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The mean iteration scheme originally proposed by Mann is extended to a

broad class of relaxed, inexact fixed point algorithms in Hilbert spaces. Weak

and strong convergence results are established under general conditions on the

underlying averaging process and the type of operators involved. This analysis

significantly widens the range of applications of mean iteration methods. Several

examples are given.

1. INTRODUCTION

Let F be a firmly nonexpansive operator defined from a real Hilbert
space (H, ‖ · ‖) into itself, i.e.,

(∀(x, y) ∈ H2) ‖Fx− Fy‖2 ≤ ‖x− y‖2 − ‖(F − Id )x− (F − Id )y‖2 (1)

or, equivalently, 2F − Id is nonexpansive [16, Thm. 12.1]. It follows from
a classical result due to Opial [24, Thm. 3] that, for any initial point x0,
the sequence of successive approximations

(∀n ∈ N) xn+1 = Fxn (2)

converge weakly to a fixed point of F if such a point exists. The extension
of this result to the relaxed iterations

(∀n ∈ N) xn+1 = xn + λn
(
Fxn − xn

)
, where 0 < λn < 2 (3)
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under the condition
∑
n≥0 λn(2 − λn) = +∞ follows from [17, Coro. 3].

Now define

T =
{
T : domT = H → H | (∀(x, y) ∈ H×FixT ) 〈y − Tx | x− Tx〉 ≤ 0

}
,

(4)
where FixT denotes the fixed point set of an operator T and 〈· | ·〉 the
scalar product of H. This class of operators includes firmly nonexpansive
operators, resolvents of maximal monotone operators, projection operators,
subgradient projection operators, operators of the form T = (Id + R)/2
where R is quasi-nonexpansive, as well as various combinations of those
[2, 10]. The fact that F ∈ T suggests that (3) could be generalized to

(∀n ∈ N) xn+1 = xn + λn
(
Tnxn − xn

)
, where 0 < λn < 2 and Tn ∈ T .

(5)
This iterative procedure was investigated in [2] and further studied in [10].
It was shown that, under suitable conditions, the iterations (5) converge
weakly to a point in

⋂
n≥0 FixTn. These results provide a unifying frame-

work for numerous fixed point algorithms, including in particular the se-
rial scheme of [5] for finding a common fixed point of a family of firmly
nonexpansive operators and its block-iterative generalizations [7, 19], the
proximal point algorithms of [14, 32] for finding a zero of a maximal mono-
tone operator, the fixed point scheme of [23] for functional equations, the
projection methods of [8] for convex feasibility problems, the subgradient
projection methods of [1, 9] for systems of convex inequalities, and operator
splitting methods for variational inequalities [14, 21].

In the above algorithms, the update xn+1 involves only the current
iterate xn and the past iterates (xj)0≤j≤n−1 are not exploited. In [22],
Mann proposed a simple modification of the basic scheme (2) in which the
updating rule incorporates the past history of the process. More precisely,
his scheme for finding a fixed point of an operator T : H → H is governed
by the recursion

(∀n ∈ N) xn+1 = T xn, (6)

where xn denotes a convex combination of the points (xj)0≤j≤n, say xn =∑n
j=0 αn,jxj . Further work on this type of iterative process for certain

types of operators was carried out in [4, 6, 11, 17, 18, 26, 31].
Most existing convergence results for the Mann iterates (6) require ex-

plicitly, e.g., [11, 15, 17, 31], or implicitly, e.g., [4, 6, 18, 26], that the
averaging matrix A = [αn,j ] be segmenting, i.e.,

(∀n ∈ N)(∀j ∈ {0, . . . , n}) αn+1,j = (1− αn+1,n+1)αn,j . (7)
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This property implies that the points (xn)n≥0 generated in (6) satisfy

(∀n ∈ N) xn+1 = αn+1,n+1xn+1 +

n∑

j=0

αn+1,jxj

= αn+1,n+1xn+1 + (1− αn+1,n+1)
n∑

j=0

αn,jxj

= αn+1,n+1Txn + (1− αn+1,n+1)xn. (8)

In other words, one is really just applying (3) with a specific relaxation
strategy, namely,

(∀n ∈ N) λn = αn+1,n+1. (9)

For that reason, (3) is commonly referred to as “Mann iterates” in the
literature, although it merely corresponds to a special case of (6). Under
(7), convergence results for (6) can be inferred from known results for
(3). For instance, suppose that T is a quasi-nonexpansive operator such
that FixT 6= Ø and T − Id is demiclosed. Then any sequence (xn)n≥0

conforming to (8) satisfies the following properties: Txn − xn → 0 and
(xn)n≥0 converges weakly to a point in FixT under either of the following
conditions

(i) limαn,n > 0 and limαn,n < 1 [11, Thm. 8].

(ii)
∑
n≥0 αn,n(1− αn,n) = +∞ and T is nonexpansive [17, Coro. 3].

It therefore follows that the Mann sequence (xn)n≥0 in (6) converges weakly
to a point in FixT (whereas the standard successive approximations xn+1 =
Txn do not converge in general in this case: take T = −Id and x0 6= 0).
Let us note that, under the segmenting condition (7), the value of αn,n
fixes those of (αn,j)0≤j≤n−1. This condition is therefore very restrictive.

The goal of this paper is to introduce and analyze a common algorith-
mic framework encompassing and extending the above iterative methods.
The algorithm under consideration is the following inexact, Mann-like gen-
eralization of (5)

(∀n ∈ N) xn+1 = xn + λn
(
Tnxn + en − xn

)
,

where en ∈ H, 0 < λn < 2, and Tn ∈ T . (10)

Here, en stands for the error made in the computation of Tnxn; incorporat-
ing such errors provides a more realistic model of the actual implementation
of the algorithm. Throughout, the convex combinations in (10) are defined
as

(∀n ∈ N) xn =
n∑

j=0

αn,jxj , (11)
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where (αn,j)n,j≥0 are the entries of an infinite lower triangular row stochas-
tic matrix A, i.e.,

(∀n ∈ N)





(∀j ∈ N) αn,j ≥ 0

(∀j ∈ N) j > n ⇒ αn,j = 0∑n
j=0 αn,j = 1,

(12)

which satisfies the regularity condition

(∀j ∈ N) lim
n→+∞

αn,j = 0. (13)

Our analysis will not rely on the segmenting condition (7) and will provide
convergence results for the inexact, extended Mann iterations (10) for a
wide range of averaging schemes.

Fig. 1 sheds some light on the geometrical structure of Algorithm (10).
At iteration n, the points (xj)0≤j≤n are available. A convex combination
xn of these points is formed and an operator Tn ∈ T is selected, such
that FixTn contains the solution set S of the underlying problem. If xn /∈
FixTn, then, by (4),

Hn =
{
x ∈ H | 〈x− Tnxn | xn − Tnxn〉 ≤ 0

}
(14)

is a closed affine half-space containing FixTn and onto which Tnxn is the
projection of xn. The update xn+1 is a point on the open segment between
xn and its approximate reflection, 2(Tnxn + en)− xn, with respect to Hn.
Thus, (10) offers much more flexibility in defining the update than (5) and,
thereby, may be more advantageous in certain numerical applications. For
instance, a problem that has been reported in some applications of (5) to
convex feasibility is a tendency of its orbits to “zig-zag” [9, 29]. Acting
on an average of past iterates rather than on the latest one alone as in
(5) naturally centers the iterations and mitigates zig-zagging. Another
numerical shortcoming of (5) that has been reported in operator splitting
applications is the “spiralling” of the orbits around the solution set [12,
Sec. 7.1], [13]. The averaging taking place in (10) has the inherent ability
to avoid such undesirable convergence patterns.

The remainder of the paper is organized as follows. In Section 2, we
introduce a special type of averaging matrix A which will be suitable for
studying Algorithm (10). In Section 3, conditions for the weak and strong
convergence of Algorithm (10) to a point in

⋂
n≥0 FixTn are established.

Applications are discussed in Section 4.

2. CONCENTRATING AVERAGING MATRICES

Without further conditions on the averaging matrix A, Algorithm (10)
may fail to converge. For instance, if we set αn,n−1 = 1 for n ≥ 1 then,
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•
x0

Hn

Tnxn

•

2(Tnxn + en)− xn

FixTn
S

•
xn

•
xj

•
xn

FIG. 1 An iteration of Algorithm (10); xn+1 lies on the dashed-line seg-
ment.

with λn ≡ 1, Tn ≡ Id , and x0 = 0, (10) becomes

(∀n ∈ N) xn+1 =
∑

0≤j≤n/2
en−2j . (15)

In particular, if e0 6= 0 and en = 0 for n ≥ 1, then xn = 0 for n even
and xn = e0 for n odd. It will turn out that the following property of
the averaging matrix A prevents this kind of behavior. Henceforth, `1

(resp. `1+) denotes the class of summable sequences in R (resp. R+).

Moreover, given a sequence (ξn)n≥0 in R, (ξn)n≥0 denotes the sequence
defined through the same averaging process as in (11).

Definition 2.1. A is concentrating if every sequence (ξn)n≥0 in R+

such that (
∃ (εn)n≥0 ∈ `1+

)
(∀n ∈ N) ξn+1 ≤ ξn + εn, (16)

converges.

The following facts will be useful in checking whether a matrix is con-
centrating.

Lemma 2.2. ([10, Lem. 3.1]) Let (ξn)n≥0, (βn)n≥0, and (εn)n≥0 be se-
quences in R+ such that (εn)n≥0 ∈ `1 and

(∀n ∈ N) ξn+1 ≤ ξn − βn + εn. (17)
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Then (ξn)n≥0 converges and (βn)n≥0 ∈ `1.

Lemma 2.3. Let (ξn)n≥0 be a sequence in R+ that satisfies (16) and
set, for every n ∈ N, ξ̌n = max0≤j≤n ξj. Then

(i) (ξ̌n)n≥0 converges.

(ii) (ξn)n≥0 is bounded.

(iii) (ξn)n≥0 is bounded.

Proof. (i): For every n ∈ N, ξn+1 ≤ ξn + εn ≤ ξ̌n + εn and therefore
ξ̌n+1 ≤ ξ̌n + εn. Hence, by Lemma 2.2, (ξ̌n)n≥0 converges. (ii)&(iii): For
every n ∈ N, 0 ≤ ξn ≤ ξ̌n and 0 ≤ ξn ≤ ξ̌n, where (ξ̌n)n≥0 is bounded by
(i).

Our first example is an immediate consequence of Lemma 2.2.

Example 2.4. If αn,n ≡ 1, then A is the identity matrix, which is
concentrating. In this case (10) reverts to (5) and we recover the standard
T -class methods of [2] and [10].

The next example involves a relaxation of the segmenting condition (7).

Example 2.5. Set (∀n ∈ N) τn =
∑n
j=0 |αn+1,j − (1− αn+1,n+1)αn,j |.

Suppose that (τn)n≥0 ∈ `1 and that limαn,n > 0. Then A is concentrating.

Proof. Let (ξn)n≥0 be a sequence in R+ satisfying (16). By Lemma 2.3(ii),
γ = supn≥0 ξn < +∞. We have

(∀n ∈ N) ξn+1 = αn+1,n+1ξn+1 +
n∑

j=0

αn+1,jξj

= ξn +
n∑

j=0

(
αn+1,j − (1− αn+1,n+1)αn,j

)
ξj

− αn+1,n+1(ξn − ξn+1 + εn) + αn+1,n+1εn

≤ ξn − αn+1,n+1(ξn − ξn+1 + εn) + (γτn + εn)

where, by (16), ξn − ξn+1 + εn ≥ 0. We thus get from Lemma 2.2 that
(ξn)n≥0 converges and that

(
αn+1,n+1(ξn − ξn+1 + εn)

)
n≥0
∈ `1. Hence,

since limαn,n > 0, ξn − ξn+1 + εn → 0 and (ξn)n≥0 converges to the same
limit as (ξn)n≥0.

An example of an averaging matrix satisfying the above conditions can
be constructed by choosing αn,n = α for n ≥ 1, where α ∈ ]0, 1[. Then (7)
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yields

(∀n ∈ N)(∀j ∈ {0, . . . , n}) αn,j =

{
(1− α)n for j = 0

α(1− α)n−j for 1 ≤ j ≤ n.

The next example offers an alternative to the approximate segmenting
condition used in Example 2.5.

Example 2.6. Set (∀j ∈ N) τj = max{0,∑n≥j αn,j−1} and (∀n ∈ N)
Jn = {j ∈ N | αn,j > 0}. Suppose that

∑
j≥0 τj < +∞, that

(∀n ∈ N) Jn+1 ⊂ Jn ∪ {n+ 1}, (18)

and that there exists α ∈ ]0, 1[ such that

(∀n ∈ N)(∀j ∈ Jn) αn,j ≥ α. (19)

Then A is concentrating.

Proof. Let (ξn)n≥0 be a sequence in R+ satisfying (16). Then it follows from
Lemma 2.3(ii)&(iii) that γ = supn≥0 ξn < +∞ and γ′ = supn≥0 ξn < +∞.

Now define (∀n ∈ N) σn =
(∑n

j=0 αn,j |ξj − ξn|2
)1/2

and ε′n = 2γ′εn + ε2
n.

Then (ε′n)n≥0 ∈ `1 and, by (16),

(∀n ∈ N) σ2
n =

n∑

j=0

αn,jξ
2
j − ξ

2

n

≤
n∑

j=0

αn,jξ
2
j − ξ2

n+1 + 2ξnεn + ε2
n

≤
n∑

j=0

αn,jξ
2
j − ξ2

n+1 + ε′n.

Whence,

(∀N ∈ N)
N∑

n=0

σ2
n ≤

N∑

n=0

n∑

j=0

αn,jξ
2
j −

N∑

n=0

ξ2
n+1 +

N∑

n=0

ε′n

=
N∑

j=0

N∑

n=j

αn,jξ
2
j −

N+1∑

j=1

ξ2
j +

N∑

n=0

ε′n

≤ ξ2
0 +

N∑

j=0

τjξ
2
j +

N∑

n=0

ε′n

≤ γ2

(
1 +

N∑

n=0

τn

)
+

N∑

n=0

ε′n,

7



and we infer from the assumptions that (σ2
n)n≥0 ∈ `1.

It follows from (16) that, for every n ≥ 0, ξn+1 ≤ ξ̃n + εn, where

ξ̃n = maxj∈Jn ξj . Consequently, by condition (18),

(∀n ∈ N) ξ̃n+1 ≤ ξ̃n + εn, (20)

and (ξ̃n)n≥0 converges by Lemma 2.2. On the other hand, (19) and Jensen’s
inequality yield

(∀n ∈ N) |ξn − ξ̃n| ≤ |ξn − ξn|+ |ξ̃n − ξn| ≤
1

α

n∑

j=0

αn,j |ξj − ξn| ≤
σn
α
.

Since σn → 0, the convergence of (ξn)n≥0 follows from that of (ξ̃n)n≥0.

As an example, take strictly positive numbers (ai)0≤i≤m such that∑m
i=0 ai = 1 and define the averaging matrix A by





(∀n ∈ {0, . . . ,m− 1})(∀j ∈ {0, . . . , n}) αn,j =

{
0 if 0 ≤ j < n

1 if j = n,

(∀n ≥ m)(∀j ∈ {0, . . . , n}) αn,j =

{
0 if 0 ≤ j < n−m
an−j if n−m ≤ j ≤ n.

(21)
Then it is easily checked that the conditions of Example 2.6 are satisfied.
More general stationary averaging processes can be obtained by exploiting
a root condition from the theory of linear dynamical systems.

Example 2.7. Suppose there exist numbers (ai)0≤i≤m in R+ such that
(21) holds and the roots of the polynomial z 7→ zm+1 −∑m

j=0 ajz
m−j are

all within the unit disc, with exactly one root on its boundary. Then A is
concentrating.

Proof. The claim follows from [27, Lemma 4].

The conditions of the previous example are frequently used in the nu-
merical integration literature; several specific examples can be found, for
instance, in [25].

3. CONVERGENCE ANALYSIS

In this section we study the convergence of the generalized Mann it-
eration scheme (10). Henceforth, W(yn)n≥0 and S(yn)n≥0 denote respec-
tively the sets of weak and strong cluster points of a sequence (yn)n≥0 in
H, whereas ⇀ and → denote respectively weak and strong convergence.

In the case of Algorithm (3), a key property of the operator F to estab-
lish weak convergence to a point in FixF is the demiclosedness of F − Id
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at 0, i.e., whenever yn ⇀ y and Fyn − yn → 0, then y = Fy [24]. The fol-
lowing extended notion of demiclosedness will prove pertinent to establish
the weak convergence of (10).

Condition 3.1. For every bounded sequence (yn)n≥0 in H,

Tnyn − yn → 0 ⇒ W(yn)n≥0 ⊂
⋂

n≥0

FixTn. (22)

Likewise, to study the strong convergence of (3), a central property
is the demicompactness of F at 0, i.e., every bounded sequence (yn)n≥0

clusters strongly whenever Fyn−yn → 0 [28]. For our purposes, a suitable
extension of this property will be

Condition 3.2. For every bounded sequence (yn)n≥0 in H,

Tnyn − yn → 0 ⇒ S(yn)n≥0 6= Ø. (23)

The following two lemmas will also be required.

Lemma 3.3. [10, Prop. 2.3(ii)] Let T ∈ T and λ ∈ [0, 2]. Then

(∀y ∈ H)(∀x ∈ FixT ) ‖y+λ(Ty−y)−x‖2 ≤ ‖y−x‖2−λ(2−λ)‖Ty−y‖2.

Lemma 3.4. [20, Thm. 3.5.4] Let (ξn)n≥0 be a sequence in R. Then
ξn → ξ ⇒ ξn → ξ.

Our main convergence result can now be stated.

Theorem 3.5. Let (xn)n≥0 be an arbitrary sequence generated by (10).
Suppose that A is concentrating, that (Tn)n≥0 satisfies Condition 3.1 with
S =

⋂
n≥0 FixTn 6= Ø, that (λn)n≥0 lies in [δ, 2 − δ] for some δ ∈ ]0, 1[,

and that (‖en‖)n≥0 ∈ `1. Then:

(i) (xn)n≥0 converges weakly to a point in S.

(ii) If (Tn)n≥0 satisfies Condition 3.2, (xn)n≥0 converges strongly to a
point in S.

Proof. Take a point x ∈ S. In view of (10), Lemma 3.3, and the convexity
of ‖ · ‖,

(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖xn + λn
(
Tnxn − xn

)
− x‖+ λn‖en‖

≤ ‖xn − x‖+ 2‖en‖

≤
n∑

j=0

αn,j‖xj − x‖+ 2‖en‖. (24)
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Therefore, since A is concentrating and (‖en‖)n≥0 ∈ `1, (‖xn − x‖)n≥0

converges to some number `(x). It then follows from Lemma 3.4 and (24)
that

‖xn − x‖ → `(x). (25)

Hence γ = 4 supn≥0 ‖xn − x‖ < +∞ and the sequence (εn)n≥0 defined by

(∀n ∈ N) εn = γ‖en‖+ 4‖en‖2 (26)

lies in `1. Invoking Lemma 3.3, the convexity of ‖ · ‖2, and the restrictions
on (λn)n≥0, we obtain

(∀n ∈ N) ‖xn+1 − x‖2 ≤
(
‖xn + λn

(
Tnxn − xn

)
− x‖+ λn‖en‖

)2

≤ ‖xn − x‖2 − λn(2− λn)‖Tnxn − xn‖2
+ 2λn‖xn − x‖ · ‖en‖+ λ2

n‖en‖2

≤
n∑

j=0

αn,j‖xj − x‖2 − δ2‖Tnxn − xn‖2 + εn.

Consequently,

(∀n ∈ N) ‖Tnxn − xn‖2 ≤

δ−2




n∑

j=0

αn,j‖xj − x‖2 − ‖xn+1 − x‖2 + εn


 . (27)

However, since (‖xn − x‖2)n≥0 converges, Lemma 3.4 asserts that

n∑

j=0

αn,j‖xj − x‖2 − ‖xn+1 − x‖2 → 0.

It therefore follows from (27) that

Tnxn − xn → 0. (28)

Moreover, since

(∀n ∈ N) ‖xn+1 − xn‖ = λn‖Tnxn + en − xn‖ ≤ 2
(
‖Tnxn − xn‖+ ‖en‖

)
,

(28) yields
xn+1 − xn → 0. (29)

(i): Take two points x and x′ in W(xn)n≥0∩S. From (25), the sequences
(‖xn‖2−2 〈xn | x〉)n≥0 and (‖xn‖2−2 〈xn | x′〉)n≥0 converge and therefore
so does (〈xn | x − x′〉)n≥0. Consequently, it must hold that 〈x | x− x′〉 =
〈x′ | x−x′〉, i.e., x = x′. Thus, the bounded sequence (xn)n≥0 has at most
one weak cluster point in S. Since (22) and (28) imply that W(xn)n≥0 ⊂ S,
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we deduce that (xn)n≥0 converges weakly to a point x ∈ S. In view of (29),
xn ⇀ x.

(ii): It follows from (28) and (23) that S(xn)n≥0 6= Ø. However, by (i),
there exists a point x ∈ S such that xn ⇀ x. Whence, S(xn)n≥0 = {x} ⊂ S
and therefore `(x) = 0 in (25). We conclude xn → x.

As an immediate by-product of this theorem, we obtain convergence
results for the alternative averaging scheme

(∀n ∈ N) xn+1 =
n∑

j=0

αn,j
(
xj + λj(Tjxj + ej − xj)

)
,

where en ∈ H, 0 < λn < 2, and Tn ∈ T , (30)

special cases of which have been investigated, for instance, in [3] and [30].
If the Tns are resolvents of a maximal monotone operator, then (30) can
be shown to correspond to a linear multi-step method described in [27].

Corollary 3.6. Let (xn)n≥0 be an arbitrary sequence generated by
(30). Suppose that A is concentrating, that (Tn)n≥0 satisfies Condition 3.1
with S =

⋂
n≥0 FixTn 6= Ø, that (λn)n≥0 lies in [δ, 2−δ] for some δ ∈ ]0, 1[,

and that (‖en‖)n≥0 ∈ `1. Then:

(i) (xn)n≥0 converges weakly to a point in S.

(ii) If (Tn)n≥0 satisfies Condition 3.2, (xn)n≥0 converges strongly to a
point in S.

Proof. Define (∀j ∈ N) yj = xj + λj(Tjxj + ej − xj). Then, by (30), for
every n ∈ N, xn+1 = yn, whence yn+1 = yn + λn+1(Tn+1yn + en+1 − yn).
(i): By Theorem 3.5(i), yn ⇀ x ∈ S, i.e., (∀z ∈ H) 〈yn | z〉 → 〈x | z〉. In
turn, Lemma 3.4 yields (∀z ∈ H) 〈yn | z〉 → 〈x | z〉, i.e., xn ⇀ x. (ii): By
Theorem 3.5(ii), yn → x ∈ S and Lemma 3.4 yields

∑n
j=0 αn,j‖yj−x‖ → 0.

Since (∀n ∈ N) ‖xn+1 − x‖ = ‖yn − x‖ ≤
∑n
j=0 αn,j‖yj − x‖, we conclude

xn → x.

4. APPLICATIONS

Algorithm (5) covers essentially all Fejér-monotone methods [2, Prop.
2.7] and perturbed versions thereof [10]. Theorem 3.5 provides convergence
results for the Mann-like extension of these methods described by (10). To
demonstrate the wide range of applicability of these results, a few examples
are detailed below.
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4.1. Mean iterations for common fixed points

Our first application concerns the problem of finding a common fixed
point of a finite family of operators (Ri)i∈I such that

(∀i ∈ I) Ri ∈ T and Ri − Id is demiclosed at 0. (31)

For every n ∈ N, let (ωi,n)i∈I be weights in ]0, 1] such that
∑
i∈I ωi,n =

1. It follows from [10, Eq. (18)] that

x ∈ Fix
∑

i∈I
ωi,nRi ⇔

∥∥∥∥∥
∑

i∈I
ωi,nRix− x

∥∥∥∥∥ = 0 ⇔
∑

i∈I
ωi,n‖Rix− x‖2 = 0

⇔ x ∈
⋂

i∈I
FixRi.

Hence, the function

Ln : H → [1,+∞[ : x 7→





∑
i∈I ωi,n‖Rix− x‖2

‖∑i∈I ωi,nRix− x‖2
if x /∈ ⋂i∈I FixRi

1 otherwise

is well defined.
We consider the extrapolated parallel algorithm

(∀n ∈ N) xn+1 = xn + λn

(
Ln(xn)

(∑

i∈I
ωi,nRixn − xn

)
+ en

)
,

where en ∈ H and 0 < λn < 2. (32)

In the standard case when A is the identity matrix, this type of extrap-
olated algorithm has been investigated at various levels of generality in
[7, 9, 10, 19, 29]. It has been observed to enjoy fast convergence due to
the large relaxation values attainable through the extrapolation functions
(Ln)n≥0 but, in some cases, to be subject to zig-zagging, which weakens
its performance [9, 29]. As discussed in the Introduction, the averaging
process that takes place in (32) can effectively reduce this phenomenon.

Corollary 4.1. Let (xn)n≥0 be an arbitrary sequence generated by
(32). Suppose that A is concentrating, that

⋂
i∈I FixRi 6= Ø, that (λn)n≥0

lies in [δ, 2 − δ] for some δ ∈ ]0, 1[, that ζ = infn≥0 mini∈I ωi,n > 0, and
that (‖en‖)n≥0 ∈ `1. Then:

(i) (xn)n≥0 converges weakly to a point in
⋂
i∈I FixRi.

(ii) If one of the operators in (Ri)i∈I is demicompact at 0, (xn)n≥0 con-
verges strongly to a point in

⋂
i∈I FixRi.
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Proof. For every n ∈ N, the operator Tn = Id +Ln
(∑

i∈I ωi,nRi− Id
)

lies
in T and FixTn =

⋂
i∈I FixRi [10, Prop. 2.4]. Hence, with (Tn)n≥0 thus

defined, Algorithm (32) is immediately seen to be a particular realization
of (10). Therefore, to prove (i), it suffices by Theorem 3.5 to check that
Condition 3.1 is satisfied. To this end, take a bounded sequence (yn)n≥0

such that Tnyn − yn → 0 and y ∈ W(yn)n≥0. Then we must show y ∈⋂
i∈I FixRi.

Take z ∈ ⋂i∈I FixRi and set β = supn≥0 ‖yn − z‖. Then

(∀n ∈ N) ‖Tnyn − yn‖ ≥
∥∥∥∥∥
∑

i∈I
ωi,nRiyn − yn

∥∥∥∥∥ (33)

≥ β−1
∑

i∈I
ωi,n‖Riyn − yn‖2 (34)

≥ β−1ζ max
i∈I
‖Riyn − yn‖2, (35)

where (33) follows from the inequality Ln(yn) ≥ 1 and (34) from [10,
Eq. (17)]. Consequently,

max
i∈I
‖Riyn − yn‖ → 0 (36)

and, since the operators (Ri − Id )i∈I are demiclosed at 0, we obtain y ∈⋂
i∈I FixRi. Assertion (i) is thus proven.

To prove (ii) it suffices to check that Condition 3.2 is satisfied, i.e., that
S(yn)n≥0 6= Ø. Suppose that, for some j ∈ I, Rj is demicompact at 0.
Then, by (36), Rjyn − yn → 0 and, in turn, S(yn)n≥0 6= Ø.

To illustrate this result, let us highlight specific applications.

Example 4.2 (firmly nonexpansive operators). (Ri)i∈I is a finite fam-
ily of firmly nonexpansive operators from H to H with domain H. Then,
for each i ∈ I, Ri ∈ T [2, Prop. 2.3] and Ri− Id is demiclosed [5, Lem. 4].
Corollary 4.1 therefore applies. In particular if, for every i ∈ I, Ri is the
projector relative to a closed convex set Si, then (32) provides a new pro-
jection algorithm to find a point in

⋂
i∈I Si that reduces to Pierra’s method

[29] when A is the identity matrix, en ≡ 0, ωi,n ≡ ωi, and the range of the
relaxation parameters (λn)n≥0 is limited to [δ, 1].

Remark 4.3. In [15], an elliptic Cauchy problem was shown to be
equivalent to a fixed point problem for a nonexpansive affine operator T
in a Hilbert space. This problem was solved with the Mann iterative process
(6) under the segmenting condition (7). If we let R = (Id + T )/2, then
R is a firmly nonexpansive operator with FixR = FixT and Example 4.2
(with the single operator R) provides new variants of the algorithm of [15]
beyond the segmenting condition.

13



Example 4.4 (demicontractions). For every i ∈ I,

Ri =
1− ki

2
Ti +

1 + ki
2

Id , (37)

where Ti : domTi = H → H is demicontractive with constant ki ∈ [0, 1[,
that is [18],

(∀x ∈ H)(∀y ∈ FixTi) ‖Tix− y‖2 ≤ ‖x− y‖2 + ki‖Tix− x‖2, (38)

and Ti − Id is demiclosed at 0. Upon inserting (37) into (32), one obtains
an algorithm to find a common fixed point of (Ti)i∈I whose convergence
properties are given in Corollary 4.1. To see this, it suffices to show that,
for every i ∈ I, (a) FixRi = FixTi, (b) Ri− Id is demiclosed at 0, and (c)
Ri ∈ T . Properties (a) and (b) are immediate from (37). To check (c), fix
x ∈ H and y ∈ FixRi. Then we must show ‖Rix−x‖2 ≤ 〈y − x | Rix− x〉.
By (38), we have

‖Tix− x‖2 = ‖Tix− y‖2 + 2 〈y − x | Tix− x〉 − ‖y − x‖2
≤ ki‖Tix− x‖2 + 2 〈y − x | Tix− x〉 . (39)

Hence,

‖Rix− x‖2 =
(
(1− ki)/2

)2‖Tix− x‖2
≤ (1− ki) 〈y − x | Tix− x〉 /2
= 〈y − x | Rix− x〉 . (40)

Example 4.5 (systems of convex inequalities). Given a finite family
(fi)i∈I of continuous convex functions from H to R with nonempty level
sets

(
f−1
i (]−∞, 0])

)
i∈I , we want to find a point x ∈ H such that

(∀i ∈ I) fi(x) ≤ 0. (41)

Define

(∀i ∈ I) Ri : x 7→




x− fi(x)

‖gi(x)‖2 gi(x) if fi(x) > 0

x if fi(x) ≤ 0,
(42)

where gi is a selection of the subdifferential ∂fi of fi. Then the operators
(Ri)i∈I lie in T [2, Prop. 2.3] and solving (41) is equivalent to finding
one of their common fixed points. Moreover if, for every i ∈ I, ∂fi maps
bounded sets into bounded sets, then the operators (Ri − Id )i∈I are demi-
closed at 0 (use the same arguments as in the proof of [2, Coro. 6.10]) and
Corollary 4.1 can be invoked to solve (41). Here, Ri is demicompact at 0
if f−1

i (]−∞, η]) is boundedly compact (its intersection with any closed ball
is compact) for some η ∈ ]0,+∞[.
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4.2. Mean proximal iterations

We consider the standard problem of finding a zero of a set-valued
maximal monotone operator M : H → 2H, i.e., a point in the set M−10.
To solve this problem, we propose the mean proximal algorithm

(∀n ∈ N) xn+1 = xn + λn
(
(Id + γnM)−1xn + en − xn

)
,

where en ∈ H, 0 < λn < 2, and 0 < γn < +∞. (43)

Corollary 4.6. Let (xn)n≥0 be an arbitrary sequence generated by
(43). Suppose that A is concentrating, that 0 ∈ ranM , that infn≥0 γn > 0,
that (λn)n≥0 lies in [δ, 2− δ] for some δ ∈ ]0, 1[, and that (‖en‖)n≥0 ∈ `1.
Then:

(i) (xn)n≥0 converges weakly to a point in M−10.

(ii) If domM is boundedly compact, (xn)n≥0 converges strongly to a point
in M−10.

Proof. For every n ∈ N, set Tn = (Id + γnM)−1. Then the operators
(Tn)n≥0 lie in T and, for every n ∈ N, FixTn = M−10 [2, Prop. 2.3].
Therefore, to prove (i), it suffices by Theorem 3.5 to check that Condi-
tion 3.1 is satisfied. This can be done by following the same arguments as
in the proof of [2, Coro. 6.1]. Finally, the fact that the bounded compact-
ness of domM in (ii) implies Condition 3.2 can be proved by proceeding
as in the proof of [10, Thm. 6.9].

In particular, if A is the identity matrix, (43) relapses to the usual
relaxed proximal point algorithm. In this case, Corollary 4.6(i) can be
found in [14, Thm. 3], which itself contains Rockafellar’s classical result
[32, Thm. 1] for λn ≡ 1.
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