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§1. Introduction

Throughout, X # {0} is a reflexive real Banach space with topological dual X* and (-, -) denotes the
canonical duality pairing. The power set of X* is denoted by 2X". See Section 2 for further notation.

Let A: X — 2% be an operator and let graA = {(x, x)e XXX | x*¢€ Ax} be its graph. The
Haraux function associated with A is

Hpy: X X X" = [—o0,+00]: (x,u") >  sup (x—y,y" —u"). (1.1)
(y.y*)egraA

This function was originally conceived by Haraux in 1974 in unpublished notes as a tool to generalize
the notions of 3 monotone and angle bounded operators [27]. It is at the core of many important
developments in the theory of monotone operators in reflexive Banach spaces [3, 9, 14, 19, 22, 32,
36, 38, 41]. In particular, it is an essential component of the famous Brézis—Haraux theorem [13],
which studies how close the range of the sum of two monotone operators in a Hilbert space is to the
Minkowski sum of their ranges. A closely related function, later introduced independently in [26], is
the Fitzpatrick function

Fo=Hg+ (). (1.2)
A basic property of the Haraux function is that, if A is maximally monotone, then
Hy>0 and graA-= {(x, u) € X X X" | Ha(x,u™) = 0}. (1.3)

This follows for instance from [26, Corollary 3.9] and (1.2). A natural question is whether the inequal-
ity Hy > 0 can be improved. A related question concerns the Fenchel-Young inequality. Consider
a proper function ¢: X — ]—o0, +co] with conjugate ¢*, and define the associated Fenchel-Young
function by

Ly: X X X* = ]—00,+00]: (x,u") > @(x) + @™ (u") — (x,u"). (1.9)
As is well known [30, Section 10],
L,>0 and gradep= {(x, u) e XXX | Ly(x,u") = O}, (1.5)

and one may likewise ask whether better lower bounds can be found. These two questions are not only
of theoretical interest but they also impact concrete applications in areas such as inverse problems
[1], evolution inclusions [3], optimal transportation [20, 21], and machine learning [11, 35].

Fix (x,u") € X X X*. Then, in view of (1.1), given (y,y") € graA, the inequality Hy(x,u") >
(x — y,y* — u") furnishes a trivial lower bound. To make it exploitable, (y, y*) should depend on (x, u*)
in a suitable way. The first instance of such a lower bound we have found in the literature is the
following.

Proposition 1.1 ([34, Lemma 2.3]). LetA: X — 2% be maximally monotone, let x € X, letu* € X,
and let A: X — 2% be the duality mapping of X, i.e.,

(Vx € X) A(x) = {x" € X" | [Ix]I* = (x,x") = [Ix"||*}. (1.6)

Then there exists (z,z*) € gra A such that z* — u* € A(x — z) and Ha(x,u*) > ||x — z||%.



If X is a Hilbert space (identified with its dual), then A = Id and the inclusion z* — u* € A(x — z) in
Proposition 1.1 becomes x+u* —z = z* € Az, i.e.,z = (Id+A) ! (x+u*) = Ja(x+u*) since the resolvent
Ja = (Id+A) ! is single-valued by [9, Corollary 23.11(i)]. We then deduce at once from Proposition 1.1
that

Ha(x,u") > llx = Ja(x +u)”. (1.7)

This inequality appears explicitly in [3, Equation (1)], where it is also derived from [34, Lemma 2.3].
Unaware of these results, Carlier recently proposed in [20] a parametrized version of (1.7) along with
a lower bound for (1.4), with elegant applications to convex analysis and transportation theory (see
also [10] for further results in Hilbert spaces).

Proposition 1.2. Suppose that X is a Hilbert space, let x € X, letu* € X, and let y € ]0, +co[. Then the
following hold:

(i) [20, Section 2] Let A: X — 2% be maximally monotone. Then

e = Jrate vy :
Y

Hy(x,u") (1.8)

(if) [20,Lemma 1.1] Let ¢: X — ]—o00, +0co] be a proper lower semicontinuous convex function and let
prox,, be its proximity operator, i.e., prox, = Jog- Then

2

||x — prox,,, (x + yu")

Y

Ly(x,u”) > (1.9)

Following [20], an extension of Proposition 1.2(i) to reflexive real Banach spaces was proposed in
[18] in the following form (this result is stated with the condition dom Hyy = X X X* in [18], but the
weaker, more checkable condition dom W = X suffices; see Example 5.12).

Proposition 1.3 ([18, Theorem 1]). Let A: X — 2% and W: X — 2% be maximally monotone, let
x € X, letu* € X*, and let y € ]0,+oco[. Suppose that W is a-strongly monotone for some o € |0, 400/,
anddomW = X. Let x* € Wx and set z = (W + yA) "} (x* + yu*). Then Ha(x,u*) > a||x — z||%/y.

The main objective of the present paper is to derive new lower bounds on the Haraux and Fenchel-
Young functions in reflexive real Banach spaces under minimal assumptions on the set-valued oper-
ator A in (1.1) and the function ¢ in (1.4), respectively. As seen above, the basic inequality (1.7) in
Hilbert spaces can be deduced from Proposition 1.1. It can also be deduced from Proposition 1.3 with
W = Id. However, these propositions yield in general different conclusions. As we shall see, two no-
tions of resolvent for set-valued operators implicitly underlie these inequalities: metric resolvents in
Proposition 1.1, and warped resolvents in Proposition 1.3. In the Hilbertian setting, metric resolvents
coincide with instances of warped resolvents and we recover Proposition 1.2.

In Section 2, we introduce our notation. Lower bounds on the Haraux function of general set-valued
operators based on metric resolvents are derived in Section 3 and lower bounds on the Fenchel-
Young function of proper functions based on metric proximity operators are derived in Section 4. In
Sections 5 and 6, we provide alternative bounds based on warped resolvents for the Haraux function
and on warped proximity operators for the Fenchel-Young function. These bounds are new even in
the basic setting of maximally monotone operators and lower semicontinuous convex functions in
Euclidean spaces, in which case we show that they can be more easily computable and sharper than
those produced by Proposition 1.2. Section 7 proposes applications to composite monotone inclusions
and Section 8 concludes the paper with some potential directions for future work.



§2. Notation

Let A: X — 2% andlet A™1: X* — 2% x* > {x eX |x"e Ax} be its inverse. The domain of A
is domA = {x eX | Ax # @}, the range of Ais ranA = |J,cqom 4 AX, and the set of zeros of A is
zerA = {x eX|0e Ax}. We say that A is monotone if

(V(x,x") € graA) (Y(y,y") € grad) (x—y,x" —y") >0 (2.1)
and maximally monotone if

(V(x,x) e XxX*) [(xx") egrad & (V(yy*) €grad) (x—yx" —y*)>0]. (2.2)
Let ¢: [0,+00[ — [0, +00] be increasing and vanishing only at 0. Then A is ¢-uniformly monotone if

(V(x,x*) € graA)(V(y,y") € grad) (x—y,x" —y") > ¢(llx - yll). (2.3)

In particular, if ¢ = a| - |2 for some & € ]0,4+o0[, then A is a-strongly monotone, that is,

(V(x,x*) € graA) (Y(y,y") € graA) (x—y,x* —y") > allx -yl (2.4)

If A is monotone and dom AXran A C dom Hy, then it is 3" monotone. At last, A is injective if (Vx € X)
Vye X)AxNAy+ o2 =>x=y.

Let ¢p: X — [—00,+0]. The domain of ¢ is dom ¢ = {x eX|o(x) < +oo} and the conjugate of ¢ is
the function ¢*: X* — [—0c0,4+00]: x* +— sup, . ({x, x*) — ¢(x)). Further, ¢ is cofinite if dom ¢* = X*
and supercoercive if lim | —+c0 @ (x)/||x|| = +00. Now suppose that ¢: X — ]—o0,+00] is proper, i.e.,
dom ¢ # @. The subdifferential of ¢ is the operator

dp: X =2 i x {x e X | (Vg e X) (y—x,x") + (%) < o(y)}. (2.5)

We denote by I'H(X) the class of proper lower semicontinuous convex functions from X to |—oo, +00].
Let f € IH(X). If f is Gateaux differentiable on intdom f # @, then the Bregman distance associated
with f is

Df: X XX — [0, +00]
fx) - f(y) —{x -y, Vf(y)), if yeintdom f; (2.6)
+00,

otherwise.

me{

Finally, f is a Legendre function if it is essentially smooth in the sense that df is both locally bounded
and single-valued on its domain, and essentially strictly convex in the sense that df™* is locally bounded
on its domain and f is strictly convex on every convex subset of dom of [7].

§3. Lower bounds on the Haraux function based on metric
resolvents

The Voisei—-Zalinescu inequality [39, Theorem 2.6] gives a lower bound on the Haraux function of a
maximally monotone operator in terms of the distance to its graph. The main result of this section is
a sharpening of this inequality. As in Proposition 1.1, the duality mapping of (1.6) plays a central role
via the following notion of a metric resolvent (see [33, Definition 3.4] and the references therein).



Definition 3.1. Let A: X — 2% and let A be the duality mapping of X. Then the metric resolvent of
Ais

Ri: X —2%:x {zeX|0eAz+A(z-x)}. (3.1)
Let us recall a few facts about duality mappings.

Lemma 3.2. Let A be the duality mapping of X. Then the following hold:

(i) [23, Theorem1.4.4] A = 4| - ||?/2.
(if) [23, Corollary V.2.6] A is maximally monotone.
(iii) [23, Proposition 1.4.7(c)] Let x € X. Then A(—x) = —A(x).
(iv) [23, Theorem II.1.8] Suppose that X is strictly convex. Then A is strictly monotone.

Example 3.3. Let C be a nonempty closed convex subset of X, let proj-~ be the metric projection
operator onto C, i.e.,

projo: X — 2€: x> {z eC|(Vyel) |lx—z| < |lx- yll}, (3.2)
and let N¢ be the normal cone operator of C, i.e.,

{x eX*| (VyeC) (y—xx*) <0}, if xeC

@, otherwise.

NC:X—>2X*:x|—>{

Then it follows from [28, Remarque 8.1.5a], Lemma 3.2(i), and Definition 3.1 that proj, = Rn..

Notation 3.4. Let y € ]0, +0o[. We define a norm by

-1l X X X* = [0, 400[: (x,x7) = xl12/y +yllx*]2 (3.4)
and denote the associated distance function to a set C ¢ X X X* by

dey: X X X* — [0,+00]: (x,x") = inf [[|(x,x7) = (3, y)Ily- (3.5)
(y.y*)eC

The proposed lower bounds are as follows.

Proposition 3.5. Let A: X — 28 let x € X, letu* € X*, and let y € ]0,+co[. Suppose that z €
Ry(A-u+)x. Then, using Notation 3.4,

2
=zl Sl . (3.6)

Hy(x,u™) > 7 ograAy

Proof. Since z € R,(a—y+)X, it follows from (3.1) that there exists z* € Az such that 0 € y(z" — u") +
A(z — x). Consequently, (z,z") € gra A and, appealing to Lemma 3.2(iii), we obtain

Yz —u") € A(x — 2). (3.7)
In turn, (1.1) and (1.6) yield

_ -z -w))  x—zl?
Y Y

Hy(x,u") > (x —z,z" —u") (3.8)




Next, we derive from (3.7), (1.6), and (3.5) that
llx = 2l* _ llx = 2l* + yllu = 2"|I?
Y 2y
1 « x
S’ = (2.2 Iy

1
- . f 3 ®Y ) * 2
z(y;{;gmA”'(x“) (.91

\%

= 2 graAy(x u ) (3.9)
which yields the rightmost inequality. O

Theorem 3.6. Let A: X — 2% be maximally monotone, let x € X, let u* € X, and let y € ]0, +co[.
Then, using Notation 3.4, the following hold:

(1) Rya—uyx # .
(ii) Letz € Ry(a-yu+)x. Then

. IIX—ZII2 .
Ha(x,u") > ———— EdgzraAy( u). (3.10)

(iii) Suppose that X is strictly convex. Then Ry,(a—y) is single-valued and

llx = Rya—wnyxlI* 1 i
e 5argzmAy( u"). (3.11)

Hy(x,u®) >

Proof. (i): By [37, Theorem 10.6], (x,yu*) € X X X* = gra(yA) + gra(—A). Therefore, there exists
(z,z") € graA such that (x —z, yu" —yz*) € gra(—A), hence y(z* —u*) € A(x — z), which implies that
0€y(z"—u")+A(z—x) Cy(A—-u")z+A(z - x). In view of Definition 3.1, z € Ry(4_y)X.

(ii): This follows from (i) and Proposition 3.5.

(iii): Taking (ii) into account, it is enough to show that R, (4—,+)x contains at most one point. Suppose
that {z;,z2} C Ry(a—u+)x. Then we infer from Definition 3.1 that there exist wj € A(z; — x) and
wj € A(zy — x) such that (z;, —w]) € gra A and (z;, —w;) € gra A. By monotonicity of A,

((z1 = x) = (22 = %), w] — wy) = (21 — 22, W] — w;) < 0. (3.12)
However, Lemma 3.2(ii) forces
((z1 = x) = (22 — x), W] —wj) > 0. (3.13)

Thus, ((z1; — x) — (22 — x), w] — w;) = 0 and, since Lemma 3.2(iv) asserts that A is strictly monotone,
we conclude that z; —x =z, — x, i.e., that z; = zo. O

Remark 3.7. Theorem 3.6 extends existing results as follows:

(i) For y = 1, it follows in particular from Theorem 3.6(ii) that, if z € Ry_,+x, then Hy(x,u*) >
|lx — z||%. This conclusion is identical to that of [34, Lemma 2.3] (see Proposition 1.1). Indeed,
arguing as in the proof of Theorem 3.6(i), the inclusion z € R4_,-x secures the existence of
(z,2") € graA such that z* — u* € A(x — 2).



(ii) Regarding Theorem 3.6(ii), the smaller lower bound
1
Hy(x,u") > ngzraA,l(x, u*) (3.14)

was established in [39, Theorem 2.6] using more technical arguments. Our simple proof im-
proves it by a factor 2, and for any y € ]0, +oo[.

(iii) Regarding Theorem 3.6(ii), in the special case when X is Hilbertian and y = 1, the inequality
* 1 *
Hy(x,u") > EdgzraA’l(x,u ) (3.15)

appears in [18, Theorem 4].

(iv) As pointed out in [12, Exercise 9.7.11], the constant 1/2 in Theorem 3.6(ii) is the best possible
to the extent that, if X is Hilbertian, A = Id, and y = 1, then the inequalities become equalities.

(v) Suppose that X is Hilbertian. Then A = Id and it follows from Definition 3.1 that R, 4 coincides
with the usual resolvent J,4 = (Id+yA)~" of [9, Definition 23.1]. In this context, the inequality
Ha(x,u*) > ||x — ]},(A_u*)xﬂz/y provided by Theorem 3.6(iii) is easily seen to be equivalent to
the inequality Hu (x,u*) > Hx = Jya(x + yu*)”z/y, which is precisely that established in [20,
Section 2] (see Proposition 1.2(i)).

§4. Lower bounds on the Fenchel-Young function based on metric
proximity operators
We turn our attention to the case when A is a subdifferential operator to obtain lower bounds on
the Fenchel-Young function of (1.4). The strategy is to exploit the conclusions of Section 3 via the

following inequality which, in the case of Hilbert spaces, appears in [13, p. 167] (if ¢ is convex, it is
also a consequence of [26, Theorem 3.7] and (1.2)). For completeness, we record a proof in our context.

Lemma 4.1. Let ¢: X — ]-00,+00] be proper. Then L, > Hp,.
Proof. Let (x,u") € X X X" and (y, y*) € gradgp. Then, since y € dom ¢, (2.5) yields
¢(x) + (g u") — o (y) — (x,u”)

(x=y.y") +o) +{yu") —e(y) - (x,u")
=(x-yy -u). (4.1)

e(x) + 9 (u) - (ru’) >
>

In view of (1.1) and (1.4), this shows that L, (x,u*) > Ha,(x,u*). [

Combining Proposition 3.5 and Lemma 4.1 yields the following set of inequalities in terms of the
metric resolvent of Definition 3.1.

Proposition 4.2. Let ¢: X — ]|—co, +co] be proper, let x € X, letu* € X*, and lety € ]0,+00[. Suppose
that z € Ry(y(p-u))x. Then, using Notation 3.4,

. oo le=zllP 1, .
Ly(x,u”) > Hpp(x,u”) > T > Edgraa(p,y(x,u ). (4.2)

To refine these inequalities, let us recall the notion of a metric proximity operator, first introduced
by Moreau [29] in Hilbert spaces.



Definition 4.3. Let ¢ € I5(X). Then the metric proximity operator of ¢ is
1
prox,: X — 2% x> Argmin ((p(y) + =||x - y||2). (4.3)
yeX 2

The following theorem establishes lower bounds on L, for ¢ € I (X).

Theorem 4.4. Let ¢ € I[H(X), letx € X, letu*™ € X*, and let y € |0, +oo[. Then, using Notation 3.4, the
following hold:

(i) prox,(y_u X # 2.

(ii) Let z € prox

Y(p—u+) X- Then

* * ||x - 2”2 1 2 *
Ly(x,u”) > Hyp(x,u”) > T > Edgm a0,y (X, U). (4.4)

iii) Suppose that X is strictly convex. Then prox,,.._ .« is single-valued and
pp y PIOXy (p—u) 3

llx — prox, ., x|> 1
Ly(x,u") > Hpp(x,u7) > Moz~ 5 2

v > 2ngra a0,y (X, u"). (4.5)

Proof. First, [40, Proposition 47.F(1)] asserts that d¢ is maximally monotone. Next, we derive from
Definition 4.3, Fermat’s rule [40, Proposition 47.12], the subdifferential sum rule [40, Theorem 47.B],
Lemma 3.2(i), and Definition 3.1 that

. o1
Prox, ) = Argmin (y(p(y) = () + 5l = ul1?)
yeX 2

= zerd(y(p —u') + %n =)

= zer(}/(aq) — u*) + A( - x))

- {ZEX | = y(a¢—u*)z+A(z—x)}

= Ry(a(p_u*)x. (46)

The claims are therefore consequences of Theorem 3.6, where A = dp, and Lemma 4.1. [0

Remark 4.5. Suppose that X is Hilbertian. Then, as in Remark 3.7(v), the inequality L,(x,u*) >
||x — PIOX, () x||*/y from Theorem 4.4(iii) is equivalent to L, (x,u*) > [lx — prox,,, (x + yu")||%/y,
which is precisely the lower bound established in [20, Lemma 1.1] (see Proposition 1.2(ii)).

§5. Lower bounds on the Haraux function based on warped
resolvents

We derive lower bounds on the Haraux function of a general set-valued operator A: X — 2% in
terms of an auxiliary set-valued operator W: X — 2% through the notion of a warped resolvent. The
results are then specialized to the case when W is at most single-valued and, in particular, when it is
the gradient of a Legendre function, which gives rise to lower bounds in terms of Bregman distances.
Several examples illustrate these new bounds and an application to the asymptotic behavior of families
of set-valued operators is provided. Our analysis relies on the following notion of a warped resolvent,
which was introduced in the case of at-most single-valued kernels in [15, Definition 1.1].



Definition 5.1. Let A: X — 2% and K: X — 2%, Then the warped resolvent of A with kernel K is
JX=(K+A) oK.

Proposition 5.2. LetA: X — 25 letW: X — 2% letx € X, letu* € X*, and lety € 10,+00[. Then
]%A_u*)x = (W +yA) ' (Wx + yu*). (5.1)

Proof. Let z € X. Then

z GJXA_u*)x & ze (W+y(A— u*))_l(Wx)

& (@Ax*eWx) ze (W+y(A-u)) 'x*

& (Ax"eWx) x"+yu" € Wz+yAz

& (Ax"eWx) ze(W+yA) '(x* +yu’)

& ze (W+yA) ' (Wx +yu®), (5:2)

which proves (5.1). 0O

Proposition 5.3. Let A: X — 28 let W: X — 2% letu* € X*, and let y € 10, +oo[. Suppose that
x € domW and that z € ]YV(VA_u*)x. Then the following hold:

(i) There exist x* € Wx and z* € Wz such that Hy(x,u*) > (x —z,x* — z")/y.
(i) Suppose that W is ¢p-uniformly monotone. Then Hy(x,u*) > ¢(||x — zl|)/y.
(iii) Suppose that W is a-strongly monotone. Then Hu(x,u*) > a|lx — z||?/y.
(iv) Suppose that W is at most single-valued. Then Ha(x,u*) > (x —z, Wx — Wz)/y.
(v) Let f € I;(X) be Gateaux differentiable on dom V f = int dom f and suppose that W = Vf. Then

D¢ (x, z) + D (z, x)
. .

Hy(x,u*) >

(5.3)

Proof. (i): Since Proposition 5.2 asserts that z € ];("A_u*)x = (W + yA) Y (Wx + yu*), there exists

x* € Wx such that x* + yu" € Wz + yAz, from which we deduce that z € dom W N dom A and that
there exists z* € Wz such that x* + yu* € z* + yAz. In turn,

(z, X"z u*) € graA. (5.4)
Y
Consequently,
* * * x' =z * * <x_Z’X*_Z*>
Ha(x,u")= sup (x-yy —u>><x—z, +u —u>: . (5.5)

(y.y*)egraA

(ii): This follows from (i) and (2.3).

(iii): Take ¢ = a| - | in (ii).

(iv): An immediate consequence of (i).
(v): This follows from (iv) and (2.6). [

Let us characterize the situation in which the point z in Proposition 5.3(iv) is x itself .

Proposition 5.4. In the setting of Proposition 5.3(iv), consider the following statements:



[a] x E]XA_M*)x.
[b] (x,u") € graA.
[c] Ha(x,u*) = 0.

Then the following hold:

(i) [a]e[b].
(ii) Suppose that A is monotone. Then [b]=[c].
(iii) Suppose that A is maximally monotone. Then [b]&[c].

Proof. (i): We have x € ]y"(VA_u*)x ©x e (W+y(A-u*)) 1 (Wx) © Wx € Wx+y(Ax—u*) © u* € Ax.
(ii): By monotonicity, (V(y, y*) € graA) (x —y,y" — u*) < 0. Therefore, Hy (x, u*) < 0. At the same
time, Hy (x, u*) = sup(y,y*)egraA@c -y Yy —u") 2 (x—xu" —u*)=0.
(iii): See (1.3). O

The following result ensures the existence of the point z in Proposition 5.3.

Proposition 5.5. Let A: X — 2% let W: X — 2% letu* € X*, and let y € ]0,+co[. Suppose that
x € dom W and that one of the following holds:

(i) There exists x* € Wx such that x* + yu* € ran(W + yA).
(ii) W + yA is surjective.
(iii) W + yA is maximally monotone and (W + yA)™" is locally bounded at every point in X*.
(iv) W + yA is maximally monotone and one of the following is satisfied:
(a) dom W N dom A is bounded.
(b) dom W N dom A is unbounded and

lim ( inf IIy*II) = 400. (5.6)
yedom WNdom A \y*eWy+yAy
llyll—+c0

(v) W +yA is maximally monotone and ¢-uniformly monotone with ¢(t)/t — +00 ast — +oo.
(vi) W + yA is maximally monotone and a-strongly monotone for some a € 10, +co[.
(vii) W and A are monotone, W + yA is maximally monotone, ran W + yran A = X*, and one of the
following is satisfied:
(a) W and A are 3" monotone.
(b) W is 3" monotone and domA C dom W.
(c) A is3* monotone and domW C dom A.
(viii) W = of, with f € I,(X), A is monotone, df +yA is maximally monotone,dom df* +yran A = X,
and either dom A C dom of or A is 3* monotone.
(ix) W and A are monotone, W + yA is maximally monotone, and one of the following is satisfied:

(a) W is 3* monotone and surjective.

(b) A is 3* monotone and surjective.

Then ]%A_u*)x * @.

10



Proof. For convenience, we set M = W + yA.
(i): Since x* + yu* € ran M = dom M~!, we have M~!(x* + yu*) # @. Therefore, by Proposition 5.2,
]y"(VA_u*)x =M 1(Wx +yu*) # @.
(i1)=(i): Indeed, ran M = X*.
(iii)=(ii): This follows from the Brézis—Browder surjectivity theorem [41, Theorem 32.G].
(iv)=(ii): See [41, Corollary 32.35].
(v)=(iv): In view of (iv), we assume that dom M is unbounded and show that

lim inf ||y*||| = +oo. 5.7
yedom M (y*EMy”y ”) ( )
lyll—>+eo

For this purpose, fix (v,0") € gra M. Then (2.3) yields

(V(y.y") egraM) |ly—olllly" —o"ll = (y—0,y" —0") = ¢(lly - oll). (5.8)
Therefore

$(lly —oll)
lly = ol|

Since the right-hand side goes to +o as ||y|| — +oco, we obtain (5.7).

(vi)=(v): Take ¢ = a] - |2

(vii)=(ii): It follows from the assumptions and the reflexive Banach space version [36, Theorem 2.2]
of the Brézis-Haraux theorem [13, Théorémes 3 et 4] that intran M = int(ran W + y ran A), which
implies that ran M = X™*.

(viii)=(vii): Indeed, W is 3* monotone by [41, Proposition 32.42] andran W = ran df = dom(df) ™! =
dom df™ by [40, Theorem 51.A(ii)].

(ix)=(ii): See [14, Corollary 11 and Remark 9(iv)]. 0O

(V(y.y") egraM) y#o = |yl > lly"—o"ll - [lo"]| > = [lo™I- (5.9)

Example 5.6. Let A: X — 28" and W: X — 2% be maximally monotone, let x € dom W, let
u* € X*, and let y € ]0,+oo[. Suppose that the cone generated by dom W — dom A is a closed vector
subspace of X and that W is ¢-uniformly monotone with ¢ (t)/t — +co ast — +oo. Letz € JW

y(A-u)X:
Then Hy (x,u*) > ¢(||lx — z|) /y.

Proof. It follows from the Attouch-Riahi—Théra theorem [38, Corollary 32.3] that W+yA is maximally
monotone. Additionally, W +yA is ¢-uniformly monotone and therefore Proposition 5.5(v) guarantees
that ];("A_u*)x # @. The conclusion therefore follows from Proposition 5.3(ii). [

An important consequence of Propositions 5.3(iv) and 5.5 is the following.

Theorem 5.7. Let A: X — 2X  letd # D c X, let W: D — X*, letx € D, let u* € X*, and
let y € 10,+00[. Suppose that D N dom A # @ and that one of properties (i)—(ix) in Proposition 5.5 is
satisfied, together with one of the following:

(i) W +yA is injective.
(if) W + yA is strictly monotone.

(iii) W is uniformly monotone and A is monotone.

Setz = ]yv(VA_u*)x. Then Ha(x,u*) > (x —z, Wx — Wz)/y.
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Proof. Set M = W + yA. In view of Propositions 5.3(iv), 5.5, and 5.2, it remains to show that the set
MY (Wx + yu*) = ]YV(VA_u*)x is a singleton.

(i): Let (x*, x;) and (x*, x) be points in gra M~1. Then x* € Mx; N Mx; and therefore, by injectivity,
x1 = xp. Thus, M™! is at most single-valued.

(i1)=(i): Let (x1,x2) € X X X be such that there exists x* € Mx; N Mx,. Then (x1, x*) and (x3, x*)
lie in gra M and (x; — x, x* — x*) = 0. The strict monotonicity of M then forces x; = x».

(iii)=>(ii): Since W is strictly monotone and yA is monotone, W + yA is strictly monotone. [

Example 5.8. Let A: X — 2 letd D c X, letW: D — X* letx € D, let u* € X*, and let
y € ]0,+co[. Suppose that A and W are maximally monotone, that the cone generated by O — dom A
is a closed vector subspace of X, and that W is ¢-uniformly monotone with ¢(t)/t — +oco ast — +oo.

Setz = ]yv(VA_u*)x. Then Hy (x, u™) = ¢(||lx — z||)/y.

Proof. The Attouch—-Riahi-Théra theorem [38, Corollary 32.3] guarantees that W + yA is maximally
monotone. Since it is also @¢-uniformly monotone, condition (v) of Proposition 5.5 is satisfied. The
conclusion therefore follows from Theorem 5.7(iii) and (2.3). O

Our next result establishes a lower bound in terms of Bregman distances. Here, W is the gradient
of a Legendre function f € I3(X) and the warped resolvent ]AVf becomes the Bregman resolvent of A
studied in [8, Section 3.3].

Proposition 5.9. Let A: X — 2% be maximally monotone, let f € Iy (X) be a Legendre function, let
x € intdom f, let u* € X*, and let y € |0, +oo[. Suppose that (intdom f) N dom A # @ and that one of
the following holds:
(i) yu" +intdom f* C ran(Vf + yA).
(ii) (intdom f*) +yranA = X* and one of the following is satisfied:
(a) A is 3" monotone.
(b) domA c intdom f.

_vf
Set z = ]y(A_u*)x. Then

Dy (x,z) + Dr(z,x)
y .

Ha(x,u") > (5.10)

Proof. We apply Theorem 5.7 with W = Vf and D = dom W. First, since f is essentially smooth,
[7, Theorem 5.6] asserts that 9 = intdom f. In addition, since W is maximally monotone and
(intdom W) Ndom A = (intdom f) Ndom A # @, the Rockafellar sum theorem [41, Theorem 32.I] as-
serts that W + yA is maximally monotone. Moreover, since f is essentially strictly convex, it is strictly
convex on the convex set 9 = intdom f, which makes W strictly monotone [41, Proposition 25.10].
In turn, W + yA is strictly monotone. This shows that property (ii) in Theorem 5.7 is satisfied. On the
other hand, since [7, Theorem 5.10] asserts that ran Vf = int dom f*, property (i) above implies prop-
erty (i) in Proposition 5.5, while property (ii) above implies property (vii) in Proposition 5.5 since (7,
Theorem 5.9(ii)] asserts that dom df* = dom Vf* = intdom f*, while [41, Proposition 32.42] asserts
that W is 3* monotone. Altogether, the conclusion follows from Theorem 5.7 and (2.6). O

Remark 5.10. A sufficient condition for the property (intdom f*)+yran A = X* in Proposition 5.9(ii)
to hold is that f be supercoercive, as this implies that f* is cofinite [7, Theorem 3.4].
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We now recover the existing results of Propositions 1.2(i) and 1.3.

Example 5.11. Suppose that X is a Hilbert space. Then we retrieve Proposition 1.2(i) by applying
Proposition 5.9(ii)(b) with the Legendre function f = || - ||?/2, which satisfies f* = f, intdom f =
intdom f* = X,and Dy: X x X - R: (,0) = |lu - v||?/2. Alternatively, we can apply Example 5.8
with W = Id, which satisfies dom W = X and is ¢-uniformly monotone with ¢ = | - |2

Example 5.12. Using Proposition 5.2, we retrieve Proposition 1.3 as a special case of Example 5.6,
where domW = X and ¢ = | - |%.

The next example is an illustration of Proposition 5.9 for a maximally monotone operator which is
not a subdifferential.

Example 5.13. Let X = R? be the standard Euclidean plane, let f € ]0,+oo[, and let y: R — Rbea
Legendre function with a S-Lipschitzian derivative. Set

A: X = X: (E,8) = (Ba -/ (&) - &, &+ pé — Y/ (&) (5.11)
and consider the Legendre function
fr X 2R (&, 8) » ¥(&) +¥(&H). (5.12)

As observed in [25, Remark 3.4], A is maximally monotone but it is not the subdifferential of a convex
function. Now let x = (&;,&) € X and u* = (p7, ;) € X. Since ran(Vf + A) = X, we derive from
Propositions 5.9 and 5.2 that

z=({1,8)

_7vf
=JalyX

= (Vf+A)_1(Vf(x) +u")
B/ (&) +py) + 9/ (&) + 1y PV (&) +p13) =¥/ (&) — 1

- 1+ p? ’ 1+ p? (513)
is well defined and that
Dy(x.2) + Dy(z.%) = (& ~ L) (I (&) — ¥/ () + (& ~ L) (W (&) — ¥/ (2). (5.14)
Therefore, Proposition 5.9 yields
Ha(xu') > (6= L) (0 (8) — V() + (B~ ) (I (&) — ¥/ (L), (5.15)

Let us note that the lower bound of Proposition 1.2(i) on the Haraux function would be harder to
compute.

Next, we consider an application to the asymptotic behavior of a family of set-valued operators in
terms of the warped resolvents of Definition 5.1.

Proposition 5.14. Let A = {At: X —2X | te]o, +oo[} be a family of operators, let @ +# D C X,
let W: D — X* be ¢p-uniformly monotone, and let y € ]0,+oo[. Suppose that there exists an operator
A: X — 2% such that

(V(x,u") € graA) tgrPOOHAt (x,u™) = 0. (5.16)

Additionally, suppose that, for every B € WU {A}, D N dom B # @ and that one of properties (ii)—(ix)
in Proposition 5.5 is satisfied, together with one of properties (i)—(iii) in Theorem 5.7. Then the following
hold:
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() Lety* € X*. Then (W +yA;) 'y* — (W + yA)~ly*.
(ii) Lety € D. Then ];Xty — ]YVXy.
(iii) [3, Proposition 2.1] Suppose that X is Hilbertian, that W = 1d, and that the operators (A;) e[o+o0[
and A are maximally monotone. Then (A;)c[o,+00[ graph-converges to A.

Proof. Set x = (W +yA)~ly*, which is well defined since W + yA is surjective and injective. Note that
y* € Wx + yAx and set u* = y~!(y* — Wx). Then (x,u*) € graA and, in view of Proposition 5.2,
Theorem 5.7 asserts that, for every ¢ € [0, +o0[,

" 1
Hy, (x,u") > ;(x - %At_u*)x, Wx — W(];(‘/At_u*)x»
1
= —(x - (W+yA) ' (Wx + yu*), Wx = W((W + yA;) " (Wx + yu')))
Y
1 W
> —¢( x — (W+yAt)_1(Wx+y(—y x))H)
Y Y

= ~o(low sy - W pa) Ty

), (5.17)

(i): This follows from (5.16) and (5.17).
(ii): Set y* = Wy in (5.17), and invoke (5.16) and Definition 5.1.
(iii): A direct consequence of (i) and [2, Proposition 3.60]. [0

Outside of Hilbert spaces, the lower bounds on the Haraux function produced in this section via
warped resolvents are different from those produced in Section 3 via metric resolvents. In particular,
the lower bounds of Section 3 involve the distance to the graph of the operator. We show that it is
possible to obtain such bounds with warped resolvents based on a certain type of kernel W. For this
purpose, we introduce the following property, which implies the strong monotonicity of both W and
its inverse.

Definition 5.15. Let @ # D Cc X,let W: D — X*, let a € ]0,+c0][, and let § € ]0,+co[. Then W is
(a, B)-jointly strongly monotone if

o
VxeD)Vye D) (x—-yWx—-Wy)> EHX —yll*+ §||Wx - Wyll%. (5.18)

Example 5.16. Let @ # D C X,let W: D — X* let ¢ € ]0,+00[, and let f € ]0,4oc0[. Then the
following hold:
(i) Suppose that W is a-strongly monotone. Then the following are satisfied:

(a) Suppose that W is ff-cocoercive, i.e.,
(Vx e D)(Vy € D) (x —y, Wx — Wy) > B||Wx — Wy (5.19)

Then W is (e, f)-jointly strongly monotone.
(b) Suppose that W is B-Lipschitzian. Then W is («, a/f%)-jointly strongly monotone.
(c) Suppose that W is nonexpansive. Then W is («a, «r)-jointly strongly monotone.

(ii) Let f: X — R be an a-strongly convex, Fréchet differentiable function. Suppose that Vf is
B~!-Lipschitzian and that W = Vf. Then Vf is (a, f)-jointly strongly monotone.
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Proof. (i): Let {x,y} C D. Since W is a-strongly monotone, we have (x —y, Wx — Wy) > a|lx — y||%.
(i)(a): Since W is B-cocoercive, we have (x — y, Wx — Wy) > B||Wx — Wy||. Therefore,

a B
(x =y, Wx = Wy) > max{allx - ylI, fIlWx - Wyl|*} > Ellx —yl* + EHWX - Wyll®.  (5.20)

(i)(b): Since W is B-Lipschitzian, we get

o

2—ﬁ2||Wx - Wyl (5.21)

a a a
-y Wx-Wy) > —|lx - ylI* + Sl = yllI* > Sl - ylI* +
(i)(c): Take § = 1 in (i)(b).
(ii): Since f is a-strongly convex, Vf is a-strongly monotone. Additionally, Vf is f-cocoercive by
the Baillon-Haddad theorem [4, Corollaire 10]. We conclude by invoking (i)(a). 0O

Joint strong monotonicity allows us to derive from Proposition 5.3 lower bounds similar to those
of Proposition 3.5.

Proposition 5.17. Let A: X — 22X let@d 2 D Cc X, let W: D — X* letx € D, let u* € X*, let
Y € 10, +0o[, let € ]0, +oo[, and let § € 10, +00[. Suppose that z € ]%A_u*)x and that W is (a, p)-jointly
strongly monotone. Then, using Notation 3.4,

(x —z,Wx — Wz) S min{e, £}
Y B

d2

Hy(x,u¥) > rady

(x,u"). (5.22)
Proof. Proceeding as in (5.4), we observe that (z, (Wx—Wz)/y+u*) € gra A. It therefore follows from
Proposition 5.3(iv), (5.18), and Notation 3.4 that

(x—2z,Wx —Wz)
Y

Hy(x,u¥) >

l1{a
> —(—le—z||2 +
y\2

p

EHWX - Wz||2)

. ’ _ 2 Wx —-W 2
S min{a ﬁ}(llx z|| +YH X-Wz e )
2 Y Y
min{a, f} .
> ngzra ay (1), (5.23)

as claimed. 0O

Remark 5.18. When X is a Hilbert space, we deduce Proposition 3.5 from Proposition 5.17 applied
with the kernel W = Id, which is (1, 1)-jointly strongly monotone.

Theorem 5.19. Let A: X — 2X ) let @ # D c X, let W: D — X*, letx € D, letu* € X*, let
Y € 10,400], let @ € |0, +00[, and let f € ]0,+o0[. Suppose that D N dom A # @, that one of properties
(i)—(ix) in Proposition 5.5 is satisfied, together with one of properties (i)—(iii) in Theorem 5.7, and that W
is (a, B)-jointly strongly monotone. Set z = ]%A_u*)x. Then, using Notation 3.4,

(x —z,Wx — Wz) S min{e, £}
Y B

d2

Ha(x, u*) > gra Ay

(x,u”). (5.24)

Proof. This follows from Theorem 5.7 and Proposition 5.17. [
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§6. Lower bounds on the Fenchel-Young function based on warped
proximity operators

Following the pattern adopted in Section 4, we derive from the results of Section 5 lower bounds on
the Fenchel-Young function of (1.4). Comparisons with existing bounds are made in several examples.
To this end, we need the following extension of [15, Example 3.1] to set-valued kernels.

Definition 6.1. Let ¢: X — ]—co,+00] be proper and let K: X — 2%". Then the warped proximity
operator of ¢ with kernel K is proxf = ];fp = (K+d¢) oK.

Here is a consequence of Lemma 4.1, Proposition 5.3, and Definition 6.1.

Proposition 6.2. Let ¢: X — |—0o,+00] be proper, let W: X — 28" let u* € X*, and lety € 10, 400[.
Suppose that x € dom W and that z € prox;‘((p_u*) x. Then the following hold:

(i) There exist x* € Wx and z* € Wz such that L,(x,u") > (x — z,x* — z")/y.
(ii) Suppose that W is ¢-uniformly monotone. Then L, (x,u*) > ¢(|lx — zl|)/y.
(iii) Suppose that W is a-strongly monotone. Then L, (x,u*) > a||x — z||*/y.
(iv) Suppose that W is at most single-valued. Then L,(x,u”) > (x —z, Wx — Wz)/y.
(v) Let f € Iy (X) be Gateaux differentiable on dom Vf = int dom f and suppose that W = Vf. Then

S Dy (x, z) + Dr(z, x)
= y .

Ly(x,u”) (6.1)

Remark 6.3. We can also derive Proposition 6.2 directly, without invoking Proposition 5.3. Indeed,

by Definition 6.1, since z € prox;‘(/(p_u*) x, there exists x* € Wx such that x* € Wz+9(y(¢p —u"))(2) =

Wz + ydp(z) — yu*. Hence, there exists z* € Wz such that y~!(x* — z*) + u* € 9¢(z). In turn, (2.5)
yields

® %

z +u*> +¢(z) < p(w). (6.2)

(Vw € X) <w—z,x

Thus, (x — z,x* — z") [y + {(x — z,u") + ¢(z) < ¢(x) and, since z € dom ¢, we conclude that

B2 78 o) (m ) + o w) - p(2) < p(x) — (5 u) + 9" (@) = Lp(ou).  (63)

This shows (i) in Proposition 6.2. Items (ii)—(v) in Proposition 6.2 then follow as in Proposition 5.3.
Next, we characterize the situation in which z in Proposition 6.2(iv) is equal to x.
Proposition 6.4. In the setting of Proposition 6.2(iv), consider the following statements:

w
[a] x € ProX (. *.
[b] u* € dp(x).
[c] Ly(x,u*) =0.
[d] Hp,(x,u*) =0.
Then the following hold:

(i) [a]e[b]e[c]=]d].
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(if) Suppose that ¢ € I;(X). Then [c]<[d].

Proof. We recall that d¢ is monotone, and maximally so if ¢ € I3(X). The claims therefore follow
from (1.5) and Proposition 5.4. 0O

Let ¢: X — ]—o00,+00] be proper. Setting A = d¢ in Theorem 5.7 furnishes a first set of conditions
under which z exists in Proposition 6.2 and is uniquely defined as z = prox;‘(f(p_u*) x. Below, we refine
some of these conditions and add new ones.

Theorem 6.5. Let p: X — |—o00,+00] be proper, let @ #+ D C X, let W: D — X", letx € D,u" € X",
and lety € ]0,+oo[. Suppose that D N dom dp # @ and that one of properties (i)—(iii) below is satisfied,
together with one of properties (iv)—(vii):
(i) W +yoe is injective.
(il) W + yde is strictly monotone.
(iif) W is uniformly monotone.
(iv) Wx +yu* € ran(W + yap).
(v) W is monotone, W +yd¢ is maximally monotone, ran W +y ran dp = X*, and one of the following
is satisfied:
(a) W is3* monotone.
(b) dom W c dom 9¢.
(vi) W = 9f, with f € I(X), ¢ € I,(X), the cone generated by dom f — dom ¢ is a closed vector
subspace of X, and dom 9f™ + y dom dp* = X™.
(vii) W is monotone, W + ydg is maximally monotone, and one of the following is satisfied:
(a) W is 3* monotone and surjective.
(b) 9¢ is surjective.
Setz = prox;‘(/(p_u*) x. Then Ly(x,u*) > (x —z, Wx — Wz)/y.
Proof. We apply Theorem 5.7 with A = dg, taking into account the fact that, by [41, Proposition 32.42],

A is 3" monotone. (6.4)

(i): Theorem 5.7(i).

(ii): Theorem 5.7(ii).

(iii): Theorem 5.7(iii) and (6.4).

(iv): Proposition 5.5(i).

(v): Proposition 5.5(vii) and (6.4).

(vi): This follows from Proposition 5.5(viii) and (6.4). Indeed, by the Attouch—-Brézis theorem [38,

Theorem 18.2], W +yA = 9f +ydp = I(f +yp). However, since f+y¢ € I(X), Rockafellar’s theorem
[38, Theorem 18.7] asserts that this operator is maximally monotone.
(vii): Proposition 5.5(ix) and (6.4). O

We now focus on the case when W is the gradient of a Legendre function f. The warped proximity
operator pronf becomes the Bregman proximity operator of ¢ studied in [8, Section 3.4].

Proposition 6.6. Let ¢ € I(X), let f € I(X) be a Legendre function, let x € intdom f, let u* € X*,
and lety € ]0,+oo[. Suppose that (intdom f) N dom dp # @ and that one of the following holds:
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(i) yu" +intdom f* C ran(Vf + yap).
(ii) (intdom f*) +ydomdgp* = X*.
(iii) f + yo is cofinite.
(iv) f + yo is supercoercive.

(v) dom f N dom ¢ is bounded.

vf

Set z = prox ¢,

. x. Then
u*)

S Dy (x,z) + Dr(z,x)

(6.5)

Ly (x,u”)

Proof. (i)-(ii): These follow from Proposition 5.9, (6.4), and Lemma 4.1.
(iii)=(i): We have f + yp € I5(X), hence (f + yp)* € I,(X*). Therefore, by [40, Corollary 47.7,
Theorem 47.A(ii), Theorem 51.A(ii), and Theorem 47.B] and [7, Theorem 5.6],

X" =intdom(f +y¢p)”
c doma(f +yp)*
=ran(9(f + y(p)*)_l
=rand(f +yp)
=ran(df + yop)
=ran(Vf +yop), (6.6)
which confirms that ran(Vf + ydp) = X*.

(iv)=(iii): [7, Theorem 3.4].
(v)=(@v): Clear. 0O

Example 6.7. When X is a Hilbert space, we recover Proposition 1.2(ii) as a special case of Proposi-
tion 6.6(ii) with f = || - ||?/2. It is also a special case of Proposition 6.2(iv) with W = Id.

Example 6.8. Let ¢ € IH(X) be a Legendre function, let x € intdom ¢, let u* € intdom ¢*, and let
Y € 10, +co[. Then
<x - qu*((l +1)7 (Volx) + yu*)), Vo (x) - u*>

o (6.7)

Ly(x,u") >

Proof. 1t follows from the results of [7, Section 5] that dom d¢p* = intdom ¢* and V¢: intdom¢ —
int dom ¢* is a bijection with inverse V¢*. We establish the claim by setting f = ¢ in Proposition 6.6(i).
We first observe that

yu* +intdom¢* C (y+1) intdom¢” = (1+y) domdp* = (1+y) rand¢ = ran((1 +y)dg). (6.8)

As in Proposition 6.6(i), set z = proxV(p x = ((1+y)Ve — yu*) 1 (Vo(x)). Then Vo(x) + yu* =

y(p-u*)
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(1+y)Ve(z) and therefore z = Vo*((1+y) "1 (Vo(x) + yu*)). Thus,

(x -2, Vo(x) - Vo(2)) <x -2, Vo(x) = (1+y) 7 (Vo(x) + yu*)>

Y Y
<x -z y(Vo(x) - u*)>
- y(1+y)
<x - qu*((l +y) (Vo (x) + yu*)), Vo(x) - u*>
1+y

which, in view of (6.5) and (2.6), yields (6.7). U

Example 6.9. Suppose that X is a Hilbert space with scalar product (- | ), let € I3(X) be a Legendre
function,lety: X —» R: x — infyex(gb(y)+||x—y||2/2) be its Moreau envelope, and set ¢ = ||-||?/2+.
Let x € intdom ¢/, let u* € X, and let y € ]0,+co[. Then

* 1 * Tk
Ly(xu?) = Sllx—u 17+ 9 (x) = (). (6.10)
Further, Proposition 1.2(ii) gives
x+yu* 2
Y TPy ey T
Ly(x,u*) > , (6.11)
Y

while Example 6.8 gives

- \% —u* v *
Lo u’) > (x—z|x+Vi(x)—u ), where 7= prox¢(x+ Y(x)+yu ) 612)
1+y 1+y
Proof. By [9, Example 13.4], o* = || - ||?/2 — l; Therefore,

Ly ) = 1P+ SR = (e ) + 90 = ) = Sl = P 490 = F). (619)

We derive (6.11) from Proposition 1.2(ii) and [9, Proposition 24.8(i)]. We also note that ¢ is a Legendre
function. Moreover, dom¢* = X and V¢* = prox;, [9, Proposition 12.30]. In turn, we derive (6.12)
from Example 6.8. [

Remark 6.10. In Example 6.9, set ) = ||-||?/2and y = 1. Then L, (x, u*) = ||2x — u*||*/4. Furthermore,
Proposition 1.2(ii) yields

. x+ur\|P [12x - ut||?
Ly (x,u”) > ||x — prox).z/4 5 = 5 . (6.14)
On the other hand, since Vi = Id in (6.12), we have
2x +u” 2x +u” (6.15)
Z = pro = )
Proxy 2 4
and therefore the minorization of Example 6.8 becomes
o x—z|2x—-u*) ||2x —u*||?
Ly(x,u*) > 5 = 5 . (6.16)

The lower bound produced by Example 6.8 is therefore sharper than that of Proposition 1.2(ii).
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Our lower bounds on the Haraux and Fenchel-Young functions are new, even in Euclidean spaces.
Here are two examples in which they are compared to the lower bound of Proposition 1.2(ii).

Example 6.11. Let X be the standard Euclidean space RN and I = {1,..., N}. Consider the negative
Burg entropy function

=Y In(&), if x €]0,+o0[";
@: X = ]-oo,+00]: x = (§)ier > | el (6.17)
+00, otherwise.

Let x € ]0,+00[™, u* = (4 )ies € ]—00,0[", and y € ]0, +oo[. Then

Ly(x,u) = =N = > (In(=&ys}) + £ (6.18)

iel

and Example 6.8 gives

Y|1+§uu,
L9 > D -y a) (6.19)

Let us observe that, if N = 1, this lower bound becomes y|1 + &4} |*/((1+y) (1-y&47)). In comparison,
we derive from [9, Example 24.40] that the lower bound given by Proposition 1.2(ii) is

2
& - vi; - VIE v Y]
4y ’

We graph these two bounds in Figure 1 for different values of y, which shows that the bound provided
by Proposition 1.2(ii) is not the best.

(6.20)

Proof. By [9, Example 13.2(iii) and Proposition 13.30], ¢*(u*) = =N — }};c; In(—p;). Thus,

Ly(x,u") = =N = ) (In(=&ysf) + &prf). (6.21)

iel

Remark that ¢ is a Legendre function with dom V¢ = int dom ¢ = ]0, +co["¥ and

(Vy = ()ier €10,+00[N)  Vo(y) = (=1/n:) ;- (6.22)
Further, it is clear that u* € ]—oo, O[N = intdom ¢*. By Example 6.8,
2= (Grer = Vo' (14 1) (Vo) + yu') (623)

is well defined and Vo(x) + yu* = (1 +y)Ve(z), which yields (Vi € I) (1 - y&pu;)/& = (1+y)/d.
Hence,

_ ( (1+ 1)

1—y&upy

We thus derive from (2.6) that

) € 10, +co[ V. (6.24)
iel

Z o ML+ Gl (6.25)

D¢(X’Z)+D¢(Z’X)ZZ( 2+_ _) +1) (1 - yép)’
iel i

i€l i

which concludes the proof. [
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(a) Example 6.11, y = 0.1. (b) Example 6.11, y = 1.

0 50 100 by 05
14 4]

(c) Example 6.11, y = 10. (d) Example 6.12, y = 1.

Figure 1: Lower bounds of Examples 6.11 and 6.12. In blue, the lower bound of Proposition 6.6 and, in
orange, the lower bound of Proposition 1.2(ii).

Example 6.12. Let X be the standard Euclidean space RN and I = {1,..., N}. Set

(Vx = (&ier € X) L(x)={i€l|§e[0,+[}, L(x)={iel| €]o,+oo[},
L(x)={ieI|&e[01]}, and L(x)={iel|&e]o1[}. (6.26)

We consider the negative Boltzmann-Shannon entropy function

Z (En(E) - &), if I=1(x) and L(x) # @;

ieIz(x)
@: X — |—00,4+00]: x > 0. if 1= (x) N L (x); (6.27)
+00, otherwise,
and let f be the Fermi-Dirac entropy function
D (EnE) + (1-&)In(1-&)), if I=h(x) and L(x) # &;
i€I4(x)
f: X =)o 4oo]ixim 9 if 1= L(x) \ L(x); (6.28)
+00, otherwise.
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Let x € 0, 1[N, u* = (1} )ier € X, and y € ]0,+o00[. Set

et .\ \/ Srlzezy#? et

Viel évi:_Z(l—f-) 4|1—§-|2+ =L (6.29)
Then
Ly(x,u™) = Y (&1In(&) - &+ e - &) (6.30)
iel
and Proposition 6.6(v) gives
* 1 1 4
L) > Yo F ) (631
Thus, if N = 1 and y = 1, the above lower bound is
H(1-4)
(1= 1In (évl(1 _5(1)) (6.32)

By contrast, since prox,,: & > A(e), where A is the Lambert W-function [9, Example 24.39], the
lower bound of Proposition 1.2(ii) is

&1 — A(eBH) (6.33)

We illustrate these bounds in Figure 1, which shows that the bound given by Proposition 1.2(ii) is not
the best. The bound (6.32) provided by Proposition 6.6 is also easier to compute.

Proof. Using [9, Example 13.2(v) and Proposition 13.30], we obtain ¢*(u*) = ¥;; e* and hence

Lo(x,u) = Y (&1n(&) - &+ e - &yr). (6.34)

iel
Further, f is a Legendre function [6, Sections 5 and 6], with dom Vf = intdom f = ]0, 1[N , where
(Vo = Grier € 10.11Y) V() = (1n() = n(1 = 1) oy (639)

Additionally, (intdom f) N dom dp = ]0, 1[N # @. Thus, by Proposition 6.6(v) and [25, Example 4.4],
z = ({})ier exists and

eIn(E)-In(1-E)+yp \/ez(ln@i)—ln(l—é)wu:)
+

(Viel) §=- - y 4 oIn(&)-In(1-&)+yu]
YH; 2 ) i ]
2(%6— £) \/4|1 = §.|262””' 1 f AR (6.36)
Hence,
&(1-4)
Dy(5.2)+ Dy(arx) = (6= &) ( " @)) 637

and the conclusion follows. [0
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§7. Applications to monotone inclusions

As discussed in Section 1, finding lower bounds on the Haraux function — and hence on the Fenchel-
Young function via Lemma 4.1 — is of both theoretical and practical interest. Thus, applications to in-
verse problems are discussed in [1], applications to the asymptotic properties of families of set-valued
operators in [3, 34] and Proposition 5.14, applications to machine learning in [11, 35], applications to
the strong Fitzpatrick inequality in [18], applications to convex analysis and convex programming in
[20], and applications to optimal transportation in [20, 21]. In this section, we propose to apply the
bounds of Sections 5 and 6 to the area of composite monotone inclusion problems.

Let A: X — 2% be a maximally monotone operator. The Haraux function Hy of (1.1) is defined on
the primal-dual space X X X*. We can employ it to induce a primal-primal function on X X X. To this
end, let B: X — 2% be maximally monotone and let S: domB — X*: x > Sx € Bx be a selection
of B. We associate with Hy the function

Gps: XXX — [0, +00] : (x,y) ¥ Ha(x, —Sy). (7.1)

This function can be used as a penalty function to detect whether a point (x,y) € X X X is a zero of
the direct sum operator A @ B since Proposition 5.4 yields

Gas(x,y) =0 & -SyeAx & (xy)€zer(A® B). (7.2)

As Hy, and therefore G4 5, can be hard to evaluate, our results provide more tractable lower bounds
to test the violation of the constraint (x, y) € zer(A @ B). We can further specialize this construction
to address the inclusion 0 € Ax + Bx, a generic model which covers a wide range of applications; see
[24] and its bibliography. We introduce the primal function

das: X = [0,+00]: x > Gas(x,x) = Ha(x, —Sx) (7.3)
to gauge the membership of a point x € X in zer(A + B). Indeed, (7.2) yields
Ns(x)=0 & -SxeAx & xeczer(A+B). (7.4)

To illustrate our lower bounds in this context, it is assumed henceforth that B: X — X™ is single-
valued.
In the setting of Theorem 5.7, let x € D, set u* = —Bx, and consider the kernel K = W — yB. Then

Proposition 5.2 yields

W

Z2 = Jy(a-un®

=(W+ yA)_1 (Wx + yu™)

= (W —yB+y(A+B)) " (Wx — yBx)

= J§A+B)x’ (7:5)

and the lower bound of Theorem 5.7 is therefore

<x — §A+B)x, Wx — W(]§A+B)x)>

Jap(x) = Hy(x, —Bx) > » (7.6)
Example 7.1. In the setting of Example 5.8, (7.6) yields
B (Il = Jfiaen*l
dap(x) > ( yarh ) where K =W —yB. (7.7)

Y
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Example 7.2. In the setting of Proposition 5.9, (7.6) yields

Df(x,]K x) +Df(]K X, x)
945(x) > S YA ) where K =Vf—yB. (7.8)
y

. K
In this case, ]Y(A+B)

studied in [16].

= (Vf +yA)~! o (Vf — yB) is the Bregman forward-backward splitting operator

Example 7.3. If X is Hilbertian and f = || - ||?/2 in Example 7.2, then (7.8) becomes

|l = Ja(x = yBo)||°
Y :

which effectively splits A and B and is computable in terms of the standard resolvent J 4.

Ja,B(x) > (7.9)

Example 7.4. We consider a primal-dual composite problem discussed in [25]. Let Y # {0} be a
reflexive real Banach space, let & be the standard product vector space X X Y* equipped with the
norm (x,y*) — +/||x||? + |ly*||?, and let E" be its topological dual, that is, X* X Y equipped with the
norm (x*,y) — /|lx*||2+ [|ly||%. Let C: X — 2% and D: ¥ — 2Y" be maximally monotone, and let

L: X — Y be linear and bounded. Under consideration is the primal-dual system

0€Cx+L"(D(L
find (x,y") € & such that X+ L(D(Lx) (7.10)
0€-L(C ' (-L*y")) + D 'y".
Let us introduce the operators
A: & 28 (x,y*) > Cx x Dly* (7.11)
B: & - &": (x,y*) — (L*y*, —Lx). .

As shown in [25, Section 2.1], A and B are maximally monotone and every point in the Kuhn-Tucker
set zer(A + B) solves (7.10). Let y € ]0,+00[, Dx C X, and Dy- C Y*. Let Wyx: Dy — X and
Wy:: Dy« — Y be such that Wy + yC and Wy« + yD™! are surjective and injective. Further, set
D =Dy xDyandW: D — E: (x,y*) — (Wxx, Wy-y*). Then W + y A is surjective and injective,
which confirms that properties (ii) of Proposition 5.5 and (i) of Theorem 5.7 are satisfied. Additionally,
wedefine K =W—-yB: D — &": (x,y*) —» (Wyxx—yL*y*, Wy-y* +yLx). Now, let us fix x = (x,y*) €
D. Then, as in (7.4), how close x is to being a Kuhn-Tucker point can be gauged by the value of the
penalty function 3(x) = 34 p(x). Note that (7.5) and Proposition 5.2 entail that

]yI(<A+B)x = (K+y(A+ B))_l(Kx)
= (Wi + yO) ™ (Waex = yL'y"), Wy +yD ™)™ (Wayey” + yL) )
W Wiy .
- (]y(éﬂ*y*)x’ Jypoin¥ ) (7.12)

is well defined. Therefore, (7.6) applied to (A, B, K) in & yields

1 Wi W
19(3(.') = ;(<x - y(g+L*y*)x’ WXX - WX (]y(é+L*y*)x)>

* Wy * * Wy« *
" <y ~ ¥ Wy~ Wy (Jﬂ%fl_my )}) (7.13)
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For example, suppose that Wy is maximally monotone, that the cone generated by Dx — domCis a
closed vector subspace of X, and that Wy is ¢x-uniformly monotone with ¢x (¢)/t — +co ast — +oo.
Likewise, suppose that Wy- is maximally monotone, that the cone generated by Dy-—ran D is a closed
vector subspace of Y*, and that Wy- is ¢y--uniformly monotone with @y-(t)/t — +co ast — +oo.
Then we deduce from (7.13) and Example 5.8 applied in X and in Y, and from Proposition 5.2 that

Ol = ey o l) + el - 55l
- Y
e = (Wi +yC) ! (Wiex = yL'y")

9(x)

y" = (Wy- +yD™) (Wyey + yLo)|

)+

(7.14)

In particular, if X and Y are Hilbertian, Wy = Idy, and Wy- = Idy-, then all the above hypotheses are
satisfied with ¢x = ¢y~ = | - |* and we obtain, for x = (x,y*) € X X Y,

|l = o (x = yL*y")

"4y~ Lo (v + L)
. .

We conclude with an application of Example 7.4 to Fenchel-Rockafellar duality in optimization.

3 x) > (7.15)

Example 7.5. Define Y and & as in Example 7.4, let ¢ € T3(X),let ¢y € I[3(Y),andlet L: X — Y be
linear and bounded. Consider the primal problem

minir}\}ize o (x)+ ¢ (Lx) (7.16)

and the dual problem
minimize ¢*(-L*y") + ¢ (y"). (7.17)
y*ey*

Let us set C = dp and D = 9y in Example 7.4, and let us define A and B as in (7.11). Then every point
in the Kuhn-Tucker set zer(A + B) solves the primal-dual pair (7.16)-(7.17). Now let y € ]0, +oo[, and
let f € I;(X) and g € I5(Y) be Legendre functions such that Vf +yd¢ and Vg* + yoy* are surjective,
and set Wy = Vf and Wy- = Vg*. We recall that g* is a Legendre function [7, Corollary 5.5] and note
that, since f and g* are strictly convex on the convex sets Dy = intdom f and Dy- = intdomg”,
respectively, Wy and Wy- are strictly monotone [41, Proposition 25.10]. So are therefore the operators
Wx + yC and Wy- + )/D_1 which, as in Theorem 6.5(ii), makes them injective. Next, we introduce
Prox}),c(p = (Wx +yC)! = (Vf +ydp)~! and Prox)g/;/* = (Wy- +yD 1)1 = (Vg* + yay*)~!. Then, as in
(7.8), we infer from (7.13) that, for every x = (x, y*) € intdom f X int dom g~,

Hx) > )%(Df(x, Prox{(p(Vf(x) - )/L*y*)) + Df(Prox)):¢(Vf(x) - yL*y*),x) +

Dy (y*, meilﬁ* (Vg™ (y") + YLX)) + Dy (Pro )g/w (Vg* (y") + yLx), y*)) (7.18)
In particular, if X and Y are Hilbertian, f = || - [1%/2,9 = || - ||§/2, and x = (x,5%) € X x Y, we obtain
2 2
x = prox,, (x —yL'y")||" + [ly" — prox. (y" + yLx)
Y
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which can also be viewed as a special case of (7.15). Note that, in the Hilbertian — and in particular
the Euclidean — setting, Prox}f(p and Prox’ . may be easier to compute than prox,,, and prox,.; see

(5, 25, 31] and Example 6.12. This makes the lower bound of (7.18) more tractable than that of (7.19)
in such instances.

§8. Conclusions and future directions

We have derived new lower bounds on the Haraux function of set-valued operators and on the
Fenchel-Young function of proper functions in the framework of reflexive Banach spaces. These
bounds were obtained by using two types of resolvents, namely metric resolvents and warped re-
solvents. Existing results have been recovered as special cases. Two directions for future work can be
mentioned here:

+ In Example 7.4, we have applied our results to primal-dual composite monotone inclusions of
type (7.10). It appears that this approach can be used for general systems of multivariate inclu-
sions involving more complex monotonicity-preserving operations such as those considered in
[17] and [24, Section 10]. Indeed, as discussed in these papers, such primal-dual systems can be
reformulated in “saddle form” and thus be reduced to solving a monotone inclusion of the type
0 € Ax + Bx in a suitably defined product space X, where A: X — 2X’ is maximally monotone
and B: X — X* is cocoercive. We can then exploit (7.6) in this scenario.

+ A question of interest is whether lower bounds on the Haraux function can be derived in the
context of nonreflexive Banach spaces with maximally monotone operators of type (NI) [38, Sec-
tion 36]. For instance, the lower bound (3.14) is known to hold in this context [39, Theorem 2.6]
and, in the light of [39, Remark 2.4], it is reasonable to expect that the results of Sections 3 and
4 remain valid as well.
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