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Abstract

We propose an algorithm for computing the proximity operator of a sum of composite convex func-

tions in Hilbert spaces and investigate its asymptotic behavior. Applications to best approximation

and image recovery are described.
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1. Introduction

Let H be a real Hilbert space with scalar product 〈· | ·〉 and associated norm ‖ · ‖. The best

approximation to a point z ∈ H from a nonempty closed convex set C ⊂ H is the point PCz ∈ C
that satisfies ‖PCz− z‖ = minx∈C ‖x− z‖. The induced best approximation operator PC : H → C,

also called the projector onto C, plays a central role in several branches of applied mathematics

[13]. If we designate by ιC the indicator function of C, i.e.,

ιC : x 7→

{
0, if x ∈ C;

+∞, if x /∈ C,
(1.1)

then PCz is the solution to the minimization problem

minimize
x∈H

ιC(x) +
1

2
‖x− z‖2. (1.2)
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Now let Γ0(H) be the class of lower semicontinuous convex functions f : H → ]−∞,+∞] such that

dom f =
{
x ∈ H

∣∣ f(x) < +∞
}
6= ∅. In [16] Moreau observed that, for every function f ∈ Γ0(H),

the proximal minimization problem

minimize
x∈H

f(x) +
1

2
‖x− z‖2 (1.3)

possesses a unique solution, which he denoted by proxf z. The resulting proximity operator

proxf : H → H therefore extends the notion of a best approximation operator for a convex set.

This fruitful concept has become a central tool in mechanics, variational analysis, optimization,

and signal processing, e.g., [1, 10, 19].

Though in certain simple cases closed-form expressions are available [10, 11, 17], computing

proxf z in numerical applications is a challenging task. The objective of this paper is to propose

a splitting algorithm to compute proximity operators in the case when f can be decomposed as a

sum of composite functions.

Problem 1.1 Let z ∈ H and let (ωi)1≤i≤m be reals in ]0, 1] such that
∑m

i=1 ωi = 1. For every

i ∈ {1, . . . ,m}, let (Gi, ‖ · ‖Gi
) be a real Hilbert space, let ri ∈ Gi, let gi ∈ Γ0(Gi), and let Li : H → Gi

be a nonzero bounded linear operator. The problem is to

minimize
x∈H

m∑

i=1

ωigi(Lix− ri) +
1

2
‖x− z‖2. (1.4)

The underlying practical assumption we make is that the proximity operators (proxgi)1≤i≤m

are implementable (to within some quantifiable error). We are therefore aiming at devising an al-

gorithm that uses these operators separately. Let us note that such splitting algorithms are already

available to solve Problem 1.1 under certain restrictions.

A) Suppose that G1 = H, that L1 = Id , that the functions (gi)2≤i≤m are differentiable ev-

erywhere with a Lipschitz continuous gradient, and that ri ≡ 0. Then (1.4) reduces

to the minimization of the sum of f1 = g1 ∈ Γ0(H) and of the smooth function f2 =∑m
i=2 ωigi ◦Li+‖·−z‖2/2, and it can be solved by the forward-backward algorithm [11, 21].

B) The methods proposed in [7] address the case when, for every i ∈ {1, . . . ,m}, Gi = H,

Li = Id , and ri = 0.

C) The method proposed in [8] addresses the case when m = 2, G1 = H, and L1 = Id , and

r1 = 0.

The restrictions imposed in A) are quite stringent since many problems involve at least two non-

differentiable potentials. Let us also observe that since, in general, there is no explicit expression

for proxgi◦Li
in terms of proxgi and Li, Problem 1.1 cannot be reduced to the setting described
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in B). On the other hand, using a product space reformulation, we shall show that the setting

described in C) can be exploited to solve Problem 1.1 using only approximate implementations of

the operators (proxgi)1≤i≤m. Our algorithm is introduced in Section 2, where we also establish

its convergence properties. In Section 3, our results are applied to best approximation and image

recovery problems.

Our notation is standard. B (H,G) is the space of bounded linear operators from H to a real

Hilbert space G. The adjoint of L ∈ B (H,G) is denoted by L∗. The conjugate of f ∈ Γ0(H) is the

function f∗ ∈ Γ0(H) defined by f∗ : u 7→ supx∈H(〈x | u〉 − f(x)). The projector onto a nonempty

closed convex set C ⊂ H is denoted by PC . The strong relative interior of a convex set C ⊂ H is

sriC =
{
x ∈ C

∣∣ cone(C − x) = span (C − x)
}
,

where coneC =
⋃

λ>0

{
λx

∣∣ x ∈ C
}
, (1.5)

and the relative interior of C is riC =
{
x ∈ C

∣∣ cone(C − x) = span (C − x)
}

. We have intC ⊂
sriC ⊂ riC ⊂ C and, if H is finite-dimensional, riC = sriC. For background on convex analysis,

see [4, 22].

2. Main result

To solve Problem 1.1, we propose the following algorithm. Its main features are that each

function gi is activated individually by means of its proximity operator, and that the proximity

operators can be evaluated simultaneously. It is important to stress that the functions (gi)1≤i≤m

and the operators (Li)1≤i≤m are used at separate steps in the algorithm, which is thus fully de-

composed. In addition, an error ai,n is tolerated in the evaluation of the ith proximity operator at

iteration n.

Algorithm 2.1 For every i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in Gi.

Initialization

ρ =
(
max1≤i≤m ‖Li‖

)−2

ε ∈ ]0,min{1, ρ}[

For i = 1, . . . ,m⌊
vi,0 ∈ Gi

For n = 0, 1, . . .

xn = z −
∑m

i=1 ωiL
∗
i vi,n

γn ∈ [ε, 2ρ − ε]

λn ∈ [ε, 1]
For i = 1, . . . ,m⌊
vi,n+1 = vi,n + λn

(
proxγng∗i

(
vi,n + γn(Lixn − ri)

)
+ ai,n − vi,n

)
.

(2.1)
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Note that an alternative implementation of (2.1) can be obtained via Moreau’s decomposition

formula in a real Hilbert space G [11, Lemma 2.10]

(∀g ∈ Γ0(G))(∀γ ∈ ]0,+∞[)(∀v ∈ G) proxγg∗ v = v − γ proxγ−1g(γ
−1v). (2.2)

We now describe the asymptotic behavior of Algorithm 2.1.

Theorem 2.2 Suppose that

(ri)1≤i≤m ∈ sri
{
(Lix− yi)1≤i≤m

∣∣ x ∈ H, (yi)1≤i≤m ∈×m
i=1 dom gi

}
(2.3)

and that

(∀i ∈ {1, . . . ,m})
∑

n∈N

‖ai,n‖Gi
< +∞. (2.4)

Furthermore, let (xn)n∈N, (v1,n)n∈N, . . . , (vm,n)n∈N be sequences generated by Algorithm 2.1. Then

Problem 1.1 possesses a unique solution x and the following hold.

(i) For every i ∈ {1, . . . ,m}, (vi,n)n∈N converges weakly to a point vi ∈ Gi. Moreover, (vi)1≤i≤m is

a solution to the minimization problem

minimize
v1∈G1,..., vm∈Gm

1

2

∥∥∥∥∥z −
m∑

i=1

ωiL
∗
i vi

∥∥∥∥∥

2

+

m∑

i=1

ωi

(
g∗i (vi) + 〈vi | ri〉

)
, (2.5)

and x = z −
∑m

i=1 ωiL
∗
i vi.

(ii) (xn)n∈N converges strongly to x.

Proof. Set f : H → ]−∞,+∞] : x 7→
∑m

i=1 ωigi(Lix − ri). The assumptions imply that, for every

i ∈ {1, . . . ,m}, the function x 7→ gi(Lix − ri) is convex and lower semicontinuous. Hence, f is

likewise. On the other hand, it follows from (2.3) that

(ri)1≤i≤m ∈
{
(Lix− yi)1≤i≤m

∣∣ x ∈ H, (yi)1≤i≤m ∈×m
i=1 dom gi

}
(2.6)

and, therefore, that dom f 6= ∅. Thus, f ∈ Γ0(H) and, as seen in (1.3), Problem 1.1 possesses a

unique solution, namely x = proxf z.

Now let H be the real Hilbert space obtained by endowing the Cartesian product Hm with the

scalar product 〈· | ·〉H : (x,y) 7→
∑m

i=1 ωi〈xi | yi〉, where x = (xi)1≤i≤m and y = (yi)1≤i≤m denote

generic elements in H. The associated norm is

‖ · ‖H : x 7→

√√√√
m∑

i=1

ωi‖xi‖2. (2.7)
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Likewise, let G denote the real Hilbert space obtained by endowing the Cartesian product G1 ×
· · · × Gm with the scalar product and the associated norm respectively defined by

〈· | ·〉G : (y,z) 7→

m∑

i=1

ωi〈yi | zi〉Gi
and ‖ · ‖G : y 7→

√√√√
m∑

i=1

ωi‖yi‖
2
Gi
. (2.8)

Define





f = ιD, where D =
{
(x, . . . , x) ∈ H

∣∣ x ∈ H
}

g : G → ]−∞,+∞] : y 7→
∑m

i=1 ωigi(yi)

L : H → G : x 7→ (Lixi)1≤i≤m

r = (r1, . . . , rm)

z = (z, . . . , z).

(2.9)

Then f ∈ Γ0(H), g ∈ Γ0(G), and L ∈ B (H,G). Moreover, D is a closed vector subspace of H

with projector

proxf = PD : x 7→

( m∑

i=1

ωixi, . . . ,
m∑

i=1

ωixi

)
(2.10)

and

L∗ : G → H : v 7→
(
L∗
i vi

)
1≤i≤m

. (2.11)

Note that (2.8) and (2.7) yield

(∀x ∈ H) ‖Lx‖2G =

m∑

i=1

ωi‖Lixi‖
2
Gi

≤
m∑

i=1

ωi‖Li‖
2‖xi‖

2

≤
(

max
1≤i≤m

‖Li‖
2
) m∑

i=1

ωi‖xi‖
2

=
(

max
1≤i≤m

‖Li‖
2
)
‖x‖2H. (2.12)

Therefore,

‖L‖ ≤ max
1≤i≤m

‖Li‖. (2.13)
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We also deduce from (2.3) that

r ∈ sri
(
L(dom f)− dom g

)
. (2.14)

Furthermore, in view of (2.7) and (2.9), in the space H, (1.4) is equivalent to

minimize
x∈H

f(x) + g(Lx− r) +
1

2
‖x− z‖2H. (2.15)

Next, we derive from [8, Proposition 3.3] that the dual problem of (2.15) is to

minimize
v∈G

f̃∗(z −L∗v) + g∗(v) + 〈v | r〉G , (2.16)

where f̃∗ : u 7→ infw∈H

(
f∗(w) + (1/2)‖u −w‖2H

)
is the Moreau envelope of f∗. Since f = ιD,

we have f∗ = ιD⊥ . Hence, (2.7) and (2.10) yield

(∀u ∈ H) f̃∗(u) =
1

2
‖u− PD⊥u‖2H =

1

2
‖PDu‖2H =

1

2

∥∥∥∥∥

m∑

i=1

ωiui

∥∥∥∥∥

2

. (2.17)

On the other hand, (2.8) and (2.9) yield

(∀v ∈ G) g∗(v) =

m∑

i=1

ωig
∗
i (vi) and proxg∗ v =

(
proxg∗

i
vi
)
1≤i≤m

. (2.18)

Altogether, it follows from (2.11), (2.17), (2.18), and (2.8), that

(2.16) is equivalent to (2.5). (2.19)

Now define

(∀n ∈ N)





xn = (xn, . . . , xn)

vn = (v1,n, . . . , vm,n)

an = (a1,n, . . . , am,n).

(2.20)

Then, in view of (2.9), (2.10), (2.11), (2.13), and (2.18), (2.1) is a special case of the following

routine.

Initialization
ρ = ‖L‖−2

ε ∈ ]0,min{1, ρ}[

v0 ∈ G

For n = 0, 1, . . .

xn = proxf (z −L∗vn)

γn ∈ [ε, 2ρ − ε]

λn ∈ [ε, 1]
vn+1 = vn + λn

(
proxγng∗(vn + γn(Lxn − r)) + an − vn

)
.

(2.21)
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Moreover, (2.4) implies that
∑

n∈N ‖an‖G < +∞. Hence, it follows from (2.14) and [8, Theo-

rem 3.7] that the following hold, where x is the solution to (2.15).

(a) (vn)n∈N converges weakly to a solution v to (2.16) and x = proxf (z −L∗v).

(b) (xn)n∈N converges strongly to x.

In view of (2.7), (2.8), (2.9), (2.10), (2.11), (2.19), and (2.20), items (a) and (b) provide respec-

tively items (i) and (ii).

Remark 2.3 Let us consider Problem 1.1 in the special case when

(∀i ∈ {1, . . . ,m}) Gi = H, Li = Id , and ri = 0. (2.22)

Then (1.4) reduces to

minimize
x∈H

m∑

i=1

ωigi(x) +
1

2
‖x− z‖2. (2.23)

Now let us implement Algorithm 2.1 with γn ≡ 1, λn ≡ 1, ai,n ≡ 0, and vi,0 ≡ 0. The iteration

process resulting from (2.1) can be written as

Initialization
x0 = z
For i = 1, . . . ,m⌊
vi,0 = 0

For n = 0, 1, . . .
For i = 1, . . . ,m⌊
vi,n+1 = proxg∗

i
(xn + vi,n)

xn+1 = z −
∑m

i=1 ωivi,n+1.

(2.24)

For every i ∈ {1, . . . ,m} and n ∈ N, set zi,n = xn + vi,n. Then (2.24) yields

Initialization
x0 = z
For i = 1, . . . ,m⌊
zi,0 = z

For n = 0, 1, . . .
xn+1 = z −

∑m
i=1 ωi proxg∗

i
zi,n

For i = 1, . . . ,m⌊
zi,n+1 = xn+1 + proxg∗

i
zi,n.

(2.25)
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Next we observe that (∀n ∈ N)
∑m

i=1 ωizi,n = z. Indeed, the identity is clearly satisfied for

n = 0 and, for every n ∈ N, (2.25) yields
∑m

i=1 ωizi,n+1 = xn+1 +
∑m

i=1 ωi proxg∗
i
zi,n =

(z −
∑m

i=1 ωi proxg∗
i
zi,n) +

∑m
i=1 ωi proxg∗

i
zi,n = z. Thus, invoking (2.2) with γ = 1, we can

rewrite (2.25) as

Initialization
x0 = z
For i = 1, . . . ,m⌊
zi,0 = z

For n = 0, 1, . . .
xn+1 =

∑m
i=1 ωi proxgi zi,n

For i = 1, . . . ,m⌊
zi,n+1 = xn+1 + zi,n − proxgi zi,n.

(2.26)

This is precisely the Dykstra-like algorithm proposed in [7, Theorem 4.2] for computing

prox∑m
i=1 ωigi

z (which itself extends the classical parallel Dykstra algorithm for projecting z onto

an intersection of closed convex sets [2, 14]; for sequential algorithms operating under assump-

tion (2.22), see [3] for the case when m = 2, and [5] for the case of best approximation). Hence,

Algorithm 2.1 can be viewed as an extension of this algorithm, which was derived and analyzed

with different techniques in [7].

3. Applications

As noted in the Introduction, special cases of Problem 1.1 have already been considered in the

literature under certain restrictions on the number m of composite functions, the complexity of

the linear operators (Li)1≤i≤m, and/or the smoothness of the potentials (gi)1≤i≤m (one will find

specific applications in [6, 8, 10, 11, 12, 18] and the references therein). The proposed framework

makes it possible to remove these restrictions simultaneously. In this section, we provide two

illustrations.

3.1. Best approximation from an intersection of composite convex sets

In this subsection, we consider the problem of finding the best approximation PDz to a point

z ∈ H from a closed convex subset D of H defined as an intersection of affine inverse images of

closed convex sets.

Problem 3.1 Let z ∈ H and, for every i ∈ {1, . . . ,m}, let (Gi, ‖ · ‖Gi
) be a real Hilbert space, let

ri ∈ Gi, let Ci be a nonempty closed convex subset of Gi, and let 0 6= Li ∈ B (H,Gi). The problem is to

minimize
x∈D

‖x− z‖, where D =
m⋂

i=1

{
x ∈ H

∣∣ Lix ∈ ri + Ci

}
. (3.1)
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In view of (1.1), Problem 3.1 is a special case of Problem 1.1, where (∀i ∈ {1, . . . ,m}) gi = ιCi

and ωi = 1/m. It follows that, for every i ∈ {1, . . . ,m} and every γ ∈ ]0,+∞[, proxγgi reduces to

the projector PCi
onto Ci. Hence, using (2.2), we can rewrite Algorithm 2.1 in the following form,

where we have set ci,n = −γ−1
n ai,n for simplicity.

Algorithm 3.2 For every i ∈ {1, . . . ,m}, let (ci,n)n∈N be a sequence in Gi.

Initialization

ρ =
(
max1≤i≤m ‖Li‖

)−2

ε ∈ ]0,min{1, ρ}[

For i = 1, . . . ,m⌊
vi,0 ∈ Gi

For n = 0, 1, . . .

xn = z −
∑m

i=1 ωiL
∗
i vi,n

γn ∈ [ε, 2ρ − ε]

λn ∈ [ε, 1]
For i = 1, . . . ,m⌊
vi,n+1 = vi,n + γnλn

(
Lixn − ri − PCi

(
γ−1
n vi,n + Lixn − ri

)
− ci,n

)
.

(3.2)

In the light of the above, we obtain the following application of Theorem 2.2(ii).

Corollary 3.3 Suppose that

(ri)1≤i≤m ∈ sri
{
(Lix− yi)1≤i≤m

∣∣ x ∈ H, (yi)1≤i≤m ∈×m
i=1Ci

}
(3.3)

and that (∀i ∈ {1, . . . ,m})
∑

n∈N ‖ci,n‖Gi
< +∞. Then every sequence (xn)n∈N generated by Algo-

rithm 3.2 converges strongly to the solution PDz to Problem 3.1.

3.2. Nonsmooth image recovery

A wide range of signal and image recovery problems can be modeled as instances of Prob-

lem 1.1. In this subsection, we focus on the problem of recovering an image x ∈ H from p noisy

measurements

ri = Tix+ si, 1 ≤ i ≤ p. (3.4)

In this model, the ith measurement ri lies in a Hilbert space Gi, Ti ∈ B (H,Gi) is the data formation

operator, and si ∈ Gi is the realization of a noise process. A typical data fitting potential in such

models is the function

x 7→

p∑

i=1

ωigi(Tix− ri), where 0 ≤ gi ∈ Γ0(Gi) and gi vanishes only at 0. (3.5)

9



The proposed framework can handle p ≥ 1 nondifferentiable functions (gi)1≤i≤p as well as the

incorporation of additional potential functions to model prior knowledge on the original image x.

In the illustration we provide below, the following is assumed.

• The image space is H = H1
0(Ω), where Ω is a nonempty bounded open domain in R

2.

• x admits a sparse decomposition in an orthonormal basis (ek)k∈N of H. As discussed in

[12, 23] this property can be promoted by the “elastic net” potential x 7→
∑

k∈N φk(〈x | ek〉),
where (∀k ∈ N) φk : ξ 7→ α|ξ|+β|ξ|2, with α > 0 and β > 0. More general choices of suitable

functions (φk)k∈N are available in [9].

• x is piecewise smooth. This property is promoted by the total variation potential tv(x) =∫
Ω |∇x(ω)|2dω, where | · |2 denotes the Euclidean norm on R

2 [20].

Upon setting gi ≡ ‖·‖Gi
in (3.5), these considerations lead us to the following formulation (see

[8, Example 2.10] for more general nonsmooth potentials).

Problem 3.4 Let H = H1
0(Ω), where Ω ⊂ R

2 is nonempty, bounded, and open, let (ωi)1≤i≤p+2 be

reals in ]0, 1] such that
∑p+2

i=1 ωi = 1, and let (ek)k∈N be an orthonormal basis of H. For every

i ∈ {1, . . . , p}, let 0 6= Ti ∈ B (H,Gi), where (Gi, ‖ · ‖Gi
) is a real Hilbert space, and let ri ∈ Gi. The

problem is to

minimize
x∈H

p∑

i=1

ωi‖Tix− ri‖Gi
+

∑

k∈N

(
ωp+1|〈x | ek〉|+

1

2
|〈x | ek〉|

2

)
+ ωp+2 tv(x). (3.6)

It follows from Parseval’s identity that Problem 3.4 is a special case of Problem 1.1 in H =
H1

0(Ω) with m = p+ 2, z = 0, and





gi = ‖ · ‖Gi
and Li = Ti, if 1 ≤ i ≤ p;

Gp+1 = ℓ2(N), gp+1 = ‖ · ‖ℓ1 , rp+1 = 0, and Lp+1 : x 7→ (〈x | ek〉)k∈N;

Gp+2 = L2(Ω)⊕ L2(Ω), gp+2 : y 7→
∫
Ω |y(ω)|2dω, rp+2 = 0, and Lp+2 = ∇.

(3.7)

To implement Algorithm 2.1, it suffices to note that L∗
p+1 : (νk)k∈N 7→

∑
k∈N νkek and L∗

p+2 =
− div, and to specify the proximity operators of the functions (γg∗i )1≤i≤m, where γ ∈ ]0,+∞[.
First, let i ∈ {1, . . . , p}. Then gi = ‖ · ‖Gi

and therefore g∗i = ιBi
, where Bi is the closed

unit ball of Gi. Hence proxγg∗
i
= PBi

. Next, it follows from (2.2) and [11, Example 2.20] that

proxγg∗
p+1

: (ξk)k∈N 7→ (P[−1,1]ξk)k∈N. Finally, since gp+2 is the support function of the set [15]

K =
{
y ∈ Gp+2

∣∣ |y|2 ≤ 1 a.e.
}
, (3.8)

g∗p+2 = ιK and therefore proxγg∗p+2
= PK , which is straightforward to compute. Altogether, as

‖Lp+1‖ = 1 and ‖Lp+2‖ ≤ 1, Algorithm 2.1 assumes the following form (since all the proximity

operators can be implemented with simple projections, we dispense with the errors terms).
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Algorithm 3.5

Initialization

ρ =
(
max{1, ‖T1‖, . . . , ‖Tp‖}

)−2

ε ∈ ]0,min{1, ρ}[

For i = 1, . . . , p⌊
vi,0 ∈ Gi

vp+1,0 = (νk,0)k∈N ∈ ℓ2(N)
vp+2,0 ∈ L2(Ω)⊕ L2(Ω)

For n = 0, 1, . . .

xn = z −
∑p

i=1 ωiT
∗
i vi,n − ωp+1

∑
k∈N νk,nek + ωp+2 div vp+2,n

γn ∈ [ε, 2ρ− ε]

λn ∈ [ε, 1]
For i = 1, . . . , p⌊

vi,n+1 = vi,n + λn

( vi,n + γn(Tixn − ri)

max{1, ‖vi,n + γn(Tixn − ri)‖Gi
}
− vi,n

)

For every k ∈ N, νk,n+1 = νk,n + λn

( νk,n + γn〈xn | ek〉

max{1, |νk,n + γn〈xn | ek〉|}
− νk,n

)

For almost every ω ∈ Ω,

vp+2,n+1(ω) = vp+2,n(ω) + λn

( vp+2,n(ω) + γn∇xn(ω)

max{1, |vp+2,n(ω) + γn∇xn(ω)|2}
− vp+2,n(ω)

)
.

(3.9)

Let us establish the main convergence property of this algorithm.

Corollary 3.6 Every sequence (xn)n∈N generated by Algorithm 3.5 converges strongly to the solution

to Problem 3.4.

Proof. In view of the above discussion and of Theorem 2.2(ii), it remains to check that (2.3) is

satisfied. Set S =
{
(Lix− yi)1≤i≤m

∣∣ x ∈ H, (yi)1≤i≤m ∈×m
i=1 dom gi

}
. We have dom gi = Gi for

every i ∈ {1, . . . , p}, dom gp+1 = ℓ1(N), and dom gp+2 = L2(Ω)⊕ L2(Ω). Consequently,

S =
{
(T1x− y1, . . . , Tpx− yp, (〈x | ek〉 − ηk)k∈N,∇x− yp+2

∣∣∣

x ∈ H, (yi)1≤i≤p ∈×p
i=1Gi, (ηk)k∈N ∈ ℓ1(N), yp+2 ∈ L2(Ω)⊕ L2(Ω)

}

=
(
×p

i=1Gi

)
× ℓ2(N)×

(
L2(Ω)⊕ L2(Ω)

)

=×m
i=1Gi. (3.10)

Hence, we trivially have (r1, . . . , rp, 0, 0) ∈ sriS.
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Let us emphasize that a novelty of the above variational framework is to perform total variation

image recovery in the presence of several nondifferentiable composite terms, with guaranteed

strong convergence to the solution to the problem, and with elementary steps in the form of simple

projections. The finite-dimensional version of the algorithm can easily be obtained by discretizing

the operators ∇ and div as in [6] (see also [8, Section 4.4] for variants of the total variation

potential).

References

[1] P. Alart, O. Maisonneuve, and R. T. Rockafellar (Eds.), Nonsmooth Mechanics and Analysis –

Theoretical and Numerical Advances. Springer-Verlag, New York, 2006.

[2] H. H. Bauschke and J. M. Borwein, Dykstra’s alternating projection algorithm for two sets, J.

Approx. Theory, vol. 79, pp. 418–443, 1994.

[3] H. H. Bauschke and P. L. Combettes, A Dykstra-like algorithm for two monotone operators,

Pacific J. Optim., vol. 4, pp. 383–391, 2008.

[4] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. Springer-Verlag, New York, 2011.

[5] J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection of convex

sets in Hilbert spaces, Lecture Notes Statist., vol. 37, pp. 28–47, 1986.

[6] A. Chambolle, Total variation minimization and a class of binary MRF model, Lecture Notes

in Comput. Sci., vol. 3757, pp 136–152, 2005.

[7] P. L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone oper-

ators, J. Convex Anal., vol. 16, pp. 727–748, 2009.
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[22] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, 2002.

[23] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc.

Ser. B Stat. Methodol., vol. 67, pp. 301–320, 2005.

13


	Introduction
	Main result
	Applications
	Best approximation from an intersection of composite convex sets
	Nonsmooth image recovery


