
(β,−β)

∣∣ β ∈ R}
, k1 = (0, 1), and

k2 = (1,−1).

Throughout, H is a real or complex Hilbert space with scalar product 〈· | ·〉 and norm ‖·‖. The
distance to a closed affine subspace S of H is denoted by dS , and its projector by PS . Moreover,
(Ui)1≤i≤m is a fixed family of closed vector subspaces of H with respective projectors (Pi)1≤i≤m.
Finally, N = {0, 1, . . .} denotes the set of natural numbers.
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2 Characterizations of the inverse best approximation property

We first record some useful descriptions of the set of solutions to (1.1).

Proposition 2.1 Let (ui)1≤i≤m ∈×m
i=1Ui. Then the following hold.

(i) S(u1, . . . , um) =
⋂m

i=1(ui + U⊥i ).

(ii) Let x ∈ S(u1, . . . , um). Then S(u1, . . . , um) = x+
⋂m

i=1 U
⊥
i .

Proof. (i): Let x ∈ H and i ∈ {1, . . . ,m}. The projection theorem asserts that Pix = ui ⇔
x− ui ∈ U⊥i ⇔ x ∈ ui + U⊥i . Hence, (1.3) yields x ∈ S(u1, . . . , um) ⇔ x ∈ ⋂m

i=1(ui + U⊥i ).

(ii): Let y ∈ H. By the linearity of the operators (Pi)1≤i≤m, y ∈ S(u1, . . . , um) ⇔ (∀i ∈
{1, . . . ,m}) Pi(y − x) = 0 ⇔ (∀i ∈ {1, . . . ,m}) y − x ∈ U⊥i ⇔ y ∈ x+

⋂m
i=1 U

⊥
i .

The main objective of this section is to provide characterizations of the inverse best approxi-
mation property. Let us start with a necessary condition.

Proposition 2.2 Let (ui)1≤i≤m ∈ (×m
i=1Ui) r {(0, . . . , 0)} be such that

∑m
i=1 ui = 0. Then

S(u1, . . . , um) = ∅.

Proof. Suppose that x ∈ S(u1, . . . , um). Then, for every i ∈ {1, . . . ,m}, ui = Pix and therefore
〈ui | x− ui〉 = 0, i.e., ‖ui‖2 = 〈ui | x〉. Hence 0 <

∑m
i=1 ‖ui‖2 = 〈∑m

i=1 ui | x〉 = 0, and we reach
a contradiction.

Recall that the subspaces (Ui)1≤i≤m are linearly independent if [24, Definition 6.6]

(∀(ui)1≤i≤m ∈×m
i=1Ui

) m∑

i=1

ui = 0 ⇒ (∀i ∈ {1, . . . ,m}) ui = 0. (2.1)

Using the notation introduced in (1.4), this property is characterized by [24, Lemma 6.6]

(∀i ∈ {1, . . . ,m− 1}) Ui ∩ Ui+ = {0}. (2.2)

Corollary 2.3 Suppose that (Ui)1≤i≤m satisfies the inverse best approximation property. Then
the subspaces (Ui)1≤i≤m are linearly independent.

As the following example shows, the linear independence of the subspaces (Ui)1≤i≤m is not
sufficient to guarantee the inverse best approximation property.

Example 2.4 Suppose thatH is separable, let (en)n∈N be an orthonormal basis ofH, let (αn)n∈N
be a square-summable sequence in ]0,+∞[, and set (∀n ∈ N) fn = (e2n +αne2n+1)/

√
1 + α2

n. Set
m = 2,

U1 = span {e2n}n∈N, U2 = span {fn}n∈N, u1 = 0, and u2 =
∑

n∈N
αnfn. (2.3)

Then U1 ∩ U2 = {0} and S(u1, u2) = ∅.

3



Proof. By construction, (e2n)n∈N and (fn)n∈N are orthonormal bases of U1 and U2, respectively.
It follows easily that U1 ∩ U2 = {0}. Now suppose that there exists a vector x ∈ H such that
P1x = u1 and P2x = u2. Then the identities

∑
n∈N 〈x | e2n〉e2n = P1x = u1 = 0 imply that

(∀n ∈ N) 〈x | e2n〉 = 0. (2.4)

Hence, it results from the identities
∑

n∈N αnfn = u2 = P2x =
∑

n∈N 〈x | fn〉fn that

(∀n ∈ N) αn = 〈x | fn〉 =
αn√

1 + α2
n

〈x | e2n+1〉. (2.5)

Therefore, infn∈N 〈x | e2n+1〉 = infn∈N
√

1 + α2
n = 1, which is impossible.

The next result states that linear independence is necessary and sufficient for obtaining an
approximate inverse best approximation property.

Proposition 2.5 The following are equivalent.

(i) The subspaces (Ui)1≤i≤m are linearly independent.

(ii) For every (ui)1≤i≤m ∈×m
i=1Ui and every ε ∈ ]0,+∞[, there exists x ∈ H such that

max
1≤i≤m

‖Pix− ui‖ ≤ ε. (2.6)

Proof. Set V =
{
(Pix)1≤i≤m

∣∣ x ∈ H}
and let W be the orthogonal complement of V in the

Hilbert direct sum
⊕m

i=1 Ui.

(i)⇒(ii): Take (ui)1≤i≤m ∈W and set x =
∑m

i=1 ui. Then
∑m

i=1 〈ui | x〉 =
∑m

i=1 〈ui | Pix〉 = 0,
which implies that ‖x‖2 =

∑m
i=1 〈ui | x〉 = 0. Hence x = 0 and, in view of the assumption of

independence, we conclude that (∀i ∈ {1, . . . ,m}) ui = 0. Therefore, V is dense in
⊕m

i=1 Ui.

(ii)⇒(i): Take (ui)1≤i≤m ∈×m
i=1Ui such that

∑m
i=1 ui = 0, take ε ∈ ]0,+∞[, and take x ∈ H

such that (2.6) holds. Then
∑m

i=1 〈ui | Pix〉 =
∑m

i=1 〈ui | x〉 = 0 and therefore

m∑

i=1

‖ui‖2 =
m∑

i=1

‖ui − Pix‖2 + 2Re
m∑

i=1

〈ui − Pix | Pix〉+
m∑

i=1

‖Pix‖2

=
m∑

i=1

‖ui − Pix‖2 −
m∑

i=1

‖Pix‖2

≤ mε2. (2.7)

Hence, (∀i ∈ {1, . . . ,m}) ui = 0.

In order to provide characterizations of the inverse best approximation property, we require
the following tools.

Definition 2.6 [18, Definition 9.4] Let U and V be closed vector subspaces of H. The angle
determined by U and V is the real number in [0, π/2] the cosine of which is given by

c(U, V ) = sup
{|〈x | y〉| ∣∣ x ∈ U ∩ (U ∩ V )⊥, y ∈ V ∩ (U ∩ V )⊥, ‖x‖ ≤ 1, ‖y‖ ≤ 1

}
. (2.8)
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Lemma 2.7 Let U and V be closed vector subspaces of H, let u ∈ U , let v ∈ V , and set
S = (u+ U⊥) ∩ (v + V ⊥). Then the following hold.

(i) Let x ∈ S. Then S = PU+V x+ (U⊥ ∩ V ⊥).

(ii) Suppose that ‖PUPV ‖ < 1 and set

z = u+ v, where

{
u = (Id −PUPV )−1(u− PUv)
v = (Id −PV PU )−1(v − PV u).

(2.9)

Then the following hold.

(a) S 6= ∅.

(b) z = PS 0.

Proof. (i): As in Proposition 2.1, we can write S = x + (U⊥ ∩ V ⊥). Hence, since (U + V )⊥ =
(U+V )⊥ = U⊥∩V ⊥, we get S = x+(U⊥∩V ⊥) = P(U⊥∩V ⊥)⊥x+(U⊥∩V ⊥) = PU+V x+(U⊥∩V ⊥).

(ii): These properties are known (see for instance [23, Item 3.B) p. 91] and [23, Section 5 on
pp. 92–93], respectively); we provide short alternative proofs for completeness.

(ii)(a): Let u ∈ U and v ∈ V . Since PU and PV are self-adjoint, ‖PV PU‖ = ‖(PV PU )∗‖ =
‖P ∗UP ∗V ‖ = ‖PUPV ‖ < 1, and the vectors u and v are therefore well defined. Moreover, it follows
from the identity u =

∑
j∈N(PUPV )j(u − PUv) that u ∈ U and therefore that PUu = u. On the

other hand, the second equality in the right-hand side of (2.9) yields

PUv = PU

(∑

j∈N
(PV PU )j(v − PV u)

)

= (Id −PUPV )−1(PUv − PUPV u)

= (Id −PUPV )−1
(
(Id −PUPV )u− (u− PUv)

)

= u− u. (2.10)

Thus, PUz = PU (u+ v) = u+ PUv = u. Likewise, PV v = v and PV u = v− v, which implies that
PV z = PV (u+ v) = PV u+ v = v. Altogether, z ∈ S.

(ii)(b): As seen above, z ∈ S, u ∈ U , and v ∈ V . Now let x ∈ S. As in Proposition 2.1(ii), we
can write x = z + w = u + v + w, for some w ∈ U⊥ ∩ V ⊥. Hence, ‖x‖2 = ‖z‖2 + 2Re〈u | w〉 +
2Re〈v | w〉+ ‖w‖2 = ‖z‖2 + ‖w‖2 ≥ ‖z‖2.

We can now provide various characterizations of the inverse best approximation property (the
notation (1.4) will be used repeatedly).

Theorem 2.8 The following are equivalent.

(i) (Ui)1≤i≤m satisfies the inverse best approximation property.

(ii) (∀i ∈ {1, . . . ,m− 1})(∀ui ∈ Ui)(∃x ∈ H) ui = Pix and (∀j ∈ {i+ 1, . . . ,m}) Pjx = 0.
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(iii) (∀i ∈ {1, . . . ,m− 1}) Pi(U⊥i+) = Ui.

(iv) (∀i ∈ {1, . . . ,m− 1}) U⊥i + U⊥i+ = H.

(v) The subspaces (Ui)1≤i≤m are linearly independent and (∀i ∈ {1, . . . ,m−1})(∃ γi ∈ ]0,+∞[)
dU⊥i ∩U⊥i+

≤ γi

(
dU⊥i

+ dU⊥i+

)
.

(vi) The subspaces (Ui)1≤i≤m are linearly independent and (∀i ∈ {1, . . . ,m − 1}) Ui + Ui+ is
closed.

(vii) The subspaces (Ui)1≤i≤m are linearly independent and, for every i ∈ {1, . . . ,m − 1},
c(Ui, Ui+) < 1.

(viii) (∀i ∈ {1, . . . ,m− 1})(∃ γi ∈ [1,+∞[)(∀ui ∈ Ui) ‖ui‖ ≤ γi‖P⊥i+ui‖.
(ix) (∀i ∈ {1, . . . ,m− 1})(∃ γi ∈ [2,+∞[)(∀x ∈ H) ‖x‖ ≤ γi(‖P⊥i x‖+ ‖P⊥i+x‖).
(x) (∀i ∈ {1, . . . ,m− 1}) ‖PiPi+‖ < 1.

Proof. (i)⇒(ii): Clear.

(ii)⇒(iii): Let i ∈ {1, . . . ,m − 1}. It is clear that Pi(U⊥i+) ⊂ Ui. Conversely, let ui ∈ Ui. By
assumption, there exists x ∈ ⋂m

j=i+1 U
⊥
j = U⊥i+ such that ui = Pix. In other words, Ui ⊂ Pi(U⊥i+).

Altogether, Pi(U⊥i+) = Ui.

(iii)⇒(iv): Let i ∈ {1, . . . ,m− 1}. We have

H = U⊥i + Ui = U⊥i + Pi(U⊥i+) = U⊥i +
⋃

v∈U⊥i+

(v − PU⊥i
v) = U⊥i +

⋃

v∈U⊥i+

{v} = U⊥i + U⊥i+. (2.11)

(iv)⇒(v): Let i ∈ {1, . . . ,m− 1}. We have

Ui ∩ Ui+ = (U⊥i + U⊥i+)⊥ = H⊥ = {0}. (2.12)

As seen in (2.2), this shows the independence claim. Moreover, since U⊥i + U⊥i+ = H is closed,
the inequality on the distance functions follows from [8, Corollaire II.9].

(v)⇒(vi): Let i ∈ {1, . . . ,m− 1}. It follows from [8, Remarque 7 p. 22] (see also [3, Proposi-
tion 5.16]) that U⊥i + U⊥i+ is closed. In turn, since [8, Théorème II.15] asserts that U⊥⊥i + U⊥⊥i+

is closed, we deduce that
Ui + Ui+ is closed. (2.13)

It remains to show that Ui+ is closed. If i = m − 1, Ui+ = Um is closed. On the other hand, if
i ∈ {2, . . . ,m− 1} and Ui+ is closed, we deduce from (2.13) that U(i−1)+ = Ui + Ui+ = Ui + Ui+

is closed.

(vi)⇒(vii): Let i ∈ {1, . . . ,m− 1}. Then Ui+ and Ui +Ui+ are closed and it follows from [18,
Theorem 9.35] that c(Ui, Ui+) < 1.
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(vii)⇒(viii): Let i ∈ {1, . . . ,m− 1} and let ui ∈ Ui. Then (2.8) yields

‖ui‖2 = ‖P⊥i+ui‖2 + ‖Pi+ui‖2

= ‖P⊥i+ui‖2 + 〈ui | Pi+ui〉
≤ ‖P⊥i+ui‖2 + c(Ui, Ui+)‖ui‖ ‖Pi+ui‖
≤ ‖P⊥i+ui‖2 + c(Ui, Ui+)‖ui‖2. (2.14)

Hence, ‖P⊥i+ui‖2 ≥ (1− c(Ui, Ui+))‖ui‖2.

(viii)⇒(ix): Let i ∈ {1, . . . ,m− 1} and let x ∈ H. There exists γ ∈ [1,+∞[ such that

‖x‖ ≤ ‖Pix‖+ ‖P⊥i x‖
≤ γ‖P⊥i+Pix‖+ ‖P⊥i x‖
≤ γ(‖P⊥i+x‖+ ‖P⊥i+P⊥i x‖) + ‖P⊥i x‖
≤ γ‖P⊥i+x‖+ (1 + γ)‖P⊥i x‖. (2.15)

(ix)⇒(x): Let i ∈ {1, . . . ,m− 1} and let x ∈ H. There exists γ ∈ [2,+∞[ such that

‖Pix‖2 = ‖Pi+Pix‖2 + ‖P⊥i+Pix‖2

= ‖Pi+Pix‖2 + (‖P⊥i+Pix‖+ ‖P⊥i Pix‖)2
≥ ‖Pi+Pix‖2 + γ−2‖Pix‖2. (2.16)

Therefore ‖Pi+Pix‖2 ≤ (1 − γ−2)‖Pix‖2 ≤ (1 − γ−2)‖x‖2. Hence ‖Pi+Pi‖ < 1 and, in turn,
‖PiPi+‖ = ‖P ∗i P ∗i+‖ = ‖(Pi+Pi)∗‖ = ‖Pi+Pi‖ < 1.

(x)⇒(i): Fix (ui)1≤i≤m ∈×m
i=1Ui and set (∀i ∈ {0, . . . ,m − 1}) Si =

⋂m
j=i+1(uj + U⊥j ). Let

us show by induction that

(∀i ∈ {0, . . . ,m− 2}) Si 6= ∅ and (∀xi ∈ Si) Si = Pi+xi + U⊥i+. (2.17)

First, let us set i = m−2. Since, by assumption ‖Pm−1Pm‖ < 1, it follows from Lemma 2.7(ii)(a)
that Sm−2 6= ∅. Moreover, we deduce from Lemma 2.7(i) that, for every xm−2 ∈ Sm−2,

Sm−2 = PUm−1+Um
xm−2 + (U⊥m−1 ∩ U⊥m) = P(m−2)+xm−2 + U⊥(m−2)+. (2.18)

Next, suppose that (2.17) is true for some i ∈ {1, . . . ,m − 2} and let xi ∈ Si. Then, using
Lemma 2.7(i), we obtain

Si−1 = (ui + U⊥i ) ∩ Si = (ui + U⊥i ) ∩ (
Pi+xi + U⊥i+). (2.19)

Since, by assumption ‖PiPi+‖ < 1, it follows from Lemma 2.7(ii)(a) that Si−1 6= ∅. Now, let
xi−1 ∈ Si−1. Combining (2.19) and Lemma 2.7 (i), we obtain

Si−1 = PUi+Ui+
xi−1 +

(
U⊥i ∩ U⊥i+

)
= P(i−1)+xi−1 + U⊥(i−1)+. (2.20)

This proves by induction that (2.17) is true. For i = 0, we thus obtain S0 =
⋂m

j=1(uj +U⊥j ) 6= ∅.
In view of Proposition 2.1(i), the proof is complete.
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An immediate application of Theorem 2.8 concerns the area of affine feasibility problems
[4, 9, 10, 14, 28, 36]. Given a family of closed affine subspaces (Si)1≤i≤m of H, the problem is to

find x ∈
m⋂

i=1

Si. (2.21)

In applications, a key issue is whether this problem is consistent in the sense that it admits a
solution. Our next proposition gives a sufficient condition for consistency. First, we recall a
standard fact.

Lemma 2.9 Let S be a closed affine subspace of H, let V = S − S be the closed vector subspace
parallel to S, and let y ∈ S. Then S = y + V and (∀x ∈ H) PSx = y + PV (x− y).

Proposition 2.10 Let (Si)1≤i≤m be closed affine subspaces of H and suppose that (Ui)1≤i≤m are
the orthogonal complements of their respective parallel vector subspaces. If (Ui)1≤i≤m satisfies the
inverse best approximation property (in particular, if any of properties (ii)–(x) in Theorem 2.8
holds), then the affine feasibility problem (2.21) is consistent.

Proof. For every i ∈ {1, . . . ,m}, let ai ∈ Si, and set Vi = Si − Si and ui = Piai. Then, by
Lemma 2.9, (∀i ∈ {1, . . . ,m}) Si = ai + Vi = ai + U⊥i = ui + U⊥i . Thus,

m⋂

i=1

Si =
m⋂

i=1

(ui + U⊥i ), (2.22)

and it follows from Proposition 2.1(i) that (2.21) is consistent if (Ui)1≤i≤m satisfies the IBAP.

Remark 2.11 The converse to Proposition 2.10 fails. For instance, let S1 and S2 be distinct
intersecting lines in H = R3. Then U1 = (S1 − S1)⊥ and U2 = (S2 − S2)⊥ are two-dimensional
planes and they are therefore linearly dependent. Hence, the IBAP cannot hold by virtue of
Corollary 2.3.

In the case of two subspaces, Theorem 2.8 yields simpler conditions.

Corollary 2.12 The following are equivalent.

(i) (U1, U2) satisfies the inverse best approximation property.

(ii) (∀u1 ∈ U1) S(u1, 0) 6= ∅.

(iii) P1(U⊥2 ) = U1.

(iv) U⊥1 + U⊥2 = H.

(v) U1 ∩ U2 = {0} and (∃ γ ∈ ]0,+∞[) dU⊥1 ∩U⊥2
≤ γ

(
dU⊥1

+ dU⊥2

)
.

(vi) U1 ∩ U2 = {0} and U1 + U2 is closed.

(vii) U1 ∩ U2 = {0} and c(U1, U2) < 1.
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(viii) (∃ γ ∈ [1,+∞[)(∀u1 ∈ U1) ‖u1‖ ≤ γ‖P⊥2 u1‖.
(ix) (∃ γ ∈ [2,+∞[)(∀x ∈ H) ‖x‖ ≤ γ(‖P⊥1 x‖+ ‖P⊥2 x‖).
(x) ‖P1P2‖ < 1.

Remark 2.13 Corollary 2.12 provides necessary and sufficient conditions for the existence of
solutions to (1.1) when m = 2. The implication (ix)⇒(i) appears in [23, Item 3.B) p. 91],
the equivalences (vi)⇔(viii)⇔(ix)⇔(x) appear in [23, Item 1.A) p. 88], and the equivalences
(iii)⇔(iv)⇔(x) appear in [31, Lemma on p. 201].

As consequences of Theorem 2.8, we can now describe scenarii in which the necessary condition
established in Corollary 2.3 is also sufficient.

Corollary 2.14 Suppose that the closed vector subspaces (Ui)1≤i≤m are linearly independent,
that ‖Pm−1Pm‖ < 1 and that, for every i ∈ {1, . . . ,m − 2}, Ui is finite dimensional or finite
codimensional. Then (Ui)1≤i≤m satisfies the inverse best approximation property.

Proof. In view of the equivalence (i)⇔(vii) in Theorem 2.8, it is enough to show that (∀i ∈
{1, . . . ,m − 1}) c(Ui, Ui+) < 1. For i = m − 1, since ‖PiPi+‖ = ‖Pm−1Pm‖ < 1, we derive from
the implication (x)⇒(vii) in Corollary 2.12 that c(Ui, Ui+) < 1. Now suppose that, for some
i ∈ {2, . . . ,m − 1}, c(Ui, Ui+) < 1. Using to the implication (vii)⇒(vi) in Corollary 2.12, we
deduce that U(i−1)+ = Ui + Ui+ is closed. In turn, since Ui−1 is finite or cofinite dimensional,
it follows from [18, Corollary 9.37] that c(U(i−1), U(i−1)+) < 1, which completes the proof by
induction.

Corollary 2.15 Suppose that the closed vector subspaces (Ui)1≤i≤m are linearly independent and
that, for every i ∈ {1, . . . ,m−1}, Ui is finite dimensional or finite codimensional. Then (Ui)1≤i≤m

satisfies the inverse best approximation property.

Proof. Since Um−1 is finite dimensional or finite codimensional, it follows from [18, Corollary 9.37]
and the implication (vii)⇒(x) in Corollary 2.12 that ‖Pm−1Pm‖ < 1. Hence, the claim follows
from Corollary 2.14.

Example 2.16 Let V be a closed vector subspace of H and let (vi)1≤i≤m−1 be linearly indepen-
dent vectors such that V ⊥ ∩ span {vi}1≤i≤m−1 = {0}. Then, for every (ηi)1≤i≤m−1 ∈ Cm−1, the
constrained moment problem

x ∈ V and (∀i ∈ {1, . . . ,m− 1}) 〈x | vi〉 = ηi (2.23)

admits a solution.

Proof. This is a special case of Corollary 2.15, where Um = V ⊥, um = 0, and, for every i ∈
{1, . . . ,m− 1}, Ui = span {vi} and ui = ηivi/‖vi‖2.

Corollary 2.17 Suppose that the subspaces (Ui)1≤i≤m are linearly independent and that H is
finite dimensional. Then (Ui)1≤i≤m satisfies the inverse best approximation property.
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The above results pertain to the existence of solutions to (1.1). We conclude this section with
a uniqueness result that follows at once from Proposition 2.1(ii).

Proposition 2.18 Let (ui)1≤i≤m ∈×m
i=1Ui. Then (1.1) has at most one solution if and only if⋂m

i=1 U
⊥
i = {0}.

Combining Theorem 2.8 and Proposition 2.18 yields conditions for the existence of unique
solutions to (1.1). Here is an example in which m = 2.

Example 2.19 The following are equivalent.

(i) For every u1 ∈ U1 and u2 ∈ U2, S(u1, u2) is a singleton.

(ii) U⊥1 + U⊥2 = H and U⊥1 ∩ U⊥2 = {0}.

Proof. Existence follows from the implication (iv)⇒(i) in Corollary 2.12, and uniqueness from
Proposition 2.18.

3 IBAP and the periodic projection algorithm

If (Ui)1≤i≤m satisfies the IBAP, then (1.1) will in general admit infinitely many solutions (see
Proposition 2.18) and it is of interest to identify specific solutions such as those of minimum
norm.

Proposition 3.1 Suppose that (Ui)1≤i≤m satisfies the inverse best approximation property, let
(ui)1≤i≤m ∈×m

i=1Ui, and, for every i ∈ {1, . . . ,m− 1}, set

Ti : Ui+ → Ui + Ui+

v 7→ (Id −PiPi+)−1(ui − Piv) + (Id −Pi+Pi)−1(v − Pi+ui). (3.1)

Define recursively xm = um and (∀i ∈ {m−1, . . . , 1}) xi = Tixi+1. Then, for every i ∈ {1, . . . ,m},

xi = PSi0, where Si =
m⋂

j=i

(uj + U⊥j ). (3.2)

In particular, x1 = PS(u1,...,um)0 is the minimal norm solution to (1.1).

Proof. Let i ∈ {1, . . . ,m − 1}. We first observe that the operator Ti is well defined since the
implication (i)⇒(x) in Theorem 2.8 yields ‖PiPi+‖ = ‖Pi+Pi‖ < 1. Moreover, the expansions
(Id −PiPi+)−1 =

∑
j∈N(PiPi+)j and (Id −Pi+Pi)−1 =

∑
j∈N(Pi+Pi)j imply that its range is

indeed contained in Ui + Ui+. Thus, xi is a well defined point in Ui + Ui+ = U(i−1)+.

To prove (3.2), we proceed by induction. First, for i = m, since um ∈ Um, we obtain at once

xi = um = P(um+U⊥m)0 = PSi0. (3.3)
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Now, suppose that (3.2) is true for some i ∈ {2, . . . ,m}. By definition,

xi−1 = (Id −Pi−1P(i−1)+)−1(ui−1 − Pi−1xi) + (Id −P(i−1)+Pi−1)−1(xi − P(i−1)+ui−1). (3.4)

Since xi ∈ U(i−1)+ and ui−1 ∈ Ui−1, Lemma 2.7(ii)(b) asserts that xi−1 is the element of minimal
norm in (ui−1 + U⊥i−1) ∩ (xi + U⊥(i−1)+). On the other hand since, by (3.2), xi ∈

⋂m
j=i(uj + U⊥j ),

we derive from (1.4) that, as in Proposition 2.1,

xi + U⊥(i−1)+ = xi +

(
m∑

j=i

Uj

)⊥
= xi +

m⋂

j=i

U⊥j =
m⋂

j=i

(uj + U⊥j ). (3.5)

As a result, xi−1 is the element of minimum norm in

(ui−1 + U⊥i−1) ∩
m⋂

j=i

(uj + U⊥j ). (3.6)

In other words, xi−1 = PSi−10, which completes the proof.

Conceptually, Proposition 3.1 provides a finite recursion for computing the minimal norm
solution x1 to (1.1) for a given selection of vectors (ui)1≤i≤m ∈ ×m

i=1Ui. This scheme is in
general not of direct numerical use since it requires the inversion of operators in (3.1). However,
minimal norm solutions and, more generally, best approximations from the solution set of (1.1)
can be computed iteratively via projection methods. Indeed, for every r ∈ H and (ui)1≤i≤m ∈
×m

i=1Ui, let us denote by B(r;u1, . . . , um) the best approximation to r from S(u1, . . . , um), i.e.,
by Proposition 2.1(i),

B(r;u1, . . . , um) = PS(u1,...,um)r = PTm
i=1(ui+U⊥i )r. (3.7)

A standard numerical method for computing B(r;u1, . . . , um) is the periodic projection algorithm

x0 = r and (∀n ∈ N) xn+1 = Q1 · · ·Qmxn (3.8)

where, for every i ∈ {1, . . . ,m}, Qi is the projector onto ui + U⊥i , i.e.,

Qi = Pui+U⊥i
: x 7→ ui + x− Pix. (3.9)

This algorithm is rooted in the classical work of Kaczmarz [26] and von Neumann [40]. Although it
has been generalized in various directions [3, 4, 9, 15], it is still widely used due to its simplicity and
ease of implementation. If S(u1, . . . , um) 6= ∅, the sequence (xn)n∈N generated by (3.8) converges
strongly to B(r;u1, . . . , um). If ui ≡ 0, this result was first established by von Neumann [40] for
m = 2 and extended by Halperin [22] for m > 2. Strong convergence to B(r;u1, . . . , um) in the
general affine case (ui 6≡ 0) is a routine modification of Halperin’s proof via Lemma 2.9 (see [18]
for a detailed account). Interestingly, if the projectors are not activated periodically in (3.8) but
in a more chaotic fashion, only weak convergence has been established [1] and it is still an open
question whether strong convergence holds.

In connection with (3.8), an important question is whether the convergence of (xn)n∈N to
B(r;u1, . . . , um) occurs at a linear rate. The answer is negative and it has actually been shown

11



that arbitrarily slow convergence may occur [5] in the sense that, for every sequence (αn)n∈N in
]0, 1[ such that αn ↓ 0, there exists r ∈ H such that

(∀n ∈ N) ‖xn −B(r;u1, . . . , um)‖ ≥ αn. (3.10)

On the other hand, several conditions have been found [3, 5, 6, 17, 19, 27] that guarantee that, if
(1.1) admits a solution for some (ui)1≤i≤m ∈×m

i=1Ui, then, for every r ∈ H, the sequence (xn)n∈N
generated by (3.8) converges uniformly linearly to B(r;u1, . . . , um) in the sense that there exists
α ∈ [0, 1[ such that [19, Section 4]

(∀n ∈ N) ‖xn −B(r;u1, . . . , um)‖ ≤ αn‖r −B(r;u1, . . . , um)‖. (3.11)

The next result states that the IBAP implies uniform linear convergence of the periodic projection
algorithm for solving the underlying affine feasibility problem (1.1) for every (ui)1≤i≤m ∈×m

i=1Ui

and every r ∈ H. In other words, if (1.1) admits a solution for every (ui)1≤i≤m ∈×m
i=1Ui, then

uniform linear convergence always occurs in (3.8).

Proposition 3.2 Suppose that (Ui)1≤i≤m satisfies the inverse best approximation property and
set

α =

√√√√1−
m−1∏

i=1

(
1− c

(
U⊥i , U

⊥
i+

)2
)
. (3.12)

Then α ∈ [0, 1[ and, for every r ∈ H and every (ui)1≤i≤m ∈ ×m
i=1Ui, the sequence (xn)n∈N

generated by (3.8) satisfies (3.11).

Proof. We first deduce from the implication (i)⇒(vii) in Theorem 2.8 that (∀i ∈ {1, . . . ,m− 1})
c(Ui, Ui+) < 1. Hence, it follows from [18, Theorem 9.35] that (∀i ∈ {1, . . . ,m−1}) c(U⊥i , U

⊥
i+) <

1. In turn, (3.12) and (1.4) imply that

α =

√√√√1−
m−1∏

i=1

(
1− c

(
U⊥i ,

m⋂

j=i+1

U⊥j

)2)
∈ [0, 1[ . (3.13)

Now let (ui)1≤i≤m ∈×m
i=1Ui. Since the IBAP holds, we have

S(u1, . . . , um) 6= ∅. (3.14)

Altogether, it follows from (3.13), (3.14), and [18, Corollary 9.34] applied to (U⊥i )1≤i≤m that
(3.11) holds.

In the case when m = 2, the above result admits a partial converse based on a result of [5].

Proposition 3.3 Suppose that U1 ∩U2 = {0}, that (U1, U2) does not satisfy the IBAP, and that
(u1, u2) ∈ U1 × U2 satisfies S(u1, u2) 6= ∅. Let (αn)n∈N be a sequence in ]0, 1[ such that αn ↓ 0.
Then there exists r ∈ H such that the sequence (xn)n∈N generated by (3.8) with m = 2 satisfies

(∀n ∈ N) ‖xn −B(r;u1, u2)‖ ≥ αn. (3.15)
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Proof. It follows from our hypotheses and the equivalence (i)⇔(vi) in Corollary 2.12 that U1 +U2

is not closed. In turn, we derive from [5, Theorem 1.4(2)] that there exists y0 ∈ H such that the
sequence (yn)n∈N generated by the alternating projection algorithm

(∀n ∈ N) yn+1 = PU⊥1
PU⊥2

yn (3.16)

satisfies
(∀n ∈ N) ‖yn − PU⊥1 ∩U⊥2

y0‖ ≥ αn. (3.17)

Now let y ∈ S(u1, u2) and set r = y + y0. It follows from Proposition 2.1(ii) that S(u1, u2) =
y + (U⊥1 ∩ U⊥2 ). Hence, it follows from (3.7) and Lemma 2.9 that

B(r;u1, u2) = y + PU⊥1 ∩U⊥2
(r − y) = y + PU⊥1 ∩U⊥2

y0. (3.18)

On the other hand, x0 − y = y0 and, using Lemma 2.9, (3.8) with m = 2 and (3.18) yield

(∀n ∈ N) xn+1 − y = Pu1+U⊥1
Pu2+U⊥2

xn − y = Py+U⊥1
Py+U⊥2

xn − y = PU⊥1
PU⊥2

(xn − y). (3.19)

This and (3.16) imply by induction that (∀n ∈ N) xn − y = yn. In turn, we derive from (3.18)
and (3.17) that

(∀n ∈ N) ‖xn−B(r;u1, u2)‖ = ‖(yn + y)− (y+PU⊥1 ∩U⊥2
y0)‖ = ‖yn−PU⊥1 ∩U⊥2

y0‖ ≥ αn, (3.20)

which completes the proof.

4 Applications

In this section, we present several applications of Theorem 2.8. As usual, L2(RN ) is the space of
real- or complex-valued absolutely square-integrable functions on the N -dimensional Euclidean
space RN , x̂ denotes the Fourier transform of a function x ∈ L2(RN ) and supp x̂ the support of
x̂. Moreover, if A ⊂ RN , 1A denotes the characteristic function of A and {A the complement
of A. Finally, µ designates the Lebesgue measure on RN , ranT the range of an operator T and
ranT is the closure of ranT .

The following lemma and its subsequent refinement will be used on several occasions.

Lemma 4.1 [2, Proposition 8], [7, Corollary 1] Let A and B be measurable subsets of RN of
finite Lebesgue measure, and let x ∈ L2(RN ) be such that x1{A = 0 and x̂1{B = 0. Then x = 0.

Lemma 4.2 [2, p. 264], [21, Theorem 8.4] Let A and B be measurable subsets of RN of finite
Lebesgue measure. Set U =

{
x ∈ L2(RN )

∣∣ x1{A = 0
}

and V =
{
x ∈ L2(RN )

∣∣ x̂1{B = 0
}
. Then

‖PUPV ‖ < 1.

4.1 Systems of linear equations

Going back to Definition 1.1, we can say that (Ui)1≤i≤m satisfies the IBAP if for every (ui)1≤i≤m ∈
×m

i=1ranPi there exists x ∈ H such that (∀i ∈ {1, . . . ,m}) Pix = ui. As we have shown,
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this property holds if (iv) in Theorem 2.8 is satisfied, i.e., if (∀i ∈ {1, . . . ,m − 1}) kerPi +⋂m
j=i+1 kerPj = H. In the following proposition, we show that such surjectivity results remain

valid if projectors are replaced by more general linear operators.

Proposition 4.3 For every i ∈ {1, . . . ,m}, let Gi be a normed vector space and let Ti : H → Gi

be linear and bounded. Suppose that

(∀i ∈ {1, . . . ,m− 1}) kerTi +
m⋂

j=i+1

kerTj = H. (4.1)

Then, for every (yi)1≤i≤m ∈×m
i=1ranTi, there exists x ∈ H such that

(∀i ∈ {1, . . . ,m}) Tix = yi. (4.2)

Proof. For every i ∈ {1, . . . ,m}, let yi ∈ ranTi, set Ui = (kerTi)⊥, and let ui ∈ Ui be such
that Tiui = yi. Now let x ∈ H. Then x solves (4.2) ⇔ (∀i ∈ {1, . . . ,m}) Tix = Tiui ⇔
(∀i ∈ {1, . . . ,m}) Ti(x− ui) = 0 ⇔ (∀i ∈ {1, . . . ,m}) x− ui ∈ kerTi = U⊥i ⇔ (∀i ∈ {1, . . . ,m})
Pix = ui. We thus recover an instance of problem (1.1) and, in view of the equivalence between
items (i) and (iv) in Theorem 2.8, we obtain the existence of solutions to (4.2) if, for every
i ∈ {1, . . . ,m− 1}, U⊥i + U⊥i+ = H, i.e., if (4.1) holds.

We now give an application of Proposition 4.3 to systems of integral equations.

Proposition 4.4 For every i ∈ {1, . . . ,m}, let vi, wi, and yi be functions in L2(RN ) such that
there exists xi ∈ L2(RN ) that satisfies

∫
RN xi(s)vi(s)wi(t− s)ds = yi(t) µ-a.e. on RN . Moreover,

suppose that there exist measurable sets (Ai)1≤i≤m in RN such that

(∀i ∈ {1, . . . ,m}) µ
(
(Ai + supp v̂i) ∩ supp ŵi

)
= 0 (4.3)

and

(∀i ∈ {1, . . . ,m− 1}) Ai ∪
m⋂

j=i+1

Aj = RN . (4.4)

Then there exists x ∈ L2(RN ) such that

(∀i ∈ {1, . . . ,m})
∫

RN

x(s)vi(s)wi(t− s)ds = yi(t) µ-a.e. on RN . (4.5)

Proof. The result is an application of Proposition 4.3 in H = L2(RN ). To see this, denote
by ? the N -dimensional convolution operation and, for every i ∈ {1, . . . ,m} and every x ∈ H,
set Tix = (xvi) ? wi. Then (Ti)1≤i≤m are bounded linear operators from H to H since, by [8,
Théorème IV.15],

(∀i ∈ {1, . . . ,m})(∀x ∈ H) ‖Tix‖ = ‖(xvi) ? wi‖ ≤ ‖xvi‖L1‖wi‖ ≤ ‖x‖ ‖vi‖ ‖wi‖. (4.6)

Now fix i ∈ {1, . . . ,m − 1}. Since (4.5) can be written as (4.2), Proposition 4.3 asserts that it
suffices to show that

kerTi +
m⋂

j=i+1

kerTj = H. (4.7)
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To this end, let z ∈ H. It follows from (4.4) that we can write z = z1 + z2, where ẑ1 = ẑ 1Ai and
ẑ2 = ẑ 1{Ai

. We have

T̂iz1 =
[
(z1vi) ? wi

]∧ = (ẑ1 ? v̂i)ŵi =
(
(ẑ 1Ai) ? v̂i

)
ŵi (4.8)

and
supp

(
(ẑ 1Ai) ? v̂i

) ⊂ supp (ẑ 1Ai) + supp v̂i ⊂ Ai + supp v̂i. (4.9)

Therefore, we derive from (4.8) and (4.3) that

µ
(
supp T̂iz1

)
= µ

(
supp

(
(ẑ 1Ai) ? v̂i

) ∩ supp ŵi

)
= 0. (4.10)

This shows that z1 ∈ kerTi. Now fix j ∈ {i+1, . . . ,m}. Then it remains to show that z2 ∈ kerTj .
Since (4.4) yields {Ai =

⋂m
k=i+1Ak ⊂ Aj , arguing as above, we get

supp T̂jz2 = supp
(
((ẑ 1{Ai

)?v̂j)ŵj

) ⊂ (
{Ai+supp v̂j

)∩supp ŵj ⊂
(
Aj+supp v̂j

)∩supp ŵj . (4.11)

In turn, we deduce from (4.3) that µ(supp T̂jz2) = 0 and therefore that z2 ∈ kerTj .

We now give an example in which the hypotheses of Proposition 4.4 are satisfied with m = 3.

Example 4.5 Let {α, β, γ} ⊂ R and let {v1, v2, v3, w1, w2, w3} ⊂ L2(R). Suppose that 0 < γ <
2α and that{

supp v̂1 ⊂ [β, β + γ] , supp v̂2 ⊂ [α,+∞[ , supp v̂3 ⊂ ]−∞,−α]
supp ŵ1 ⊂ [−α+ β + γ, α+ β] , supp ŵ2 ⊂ ]−∞, 0] , supp ŵ3 ⊂ [0,+∞[ .

(4.12)

Now set A1 = ]−∞,−α]∪[α,+∞[, A2 = [−α,+∞[, and A3 = ]−∞, α]. Then (4.4) is satisfied and,
since A1 +supp v̂1 ⊂ ]−∞,−α+ β + γ]∪ [α+ β,+∞[, A2 +supp v̂2 ⊂ [0,∞[, and A3 +supp v̂3 ⊂
]−∞, 0], so is (4.3).

Next, we consider a moment problem with wavelet frames [12, 13, 16].

Proposition 4.6 Let ψ be a band-limited function in L2(R), say supp ψ̂ ⊂ [−ρ, ρ] for some
ρ ∈ ]0,+∞[. Suppose that (ψj,k)(j,k)∈Z2, where ψj,k : t 7→ 2j/2ψ(2jt − k), is a frame for L2(R),
i.e., there exist constants α and β in ]0,+∞[ such that

(∀x ∈ L2(R)
)

α‖x‖2 ≤
∑

j∈Z

∑

k∈Z
|〈x | ψj,k〉|2 ≤ β‖x‖2, (4.13)

and, moreover, that (ψj,k)(j,k)∈Z2 admits a lower Riesz bound γ ∈ ]0,+∞[, i.e.,

(∀(cj,k)(j,k)∈Z2 ∈ `2(Z2)
) ∑

j∈Z

∑

k∈Z
|cj,k|2 ≤ γ

∥∥∥∥∥
∑

j∈Z

∑

k∈Z
cj,kψj,k

∥∥∥∥∥
2

. (4.14)

Let A be a measurable subset of R such that 0 < µ(A) < +∞, let J ∈ Z, and set

Λ =
{
(j, k) ∈ Z× Z

∣∣ j ≤ J
}
. (4.15)

Then, for every function y ∈ L2(A) and every sequence (ηj,k)(j,k)∈Λ ∈ `2(Λ), there exists x ∈
L2(R) such that

x|A = y and (∀(j, k) ∈ Λ) 〈x | ψj,k〉 = ηj,k. (4.16)
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Proof. Set H = L2(R), G1 = L2(A), and G2 = `2(Λ), and define bounded linear operators

T1 : H → G1 : x 7→ x|A and T2 : H → G2 : x 7→ (〈x | ψj,k〉)(j,k)∈Λ. (4.17)

Then ranT1 = G1 and, on the other hand, it follows from [11, Lemma 2.2(ii)] and (4.14) that
ranT2 = G2. Hence, in view of (4.16), we must show that, for every y1 ∈ ranT1 and every
y2 ∈ ranT2, there exists x ∈ H such that T1x = y1 and T2x = y2. Appealing to Proposition 4.3,
it is enough to show that kerT1 + kerT2 = H or, equivalently, that

U⊥1 + U⊥2 = H, where U1 = ranT ∗1 and U2 = ranT ∗2 . (4.18)

Set U =
{
x ∈ L2(R)

∣∣ x1{A = 0
}
, B = [−2Jρ, 2Jρ], and V =

{
x ∈ L2(R)

∣∣ x̂1{B = 0
}
. By

Lemma 4.1, U ∩ V = {0} and it therefore follows from [18, Lemma 9.5] and Lemma 4.2 that

c(U, V ) = ‖PUPV − PU∩V ‖ = ‖PUPV ‖ < 1. (4.19)

On the other hand, it follows from (4.17) that T ∗1 : G1 → H satisfies

(∀y ∈ G1)(∀t ∈ R) (T ∗1 y)(t) =

{
y(t), if t ∈ A;
0, otherwise

(4.20)

and that
T ∗2 : G2 → H : (ηj,k)(j,k)∈Λ 7→

∑

(j,k)∈Λ

ηj,kψj,k. (4.21)

Since
⋃

(j,k)∈Λ supp ψ̂j,k ⊂ B, we have

U1 ⊂ U and U2 ⊂ V. (4.22)

Hence, U1 ∩ U2 = {0} and (4.19) yields

c(U1, U2) ≤ c(U, V ) < 1. (4.23)

In view of the implication (vii)⇒(iv) in Corollary 2.12, we conclude that (4.18) holds.

4.2 Subspaces spanned by nearly pairwise bi-orthogonal sequences

The following proposition provides a wide range of applications of Theorem 2.8 with m = 3.

Proposition 4.7 Let (u1,k)k∈Z, (u2,k)k∈Z, and (u3,k)k∈Z be orthonormal sequences in H such
that

(∀k ∈ Z)(∀i ∈ {1, 2})(∀j ∈ {i+ 1, 3})(∀l ∈ Z r {k}) ui,k ⊥ uj,l. (4.24)

Moreover, suppose that

sup
k∈Z

√
|〈u1,k | u2,k〉|+ sup

k∈Z

√
|〈u2,k | u3,k〉|+ sup

k∈Z

√
|〈u1,k | u3,k〉| < 1. (4.25)

Then, for all sequences (α1,k)k∈Z, (α2,k)k∈Z, and (α3,k)k∈Z in `2(Z), there exists x ∈ H such that

(∀k ∈ Z) α1,k = 〈x | u1,k〉, α2,k = 〈x | u2,k〉, and α3,k = 〈x | u3,k〉. (4.26)
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Proof. For every i ∈ {1, 2, 3}, set Ui = span {ui,k}k∈Z and observe that (∀x ∈ H) Pix =∑
k∈Z 〈x | ui,k〉ui,k. Accordingly, we have to show that (U1, U2, U3) satisfies the IBAP. Using the

equivalence (i)⇔(x) in Theorem 2.8, this amounts to showing that ‖P1P1+‖ < 1 and ‖P2P3‖ < 1.

First, let us fix i ∈ {1, 2} and j ∈ {i+ 1, 3}, and let us show that

sup
k∈Z

|〈ui,k | uj,k〉|2 ≤ ‖PiPj‖ ≤ sup
k∈Z

|〈ui,k | uj,k〉| . (4.27)

In view of (4.24), we have

(∀x ∈ H) PiPjx =
∑

l∈Z
〈x | uj,l〉〈uj,l | ui,l〉ui,l. (4.28)

Hence, for every k ∈ Z, PiPjui,k = |〈ui,k | uj,k〉|2 ui,k and therefore ‖PiPj‖ ≥ ‖PiPjui,k‖ =
|〈ui,k | uj,k〉|2. This proves the first inequality in (4.27). On the other hand, it follows from (4.28)
that

(∀x ∈ H) ‖PiPjx‖2 =
∑

l∈Z
|〈x | uj,l〉〈uj,l | ui,l〉|2 ≤ sup

l∈Z
|〈uj,l | ui,l〉|2 ‖x‖2. (4.29)

This proves the second inequality in (4.27).

Since (4.25) and (4.27) imply that ‖P2P3‖ < 1, it remains to show that ‖P1P1+‖ < 1. We
derive from (4.25) and (4.27) that

(
√
‖P1P2‖+

√
‖P1P3‖)(1 +

√
‖P2P3‖) =

√
‖P1P2‖+

√
‖P1P3‖ − ‖P2P3‖

+ (
√
‖P1P2‖+

√
‖P1P3‖+

√
‖P2P3‖)

√
‖P2P3‖

< 1− ‖P2P3‖. (4.30)

For every k ∈ Z, let P⊥3,k denote the projector onto {u3,k}⊥ and set

v2,k =
P⊥3,ku2,k

‖P⊥3,ku2,k‖
=
u2,k − 〈u2,k | u3,k〉u3,k√

1− |〈u2,k | u3,k〉|2
, (4.31)

which is well defined since (4.25) guarantees that |〈u2,k | u3,k〉| < 1. Let us note that (4.31) yields

u3,k −
〈u3,k | u2,k〉v2,k√
1− |〈u2,k | u3,k〉|2

= u3,k −
〈u3,k | u2,k〉u2,k

1− |〈u2,k | u3,k〉|2
+
|〈u2,k | u3,k〉|2 u3,k

1− |〈u2,k | u3,k〉|2

=
1

1− |〈u2,k | u3,k〉|2
(
u3,k − 〈u3,k | u2,k〉u2,k

)
. (4.32)

On the other hand, it follows from (4.24) and (4.31) that {v2,k}k∈Z∪{u3,k}k∈Z is an orthonormal
set and that

span
({v2,k}k∈Z ∪ {u3,k}k∈Z

)
= span

({P⊥3,ku2,k}k∈Z ∪ {u3,k}k∈Z
)

= U2 + U3 = U1+. (4.33)

To compute ‖P1P1+‖, let x ∈ H and let k ∈ Z. We derive from (4.33) that

P1+x =
∑

l∈Z
〈x | v2,l〉v2,l +

∑

l∈Z
〈x | u3,l〉u3,l. (4.34)
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Hence, using (4.24), (4.31), and (4.32), we obtain

〈P1+x | u1,k〉 = 〈x | v2,k〉〈v2,k | u1,k〉+ 〈x | u3,k〉〈u3,k | u1,k〉

= 〈x | u2,k〉
〈v2,k | u1,k〉√

1− |〈u2,k | u3,k〉|2

+ 〈x | u3,k〉
(
〈u3,k | u1,k〉 −

〈u3,k | u2,k〉〈v2,k | u1,k〉√
1− |〈u2,k | u3,k〉|2

)

= 〈x | u2,k〉βk + 〈x | u3,k〉γk, (4.35)

where

βk =
〈u2,k | u1,k〉 − 〈u2,k | u3,k〉〈u3,k | u1,k〉

1− |〈u2,k | u3,k〉|2
(4.36)

and

γk =
〈u3,k | u1,k〉 − 〈u3,k | u2,k〉〈u2,k | u1,k〉

1− |〈u2,k | u3,k〉|2
. (4.37)

We note that (4.27) yields

|βk| ≤
|〈u1,k | u2,k〉|+ |〈u2,k | u3,k〉| |〈u1,k | u3,k〉|

1− |〈u2,k | u3,k〉|2
≤

√
‖P1P2‖+

√
‖P2P3‖

√
‖P1P3‖

1− ‖P2P3‖ (4.38)

and, likewise,

|γk| ≤
√
‖P1P3‖+

√
‖P2P3‖

√
‖P1P2‖

1− ‖P2P3‖ . (4.39)

Thus, we obtain

(∀x ∈ H) ‖P1P1+x‖ =
√∑

k∈Z
|〈P1+x | u1,k〉|2

≤
√∑

k∈Z
|〈x | u2,k〉βk|2 +

√∑

k∈Z
|〈x | u3,k〉γk|2

≤
(

sup
k∈Z

|βk|+ sup
k∈Z

|γk|
)
‖x‖

≤ (
√
‖P1P2‖+

√
‖P1P3‖)(1 +

√
‖P2P3‖)

1− ‖P2P3‖ ‖x‖. (4.40)

Appealing to (4.30), we conclude that ‖P1P1+‖ < 1.

Remark 4.8 A concrete example of subspaces satisfying the hypotheses of Proposition 4.7 can
be constructed from an orthonormal wavelet basis. Take ψ ∈ L2(R) such that the functions
(ψk,l)(k,l)∈Z2 , where ψk,l : t 7→ 2k/2ψ(2kt− l), form an orthonormal basis of L2(R) [16]. For every
i ∈ {1, 2, 3} let, for every k ∈ Z, (ηi,k,l)l∈Z be a sequence in `2(Z) such that

∑
l∈Z |ηi,k,l|2 = 1 and

define
Ui = span {ui,k}k∈Z, where (∀k ∈ Z) ui,k =

∑

l∈Z
ηi,k,lψk,l. (4.41)
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Then (u1,k)k∈Z, (u2,k)k∈Z, and (u3,k)k∈Z are orthonormal sequences in L2(R) that satisfy (4.24).
Moreover since, for every i and j in {1, 2, 3} and every k ∈ Z, 〈ui,k | uj,k〉 =

∑
l∈Z ηi,k,lηj,k,l, the

main hypothesis (4.25) is equivalent to

sup
k∈Z

√√√√
∣∣∣∣
∑

l∈Z
η1,k,lη2,k,l

∣∣∣∣ + sup
k∈Z

√√√√
∣∣∣∣
∑

l∈Z
η2,k,lη3,k,l

∣∣∣∣ + sup
k∈Z

√√√√
∣∣∣∣
∑

l∈Z
η1,k,lη3,k,l

∣∣∣∣ < 1. (4.42)

4.3 Harmonic analysis and signal recovery

Many problems arising in areas such as harmonic analysis [2, 7, 21, 23, 25, 29], signal theory
[10, 32, 39], image processing [14, 36], and optics [30, 37] involve imposing known values of
an ideal function in the time (or spatial) and Fourier domains. In this section, we describe
applications of Theorem 2.8 to such problems.

The following lemma will be required.

Lemma 4.9 Let U , V , and W be closed vector subspaces of H such that W ⊂ V . Then
‖PUPW ‖ ≤ ‖PUPV ‖.

Proof. Set B =
{
x ∈ H ∣∣ ‖x‖ ≤ 1

}
. Then PW (B) ⊂ B. In turn, since W ⊂ V ,

PW (B) = PV (PW (B)) ⊂ PV (B) and hence PU (PW (B)) ⊂ PU (PV (B)). Consequently, ‖PUPW ‖ =
sup

{‖PUPWx‖ ∣∣ x ∈ B} ≤ sup
{‖PUPV x‖

∣∣ x ∈ B}
= ‖PUPV ‖.

The scenario of the next proposition has a simple interpretation in signal recovery [14, 36]: an
N -dimensional square-summable signal has known values over certain domains of the spatial and
frequency domains and, in addition, m− 2 scalar linear measurements of it are available.

Proposition 4.10 Let A and B be measurable subsets of RN of finite Lebesgue measure, and
suppose that m ≥ 3. Moreover, let (vi)1≤i≤m−2 be functions in L2(RN ) with disjoint supports
(Ci)1≤i≤m−2 such that

(∀i ∈ {1, . . . ,m− 2}) µ(Ci) < +∞ and µ(Ci ∩ {A) > 0. (4.43)

Then, for all functions vm and vm−1 in L2(RN ) and every (ηi)1≤i≤m−2 ∈ Rm−2, there exists a
function x ∈ L2(RN ) such that

(∀i ∈ {1, . . . ,m− 2})
∫

Ci

x(t)vi(t)dt = ηi, x|A = vm−1|A, and x̂|B = v̂m|B. (4.44)

Proof. We first observe that the problem under consideration is a special case of (1.1) with
H = L2(RN ),





Ui = span {vi} and ui = ηivi/‖vi‖2, 1 ≤ i ≤ m− 2;
Um−1 =

{
x ∈ H ∣∣ x1{A = 0

}
and um−1 = vm−11A;

Um =
{
x ∈ H ∣∣ x̂1{B = 0

}
and ûm = v̂m1B.

(4.45)

19



It follows from Lemma 4.2 that ‖Pm−1Pm‖ < 1. Hence, in view of Corollary 2.14, it suffices to
show that the closed vector subspaces (Ui)1≤i≤m are linearly independent. Since the supports
(Ci)1≤i≤m−2 are disjoint, the subspaces (Ui)1≤i≤m−2 are independent. Therefore, if we set U =∑m−2

i=1 Ui, it is enough to show that U , Um−1, and Um are independent. To this end, take
(y, ym−1, ym) ∈ U × Um−1 × Um such that

y + ym−1 + ym = 0, (4.46)

and set C =
⋃m−2

i=1 Ci. We have (y + ym−1)1{(A∪C) = 0, µ(A ∪ C) < +∞, ŷm1{B = 0, and
µ(B) < +∞. Hence, it follows from (4.46) and Lemma 4.1 that

y + ym−1 = 0 and ym = 0. (4.47)

It remains to show that y = 0. Since y ∈ U , there exist (αi)1≤i≤m−2 ∈ Cm−2 such that y =∑m−2
i=1 αivi. However, since the supports (Ci)1≤i≤m−2 are disjoint,

‖y‖2 =
∥∥∥∥

m−2∑

i=1

αivi

∥∥∥∥
2

=
m−2∑

i=1

|αi|2‖vi‖2. (4.48)

On the other hand, (4.43) implies that, for every i ∈ {1, . . . ,m− 2},

‖vi‖2 =
∫

Ci∩A
|vi(t)|2dt+

∫

Ci∩{A
|vi(t)|2dt >

∫

Ci∩A
|vi(t)|2dt = ‖vi1A‖2. (4.49)

At the same time, we derive from (4.47) that y = −ym−1 ∈ Um−1 and therefore from (4.45) that
y1{A = 0. Consequently, (4.48) yields

m−2∑

i=1

|αi|2‖vi‖2 = ‖y‖2 = ‖y1A‖2 =
∥∥∥∥

m−2∑

i=1

αivi1A

∥∥∥∥
2

=
m−2∑

i=1

|αi|2‖vi1A‖2. (4.50)

In view of (4.49), we conclude that (∀i ∈ {1, . . . ,m− 2}) αi = 0.

Remark 4.11 In connection with Proposition 4.10, let us make a few comments on the following
classical problem: given measurable subsets A and B of RN such that µ(A) > 0 and µ(B) > 0,
and functions a and b in L2(RN ), is there a function x ∈ L2(RN ) such that

x|A = a|A and x̂|B = b|B ? (4.51)

To answer this question, let us set
{
U1 =

{
x ∈ L2(RN )

∣∣ x1{A = 0
}

and u1 = a1A,

U2 =
{
x ∈ L2(RN )

∣∣ x̂1{B = 0
}

and û2 = b1B.
(4.52)

Thus, the problem reduces to an instance of (1.1) in which m = 2.

• If µ(A) < +∞ and µ(B) < +∞, it follows from Lemma 4.2, (4.52), and the implication
(x)⇒(i) in Corollary 2.12 that the answer is affirmative (see also [23, Corollary 5.B p. 100]).

• If µ({A) < +∞ and µ({B) < +∞, it follows from (4.52), Proposition 2.18, and Lemma 4.1
(applied to U⊥1 and U⊥2 ) that (4.51) has at most one solution.

20



• Suppose that A is bounded and that µ({B) > 0, and let ε ∈ ]0,+∞[. Then there exists
x ∈ L2(RN ) such that

∫

A
|x(t)− a(t)|2dt+

∫

B
|x̂(ξ)− b(ξ)|2dξ < ε. (4.53)

To show this, we first observe that U1 ∩ U2 = {0}. Indeed, let y ∈ U1 ∩ U2. Then ŷ can be
extended to an entire function on CN (see [35, Theorem 7.23] or [38, Theorem III.4.9]) and,
at the same time, ŷ1{B = 0, which implies that ŷ = 0 [34, Theorem I.3.7]. Hence, applying
Proposition 2.5 with m = 2, we obtain the existence of x ∈ L2(RN ) such that

‖P1x− u1‖2 + ‖P2x− u2‖2 < ε, (4.54)

which yields (4.53). In the case when {B is a ball centered at the origin and b = 0,
(4.53) provides the following approximate band-limited extrapolation result: there exists
x ∈ L2(RN ) which approximates a on A and such that x̂ nearly vanishes for high frequencies.

The following example describes a situation in which the IBAP fails.

Example 4.12 The following example is from [30]. Let C = [−1/2, 1/2] × [−1/2, 1/2] and set
H = L2(C). Moreover, define

(∀(m,n) ∈ Z2) x̂(m,n) =
∫

C
x(s, t) exp(−i2π(ms+ nt))dsdt, (4.55)

set A = [0, 1/2]× [0, 1/2], and set B = F ∪{
(m, 0)

∣∣ m ∈ Z}
, where F is a nonempty finite subset

of Z × Z. The problem amounts to finding functions with prescribed best approximations from
the closed vector subspaces





U1 =
{
x ∈ H ∣∣ x1{A = 0

}

U2 =
{
x ∈ H ∣∣ x(s, t) = x(−s, t) a.e. on C

}

U3 =
{
x ∈ H ∣∣ x̂1B = 0

}
.

(4.56)

Since U⊥1 + U⊥2 + U⊥3 = {0} [30], it follows from Proposition 2.18 that the problem has at most
one solution. However, the subspaces are not independent. Indeed, given a finite subset I of Z
such that (0, n) /∈ F whenever n ∈ I and complex numbers (cn)n∈I , the trigonometric polynomial

(s, t) 7→
∑

n∈I

cne
i2πnt (4.57)

is in U2 ∩ U3. Therefore, in the light of Corollary 2.3, the IBAP does not hold.
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