
Iterative construction of the resolvent of a
sum of maximal monotone operators

Patrick L. Combettes

UPMC Université Paris 06
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Abstract

We propose two inexact parallel splitting algorithms for computing the resolvent of a weighted
sum of maximal monotone operators in a Hilbert space and show their strong convergence. We
start by establishing new results on the asymptotic behavior of the Douglas-Rachford splitting
algorithm for the sum of two operators. These results serve as a basis for the first algorithm.
The second algorithm is based on an extension of a recent Dykstra-like method for computing
the resolvent of the sum of two maximal monotone operators. Under standard qualification
conditions, these two algorithms provide a means for computing the proximity operator of a
weighted sum of lower semicontinuous convex functions. We show that a version of the second
algorithm performs the same task without requiring any qualification condition. In turn, this
provides a parallel splitting algorithm for qualification-free strongly convex programming.
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1 Introduction and notation

Let H be a real Hilbert space with scalar product 〈· | ·〉 and norm ‖ · ‖, and let A : H → 2H be a
monotone operator, i.e.,

(∀(x, y) ∈ H ×H)(∀(u, v) ∈ Ax×Ay) 〈x− y | u− v〉 ≥ 0. (1)

We denote by ranA =
{
u ∈ H | (∃x ∈ H) u ∈ Ax

}
the range of A, by zerA =

{
x ∈ H | 0 ∈ Ax

}
its set of zeros, by graA =

{
(x, u) ∈ H ×H | u ∈ Ax

}
its graph, and by A−1 its inverse, i.e., the
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operator with graph
{
(u, x) ∈ H ×H | u ∈ Ax

}
. The resolvent of A is JA = (Id +A)−1. This

operator enjoys many important properties that make it a central tool in monotone operator theory
and its applications [3, 10, 44, 45, 52]. In particular, it is single-valued, firmly nonexpansive in the
sense that

(∀x ∈ ran(Id+A))(∀y ∈ ran(Id+A)) ‖JAx− JAy‖2 ≤ 〈x− y | JAx− JAy〉 , (2)

and Minty’s theorem states that it is defined everywhere in H, i.e., ran(Id+A) = H, if and only
if A is maximal monotone in the sense that, if B : H → 2H is monotone and graA ⊂ graB, then
B = A. Moreover, (2) implies that the reflection operator RA = 2JA − Id is nonexpansive, that is,

(∀x ∈ ran(Id +A))(∀y ∈ ran(Id+A)) ‖RAx−RAy‖ ≤ ‖x− y‖. (3)

Finally, the set FixJA =
{
x ∈ H | JAx = x

}
of fixed points of JA coincides with zerA.

The goal of this paper is to propose two strongly convergent splitting methods for computing
the resolvent of a monotone operator A : H → 2H which can be decomposed as a weighted sum of
maximal monotone operators (Ai)1≤i≤m, say

A =
m∑

i=1

ωiAi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m∑

i=1

ωi = 1, (4)

where the individual resolvents (JAi)1≤i≤m can be implemented relatively easily. Both methods
proceed by splitting in the sense that, at each iteration, they employ these resolvents separately.
In addition, only approximate evaluations of the resolvents are needed. Note that since computing
JAr for some r ∈ H is equivalent to solving

r ∈ x +
m∑

i=1

ωiAix, (5)

the proposed algorithms can be viewed as splitting methods for solving strongly monotone inclusions
(recall that A is said to be α-strongly monotone for some α ∈ ]0, +∞[ if A− α Id is monotone).

The first method is discussed in Section 2. It is based on new results that we establish on the
asymptotic behavior of the Douglas-Rachford splitting method for the sum of two maximal monotone
operators. This section also contains new results on the convergence of a splitting method for the
(not necessarily strongly monotone) sum of m maximal monotone operators. In Section 3, we present
an alternative method, which finds its roots in a recent extension of Dykstra’s best approximation
algorithm to the construction of the resolvent of the sum of two monotone operators. In Section 4,
we turn our attention to the problem of constructing the proximity operator of functions that
can be decomposed as weighted sums of m proper lower semicontinuous convex functions. This
problem can naturally be tackled by restricting the algorithms of Sections 2 and 3 to subdifferentials,
but at the expense of imposing qualification conditions. Instead, we exploit a recent extension of
Dykstra’s projection method to the construction of the proximity operator of the sum of two convex
functions to obtain a splitting method that requires no qualification condition. Connections with
projection methods, as well as applications to qualification-free strongly convex programming and
signal denoising are also discussed.
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In addition to the notation already introduced above, we shall also need the following. The
symbols ⇀ and→ denote respectively weak and strong convergence. The projector onto a nonempty
closed convex set C ⊂ H is denoted by PC , its indicator function by ιC , and its normal cone operator
by NC , i.e.,

NC : H → 2H : x 7→
{{

u ∈ H | (∀y ∈ C) 〈y − x | u〉 ≤ 0
}
, if x ∈ C;

∅, otherwise.
(6)

Finally, a monotone operator A : H → 2H is uniformly monotone on C ⊂ H if there exists an
increasing function φ : [0, +∞[ → [0,+∞[ vanishing only at 0 such that

(∀(x, y) ∈ C × C)(∀(u, v) ∈ Ax×Ay) 〈x− y | u− v〉 ≥ φ(‖x− y‖). (7)

In particular, if φ : t 7→ αt2 for some α ∈ ]0, +∞[, then A is α-strongly monotone on C.

2 Douglas-Rachford splitting for the resolvent of the sum

In the context of monotone operator theory, what is known as the Douglas-Rachford algorithm is
a splitting scheme initially proposed in [34] for finding a zero of the sum of two maximal monotone
operators (we refer the reader to [17] for connections with the original work of Douglas and Rachford
[24]). In Section 2.1, we present new convergence results for this algorithm. In Section 2.2, these
results are utilized to obtain weak and strong convergence conditions for a splitting scheme devised
to find a zero of the weighted sum of m maximal monotone operators. This scheme is shown to be
closely related to an algorithm originally designed by Spingarn [48, 49] with different tools. The
application of the results of Section 2.2 to the construction of the resolvent of the sum of m maximal
monotone operators is discussed in Section 2.3.

2.1 Asymptotic behavior of the Douglas-Rachford algorithm

We revisit an algorithm which was proposed in its initial form by Lions and Mercier in [34].

Theorem 2.1 Let (H, ||| · |||) be a real Hilbert space, let A and B be maximal monotone operators
from H to 2H such that zer(A + B) 6= ∅, let γ ∈ ]0, +∞[, let (λn)n∈N be a sequence in ]0, 2], and
let (an)n∈N and (bn)n∈N be sequences in H. Furthermore, let (yn)n∈N and (zn)n∈N be the sequences
generated by the following routine.

Initialization⌊
z0 ∈ H

For n = 0, 1, . . .⌊
yn = JγBzn + bn

zn+1 = zn + λn

(
JγA(2yn − zn) + an − yn

)
.

(8)

Then the following hold.
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(i) Suppose that
∑

n∈N λn(|||an|||+ |||bn|||) < +∞, that
∑

n∈N λn(2− λn) = +∞, and that (∀n ∈
N) λn < 2. Then the following hold.

(a) (zn)n∈N converges weakly to a point z ∈ Fix(RγA ◦RγB) and JγBz is a zero of A + B.

(b)
(
RγA(RγBzn)− zn

)
n∈N converges strongly to 0.

(c) Suppose that JγB is weakly sequentially continuous and that bn ⇀ 0. Then (yn)n∈N
converges weakly to a zero of A + B.

(d) Suppose that H is finite dimensional. Then (yn)n∈N converges to a zero of A + B.

(e) Suppose that A = ND, where D is a closed affine subspace of H. Then (JγA zn)n∈N
converges weakly to a zero of A + B.

(f) Suppose that A = ND, where D is a closed vector subspace of H, and that bn ⇀ 0. Then
(JγAyn)n∈N converges weakly to a zero of A + B.

(ii) Suppose that
∑

n∈N |||an||| < +∞, that
∑

n∈N |||bn||| < +∞, and that infn∈N λn > 0. Then
the following hold.

(a) Suppose that int Fix(RγA ◦ RγB) 6= ∅. Then (yn)n∈N converges strongly to a zero of
A + B.

(b) Suppose that B is uniformly monotone on the bounded subsets of H. Then (yn)n∈N
converges strongly to the unique zero of A + B.

Proof. Denote the scalar product of H by 〈〈· | ·〉〉 and set T = RγA ◦RγB. Then it follows from (3)
that T is nonexpansive. Moreover, [17, Lemma 2.6] (see also [34]) asserts that

T = 2JγA ◦ (
2JγB − Id

)
+ Id− 2JγB (9)

and that
zer(A + B) = JγB(FixT ). (10)

(i)(a): [17, Corollary 5.2] and its proof.

(i)(b): See the proofs of [17, Corollary 5.2] and [17, Lemma 5.1].

(i)(c): It follows from (i)(a) that yn = JγBzn + bn ⇀ JγBz ∈ zer(A + B).

(i)(c)⇒(i)(d): Clear by continuity of JγB.

(i)(e): By assumption JγA = PD is the projector onto D and it is therefore continuous and
affine. As seen in (i)(a), zn ⇀ z ∈ FixT and JγBz ∈ zer(A + B). Hence, since PD is weakly
continuous, PDzn ⇀ PDz. However, it follows from (9) that

z ∈ FixT ⇔ z = 2PD(2JγBz + (1− 2)z) + z − 2JγBz

⇔ JγBz = 2PD(JγBz) + (1− 2)PDz ∈ D

⇔ PD(JγBz) = JγBz = 2PD(JγBz)− PDz

⇔ PDz = JγBz. (11)

Altogether, JγAzn = PDzn ⇀ PDz = JγBz ∈ zer(A + B).

4



(i)(f): By assumption JγA = PD is linear and nonexpansive. Hence, we derive from (9) and
(i)(b) that

|||PD(JγBzn)− PDzn||| = |||PD(PD(2JγBzn − zn)− JγBzn)|||
≤ |||PD(2JγBzn − zn)− JγBzn|||
=

1
2
|||Tzn − zn|||

→ 0. (12)

On the other hand, it follows from (i)(e) that there exists y ∈ zer(A + B) such that PDzn ⇀ y.
Thus, (12) yields PD(JγBzn) ⇀ y. Since, by weak continuity of PD, PDbn ⇀ 0, we conclude that
JγAyn = PD(JγBzn) + PDbn ⇀ y.

(ii): Set λ = infn∈N λn, let z ∈ FixT , and set

(∀n ∈ N) cn = µn

(
2an + RγA(RγBzn + 2bn)−RγA(RγBzn)

)
, where µn =

λn

2
. (13)

Using (9) and straightforward manipulations, we derive from (8) that

(∀n ∈ N) zn+1 = xn + cn, where xn = zn + µn(Tzn − zn). (14)

Hence, since T is nonexpansive,

(∀n ∈ N) |||zn+1 − z||| ≤ |||xn − z|||+ |||cn||| (15)
≤ (1− µn)|||zn − z|||+ µn|||Tzn − Tz|||+ |||cn|||
≤ |||zn − z|||+ |||cn|||. (16)

Moreover, since RγA is nonexpansive and supn∈N µn ≤ 1, (13) yields
∑

n∈N
|||cn||| ≤ 2

∑

n∈N
|||an|||+

∑

n∈N
|||RγA(RγBzn + 2bn)−RγA(RγBzn)|||

≤ 2
∑

n∈N
(|||an|||+ |||bn|||)

< +∞. (17)

In turn, we derive from (16), (17), and [42, Lemma 2.2.2] that

(|||zn − z|||)n∈N converges. (18)

(ii)(a): It follows from (16), (17), and [16, Proposition 3.10] that there exists x ∈ H such that
zn → x. Hence, by continuity of T , Tzn − zn → Tx− x. On the other hand, (14) and (17) yield

|||Tzn − zn||| = 1
µn
|||zn+1 − zn − cn||| ≤ 2

λ
(|||zn+1 − x|||+ |||zn − x|||+ |||cn|||) → 0. (19)

As a result, Tx− x = 0, i.e., x ∈ Fix T . Appealing to (10), we conclude that yn = JγBzn + bn →
JγB x ∈ zer(A + B).
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(ii)(b): By assumption, B is strictly monotone, and so is therefore A + B. Hence zer(A + B)
is a singleton. Next, in view of (18) and of the nonexpansivity of JγB, there exists a bounded set
C ⊂ H that contains (JγBzn)n∈N and JγBz. On the other hand, since zn − JγBzn ∈ γB(JγBzn)
and z − JγBz ∈ γB(JγBz), (7) yields

(∀n ∈ N) 〈〈JγBzn − JγBz | zn − z〉〉 ≥ |||JγBzn − JγBz|||2 + γφ(|||JγBzn − JγBz|||), (20)

for some increasing function φ : [0, +∞[ → [0, +∞[ that vanishes only at 0. Hence, since RγA is
nonexpansive,

(∀n ∈ N) |||Tzn − z|||2 = |||RγA(RγBzn)−RγA(RγBz)|||2
≤ |||RγBzn −RγBz|||2
= |||zn − z|||2 − 4〈〈JγBzn − JγBz | zn − z〉〉+ 4|||JγBzn − JγBz|||2
≤ |||zn − z|||2 − 4γφ(|||JγBzn − JγBz|||). (21)

Using (14) and (21), we obtain

(∀n ∈ N) |||xn − z|||2 ≤ (1− µn)|||zn − z|||2 + µn|||Tzn − z|||2
≤ |||zn − z|||2 − 4µnγφ(|||JγBzn − JγBz|||)
≤ |||zn − z|||2 − 2λγφ(|||JγBzn − JγBz|||) (22)

≤ |||zn − z|||2. (23)

Now set ν = 2 supk∈N |||xk−z|||+supk∈N |||ck|||. It follows from (17), (18), and (23) that ν < +∞.
Furthermore, we derive from (15) and (22) that

(∀n ∈ N) |||zn+1 − z|||2 ≤ |||xn − z|||2 + (2|||xn − z|||+ |||cn|||)|||cn|||
≤ |||zn − z|||2 − 2λγφ(|||JγBzn − JγBz|||) + ν|||cn|||. (24)

Thus, (17) and (18) yield φ(|||JγBzn − JγBz|||) → 0 and, in turn, JγBzn → JγBz. Hence, we get
yn = JγBzn + bn → JγBz and, in view of (10), the proof is complete.

Remark 2.2 Let us make a few commentaries about Theorem 2.1 and its connections to results
available in the literature.

(i) Special cases of Theorem 2.1(i)(a) are [15, Proposition 12], [26, Theorem 7], and the original
Lions and Mercier result [34, Theorem 1]. Let us note that, at this level of generality, there
is no weak or strong convergence result available for the sequences (yn)n∈N, (JγA yn)n∈N,
(JγA zn)n∈N, and (JγB zn)n∈N.

(ii) In numerical applications [20, 28, 35], the scaling parameter γ has been experienced to impact
the speed of convergence of the Douglas-Rachford algorithm.

(iii) The conditions
∑

n∈N λn(2−λn) = +∞ and
∑

n∈N λn|||bn||| < +∞ used in Theorem 2.1(i) do
not imply that bn ⇀ 0. Indeed, set

(∀n ∈ N) λn =

{
1, if n = 0;
1/n, if n ≥ 1.

(25)
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Then
∑

n∈N λn(2 − λn) ≥ ∑
n∈N λn = +∞. Now let (en)n∈N be a sequence of unit norm

vectors in H and set

(∀n ∈ N) bn =

{
e0, if n ∈ S;
en/n, if n /∈ S, (26)

where S =
{
n ∈ N | (∃ k ∈ N) n = k2

}
. Then clearly bn 6⇀ 0. However,

∑

n∈N
λn|||bn||| = 1 +

∑

n∈Sr{0}

1
n

+
∑

n∈NrS

1
n2

= 1 +
∑

n∈Nr{0}

1
n2

+
∑

n∈NrS

1
n2

< +∞. (27)

It is noteworthy that our framework allows for non summable error sequences: in the above
example, we actually have lim |||bn||| = 1.

(iv) If we set λn ≡ 2 in Theorem 2.1(ii), we obtain strong convergence conditions for an inexact
version of the Peaceman-Rachford algorithm [17, 34]. In general, the sequences (yn)n∈N and
(zn)n∈N produced by the Peaceman-Rachford algorithm do not converge, even weakly.

(v) In [7], the asymptotic behavior of algorithm (8) when zer(A + B) = ∅ is investigated in the
special case when A and B are the normal cone operators of closed convex sets and when
λn ≡ 1, an ≡ 0, and bn ≡ 0.

(vi) Suppose that B = 0 and that bn ≡ 0 in Theorem 2.1(i)(c). Then (zn)n∈N = (yn)n∈N and we
obtain the weak convergence to a zero of A of the proximal point iteration

z0 ∈ H and (∀n ∈ N) zn+1 = zn + λn

(
JγAzn + an − zn

)
(28)

provided that
∑

n∈N λn|||an||| < +∞,
∑

n∈N λn(2 − λn) = +∞, and (∀n ∈ N) λn < 2.
Alternate convergence results for the proximal point algorithm can be found in [17] and the
references therein, in particular in the classical papers [11, 44].

Corollary 2.3 Let (H, ||| · |||) be a real Hilbert space, let D be a closed affine subspace of H, let
B : H → 2H be a maximal monotone operator such that zer(ND + B) 6= ∅, let γ ∈ ]0,+∞[, let
(λn)n∈N be a sequence in ]0, 2], and let (bn)n∈N be a sequence in H. Furthermore, let (xn)n∈N and
(pn)n∈N be the sequences generated by the following routine.

Initialization⌊
z0 ∈ H

For n = 0, 1, . . .

yn = JγBzn + bn

xn = PDyn

pn = PDzn

zn+1 = zn + λn(2xn − pn − yn).

(29)

Then the following hold.
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(i) Suppose that
∑

n∈N λn|||bn||| < +∞, that
∑

n∈N λn(2−λn) = +∞, and that (∀n ∈ N) λn < 2.
Then the following hold.

(a) (pn)n∈N converges weakly to a zero of ND + B.

(b) Suppose that D is a closed vector subspace of H and that bn ⇀ 0. Then (xn)n∈N
converges weakly to a zero of ND + B.

(ii) Suppose that
∑

n∈N |||bn||| < +∞, that infn∈N λn > 0, and that B is uniformly monotone on
the bounded subsets of H. Then (xn)n∈N converges strongly to the unique zero of ND + B.

Proof. Set A = ND and an ≡ 0 in Theorem 2.1. Then JγA = PD is an affine operator and (8) can
therefore be written as (29). Consequently, we can draw the following conclusions.

(i)(a): Theorem 2.1(i)(e) asserts that there exists y ∈ zer(ND + B) such that pn = PDzn ⇀ y.

(i)(b): Theorem 2.1(i)(f) asserts that there exists y ∈ zer(ND + B) such that xn = PDyn ⇀ y.

(ii): Theorem 2.1(ii)(b) asserts that yn → y, where {y} = zer(ND + B) ⊂ D. Since PD is
continuous and y ∈ D, we conclude that xn = PDyn → PDy = y.

Remark 2.4 Let H be a real Hilbert space, let D be a closed vector subspace of H, and let
B : H → 2H be a maximal monotone operator such that zer(ND + B) 6= ∅. It follows from
Corollary 2.3(i)(b) with γ = 1, λn ≡ 1, and bn ≡ 0 that a point s ∈ zer(ND + B) can be
constructed by the basic Douglas-Rachford algorithm

z0 ∈ H and (∀n ∈ N)


yn = JBzn

(xn, rn) = (PDyn, PD⊥zn)
zn+1 = rn + 2xn − yn.

(30)

On the other hand, (6) yields zer(ND + B) =
{
s ∈ D | (∃v ∈ D⊥) v ∈ Bs

}
. In [48], Spingarn

considered the problem

find (s, v) ∈ D ×D⊥ such that v ∈ Bs (31)

and proposed the “method of partial inverses”

(s0, v0) ∈ D ×D⊥ and (∀n ∈ N)
⌊

find (yn, un) ∈ gra B such that yn + un = sn + vn

(sn+1, vn+1) = (PDyn, PD⊥un)
(32)

to solve it. Strong connections between (30) and (32) were established in [31, Section 1] (see also
[26, Section 5] and [35]).

2.2 Splitting for the sum of maximal monotone operators

The following result concerns an algorithm for finding a zero of the sum of m maximal monotone
operators. Its proof revolves around a 2-operator product space reformulation of the original m-
operator problem. Such a strategy can be traced back to the work of Pierra [40, 41], who introduced
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it for solving convex feasibility, best approximation, and constrained optimization problems (see also
[14] for its use in inconsistent convex feasibility problems, [5, 12] for its use in Bregman projection
algorithms, and [18] for its use in visco-penalization problems). It is also instrumental in the
operator splitting method proposed by Spingarn [48] (see also [7, 32]).

Theorem 2.5 Let (Bi)1≤i≤m be m ≥ 2 maximal monotone operators from H to 2H, and set

B =
m∑

i=1

ωiBi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m∑

i=1

ωi = 1. (33)

Let γ ∈ ]0, +∞[, let (λn)n∈N be a sequence in ]0, 2], and, for every i ∈ {1, . . . , m}, let (bi,n)n∈N be a
sequence in H. Furthermore, suppose that zer B 6= ∅, and let (xn)n∈N and (pn)n∈N be the sequences
generated by the following routine.

Initialization⌊
For i = 1, . . . , m⌊

zi,0 ∈ H

For n = 0, 1, . . .

For i = 1, . . . , m⌊
yi,n = JγBizi,n + bi,n

xn =
∑m

i=1 ωiyi,n

pn =
∑m

i=1 ωizi,n

For i = 1, . . . , m⌊
zi,n+1 = zi,n + λn

(
2xn − pn − yi,n

)
.

(34)

Then the following hold.

(i) Suppose that max1≤i≤m
∑

n∈N λn‖bi,n‖ < +∞, that
∑

n∈N λn(2−λn) = +∞, and that (∀n ∈ N)
λn < 2. Then the following hold.

(a) (pn)n∈N converges weakly to a zero of B.

(b) Suppose that (∀i ∈ {1, , . . . ,m}) bi,n ⇀ 0. Then (xn)n∈N converges weakly to a zero of B.

(ii) Suppose that max1≤i≤m
∑

n∈N ‖bi,n‖ < +∞, that infn∈N λn > 0, and that the operators
(Bi)1≤i≤m are α-strongly monotone on H for some α ∈ ]0,+∞[. Then (xn)n∈N converges
strongly to the unique zero of B.

Proof. Let H be the real Hilbert space obtained by endowing the Cartesian product Hm with the
scalar product (x, y) 7→ ∑m

i=1 ωi 〈xi | yi〉, where x = (xi)1≤i≤m and y = (yi)1≤i≤m denote generic
elements in H. The associated norm is

||| · ||| : x 7→
√√√√

m∑

i=1

ωi‖xi‖2. (35)
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Define
D =

{
(x, . . . , x) ∈ H | x ∈ H}

. (36)

In view of (6), we have

ND : H → 2H : x 7→
{

D⊥ =
{
u ∈ H | ∑m

i=1 ωiui = 0
}
, if x ∈ D;

∅, otherwise.
(37)

We also introduce the canonical isometry

j : H → D : x 7→ (x, . . . , x). (38)

Now set

A = ND and B : H → 2H : x 7→
m×

i=1
Bixi. (39)

It is an easy matter to check that A and B are maximal monotone with resolvents

(∀x ∈ H) JγAx = PDx = j

( m∑

i=1

ωixi

)
and JγBx =

(
JγBixi

)
1≤i≤m

. (40)

Moreover, for every y ∈ H, (33) and (37) yield y ∈ zer B ⇔ 0 ∈ ∑m
i=1 ωiBiy ⇔ (∃ (ui)1≤i≤m ∈×m

i=1Biy)
∑m

i=1 ωiui = 0 ⇔ (∃u ∈ Bj(y)) −u ∈ D⊥ = ND j(y) ⇔ j(y) ∈ zer(ND + B) ⊂ D.
Thus,

j(zerB) = zer(ND + B). (41)

Now set (∀n ∈ N) zn = (zi,n)1≤i≤m, yn = (yi,n)1≤i≤m, bn = (bi,n)1≤i≤m, xn = j(xn), and pn =
j(pn). Then it follows from (34) and (40) that the sequences thus defined are precisely those
appearing in (29).

(i): In view of (35),

∑

n∈N
λn|||bn||| =

∑

n∈N
λn

√√√√
m∑

i=1

ωi‖bi,n‖2 ≤
m∑

i=1

∑

n∈N
λn‖bi,n‖ < +∞. (42)

(i)(a): Corollary 2.3(i)(a) and (41) imply that (pn)n∈N converges weakly to a point j(y), where
y ∈ zer B. Hence, pn = j−1(pn) ⇀ y.

(i)(b): The assumptions imply that bn ⇀ 0. Hence, it results from Corollary 2.3(i)(b) and (41)
that (xn)n∈N converges weakly to a point j(y), where y ∈ zer B. Hence, xn = j−1(xn) ⇀ y.

(ii): By assumption, B is α-strongly monotone, hence uniformly monotone, on H. On the other
hand, proceeding as in (42), we obtain

∑
n∈N |||bn||| < +∞. Hence, Corollary 2.3(ii) and (41) imply

that (xn)n∈N converges strongly to j(y), where {y} = zerB. Thus, xn = j−1(xn) → y.

We have obtained Theorem 2.5 as a corollary to Theorem 2.1 on the asymptotic behavior of the
Douglas-Rachford algorithm. In [48, 49], Spingarn proposed a splitting method for m monotone
operators based on a product space implementation of the method of partial inverses (32). Since,
as mentioned in Remark 2.4, connections exist between the Douglas-Rachford algorithm and (32),
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we naturally obtain a connection between the product space transpositions of these algorithms. In
the next corollary, we exploit this connection to derive from Theorem 2.5(i)(b) the convergence of
Spingarn’s m-operator splitting method (see also [7, Section 4] for the product space behavior of the
Douglas-Rachford algorithm in the special case of convex feasibility problems and its connection to
Spingarn’s parallel projection method [48, Section 6], [50]).

Corollary 2.6 [48, Corollary 5.1(i)] Let (Bi)1≤i≤m be m ≥ 2 maximal monotone operators from H
to 2H, and set

B =
m∑

i=1

ωiBi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m∑

i=1

ωi = 1. (43)

Suppose that zerB 6= ∅ and let (sn)n∈N be the sequence generated by the following routine.

Initialization⌊
s0 ∈ H
(vi,0)1≤i≤m ∈ Hm satisfy

∑m
i=1 ωivi,0 = 0

For n = 0, 1, . . .

For i = 1, . . . , m⌊
find (yi,n, ui,n) ∈ graBi such that yi,n + ui,n = sn + vi,n

sn+1 =
∑m

i=1 ωiyi,n

qn =
∑m

i=1 ωiui,n

For i = 1, . . . , m⌊
vi,n+1 = ui,n − qn.

(44)

Then (sn)n∈N converges weakly to a zero of B.

Proof. Fix temporarily n ∈ N. For every i ∈ {1, . . . ,m}, the conditions defining (yi,n, ui,n) in (44)
can be expressed as sn + vi,n − yi,n ∈ Biyi,n and ui,n = sn + vi,n − yi,n, that is, yi,n = JBi(sn + vi,n)
and ui,n = sn + vi,n − yi,n. Now set (∀i ∈ {1, . . . , m}) zi,n = sn + vi,n and xn = sn+1. Upon
eliminating the variables (vi,n)1≤i≤m, the loop on n in (44) can be rewritten as



For i = 1, . . . , m⌊
yi,n = JBizi,n

ui,n = zi,n − yi,n

xn =
∑m

i=1 ωiyi,n

qn =
∑m

i=1 ωiui,n

For i = 1, . . . , m⌊
zi,n+1 − xn = ui,n − qn.

(45)

Now set pn =
∑m

i=1 ωizi,n. Then qn =
∑m

i=1 ωizi,n −
∑m

i=1 ωiyi,n = pn − xn and hence, for every
i ∈ {1, . . . , m}, ui,n − qn = zi,n − yi,n − pn + xn. Therefore, upon eliminating (ui,n)1≤i≤m, un, and

11



qn, an introducing pn, (45) can be reduced to


For i = 1, . . . , m⌊
yi,n = JBizi,n

xn =
∑m

i=1 ωiyi,n

pn =
∑m

i=1 ωizi,n

For i = 1, . . . , m⌊
zi,n+1 = zi,n + 2xn − pn − yi,n,

(46)

which coincides with the loop on n in (34) in the special case when it is implemented with γ = 1,
λn = 1, and (∀i ∈ {1, . . . , m}) bi,n = 0. Since Theorem 2.5(i)(b) asserts that in this case (xn)n∈N
converges weakly to a zero of B, so does (sn)n∈N.

Remark 2.7

• Another angle on the problem of finding a zero of the sum of m maximal monotone operators is
the ergodic method proposed by Passty [39]. This approach, however, requires that the sum be
itself maximal monotone, which imposes additional restrictions; see [2] and [47, Section 32]. In
addition, it involves finely tuned vanishing parameters, which leads to numerical instabilities
(see also [33]).

• In the case when the operators (Bi)1≤i≤m are subdifferentials, applications of Theo-
rem 2.5(i)(a) in the area of inverse problems can be found in [21].

2.3 Splitting for the resolvent of the sum of maximal monotone operators

In this section, we apply Theorem 2.5(ii) to our initial problem of devising a strongly convergent
splitting method for computing the resolvent of a sum of maximal monotone operators.

Theorem 2.8 Let (Ai)1≤i≤m be m ≥ 2 maximal monotone operators from H to 2H, and set

A =
m∑

i=1

ωiAi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m∑

i=1

ωi = 1. (47)

Let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence in ]0, 2] such that infn∈N λn > 0, and, for every i ∈
{1, . . . , m}, let (ai,n)n∈N be a sequence in H such that

∑
n∈N ‖ai,n‖ < +∞. Furthermore, let r ∈

12



ran(Id+A) and let (xn)n∈N be the sequence generated by the following routine.

Initialization⌊
For i = 1, . . . , m⌊

zi,0 ∈ H

For n = 0, 1, . . .

For i = 1, . . . , m⌊
yi,n = J γ

γ+1
Ai

(
zi,n + γr

γ + 1

)
+ ai,n

xn =
∑m

i=1 ωiyi,n

pn =
∑m

i=1 ωizi,n

For i = 1, . . . , m⌊
zi,n+1 = zi,n + λn

(
2xn − pn − yi,n

)
.

(48)

Then xn → JA r.

Proof. Set

(∀i ∈ {1, . . . , m}) Bi : H → 2H : y 7→ −r + y + Aiy and (∀n ∈ N) bi,n = ai,n. (49)

The operators (Bi)1≤i≤m are maximal monotone and 1-strongly monotone. In addition,

(∀i ∈ {1, . . . , m})(∀y ∈ H)(∀z ∈ H) y = JγBiz ⇔ z ∈ y + γBiy

⇔ z + γr ∈ (γ + 1)y + γAiy

⇔ y = J γ
γ+1

Ai
((z + γr)/(γ + 1)) . (50)

Thus, (48) coincides with (34). Now set B =
∑m

i=1 ωiBi. Then (47) and (49) yield B = −r +Id +A
and, since r ∈ ran(Id+A), we obtain zerB = {JA r}. Appealing to Theorem 2.5(ii), we conclude
that xn → JA r.

3 Dykstra-like splitting for the resolvent of the sum

In [6, Theorem 2.4], Dykstra’s method for computing the projection onto the intersection of two
closed convex sets [9, 23, 25] was extended to a method for computing the resolvent of the sum of
two maximal monotone operators. In Proposition 3.2, we establish the convergence of an inexact
version of this method. This result is then used to obtain Theorem 3.3, where we introduce an
alternative splitting method for computing the resolvent of m ≥ 2 maximal monotone operators.
The following fact will be needed.

Lemma 3.1 Let (H, ||| · |||) be a real Hilbert space, let T1 and T2 be firmly nonexpansive operators
from H to H such that Fix(T1 ◦ T2) 6= ∅, and let (e1,n) and (e2,n) be sequences in H such that
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∑
n∈N |||e1,n||| < +∞ and

∑
n∈N |||e2,n||| < +∞. Furthermore, let (un)n∈N be the sequence resulting

from the iteration

u0 ∈ H and (∀n ∈ N) un+1 = T1

(
T2un + e2,n

)
+ e1,n. (51)

Then there exists u ∈ Fix(T1 ◦ T2) such that un ⇀ u. Moreover, T2un − un → T2u− u.

Proof. See the statement and the proof of [36, Théorème 5.5.2] or, from a more general perspective,
those of [17, Corollary 7.1].

Proposition 3.2 Let (H, |||·|||) be a real Hilbert space, let A and B be maximal monotone operators
from H to 2H, and let (an)n∈N and (bn)n∈N be sequences in H such that

∑

n∈N
|||an||| < +∞ and

∑

n∈N
|||bn||| < +∞. (52)

Furthermore, let r ∈ ran(Id + A + B) and let (xn)n∈N be the sequence generated by the following
routine.

Initialization
y0 = r
q0 = 0
p0 = 0

For n = 0, 1, . . .

xn = JB(yn + qn) + bn

qn+1 = yn + qn − xn

yn+1 = JA(xn + pn) + an

pn+1 = xn + pn − yn+1.

(53)

Then xn → JA+B r.

Proof. The first part of the proof is closely patterned after that of [6, Theorem 2.4], where (∀n ∈ N)
an = 0 and bn = 0. We first derive from (53) that (∀n ∈ N) (qn+1 + xn) + pn = yn + qn + pn. On
the other hand, a simple induction argument yields (∀n ∈ N) qn + pn = r − yn. Thus,

(∀n ∈ N) r = yn + qn + pn = qn+1 + pn + xn, (54)

so that (53) can be rewritten as


y0 = r
q0 = 0
p0 = 0

and (∀n ∈ N)



xn = JB(r − pn) + bn

qn+1 = r − pn − xn

yn+1 = JA(r − qn+1) + an

pn+1 = r − qn+1 − yn+1.

(55)

Now set u0 = −r and (∀n ∈ N) un = pn − r and vn = −qn+1. Then it follows from (54) that

(∀n ∈ N) vn − un = xn and vn − un+1 = yn+1, (56)

and that, in conjunction with (55),

(∀n ∈ N)
⌊

vn = pn − r + xn = un + JB(−un) + bn

un+1 = pn+1 − r = −qn+1 − yn+1 = vn − JA(vn + r)− an.
(57)
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Now set C : H → 2H : v 7→ A−1(v + r) and D = B∼, where we use the notation B∼ = (−Id) ◦
B−1 ◦ (−Id). Then C and D are maximal monotone, and

C−1 = −r + A, D∼ = B, JC = Id− JA(·+ r), and JD = Id +
(
JB ◦ (−Id)

)
. (58)

Thus, the sequence (un)n∈N is generated by the algorithm

u0 = −r and (∀n ∈ N)
⌊

vn = JDun + bn

un+1 = JCvn − an.
(59)

To complete the proof, we invoke successively (58), [8, Equation (8)], [8, Fact 2.1], and [8, Proposi-
tion 3.2(i)] to get

r ∈ ran(Id + A + B) ⇔ zer(−r + A + Id + B) 6= ∅
⇔ zer(C−1 + Id + D∼) 6= ∅
⇔ zer(C−1 + (Id− JD)∼) 6= ∅
⇔ zer(C + Id− JD) 6= ∅
⇔ Fix(JC ◦ JD) 6= ∅. (60)

Hence, since JC and JD are firmly nonexpansive, we derive from (59), (52), (56), and Lemma 3.1
that there exists u ∈ Fix(JC ◦JD) such that xn = vn−un = bn +JDun−un → JDu−u. However,
since [8, Proposition 3.2] asserts that JDu− u = JC−1+D∼ 0 = JA+B r, the proof is complete.

By transcribing the above result in a product space, we obtain a parallel splitting method for
computing the resolvent of the weighted sum of an arbitrary number of operators.

Theorem 3.3 Let (Ai)1≤i≤m be m ≥ 2 maximal monotone operators from H to 2H, and set

A =
m∑

i=1

ωiAi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m∑

i=1

ωi = 1. (61)

For every i ∈ {1, . . . , m}, let (ai,n)n∈N be a sequence in H such that
∑

n∈N ‖ai,n‖ < +∞. Further-
more, let r ∈ ran(Id+A) and let (xn)n∈N be the sequence generated by the following routine.

Initialization
x0 = r
For i = 1, . . . , m⌊

zi,0 = x0

For n = 0, 1, . . .

For i = 1, . . . , m⌊
yi,n = JAizi,n + ai,n

xn+1 =
∑m

i=1 ωiyi,n

For i = 1, . . . , m⌊
zi,n+1 = xn+1 + zi,n − yi,n.

(62)

Then xn → JA r.

15



Proof. Let H be as in the proof of Theorem 2.5, let D be as in (36), and let j be as in (38). Set

A : H → 2H : x 7→
m×

i=1
Aixi and B = ND. (63)

As in (40), (35) yields

JA : H → H : x 7→ (
JAixi

)
1≤i≤m

and JB = PD : H → D : x 7→ j

( m∑

i=1

ωixi

)
. (64)

Since by assumption r ∈ ran(Id+A), JA r is well defined. Moreover, we derive from (61), (63), and
(37) that, for every x ∈ H,

x = JA r ⇔ r − x ∈ Ax =
m∑

i=1

ωiAix

⇔
(
∃ (ui)1≤i≤m ∈

m×
i=1

Aix
) m∑

i=1

ωi(r − x− ui) = 0

⇔ (∃u ∈ Aj(x)) j(r)− j(x)− u ∈ D⊥

⇔ j(r)− j(x) ∈ Aj(x) + Bj(x)
⇔ j(x) = JA+B j(r). (65)

This shows that
j(JA r) = JA+B j(r). (66)

To construct JA+B j(r), we can use Proposition 3.2. Let (yn)n∈N, (xn)n∈N, (qn)n∈N, and (pn)n∈N
be the sequences generated by algorithm (53), where we set r = j(r) and (∀n ∈ N) bn = 0.
Proposition 3.2 asserts that

∑

n∈N
|||an||| < +∞ ⇒ xn → JA+B j(r). (67)

On the other hand, since JB = PD, it follows from (53) that, for every n ∈ N, qn ∈ D⊥ and
therefore xn = PD(yn + qn) = PDyn. Thus, the sequence (qn)n∈N plays no role in (53), which can
therefore be simplified to

⌊
y0 = j(r)
p0 = 0

and (∀n ∈ N)


xn = PD yn

yn+1 = JA(xn + pn) + an

pn+1 = xn + pn − yn+1.
(68)

After reordering the computations, we can rewrite (68) as

⌊
x0 = j(r)
p0 = 0

and (∀n ∈ N)


yn = JA(xn + pn) + an

pn+1 = xn + pn − yn

xn+1 = PD yn.
(69)

To further simplify the algorithm, let us set (∀n ∈ N) zn = xn + pn. Then (69) becomes

⌊
x0 = j(r)
z0 = x0

and (∀n ∈ N)


yn = JAzn + an

xn+1 = PD yn

zn+1 = xn+1 + zn − yn.
(70)
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In view of (70), (64), and (62), we can write (∀n ∈ N) xn = j(xn), an = (ai,n)1≤i≤m, yn =
(yi,n)1≤i≤m, and zn = (zi,n)1≤i≤m. Moreover, since

∑

n∈N
|||an||| =

∑

n∈N

√√√√
m∑

i=1

ωi‖ai,n‖2 ≤
m∑

i=1

∑

n∈N
‖ai,n‖ < +∞, (71)

(67) and (66) yield
xn = j−1(xn) → j−1(JA+B j(r)) = JA r, (72)

which completes the proof.

Remark 3.4 Theorems 2.8 and 3.3 provide two strongly convergent iterative methods for construct-
ing the resolvent of a weighted sum of maximal monotone operators at a given point. Algorithms
(48) and (62) share similar structures, computational costs, and storage requirements. At iteration
n, they both involve a parallel step at which the resolvents of the operators (Ai)1≤i≤m are evaluated
individually (and possibly simultaneously) with some tolerances (ai,n)1≤i≤m. This step is followed
by a coordination step at which the resolvents are averaged. The last step is a parallel step at which
the auxiliary variables (zi,n)1≤i≤m are updated. In terms of convergence speed, the behavior of the
algorithms will be compared through numerical experiments in future work.

4 Dykstra-like splitting for the proximity operator of the sum

We denote by dom f =
{
x ∈ H | f(x) < +∞}

the domain of a function f : H → ]−∞,+∞], and
by Γ0(H) the class of lower semicontinuous convex functions from H to ]−∞,+∞] with nonempty
domain. Moreau [37] observed that, if f ∈ Γ0(H) then, for every r ∈ H, the function f + ‖r− ·‖2/2
admits a unique minimizer, which he denoted by proxf r, i.e.,

proxf r = argmin
y∈H

f(y) +
1
2
‖r − y‖2. (73)

Alternatively, the proximity operator of f thus defined can be expressed as [38]

proxf = J∂f , (74)

where ∂f : H → 2H : x 7→ {
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)

}
is the subdifferential of f ,

which is a maximal monotone operator [47, Theorem 18.7].

Let f ∈ Γ0(H) and let r ∈ H. In this section, we address the problem of computing proxf r when
f can be decomposed into a weighted sum of functions (fi)1≤i≤m in Γ0(H), say

f =
m∑

i=1

ωifi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m∑

i=1

ωi = 1, (75)

for which the proximity operators (proxfi
)1≤i≤m can be implemented easily (we refer to [13, 19, 22,

38] for the closed-form expressions of a variety of proximity operators). In this context, proxf r is
simply the solution to the strongly convex program

minimize
y∈H

m∑

i=1

ωifi(y) +
1
2
‖r − y‖2. (76)
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For instance, such formulations arise naturally in the area of signal denoising, where r = x+w is an
observation of an ideal signal x ∈ H which is corrupted by a realization w of a noise process. The
quadratic term ‖r − ·‖2/2 promotes a least-squares data fit, while the potentials (fi)1≤i≤m model
various priors on the original signal x, e.g., [20, 22, 46, 51]. The state-of-the art in such applications
is limited to at most two nonsmooth potentials. By contrast, the results of this section provide a
strongly convergent splitting algorithm that can handle m > 2 nonsmooth potentials.

In view of (74), a first approach to construct proxf r = J∂f r is to make the additional assumption
that

∑m
i=1 ωi∂fi is maximal monotone, i.e.,

∂

( m∑

i=1

ωifi

)
=

m∑

i=1

ωi∂fi. (77)

In this case, we apply Theorem 2.8 or Theorem 3.3 with, for every i ∈ {1, . . . , m}, Ai = ∂fi, which
amounts to replacing each resolvent by the corresponding proximity operator in algorithms (48)
and (62) (Passty’s method [39] is also applicable in this case but, as discussed in Remark 2.7, it
has numerical limitations). A shortcoming of this approach is of course that (77) does not come for
free and requires that so-called qualification conditions be imposed; see [1] and [47, Section 18]. We
adopt a different strategy, which will lead to a qualification-free method. Our starting point is the
following result of [6] on the proximity operator of the sum of two functions, which itself relies on
Fenchel duality arguments developed in [8].

Proposition 4.1 [6, Theorem 3.3] Let H be a real Hilbert space, and let f and g be functions in
Γ0(H) such that domf ∩ dom g 6= ∅. Furthermore, let r ∈ H and let (xn)n∈N be the sequence
generated by the following routine.

Initialization
y0 = r
q0 = 0
p0 = 0

For n = 0, 1, . . .

xn = proxg(yn + qn)
qn+1 = yn + qn − xn

yn+1 = proxf (xn + pn)
pn+1 = xn + pn − yn+1.

(78)

Then xn → proxf+g r.

The main result of this section is the following.

Theorem 4.2 Let (fi)1≤i≤m be m ≥ 2 functions in Γ0(H) such that

m⋂

i=1

dom fi 6= ∅, (79)

and set

f =
m∑

i=1

ωifi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m∑

i=1

ωi = 1. (80)
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Furthermore, let r ∈ H and let (xn)n∈N be the sequence generated by the following routine.

Initialization
x0 = r
For i = 1, . . . , m⌊

zi,0 = x0

For n = 0, 1, . . .
xn+1 =

∑m
i=1 ωi proxfi

zi,n

For i = 1, . . . , m⌊
zi,n+1 = xn+1 + zi,n − proxfi

zi,n.

(81)

Then xn → proxf r.

Proof. Let us first observe that (79) and (80) imply that f ∈ Γ0(H). As a result, proxf r is well
defined. Let us define H as in the proof of Theorem 2.5 and denote its norm as in (35). We also
define D as in (36) and j as in (38), and set

f : H → ]−∞, +∞] : x 7→
m∑

i=1

ωifi(xi) and g = ιD. (82)

Then f and g are in Γ0(H), ∂f =×m
i=1 ∂fi, and proxg = PD. Therefore, (74) and (64) yield

PD ◦ proxf = PD ◦ J∂f : H → D : x 7→ j

( m∑

i=1

ωiJ∂fixi

)
= j

( m∑

i=1

ωi proxfi
xi

)
. (83)

Moreover, since (79) implies that domf ∩D = domf ∩ dom g 6= ∅, we have f + g ∈ Γ0(H). We
derive from (73), (80), (82), (38), and (35) that, for every x ∈ H,

x = proxf r ⇔ x = argmin
y∈H

f(y) +
1
2
‖r − y‖2

⇔ x = argmin
y∈H

(f ◦ j)(y) +
1
2
|||j(r)− j(y)|||2

⇔ j(x) = argmin
y∈D

f(y) +
1
2
|||j(r)− y|||2

⇔ j(x) = argmin
y∈H

(f + g)(y) +
1
2
|||j(r)− y|||2

⇔ j(x) = proxf+g j(r). (84)

Thus,
j(proxf r) = proxf+g j(r). (85)

Now, let (xn)n∈N be the sequence generated by algorithm (78) with r = j(r). In view of Proposi-
tion 4.1,

xn → proxf+g j(r). (86)
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On the other hand, it follows from (74) that (78) is a specialization of (53) to the case when A = ∂f ,
B = ∂g, and (∀n ∈ N) an = 0 and bn = 0. In addition, proxg = PD. Therefore, just as we reduced
(53) to (70) in the proof of Theorem 3.3, we can reduce (78) to

⌊
x0 = j(r)
z0 = x0

and (∀n ∈ N)
⌊

xn+1 = PD

(
proxf zn

)
zn+1 = xn+1 + zn − proxf zn.

(87)

Upon inspecting (87) and (81) in the light of (83), it becomes apparent that (∀n ∈ N) xn =
j(xn) and zn = (zi,n)1≤i≤m. Consequently, it follows from (86) and (85) that xn = j−1(xn) →
j−1(proxf+g r) = proxf r.

As a corollary, we recover a parallel projection method to project onto the intersection of closed
convex sets. The following result first appeared in [27, Section 6] (see also [4] and [29] for further
analysis).

Corollary 4.3 Let (Ci)1≤i≤m be m ≥ 2 closed convex subsets of H such that C =
⋂m

i=1 Ci 6= ∅,
and let {ωi}1≤i≤m ⊂ ]0, 1[ be such that

∑m
i=1 ωi = 1. Furthermore, let r ∈ H and let (xn)n∈N be the

sequence generated by the following routine.

Initialization
x0 = r
For i = 1, . . . , m⌊

zi,0 = x0

For n = 0, 1, . . .
xn+1 =

∑m
i=1 ωiPCizi,n

For i = 1, . . . , m⌊
zi,n+1 = xn+1 + zi,n − PCizi,n.

(88)

Then xn → PC r.

Proof. Apply Theorem 4.2 with (∀i ∈ {1, . . . , m}) fi = ιCi .

Remark 4.4 Suppose that the sets (Ci)1≤i≤m are closed vector subspaces in Corollary 4.3.
By orthogonality, the update rule in (88) reduces to xn+1 =

∑m
i=1 ωiPCixn and we obtain

(
∑m

i=1 ωiPCi)
n → PC . This result can be found in [30, Proposition 26] (see also [43, Corollary 2.6]).
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tique, Lecture Notes in Computer Science 41 (1976) 200–218.

[41] G. Pierra: Decomposition through formalization in a product space, Math. Programming 28
(1984) 96–115.

[42] B. T. Polyak: Introduction to Optimization, Optimization Software Inc., New York, 1987.

[43] S. Reich: A limit theorem for projections, Linear and Multilinear Algebra 13 (1983) 281–290.

[44] R. T. Rockafellar: Monotone operators and the proximal point algorithm, SIAM J. Control
Optim. 14 (1976) 877–898.

[45] R. T. Rockafellar, R. J. B. Wets: Variational Analysis, Springer-Verlag, New York, 1998.

[46] L. I. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithms,
Physica D 60 (1992) 259–268.

[47] S. Simons: From Hahn-Banach to Monotonicity, Lecture Notes in Mathematics 1693, Springer-
Verlag, New York, 2008.

[48] J. E. Spingarn: Partial inverse of a monotone operator, Appl. Math. Optim. 10 (1983) 247–265.

[49] J. E. Spingarn: Applications of the method of partial inverses to convex programming: De-
composition, Math. Programming 32 (1985) 199–223.

[50] J. E. Spingarn: A projection method for least-squares solutions to overdetermined systems of
linear inequalities, Linear Algebra Appl. 86 (1987) 211–236.

[51] J. A. Tropp: Just relax: Convex programming methods for identifying sparse signals in noise,
IEEE Trans. Inform. Theory 52 (2006) 1030–1051.

[52] E. Zeidler: Nonlinear Functional Analysis and Its Applications II/B – Nonlinear Monotone
Operators, Springer-Verlag, New York, 1990.

23


	Introduction and notation
	Douglas-Rachford splitting for the resolvent of the sum
	Asymptotic behavior of the Douglas-Rachford algorithm
	Splitting for the sum of maximal monotone operators
	Splitting for the resolvent of the sum of maximal monotone operators

	Dykstra-like splitting for the resolvent of the sum
	Dykstra-like splitting for the proximity operator of the sum

