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Abstract

A classical tool in nonlinear analysis is the notion of an approximating curve, whereby a
particular solution to a nonuniquely solvable problem is obtained as the limit of the solutions to
uniquely solvable perturbed problems. We introduce and analyze new types of approximating
curves for nonexpansive fixed point problems and monotone inclusion problems in Hilbert spaces.
The solution attained by these curves solves a strictly monotone variational inequality over the
original solution set. Various special cases are discussed.

1 Introduction

In nonlinear analysis, a common approach to solving a problem with multiple solutions is to replace
it by a family of perturbed problems admitting a unique solution, and to obtain a particular original
solution as the limit of these perturbed solutions as the perturbation vanishes. This principle
arises for instance in minimization problems (Tikhonov regularization [2, 26]), in partial differential
equations (viscosity solutions [28, Section 33.11]), in monotone inclusions [28, Section 32.18], in
variational inequalities [9], in evolution equations (elliptic regularization [19, Chapitre 3]), and in
fixed point theory (approximating curves [16]); further examples will be found in [3, 25, 28] and
the references therein. For the sake of illustration, let us consider two examples in a Hilbert space
H.
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• Let T be a nonexpansive operator defined on H, and suppose that the set FixT of its fixed
points is nonempty. Given a ∈ H, a classical way to perturb the basic fixed point equation
x = Tx is to add to T a viscosity term ε(a − T ), which yields xε = εa + (1 − ε)Txε, where
ε ∈ ]0, 1[. As the viscosity term vanishes, i.e., as ε → 0, the approximating curve (xε)ε∈]0,1[

converges strongly to the best approximation x0 to a from FixT [9]. A simple manipulation
shows that the same result holds for the approximating curve defined by

(∀ε ∈ ]0, 1[) xε = T
(
xε + ε(a− xε)

)
. (1.1)

• Let A : H → 2H be a maximal monotone operator with zeros. Given ε ∈ ]0, 1[, consider the
perturbation 0 ∈ Axε + εxε of the inclusion 0 ∈ Ax. Then the approximating curve (xε)ε∈]0,1[

converges strongly to the zero x0 of A of minimal norm as ε→ 0 [11].

Besides their importance in the problems mentioned above, approximating curves are also relevant
to numerical methods since understanding their properties is central in the analysis of parent
continuous [3, 21, 23] and discrete [5, 12, 17, 27] dynamical systems (see also [13] for an application
of such dynamical systems to concrete problems). The goal of this paper is to analyze the properties
of new types of approximating curves for fixed point and monotone inclusion problems. The limit
attained by these curves is the solution of the general variational inequality 0 ∈ NCx0 +Bx0, where
NC denotes the normal cone operator to the original solution set C and B : H → 2H is a suitable
strictly monotone operator.

Throughout, H is a real Hilbert space with scalar product 〈· | · 〉, norm ‖·‖, and identity operator
Id. In addition, PC denotes the projector onto a nonempty closed convex subset C of H, and
NC : H → 2H its normal cone operator, i.e.,

NC : x 7→

{{
u ∈ H | (∀y ∈ C) 〈y − x | u〉 ≤ 0

}
, if x ∈ C;

∅, otherwise.
(1.2)

As is customary, → and ⇀ denote, respectively, strong and weak convergence.

2 Nonexpansive fixed point problems

The domain and fixed point set of an operator T : H → H are denoted by domT and FixT ,
respectively. Recall that T is nonexpansive if it is Lipschitz-continuous with constant 1, firmly
nonexpansive if 2T − Id is nonexpansive, and a strict contraction if it is Lipschitz-continuous with
a constant in [0, 1[. It will be convenient to introduce the following notion.

Definition 2.1 Let (Tε)ε∈]0,1[ be a family of operators from H to H with domain H and let
(xε)ε∈]0,1[ be a family in H. Then (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[ if, for every
x ∈ H and every sequence (εn)n∈N in ]0, 1[ such that εn ↓ 0,[

xεn ⇀ x and xεn − Tεnxεn → 0
]

⇒ (∀ε ∈ ]0, 1[) Tεx = x. (2.1)
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Example 2.2 Let T : domT = H → H be a nonexpansive operator such that FixT 6= ∅, let
(λε)ε∈]0,1[ be a family in ]0, 1] such that infε∈]0,1[ λε > 0, set (∀ε ∈ ]0, 1[) Tε = Id+λε(T − Id), and
take (xε)ε∈]0,1[ in H. Then (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[.

Proof. Suppose that ]0, 1[ 3 εn ↓ 0, xεn ⇀ x, and xεn − Tεnxεn → 0. Then, since infε∈]0,1[ λε > 0,
we obtain xεn −Txεn → 0 and the demiclosed principle [10, Lemma 2] yields x ∈ FixT ≡ FixTε.

Our first result concerns the convergence of a generalization of (1.1).

Theorem 2.3 Let (Tε)ε∈]0,1[ and (Sε)ε∈]0,1[ be families of nonexpansive operators from H to H with
domain H, let Q : domQ = H → H be a strict contraction, and suppose that C =

⋂
ε∈]0,1[ FixTε 6=

∅. Then there exists a unique point x0 ∈ C such that x0 = PC(Qx0). Now set

(∀ε ∈ ]0, 1[) xε = Tε

(
xε + ε(QSεxε − xε)

)
. (2.2)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[,
C ⊂

⋂
ε∈]0,1[ FixSε, and, for every x ∈ H and every sequence (εn)n∈N in ]0, 1[ such that εn ↓ 0,[

xεn → x ∈ C and xεn − Tεnxεn → 0
]

⇒ Sεnxεn → x, (2.3)

then xε → x0 as ε→ 0.

Proof. Let ε ∈ ]0, 1[. Since Tε is nonexpansive, FixTε is closed and convex [16, Proposition 1.5.3]
and, therefore, C is a nonempty closed convex set. As a result, since PC is nonexpansive and
Q is a strict contraction, PCQ is a strict contraction, and it follows from the standard Banach-
Picard theorem that the point x0 is uniquely defined. Likewise, since Sε is nonexpansive, the
composition QSε is a strict contraction. In turn, εQSε + (1− ε) Id is a strict contraction and so is
Tε

(
εQSε + (1− ε) Id

)
. Hence, the point xε is uniquely defined in (2.2).

To show the last assertion, let θ ∈ [0, 1[ be the Lipschitz constant of Q and let x be a point in
C. Then we deduce from (2.2) that

(∀ε ∈ ]0, 1[) ‖xε − x‖ = ‖Tε

(
εQSεxε + (1− ε)xε

)
− Tεx‖

≤ ‖εQSεxε + (1− ε)xε − x‖
= ‖ε(QSεxε −QSεx) + (1− ε)(xε − x) + ε(Qx− x)‖
≤ εθ‖Sεxε − Sεx‖+ (1− ε)‖xε − x‖+ ε‖Qx− x‖
≤ (1− ε+ εθ)‖xε − x‖+ ε‖Qx− x‖. (2.4)

Hence,

(∀ε ∈ ]0, 1[) ‖xε − x‖ ≤ ‖Qx− x‖
1− θ

. (2.5)

Consequently, (xε)ε∈]0,1[ is bounded and, since

(∀ε ∈ ]0, 1[) ‖QSεxε − xε‖ ≤ ‖QSεxε −QSεx‖+ ‖xε −Qx‖ ≤ θ‖xε − x‖+ ‖xε −Qx‖, (2.6)
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we obtain
β = sup

ε∈]0,1[
‖QSεxε − xε‖ < +∞. (2.7)

Now set (∀ε ∈ ]0, 1[) yε = xε + ε(QSεxε − xε). Then (2.2) yields

(∀y ∈ C)(∀ε ∈ ]0, 1[) ε2‖QSεxε − xε‖2 + 2ε 〈QSεxε − xε | xε − y 〉
= ‖yε − Tεyε‖2 + 2 〈yε − Tεyε | Tεyε − y 〉
= ‖yε − y‖2 − ‖Tεyε − y‖2

≥ 0.

(2.8)

Therefore, by (2.7),

(∀y ∈ C)(∀ε ∈ ]0, 1[) 〈xε −QSεxε | xε − y 〉 ≤ ε

2
‖QSεxε − xε‖2 ≤ εβ2

2
. (2.9)

Hence, using Cauchy-Schwarz, we obtain

(∀y ∈ C)(∀ε ∈ ]0, 1[) (1− θ)‖xε − y‖2 ≤ ‖xε − y‖2 − ‖xε − y‖ · ‖QSεxε −QSεy‖
≤ ‖xε − y‖2 − 〈xε − y |QSεxε −QSεy 〉
= 〈(Id−QSε)xε − (Id−QSε)y | xε − y 〉

≤ εβ2

2
+ 〈xε − y |Qy − y 〉 . (2.10)

Next, we derive from (2.2) and (2.7) that

(∀ε ∈ ]0, 1[) ‖xε − Tεxε‖ = ‖Tε

(
xε + ε(QSεxε − xε)

)
− Tεxε‖

≤ ε‖QSεxε − xε‖ (2.11)
≤ εβ. (2.12)

Thus,
lim
ε→0

‖xε − Tεxε‖ = 0. (2.13)

To complete the proof, let (εn)n∈N be an arbitrary sequence in ]0, 1[ such that εn ↓ 0. Then it is
enough to show that xεn → x0. Let w be a weak cluster point of (xεn)n∈N, say xεkn

⇀ w. Then
it follows from (2.13) and (2.1) that w ∈ C. Therefore, (2.10) yields

(∀n ∈ N) (1− θ)‖xεn − w‖2 ≤ εnβ
2

2
+ 〈xεn − w |Qw − w 〉 , (2.14)

which implies that xεkn
→ w. Consequently, by (2.13) and (2.3), we obtain Sεkn

xεkn
→ w and,

therefore, (2.9) results in

(∀y ∈ C)
〈
xεkn

−QSεkn
xεkn

∣∣ xεkn
− y

〉
→ 〈w −Qw | w − y 〉

≤ lim
n→+∞

〈xεn −QSεnxεn | xεn − y 〉 ≤ 0. (2.15)

We thus obtain supy∈C 〈w −Qw | w − y 〉 ≤ 0, i.e., w = PC(Qw). Since x0 is the unique fixed point
of PCQ, we have w = x0. Accordingly, the bounded sequence (xεn)n∈N admits x0 as its unique
weak cluster point, whence xεn ⇀ x0. In turn, it follows from (2.14) that xεn → x0.
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Example 2.4 Using the standard characterization of the projection onto a convex set, the limit
x0 of the approximating curve (xε)ε∈]0,1[ in Theorem 2.3 is the solution to the variational inequality

x0 ∈ C and (∀y ∈ C) 〈y − x0 |Qx0 − x0 〉 ≤ 0. (2.16)

Here are some specific examples, where 0 < α ≤ β < +∞.

(i) Suppose that B : domB = H → H is α-strongly monotone (i.e., B − α Id is monotone)
and Lipschitz-continuous with constant β, and let γ ∈

]
0, 2α/β2

[
. Then Q = Id−γB is a

strict contraction with constant θ =
√

1− γ(2α− γβ2) and x0 is the unique solution to the
variational inequality

x0 ∈ C and (∀y ∈ C) 〈y − x0 |Bx0 〉 ≥ 0. (2.17)

(ii) Suppose that B : domB = H → H is α-strongly monotone and that B/β is firmly non-
expansive, and let γ ∈ ]0, 2/β[. Then Q = Id−γB is a strict contraction with constant
θ =

√
1− αγ(2− βγ) (this constant is smaller than that given in [14, Theorem 2]). Indeed,

for every x and y in H, we have

‖Qx−Qy‖2 = ‖x− y‖2 − 2γ 〈x− y |Bx−By 〉+ γ2‖Bx−By‖2

≤ ‖x− y‖2 − γ(2− βγ) 〈x− y |Bx−By 〉
≤

(
1− αγ(2− βγ)

)
‖x− y‖2. (2.18)

Here, x0 is the unique solution to (2.17).

(iii) Suppose that ϕ : H → R is convex and differentiable, and that ∇ϕ is α-strongly monotone
and Lipschitz-continuous with constant β. Then it follows from [4, Corollaire 10] that ∇ϕ/β
is firmly nonexpansive. Hence, we deduce from (ii) that Q = Id−γ∇ϕ is a strict contraction
for γ ∈ ]0, 2/β[. In this case, x0 is the unique minimizer of ϕ over C.

(iv) A special case of (iii) is when ϕ : H → R is convex, twice continuously Fréchet-differentiable,
and that

(∀(x, y) ∈ H2) α‖y‖2 ≤
〈
y

∣∣∇2ϕ(x)y
〉
≤ β‖y‖2. (2.19)

This follows from [14, Theorem 4].

(v) Let a ∈ H and suppose that Q : x 7→ a. Then x0 is the projection of a onto C.

Remark 2.5 In Theorem 2.3, FixTε may vary with ε. For instance, let (Cε)ε∈]0,1[ be closed convex
subsets ofH such that C =

⋂
ε∈]0,1[Cε 6= ∅ and such that the associated projectors (Tε)ε∈]0,1[ satisfy

(∀x ∈ H) Tεx ⇀ PCx as ε → 0. Furthermore, fix a ∈ H and set Q : x 7→ a and Sε ≡ Id. Then
(∀ε ∈ ]0, 1[) FixTε = Cε and (2.2) ⇒ xε = Tε

(
xε +ε(a−xε)

)
= Tεa. Therefore, (2.3) holds trivially

and (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[. Indeed, xε ⇀ x⇔ Tεa ⇀ x. However, since
Tεa ⇀ PCa, we obtain x = PCa ∈ C.
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Remark 2.6 Let (Bε)ε∈]0,1[ be a family of operators from H to H with domain H which uniquely
define a curve (xε)ε∈]0,1[ via the equations (∀ε ∈ ]0, 1[) xε = Tε(Id−εBε)xε. Set (∀ε ∈ ]0, 1[) yε =
xε − εBεxε. Then

(∀ε ∈ ]0, 1[) yε = (Id−εBε)Tεyε. (2.20)

Thus, if xε → x0 as ε → 0 and (Bεxε)ε∈]0,1[ is bounded, we also have yε → x0 as ε → 0. This
simple observation yields the following alternative approximating curve result. Let us make the
same assumptions as in Theorem 2.3 and let us set (∀ε ∈ ]0, 1[) Bε = Id−QSε. Then (2.20)
becomes

(∀ε ∈ ]0, 1[) yε = εQSεTεyε + (1− ε)Tεyε. (2.21)

In view of (2.7), the family (Bεxε)ε∈]0,1[ is bounded. Therefore, Theorem 2.3 yields yε → x0 =
PC(Qx0) as ε→ 0. In particular, if a ∈ H, Q : x 7→ a, Tε ≡ T , and Sε ≡ Id, we recover the classical
result [9, Theorem 2] alluded to in Section 1 (see also [10, Theorem 1] and [17, Theorem 1] for
alternate proofs of this result).

Remark 2.7 (Infeasible case) Suppose that we make the same assumptions as in Theorem 2.3,
except that C = ∅ and D =

⋂
ε∈]0,1[ FixSε 6= ∅ (e.g., Sε ≡ Id). Then ‖xε‖ → +∞ as ε → 0.

Indeed, otherwise there would exist a bounded sequence (xεn)n∈N, where ]0, 1[ 3 εn ↓ 0. Taking
x ∈ D in (2.6), we would obtain the boundedness of (QSεnxεn − xεn)n∈N and it would follow from
(2.11) that Tεnxεn − xεn → 0. On the other hand, we could extract a subsequence (xεkn

)n∈N such
that xεkn

⇀ w. However, the T-focused assumption would yield w ∈ C, which is absurd.

We close this section with a special case of Theorem 2.3.

Corollary 2.8 Let T : domT = H → H be a nonexpansive operator such that FixT 6= ∅ and let
Q : domQ = H → H be a strict contraction. Then there exists a unique point x0 ∈ FixT such that
x0 = PFix T (Qx0). Now let (λε)ε∈]0,1[ and (µε)ε∈]0,1[ be families in [0, 1] such that infε∈]0,1[ λε > 0
and set

(∀ε ∈ ]0, 1[) xε =
(
Id+λε(T − Id)

)(
xε + ε

(
Q

(
xε + µε(Txε − xε

))
− xε)

)
. (2.22)

Then (xε)ε∈]0,1[ is uniquely defined and xε → x0 as ε→ 0.

Proof. Set C = FixT and, for every ε ∈ ]0, 1[, Tε = Id+λε(T − Id) and Sε = Id+µε(T −
Id). Then, for every ε ∈ ]0, 1[, Tε and Sε are nonexpansive, and FixSε = C or H, according
as 0 < µε ≤ 1 or µε = 0. On the other hand, since infε∈]0,1[ λε > 0, FixTε ≡ C. Altogether,
∅ 6= C =

⋂
ε∈]0,1[ FixTε ⊂

⋂
ε∈]0,1[ FixSε. Moreover, Example 2.2 shows that (xε)ε∈]0,1[ is T-

focused with respect to (Tε)ε∈]0,1[, while (2.3) is readily verified. Thus, the result is a special case
of Theorem 2.3.

In particular, setting Q : x 7→ a and λε ≡ 1 in Corollary 2.8, we recover the fact that the limit of
the approximating curve (1.1) is the best approximation to a from FixT .
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3 Monotone inclusion problems

Let A : H → 2H be a set-valued operator. The sets domA = {x ∈ H | Ax 6= ∅}, ranA = {u ∈ H |
(∃x ∈ H) u ∈ Ax}, and grA = {(x, u) ∈ H2 | u ∈ Ax} are the domain, the range, and the graph of
A, respectively. The inverse A−1 of A is the set-valued operator with graph {(u, x) ∈ H2 | u ∈ Ax},
the resolvent of A is JA = (Id +A)−1, and its Yosida approximation of index γ ∈ ]0,+∞[ is
γA = (Id−JγA)/γ. Moreover, A is monotone if

(∀(x, u) ∈ grA)(∀(y, v) ∈ grA) 〈x− y | u− v 〉 ≥ 0, (3.1)

and maximal monotone if, furthermore, grA is not properly contained in the graph of any monotone
operator B : H → 2H. If A is monotone and domA 6= ∅, the associated Fitzpatrick function [15] is
the proper lower semicontinuous convex function fA : H×H → ]−∞,+∞] defined by

(∀(x,w) ∈ H ×H) fA(x,w) = 〈x | w 〉+ sup
(y,v)∈gr A

〈x− y | v − w 〉 . (3.2)

Definition 3.1 Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H and let
(xε)ε∈]0,1[ be a family in H. Then (xε)ε∈]0,1[ is A-focused with respect to (Aε)ε∈]0,1[ if, for every
x ∈ H and every sequence (εn)n∈N in ]0, 1[ such that εn ↓ 0,[

xεn ⇀ x and 1Aεnxεn → 0
]

⇒ (∀ε ∈ ]0, 1[) 0 ∈ Aεx. (3.3)

Example 3.2 Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H which
graph-converges to some maximal monotone operator A : H → 2H such that A−10 =

⋂
ε∈]0,1[A

−1
ε 0,

and take (xε)ε∈]0,1[ in H. Then (xε)ε∈]0,1[ is A-focused with respect to (Aε)ε∈]0,1[.

Proof. Suppose that ]0, 1[ 3 εn ↓ 0, xεn ⇀ x, and 1Aεnxεn → 0. Then JAεn
xεn ⇀ x and

1Aεnxεn → 0, while (∀n ∈ N)
(
JAεn

xεn ,
1Aεnxεn

)
∈ grAεn . Therefore, [1, Proposition 3.59] yields

(x, 0) ∈ grA.

We start with an application of Theorem 2.3.

Corollary 3.3 Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H such that
C =

⋂
ε∈]0,1[A

−1
ε 0 6= ∅ and let Q : domQ = H → H be a strict contraction. Then there exists a

unique point x0 ∈ C such that x0 = PC(Qx0). Now take (ρε)ε∈]0,1[ and (νε)ε∈]0,1[ in [0, 2] such that
infε∈]0,1[ ρε > 0, and set

(∀ε ∈ ]0, 1[) xε =
(
Id+ρε(JAε − Id)

)(
xε + ε

(
Q

(
xε + νε(JAεxε − xε)

)
− xε

))
. (3.4)

Then the family (xε)ε∈]0,1[ is uniquely defined. In addition, if (xε)ε∈]0,1[ is A-focused with respect
to (Aε)ε∈]0,1[, then xε → x0 as ε→ 0.

Proof. Set (∀ε ∈ ]0, 1[) Tε = Id+ρε(JAε − Id) and Sε = Id+νε(JAε − Id). For every ε ∈ ]0, 1[,
since Aε is maximal monotone, 2JAε − Id is nonexpansive with domain H and fixed point set A−1

ε 0
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[16, Section 1.11]; consequently, Tε and Sε are nonexpansive, FixTε = A−1
ε 0 (since ρε > 0), and

FixSε = A−1
ε 0 or H, according as 0 < νε ≤ 2 or νε = 0. Consequently, ∅ 6= C =

⋂
ε∈]0,1[ FixTε ⊂⋂

ε∈]0,1[ FixSε. Now take ]0, 1[ 3 εn ↓ 0. Since infε∈]0,1[ ρε > 0, xεn − Tεnxεn → 0 ⇒ 1Aεnxεn → 0,
and it follows from (3.3) that (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[. Finally, suppose
that xεn → x ∈ C. Then xεn − Tεnxεn → 0 ⇒ 2‖ 1Aεnxεn‖ → 0 ⇒ νεn‖ 1Aεnxεn‖ → 0 ⇒
‖xεn − Sεnxεn‖ → 0 ⇒ Sεnxεn → x. Hence, (2.3) holds. Altogether, since (3.4) is a special case of
(2.2), the claims follow from Theorem 2.3.

Corollary 3.4 Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H such that
C =

⋂
ε∈]0,1[A

−1
ε 0 6= ∅ and let B = Id−Q, where Q : domQ = H → H is a strict contraction.

Then there exists a unique point x0 ∈ C such that x0 = PC(x0 −Bx0). Now let

(∀ε ∈ ]0, 1[) 0 ∈ Aεxε + εBxε. (3.5)

Then the family (xε)ε∈]0,1[ is uniquely defined. In addition, if (xε)ε∈]0,1[ is A-focused with respect
to (Aε)ε∈]0,1[, then xε → x0 as ε→ 0.

Proof. Setting ρε ≡ 1 and νε ≡ 0 in (3.4), we obtain (3.5). We can then apply Corollary 3.3.

Remark 3.5 We can rewrite (3.5) as (∀ε ∈ ]0, 1[) xε = JAε/ε

(
xε−Bxε

)
. In particular, for Aε ≡ A

and B = Id, we obtain
(∀ε ∈ ]0, 1[) xε = JA/ε0. (3.6)

(i) In this case, Corollary 3.4 coincides with [11, Lemma 1], i.e., JA/ε0 → PA−100 as ε→ 0 (here
(3.3) follows from the fact that, by maximal monotonicity of A, grA is sequentially weakly-
strongly closed in H × H). This result can be traced back to [20] (see also [23, Theorem 1
and Remark 2] for a Banach space version, and [9, Theorem 1] for a related result; moreover,
Remark 2.7 corresponds to [22, Theorem 2], i.e., ‖xε‖ → +∞ if 0 /∈ ranA).

(ii) Let U : H → 2H be a maximal monotone operator, let x ∈ H, and let A = U−1 − x. Then
(3.6) becomes (∀ε ∈ ]0, 1[) xε = εUx. Therefore, (i) asserts that

(a) if x ∈ domU , that is 0 ∈ ranA, then xε → PA−100 = PUx0 as ε→ 0;

(b) if x /∈ domU , that is 0 /∈ ranA, then ‖xε‖ → +∞ as ε→ 0.

This classical result can be found in [7, Proposition 2.6(iii)&(iv)].

In Corollary 3.4, the approximating curve (3.5) converges strongly to the solution x0 to the
variational inequality

0 ∈ N( T
ε∈]0,1[ A−1

ε 0
)x0 +Bx0, (3.7)

where B is a special type of single-valued strongly monotone operator (see Example 2.4 for specific
examples). In Theorem 3.10 below, we extend this result to a more general type of set-valued
strictly monotone operator B. First, we require the following facts, starting with a generalization
of the notion of strong monotonicity.
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Definition 3.6 Let B : H → 2H be a set-valued operator with domB 6= ∅ and let c : [0,+∞[ →
[0,+∞[ be a nondecreasing function that vanishes only at 0 and such that limt→+∞ c(t)/t = +∞.
Then B is c-uniformly monotone if

(∀(x, u) ∈ grB)(∀(y, v) ∈ grB) 〈x− y | u− v 〉 ≥ c(‖x− y‖). (3.8)

If c : t 7→ αt2 for some α ∈ ]0,+∞[, then B is α-strongly monotone.

Lemma 3.7 Let B : H → 2H be a c-uniformly monotone operator. Then (domB)×H ⊂ dom fB.

Proof. Fix (x, u) ∈ grB and w ∈ H, and set γ = ‖u − w‖ and ψ : [0,+∞[ → R : t 7→ γt − c(t).
Since limt→+∞ c(t)/t = +∞, we can find τ ∈ [0,+∞[ such that ψ(t) < 0 = ψ(0) whenever t > τ .
Thus, supt∈[0,+∞[ ψ(t) = supt∈[0,τ ] ψ(t) ≤ γτ < +∞. Therefore, (3.2), (3.8), and Cauchy-Schwarz
yield

fB(x,w)−〈x | w 〉 = sup
(y,v)∈gr B

〈x− y | v − u〉+ 〈x− y | u− w 〉 ≤ sup
y∈dom B

ψ(‖x− y‖) < +∞. (3.9)

In other words, (x,w) ∈ dom fB.

Lemma 3.8 Let A,B : H → 2H be maximal monotone operators such that A + B is maximal
monotone and B is c-uniformly monotone. Suppose that, in addition, (domA)× (ranA) ⊂ dom fA

or domA ⊂ domB. Then:

(i) ran(A+B) = H.

(ii) The inclusion 0 ∈ Ax+Bx admits a unique solution.

Proof. (i): Fix (y, v) ∈ grB. Then (3.8) yields

(∀(x, u) ∈ grB) ‖x− y‖ · ‖u‖ ≥ 〈x− y | u〉
= 〈x− y | u− v 〉+ 〈x− y | v 〉
≥ c(‖x− y‖)− ‖x− y‖ · ‖v‖. (3.10)

Accordingly, since limt→+∞ c(t)/t = +∞, we have limx∈dom B
‖x‖→+∞

infu∈Bx ‖u‖ = +∞ whenever domB

is unbounded. It then follows from [28, Corollary 32.35] that ranB = H and, in turn, from
Lemma 3.7 that (domB) × (ranB) = (domB) × H ⊂ dom fB. We then deduce from the Brézis-
Haraux theorem [8, Théorèmes 3 and 4] that int ran(A+B) = int(ranA+ ranB) = H.

(ii): Since A is monotone and B is strictly monotone, A + B is strictly monotone. Hence, the
inclusion 0 ∈ Ax+Bx has at most one solution. Existence follows from (i).

Remark 3.9 Fitzpatrick functions have recently been shown to be remarkably useful in establish-
ing concise proofs of various key results in monotone operator theory (see [6, 24] and the references
therein). In the same vein, S. Simons (personal communication, April 7, 2005) has produced a new
proof of the Brézis-Haraux theorem in Banach spaces.
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Theorem 3.10 Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H such that
C =

⋂
ε∈]0,1[A

−1
ε 0 6= ∅ and let B : domB = H → 2H be a maximal monotone operator which is

c-uniformly monotone. Then there exists a unique point x0 ∈ H such that 0 ∈ NCx0 + Bx0. Now
let

(∀ε ∈ ]0, 1[) 0 ∈ Aεxε + εBxε. (3.11)

Then the family (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset into a
bounded subset and if (xε)ε∈]0,1[ is A-focused with respect to (Aε)ε∈]0,1[, then xε → x0 as ε→ 0.

Proof. By maximal monotonicity, the sets (A−1
ε 0)ε∈]0,1[ are closed and convex, and so is therefore

C. Accordingly, NC is maximal monotone and, since domB = H, Lemma 3.8(ii) guarantees that
x0 is uniquely defined. Likewise, it follows from (3.11) and Lemma 3.8(ii) that (xε)ε∈]0,1[ is uniquely
defined.

To show the last assertion, we first derive from (3.11) that there exists a family (bε)ε∈]0,1[ such
that

(∀ε ∈ ]0, 1[) bε ∈ Bxε and − εbε ∈ Aεxε. (3.12)

Now fix x ∈ C and u ∈ Bx. Then (∀ε ∈ ]0, 1[) 0 ∈ Aεx. Hence, in view of (3.12), the monotonicity
of the operators (Aε)ε∈]0,1[ yields

(∀ε ∈ ]0, 1[) 〈x− xε | bε 〉 ≥ 0, (3.13)

while the c-uniform monotonicity of B yields

(∀ε ∈ ]0, 1[) 〈x− xε | u− bε 〉 ≥ c(‖x− xε‖). (3.14)

Adding (3.13) and (3.14) we obtain

(∀ε ∈ ]0, 1[) 〈x− xε | u〉 ≥ c(‖x− xε‖), (3.15)

and therefore
(∀ε ∈ ]0, 1[) ‖x− xε‖ · ‖u‖ ≥ c(‖x− xε‖). (3.16)

Consequently, since limt→+∞ c(t)/t = +∞, (xε)ε∈]0,1[ is bounded. In turn, it follows from the
boundedness of B on bounded sets that

β = sup
ε∈]0,1[

‖bε‖ < +∞. (3.17)

Now, observe that the monotonicity of the operators (Aε)ε∈]0,1[ and (3.12) yield

(∀ε ∈ ]0, 1[)(∀y ∈ C) 〈xε − y | bε 〉 ≤ 0. (3.18)

Likewise,{
−εbε ∈ Aεxε

1Aεxε ∈ AεJAεxε

⇒
〈

1Aεxε

∣∣ 1Aεxε + εbε
〉
≤ 0 ⇒ ‖ 1Aεxε‖ ≤ ε‖bε‖ ≤ εβ, (3.19)
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where the last implication follows from Cauchy-Schwarz and (3.17). We have thus shown that

lim
ε→0

‖ 1Aεxε‖ = 0. (3.20)

Now let (εn)n∈N be an arbitrary sequence in ]0, 1[ such that εn ↓ 0. Then it remains to show
that xεn → x0. To this end, take a weak cluster point of (xεn)n∈N, say xεkn

⇀ w. Then it follows
from (3.20) and (3.3) that w ∈ C. In turn, (3.15) implies that xεkn

→ w. Moreover, in view of
(3.17), passing to a further subsequence if necessary, we assume that (bεkn

)n∈N converges weakly,
say bεkn

⇀ v. Since B is maximal monotone, its graph is sequentially strongly-weakly closed in
H×H and therefore v ∈ Bw. Altogether, xεkn

→ w, bεkn
⇀ v, and hence (3.18) yields

(∀y ∈ C)
〈
xεkn

− y
∣∣ bεkn

〉
→ 〈w − y | v 〉 ≤ lim

n→+∞
〈xεn − y | bεn 〉 ≤ 0. (3.21)

Consequently, supy∈C 〈w − y | v 〉 ≤ 0 and, therefore, −v ∈ NCw. Recalling that v ∈ Bw, we obtain
0 ∈ NCw+Bw. However, since the inclusion 0 ∈ NCx0 +Bx0 admits a unique solution, w = x0 is
the unique weak cluster point of (xεn)n∈N and therefore xεn ⇀ x0. Invoking (3.15), we conclude
that xεn → x0.

Remark 3.11 (Infeasible case) Suppose that we make the same assumptions as in Theo-
rem 3.10, except that C = ∅. Then ‖xε‖ → +∞ as ε → 0. Indeed, otherwise there would
exist a bounded sequence (xεn)n∈N, where ]0, 1[ 3 εn ↓ 0. Hence, the sequence (bεn)n∈N given by
(3.12) would also be bounded and, as in (3.19), we would get ‖ 1Aεnxεn‖ ≤ εn‖bεn‖ → 0. Fur-
thermore, we could extract a subsequence (xεkn

)n∈N such that xεkn
⇀ w, and (3.3) would force

w ∈ C = ∅.

Remark 3.12

(i) As seen in Example 3.2, the A-focused condition holds in Theorem 3.10 when (Aε)ε∈]0,1[ graph-
converges to a maximal monotone operator A : H → 2H such that A−10 =

⋂
ε∈]0,1[A

−1
ε 0. In

such instances, 0 ∈ NA−10x0 +Bx0.

(ii) Suppose that B is single-valued in Theorem 3.10. Then xε → x0 = PC(x0 − Bx0) as ε → 0.
However, as shown in (3.17), the family (Bxε)ε∈]0,1[ is bounded. On the other hand, (3.11)
can be rewritten as

(∀ε ∈ ]0, 1[) xε = JAε

(
Id−εB

)
xε. (3.22)

Consequently, it follows from the observation made in Remark 2.6 that, under the same
assumptions as in Theorem 3.10, the approximating curve defined by (∀ε ∈ ]0, 1[) yε =
xε − εBxε, i.e., by

(∀ε ∈ ]0, 1[) yε = JAεyε − εBJAεyε, (3.23)

converges strongly to x0 as ε→ 0.

(iii) Consider the special case when Aε ≡ A. Then (3.11) reduces to

(∀ε ∈ ]0, 1[) 0 ∈ Axε + εBxε. (3.24)
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In this context, a result related to Theorem 3.10 – though based on different assumptions
– is [28, Theorem 32.K]. If we further specialize by imposing that B be strongly monotone,
then Theorem 3.10 and Remark 3.11 reduce to [18, Proposition 2.1]. Finally, when A is the
subdifferential of a proper lower semicontinuous convex function f : H → ]−∞,+∞] and B
the subdifferential of a uniformly convex function g : H → R, xε in (3.24) is the minimizer
of f + εg, and we obtain the Tikhonov regularization setting (see [2, Section 5] for related
results and [26] for classical work).

4 Further nonexpansive fixed point results

In this section, we derive from the results of Section 3 additional approximating curves for fixed
point problems.

As seen in Example 2.4(i)&(ii), Theorem 2.3 asserts that if B : domB = H → H is strongly
monotone and possesses additional properties then, for some suitable γ ∈ ]0,+∞[, the limit x0 of
the approximating curve

(∀ε ∈ ]0, 1[) xε = Tε

(
xε + ε((Id−γB)Sεxε − xε)

)
, (4.1)

as ε→ 0, solves the variational inequality (2.17). We now investigate an alternative approximating
curve, which allows for a more general type of operator B.

Corollary 4.1 Let (Tε)ε∈]0,1[ be a family of nonexpansive operators from H to H with domain
H such that C =

⋂
ε∈]0,1[ FixTε 6= ∅ and let B : domB = H → H be a maximal monotone

operator which is c-uniformly monotone. Then there exists a unique point x0 ∈ C such that x0 =
PC(x0 −Bx0). Now set

(∀ε ∈ ]0, 1[) xε = Tε

(
xε − εBxε

)
− εBxε. (4.2)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset into a bounded
subset and (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[, then xε → x0 as ε→ 0.

Proof. Set (∀ε ∈ ]0, 1[) Fε = (Tε + Id)/2 and Aε = F−1
ε − Id. Since (Fε)ε∈]0,1[ is a family of firmly

nonexpansive operators with domain H, (Aε)ε∈]0,1[ is a family of maximal monotone operators [16,
Section 1.11]. Moreover, it follows from Definitions 2.1 and 3.1 that (xε)ε∈]0,1[ is A-focused with
respect to (Aε)ε∈]0,1[. Finally, since (4.2) is equivalent to (3.22), which is itself equivalent to (3.11),
the results follow from Theorem 3.10.

We conclude with two results on the approximation of a particular fixed point of a nonexpansive
operator.

Corollary 4.2 Let T : domT = H → H be a nonexpansive operator such that FixT 6= ∅, let
(λε)ε∈]0,1[ be a family in ]0, 1] such that infε∈]0,1[ λε > 0, and let B : domB = H → H be a maximal

12



monotone operator which is c-uniformly monotone. Then there exists a unique point x0 ∈ FixT
such that x0 = PFix T (x0 −Bx0). Now set

(∀ε ∈ ]0, 1[) xε = T
(
xε −Bxε

)
+ ε

λε − 2
λε

Bxε. (4.3)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset into a bounded
subset, then xε → x0 as ε→ 0.

Proof. Set (∀ε ∈ ]0, 1[) Tε = Id+λε(T − Id) in Corollary 4.1 and use Example 2.2.

Corollary 4.3 Let T : domT = H → H be a nonexpansive operator such that FixT 6= ∅ and let
B : domB = H → H be a maximal monotone operator which is c-uniformly monotone. Then there
exists a unique point x0 ∈ FixT such that x0 = PFix T (x0 −Bx0). Now set

(∀ε ∈ ]0, 1[) xε = Txε − εBxε. (4.4)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset into a bounded
subset, then xε → x0 as ε→ 0.

Proof. It suffices to set Aε ≡ Id−T in Theorem 3.10. To check (3.3), take ]0, 1[ 3 εn ↓ 0, xεn ⇀ x,
and 1Aεnxεn → 0. Letting (∀n ∈ N) pn = JAεn

xεn , we obtain pn ⇀ x and pn − Tpn = Aεnpn =
xεn − pn → 0. Then the demiclosed principle [10, Lemma 2] yields x ∈ FixT ≡ A−1

ε 0.

In particular, if B = Id−Q, where Q : domQ = H → H is a strict contraction, then (4.4) reduces
to

(∀ε ∈ ]0, 1[) xε =
ε

ε+ 1
Qxε +

1
ε+ 1

Txε, (4.5)

and Corollary 4.3 reduces to [21, Theorem 2.1].
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