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Abstract In recent years, proximal splitting algo-

rithms have been applied to various monocomponent
signal and image recovery problems. In this paper, we

address the case of multicomponent problems. We first

provide closed form expressions for several important

multicomponent proximity operators and then derive
extensions of existing proximal algorithms to the multi-

component setting. These results are applied to stereo-

scopic image recovery, multispectral image denoising,

and image decomposition into texture and geometry

components.
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1 Problem statement

In this paper, we consider signal and image recov-

ery problems in which the ideal solution is repre-
sented by m components x1, . . . , xm lying, respec-

tively, in real Hilbert spaces H1, . . . , Hm. Such prob-

lems arise in many areas ranging from color and hyper-

spectral imaging to multichannel signal processing and
geometry/texture image decomposition [2,4–7,12,23,

25,29,30,40,43,46]. Oftentimes, multicomponent sig-

nal/image processing tasks can be formulated as varia-

tional problems of the form

minimize
x1∈H1,..., xm∈Hm

Φ(x1, . . . , xm), (1)

where Φ is a convex function modeling the available

information on the m components, their interactions,

and, possibly, the data acquisition process.

The abstract convex minimization problem (1) is

usually too generic to be solved directly and it must be

formulated in a more structured fashion to be amenable
to efficient numerical solution. To this end, Φ can be

decomposed as a sum of p functions that can be han-

dled individually more easily. This leads to the following

model, which will be the focus of the paper.

Problem 1 Let (Hi)1≤i≤m be real Hilbert spaces, and

let (fk)1≤k≤p be proper lower semicontinuous convex

functions from the direct Hilbert sum H1⊕· · ·⊕Hm to
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]−∞,+∞]. The problem is to

minimize
x1∈H1,..., xm∈Hm

p∑

k=1

fk(x1, . . . , xm), (2)

under the assumption that solutions exist.

In the case of univariate (m = 1) signal process-

ing problems, proximal methods have been successfully

used to solve (2); see [17,19,21] for basic work, and
[20] and the references therein for a variety of applica-

tions. It is therefore natural to ask whether these meth-

ods can be extended to the multivariate case. Initial

work in this direction was carried out in [10] in the spe-
cial instance when m = 2, f1 is a separable sum (i.e.,

f1 : (xi)1≤i≤m 7→∑m
i=1 ϕi(xi)), and f2 is differentiable

on H1 ⊕ · · · ⊕Hm with a Lipschitz continuous gradient

(this setting also covers formulations found in [4–6,21,

26,27,41,42,46]). The objective of our paper is to ad-
dress the general case and to present several proximal

algorithms with guaranteed convergence to a solution

to Problem 1 under suitable assumptions.

The paper is organized as follows. In section 2, the
main notation used in the paper is introduced. Proxim-

ity operators will be an essential ingredient in the mul-

ticomponent algorithms proposed in the paper. They

are briefly reviewed in section 3, where we also pro-

vide new results concerning multicomponent proximity
operators. In section 4, we describe proximal splitting

algorithms which are pertinent for solving Problem 1.

Finally, in section 5, we illustrate the effectiveness of the

proposed algorithms in three multicomponent imaging
examples.

2 Notation

Throughout, H, G, and (Hi)1≤i≤m are real Hilbert

spaces. For convenience, their scalar products are all
denoted by 〈· | ·〉, the associated norms by ‖ · ‖, and
their identity operators are all denoted by Id . It will be

convenient to denote by x = (xi)1≤i≤m a generic ele-

ment in H1×· · ·×Hm, and by H the direct Hilbert sum

H1 ⊕ · · · ⊕ Hm, i.e., the product space H1 × · · · × Hm

equipped with the usual vector space structure and the

scalar product

(x,y) 7→
m∑

i=1

〈xi | yi〉. (3)

The space of bounded linear operators from H to G
is denoted by B (H,G). Moreover, Γ0(H) denotes the
class of lower semicontinuous convex functions ϕ : H →
]−∞,+∞] which are proper in the sense that

domϕ =
{
x ∈ H

∣∣ ϕ(x) < +∞
}
6= ∅. (4)

Let C and D be nonempty convex subsets ofH. The

indicator function of C is

ιC : x 7→
{
0, if x ∈ C;

+∞, if x /∈ C.
(5)

If C is closed, for every x ∈ H, there exists a unique

point PCx ∈ C such that ‖x− PCx‖ = infy∈C ‖x− y‖;
PCx is called the projection of x onto C. We say that
0 lies in the strong relative interior of C, in symbol,

0 ∈ sriC, if
⋃
λ>0 λC = spanC. In particular, if we

set C − D =
{
x− y

∣∣ (x, y) ∈ C ×D
}
, the inclusion

0 ∈ sri(C −D) holds in each of the following cases:

• C −D is a closed vector subspace.
• 0 ∈ int(C −D).

• C ∩ intD 6= ∅.

• H is finite dimensional and (riC) ∩ (riD) 6= ∅,

where riC denotes the relative interior of C, i.e.,

its interior relative to its affine hull.

General background on convex analysis will be found

in [8,47].

3 Proximity operators

3.1 Definition and properties

For a detailed account of the theory of proximity oper-

ators, see [8] and the classical paper [33].

Let ϕ ∈ Γ0(H). For every x ∈ H, the function

y 7→ ϕ(y) +
1

2
‖x− y‖2 (6)

has a unique minimizer, which is denoted by proxϕ x
and characterized by the variational inequality

(∀p ∈ H) p = proxϕ x ⇔
(∀y ∈ H) 〈y − p | x− p〉+ ϕ(p) ≤ ϕ(y). (7)

The proximity operator proxϕ of ϕ thus defined is non-

expansive, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖ proxϕ x−proxϕ y‖ ≤ ‖x−y‖. (8)

Example 1 Let C be a nonempty closed convex subset

of H. Then proxιC = PC .

Other closed-form expressions for the proximity op-

erators can be found in [3,10,14,17,18,21,33].

Lemma 1 [17, Proposition 11] Let ψ ∈ Γ0(G), let L ∈
B (H,G), and set ϕ = ψ◦L. Suppose that L◦L∗ = α Id ,

for some α ∈ ]0,+∞[. Then ϕ ∈ Γ0(H) and

proxϕ = Id +
1

α
L∗ ◦ (proxαψ − Id ) ◦ L. (9)
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3.2 Multicomponent proximity operators

The computation of proximity operators in the Hilbert

direct sum H will play a fundamental role in the next

sections. Below, we provide some important situations

in which this computation is explicit.

Proposition 1 Suppose that, for every i ∈ {1, . . . ,m},
(ei,k)k∈K is an orthonormal basis of Hi. Furthermore,

let (φk)k∈K be functions in Γ0(R
m) and suppose that

one of the following holds.

(i) For every i ∈ {1, . . . ,m}, Hi is infinite dimen-

sional and, for every k ∈ K, φk ≥ φk(0) = 0.
(ii) For every i ∈ {1, . . . ,m}, Hi is finite dimensional.

Set

f : H → ]−∞,+∞]

x 7→
∑

k∈K

φk
(
〈x1 | e1,k〉, . . . , 〈xm | em,k〉

)
. (10)

Then f ∈ Γ0(H) and, for every x ∈ H,

proxf x =

(
∑

k∈K

π1,ke1,k, . . . ,
∑

k∈K

πm,kem,k

)
, (11)

where

(∀k ∈ K) (π1,k, . . . , πm,k) =

proxφk

(
〈x1 | e1,k〉, . . . , 〈xm | em,k〉

)
. (12)

Proof Let us set, for every k ∈ K,

ψk : H → ]−∞,+∞]

x 7→ φk
(
〈x1 | e1,k〉, . . . , 〈xm | em,k〉

)
. (13)

Then our assumptions imply that the functions (ψk)k∈K

are in Γ0(H). Under assumption (i), assuming with-

out loss of generality that K = N, we can write
f = supK∈K

∑K
k=0 ψk. Since lower semicontinuity and

convexity are preserved under finite sums and tak-

ing suprema, it follows that f is lower semicontinu-

ous and convex. In addition, since f(0) = 0, we obtain
f ∈ Γ0(H). On the other hand, under assumption (ii),

the sum in (10) is finite and our assumptions imply at

once that f ∈ Γ0(H).

Now let x ∈ H and denote the Euclidean norm on

R
m by | · |. Set

(∀i ∈ {1, . . . ,m})(∀k ∈ K) ξi,k = 〈xi | ei,k〉. (14)

Moreover, for every i ∈ {1, . . . ,m}, let yi ∈ Hi and set

(ηi,k)k∈K = (〈yi | ei,k〉)k∈K. We derive from (12) and

(7) that, for every k ∈ K,

m∑

i=1

(ηi,k − πi,k)(ξi,k − πi,k) + φk(π1,k, . . . , πm,k)

≤ φk(η1,k, . . . , ηm,k). (15)

Let us first assume that (i) holds. For every k ∈ K

observe that, since 0 is a minimizer of φk, (7) yields

proxφk
0 = 0. Hence, using (12), (14), (8), and Parse-

val’s identity, we obtain

∑

k∈K

m∑

i=1

|πi,k|2

=
∑

k∈K

|(π1,k, . . . , πm,k)|2

=
∑

k∈K

| proxφk
(ξ1,k, . . . , ξm,k)|2

=
∑

k∈K

| proxφk
(ξ1,k, . . . , ξm,k)− proxφk

0|2

≤
∑

k∈K

|(ξ1,k, . . . , ξm,k)− 0|2

=
∑

k∈K

|(ξ1,k, . . . , ξm,k)|2

=
∑

k∈K

m∑

i=1

|ξi,k|2

=
m∑

i=1

‖xi‖2. (16)

Therefore, (∀i ∈ {1, . . . ,m}) ∑k∈K
|πi,k|2 < +∞. Con-

sequently, we can define

(∀i ∈ {1, . . . ,m}) zi =
∑

k∈K

πi,kei,k, (17)

which is equally well defined under assumption (ii) as

K is then finite. It remains to show that (zi)1≤i≤m =

proxf (x1, . . . , xm). Summing over k in (15) yields

∑

k∈K

m∑

i=1

(ηi,k − πi,k)(ξi,k − πi,k)+

∑

k∈K

φk(π1,k, . . . , πm,k) ≤
∑

k∈K

φk(η1,k, . . . , ηm,k) (18)

and, therefore,

m∑

i=1

〈yi − zi | xi − zi〉+ g(z1, . . . , zm)

≤ g(y1, . . . , ym). (19)

In view of (7), the proof is complete. �

Proposition 2 For every j ∈ {1, . . . , q}, let Gj be a

real Hilbert space, let ϕj ∈ Γ0(Gj), and, for every i ∈
{1, . . . ,m}, let Lj,i ∈ B (Hi,Gj). Set

f : H → ]−∞,+∞]

x 7→
q∑

j=1

ϕj

( m∑

i=1

Lj,ixi

)
(20)
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and suppose that, for every j ∈ {1, . . . , q}, there exists

αj ∈ ]0,+∞[ such that

(∀k ∈ {1, . . . , q})
m∑

i=1

Lj,i ◦ L∗
k,i =

{
αj Id , if j = k;

0, otherwise.
(21)

Then f ∈ Γ0(H) and, for every x ∈ H,

proxf x = (p1, . . . , pm) (22)

where, for every i ∈ {1, . . . ,m},

pi = xi +

q∑

j=1

α−1
j L∗

j,i proxαjϕj

( m∑

k=1

Lj,kxk

)

−
q∑

j=1

α−1
j L∗

j,i

m∑

k=1

Lj,kxk. (23)

Proof Let us denote by G the product space G1×· · ·×Gq
equipped with the usual vector space structure and the

scalar product

(y, z) 7→
q∑

j=1

α−1
j 〈yj | zj〉. (24)

We can write f = g ◦L, where

g : G → ]−∞,+∞]

y 7→
q∑

j=1

ϕj(yj) (25)

and L ∈ B (H,G) is defined by

L : H → G

x 7→
(

m∑

i=1

L1,ixi, . . . ,

m∑

i=1

Lq,ixi

)
. (26)

It follows from (24) that, for every (x,y) ∈ H× G,

〈Lx | y〉 =
q∑

j=1

α−1
j

〈 m∑

i=1

Lj,ixi

∣∣∣∣ yj
〉

=

q∑

j=1

α−1
j

m∑

i=1

〈
xi | L∗

j,iyj
〉

=

m∑

i=1

〈
xi

∣∣∣∣
q∑

j=1

α−1
j L∗

j,iyj

〉
, (27)

from which we deduce that the adjoint of L is

L
∗ : G → H

y 7→
(

q∑

j=1

α−1
j L∗

j,1yj, . . . ,

q∑

j=1

α−1
j L∗

j,myj

)
. (28)

We then get from (21) that L ◦ L∗ = Id . Hence,

Lemma 1 implies that f = g ◦L ∈ Γ0(H) and that

proxg◦L = Id +L
∗ ◦ (proxg − Id ) ◦L. (29)

In addition, it follows from (25) and (24) that, for every

y ∈ G,

proxg y = (proxα1ϕ1
y1, . . . , proxαqϕq

yq). (30)

Altogether, (26), (28), (29), and (30) yield (22)–(23). �

Corollary 1 Let ϕ ∈ Γ0(G) and, for every i ∈
{1, . . . ,m}, let Li ∈ B (Hi,G). Set
f : H → ]−∞,+∞]

x 7→ ϕ

( m∑

i=1

Lixi

)
(31)

and suppose that there exists α ∈ ]0,+∞[ such that

m∑

i=1

Li ◦ L∗
i = α Id . (32)

Then f ∈ Γ0(H) and, for every x ∈ H, proxf x =

(p1, . . . , pm) where, for every i ∈ {1, . . . ,m},

pi = xi + α−1L∗
i proxαϕ

( m∑

k=1

Lkxk

)

− α−1L∗
i

m∑

k=1

Lkxk. (33)

Proof Set q = 1 in Proposition 2. �

Proposition 3 Suppose that G has finite dimension

K, let (φk)1≤k≤K be functions in Γ0(R), and let

(ek)1≤k≤K be an orthonormal basis of G. For every

i ∈ {1, . . . ,m}, let Li ∈ B (Hi,G) and suppose that

there exists {αk}1≤k≤K ⊂ ]0,+∞[ such that

(∀y ∈ G)
m∑

i=1

LiL
∗
i y =

K∑

k=1

αk〈y | ek〉ek. (34)

Set

f : H → ]−∞,+∞] : x 7→
K∑

k=1

φk

(〈 m∑

j=1

Ljxj

∣∣∣∣ ek
〉)

(35)

and, for every k ∈ {1 . . . ,K},

πk =
1

αk
proxαkφk

(〈 m∑

j=1

Ljxj

∣∣∣∣ ek
〉)

. (36)

Then f ∈ Γ0(H) and, for every x ∈ H, proxf x =
(pi)1≤i≤m where, for every i ∈ {1, . . . ,m},

pi = xi + L∗
i

K∑

k=1

(
πk −

1

αk

m∑

j=1

〈Ljxj | ek〉
)
ek. (37)
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Proof For every j ∈ {1, . . . ,K}, set Gj = R, ϕj = φj ,

and

(∀i ∈ {1, . . . ,m}) Lj,i : Hi → Gj : x 7→ 〈Lix | ej〉, (38)

hence

L∗
j,i : Gj → Hi : ξ 7→ ξ L∗

i ej . (39)

Thus, for every j and k in {1, . . . ,K} and every ξ ∈ R,

we derive from (34) that

m∑

i=1

Lj,iL
∗
k,iξ =

m∑

i=1

Lj,iξ L
∗
i ek

= ξ
m∑

i=1

〈(LiL∗
i )ek | ej〉

= ξ

〈 K∑

l=1

αl〈ek | el〉el
∣∣∣∣ ej
〉

= ξ

K∑

l=1

αl〈ek | el〉〈el | ej〉. (40)

Therefore, for every j ∈ {1, . . . ,K}, (21) is satisfied. In
turn, Proposition 2 with q = K guarantees that f ∈
Γ0(H), and (23) reduces to (37). �

4 Multicomponent proximal algorithms

We present several algorithms for solving Problem 1 un-

der various assumptions on the functions involved. Most
of these algorithms are tolerant to errors in the com-

putation of proximal points and gradients. To quantify

the amount of error which is tolerated, it will be conve-

nient to use the following notation: given two sequences

(xn)n∈N and (yn)n∈N in H,
[
(∀n ∈ N) xn ≈ yn

]
⇔

∑

n∈N

‖xn − yn‖ < +∞. (41)

4.1 Forward-backward splitting

Problem 2 In Problem 1, suppose that p = 2 and that

f2 is differentiable on H with a β–Lipschitz continuous

gradient for some β ∈ ]0,+∞[. Hence, the problem is

to

minimize
x1∈H1,..., xm∈Hm

f1(x1, . . . , xm) + f2(x1, . . . , xm), (42)

under the assumption that solutions exist.

The particular case when f1 is a separable sum and

f2 involves a linear mixture of the variables was investi-
gated in [10]. The following result addresses the general

case; it implicitly assumes that the proximity operator

of f1 can be computed to within a quantifiable error.

Theorem 1 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences

generated by the following routine.

Initialization

ε ∈ ]0,min{1, 1/β}[
For i = 1, . . . ,m

⌊ xi,0 ∈ Hi

For n = 0, 1, . . .


(yi,n)1≤i≤m ≈ ∇f2(xi,n)1≤i≤m
γn ∈ [ε, (2/β)− ε]

(ui,n)1≤i≤m ≈ proxγnf1(xi,n − γnyi,n)1≤i≤m
λn ∈ [ε, 1]

For i = 1, . . . ,m

⌊ xi,n+1 = xi,n + λn(ui,n − xi,n)

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges

weakly to a point xi ∈ Hi. Moreover, (xi)1≤i≤m is a

solution to Problem 2.

Proof Apply [21, Theorem 3.4(i)] in H and use (3). �

Remark 1

(i) Multicomponent version of variants of the above

forward-backward algorithm such as the Nesterov-

like first-order methods [9,34,45] can be ob-
tained by similar reformulations in H. However,

for these methods, convergence of the iterates

((xi,n)1≤i≤m)n∈N to a solution to Problem 2 is not

guaranteed, even in a finite-dimensional setting.
(ii) Strong convergence conditions in Theorem 1 can

be derived from [21, Theorem 3.4(iv)].

4.2 Douglas-Rachford splitting

In this section, we relax the assumption of smoothness

on f2 and assume that its proximity operator is imple-

mentable to within a quantifiable error.

Problem 3 In Problem 1, suppose that p = 2 and that

0 ∈ sri(dom f1 − dom f2). (43)

Hence, the problem is to

minimize
x1∈H1,..., xm∈Hm

f1(x1, . . . , xm) + f2(x1, . . . , xm), (44)

under the assumption that solutions exist.
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Theorem 2 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences

generated by the following routine.

Initialization


ε ∈ ]0, 1[
γ ∈ ]0,+∞[

For i = 1, . . . ,m

⌊ xi,0 ∈ Hi

For n = 0, 1, . . .


(yi,n)1≤i≤m ≈ proxγf2(xi,n)1≤i≤m
(ui,n)1≤i≤m ≈ proxγf1(2yi,n − xi,n)1≤i≤m
λn ∈ [ε, 2− ε]

For i = 1, . . . ,m⌊
xi,n+1 = xi,n + λn(ui,n − yi,n).

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges

weakly to a point xi ∈ Hi. Moreover, proxγf2(x1, . . . , xm)

is a solution to Problem 3 and ((yi,n)1≤i≤m)n∈N con-

verges weakly to proxγf2(x1, . . . , xm).

Proof For the first two claims, apply [17, Theorem 20]

in H and use (3). For the weak convergence claim, com-

bine the results of [8, Corollary 27.4] and [39]. �

Remark 2

(i) Strong convergence conditions in Theorem 2 can

be derived from [16, Theorem 2.1(ii)].

(ii) If H is finite dimensional, the qualification condi-

tion (43) reduces to

(ri dom f1) ∩ (ri dom f2) 6= ∅. (45)

4.3 Parallel proximal algorithm (PPXA)

The algorithm presented in this section aims at solv-

ing Problem 1 under minimal technical assumptions.

Its cost of implementation depends on the ease of (ap-

proximate) computation of the individual proximity op-

erators.

Problem 4 In Problem 1, suppose that

0 ∈ sri(D − dom f1 × · · · × dom fp) (46)

where D =
{
(x, . . . ,x)

∣∣ x ∈ H
}
. The problem is to

minimize
x1∈H1,..., xm∈Hm

p∑

k=1

fk(x1, . . . , xm), (47)

under the assumption that solutions exist.

In [1], a particular instance of Problem 4 in finite

dimensional spaces is considered. It is approached via

the alternating direction method of multipliers. The al-
gorithm used below is an application of the PPXA al-

gorithm proposed in [19] that allows us to address the

general case.

Theorem 3 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences

generated by the following routine.

Initialization


ε ∈ ]0, 1[

γ ∈ ]0,+∞[

{ωk}1≤k≤p ⊂ ]0, 1] and

p∑

k=1

ωk = 1

For i = 1, . . . ,m

For k = 1, . . . , p
⌊ yi,k,0 ∈ Hi

xi,0 =

p∑

k=1

ωkyi,k,0

For n = 0, 1, . . .


For k = 1, . . . , p⌊
(ui,k,n)1≤i≤m ≈ proxγfk/ωk

(yi,k,n)1≤i≤m

For i = 1, . . . ,m

si,n =

p∑

k=1

ωkui,k,n

λn ∈ [ε, 2− ε]
For k = 1, . . . , p

⌊ yi,k,n+1 = yi,k,n + λn(2si,n − xi,n − ui,k,n)

xi,n+1 = xi,n + λn(si,n − xi,n)

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges

weakly to a point xi ∈ Hi. Moreover, (x1, . . . , xm) is

a solution to Problem 4.

Proof Apply [19, Theorem 3.4] in H and use (3). �

Remark 3 Suppose that H is finite dimensional and
that

p⋂

k=1

ri dom fk 6= ∅. (48)

Then it follows from [19, Proposition 3.6(vi)] that the

qualification condition (46) is satisfied.

4.4 Dykstra-like splitting

We consider instances of Problem 1 in which fp is a

simple quadratic function.

Problem 5 In Problem 1, suppose that p ≥ 3, that

p−1⋂

k=1

dom fk 6= ∅, (49)
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and that fp : x 7→ (p− 1)
∑m
i=1 ‖xi− zi‖2/2, where z ∈

H. Hence, the problem is to

minimize
x1∈H1,..., xm∈Hm

p−1∑

k=1

fk(x1, . . . , xm)

+
p− 1

2

m∑

i=1

‖xi − zi‖2. (50)

Set f =
∑p−1

k=1 fk/(p−1). Then it follows from (49) that

f ∈ Γ0(H). Hence, in view of (3), Problem 5 admits a
unique solution, namely proxf z.

Theorem 4 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences

generated by the following routine.

Initialization


For i = 1, . . . ,m
xi,0 = zi
For k = 1, . . . , p− 1
⌊ yi,k,0 = xi,0

For n = 0, 1, . . .


For k = 1, . . . , p− 1⌊
(ui,k,n)1≤i≤m = proxfk(yi,k,n)1≤i≤m

For i = 1, . . . ,m

xi,n+1 =
1

p− 1

p−1∑

k=1

ui,k,n

For k = 1, . . . , p− 1

⌊ yi,k,n+1 = xi,n+1 + yi,k,n − ui,k,n.

(51)

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges

strongly to a point xi ∈ Hi. Moreover, (x1, . . . , xm) is

a solution to Problem 5.

Proof Apply [16, Theorem 4.2] in H and use (3). �

Remark 4 Suppose that (49) is replaced by the stronger

condition (46) (applied to the functions (fk)1≤k≤p−1).

Then it follows from [16, Theorem 3.3] that the conclu-
sion of the above theorem remains valid if the proximity

operators are implemented approximately in (51).

5 Applications to image decomposition and

recovery

In this section, we apply the algorithms proposed in

Section 4 to stereoscopic image restoration, multispec-

tral imaging, and image decomposition.

5.1 Stereoscopic image restoration

5.1.1 Problem formulation

We consider the problem of restoring a pair of N -pixel
stereoscopic images x1 ∈ R

N and x2 ∈ R
N , which cor-

respond to the left and the right views of the same

scene. For a given value of the disparity field, the dis-

parity compensation process between the two images is
modeled as

x1 = Dx2 + v, (52)

where the matrix D is in R
N×N [38] and where v stands

for modeling errors. The observations consist of de-

graded versions

z1 = L1x1 + w1 and z2 = L2x2 + w2 (53)

of x1 and x2, respectively, where the matrices L1 ∈
R
N×N and L2 ∈ R

N×N model the data acquisition pro-
cess, and where w1 and w2 are mutually independent

Gaussian noise vectors with independent components

which are N (0, σ2
1)– and N (0, σ2

2)–distributed, respec-

tively. In addition, it is assumed that the decomposi-

tions of x1 and x2 in orthonormal bases (e1,k)1≤k≤N
and (e2,k)1≤k≤N , respectively, of R

N are sparse. For

every k ∈ {1, . . . , N}, functions φ1,k ∈ Γ0(R) and

φ2,k ∈ Γ0(R) are used to promote the sparsity of the

decompositions [18,22]. The following variational for-
mulation is consistent with the above hypotheses and

models.

Problem 6 Let ϑ ∈ [0,+∞[. The objective is to

minimize
x1∈RN , x2∈RN

N∑

k=1

φ1,k(〈x1 | e1,k〉) +
N∑

k=1

φ2,k(〈x2 | e2,k〉)

+
1

2σ2
1

‖L1x1 − z1‖2 +
1

2σ2
2

‖L2x2 − z2‖2

+
ϑ

2
‖x1 −Dx2‖2. (54)

We can formulate Problem 6 as an instance of Prob-

lem 1 with H1 = H2 = R
N and m = 2 functions,

namely

f1 : (x1, x2) 7→
N∑

k=1

φ1,k(〈x1 | e1,k〉)

+

N∑

k=1

φ2,k(〈x2 | e2,k〉) (55)

and

f2 : (x1, x2) 7→
1

2σ2
1

‖L1x1 − z1‖2 +
1

2σ2
2

‖L2x2 − z2‖2

+
ϑ

2
‖x1 −Dx2‖2. (56)
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Original left x1 Original right x2

Degraded left z1 Degraded right z2
SNR = 12.9 dB – SSIM = 0.39 SNR = 18.0 dB – SSIM = 0.56

Restored left x1 with ϑ = 0 Restored right x2 with ϑ = 0
SNR = 15.5 dB – SSIM = 0.58 SNR = 19.3 dB – SSIM = 0.73

Restored left x1 with ϑ = 1.6× 10−3 Restored right x2 with ϑ = 1.6× 10−3

SNR = 17.8 dB – SSIM = 0.79 SNR = 19.7 dB – SSIM = 0.83

Fig. 1 Stereoscopic image restoration.
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Proposition 4 Let x1 and x2 be arbitrary vectors in

R
N . Then f2 is differentiable at (x1, x2) and

∇f2(x1, x2) =
( 1

σ2
1

L⊤
1 (L1x1 − z1) + ϑ(x1 −Dx2),

1

σ2
2

L⊤
2 (L2x2 − z2) + ϑD⊤(Dx2 − x1)

)
. (57)

Moreover, ∇f2 is β-Lipschitz continuous, with

β = max{σ−2
1 ‖L1‖2, σ−2

2 ‖L2‖2}+ ϑ(1 + ‖D‖2). (58)

Proof The expression (57) follows from straightforward
calculus. Now set

L =

[
σ−1
1 L1 [0]

[0] σ−1
2 L2

]
and M =

√
ϑ

[
I −D
[0] [0]

]
. (59)

Then, using matrix notation, we can write

∇f2
[
x1
x2

]
= (L⊤

L+M
⊤
M)

[
x1
x2

]
−L

⊤

[
σ−1
1 z1
σ−1
2 z2

]
. (60)

Hence, a Lipschitz constant of ∇f2 is ‖L⊤L+M⊤M‖,
where ‖ · ‖ denotes the spectral norm. To obtain a

tractable bound, we observe that

‖L⊤L+M⊤M‖ ≤ ‖L⊤L‖+ ‖M⊤M‖
= ‖L‖2 + ‖M‖2

= ‖L‖2 + ϑ(1 + ‖D‖2). (61)

Now set x =
[
x1 x2

]⊤
. Then

‖Lx‖2 = σ−2
1 ‖L1x1‖2 + σ−2

2 ‖L2x2‖2

≤ σ−2
1 ‖L1‖2‖x1‖2 + σ−2

2 ‖L2‖2‖x2‖2

≤ max{σ−2
1 ‖L1‖2, σ−2

2 ‖L2‖2}‖x‖2. (62)

Hence, ‖L‖2 ≤ max{σ−2
1 ‖L1‖2, σ−2

2 ‖L2‖2} and (61)
yields ‖L⊤L+M⊤M‖ ≤ β. �

In view of Proposition 4, Problem 6 can be solved

by the forward-backward algorithm (see Theorem 1).

5.1.2 Numerical experiments

Experimental results are displayed in Figure 1 for

stereoscopic images of size 256 × 256 (N = 2562).

In this example, L1 and L2 are periodic convolution
operators with motion kernel blur of sizes 7 × 7 and

3 × 3, respectively. This kind of blur was considered

in a related context in [36]. A white Gaussian noise is

added corresponding to a blurred signal-to-noise-ratio
(BSNR) of 21.6 dB for z1 and 21.8 dB for z2 (the

BSNR is defined as 10 log10
(
‖Lixi‖2/(Nσ2

i )
)
). In addi-

tion, (e1,k)1≤k≤N and (e2,k)1≤k≤N are symmlet wavelet

orthonormal bases (length 6) over 2 resolution lev-

els. For every k ∈ {1, . . . , N}, φ1,k = µ1,k| · |p1,k and

φ2,k = µ2,k| · |p2,k , where {µ1,k, µ2,k} ⊂ ]0,+∞[ and

{p1,k, p2,k} ⊂ [1,+∞[.

The operators (proxφ1,k
)1≤k≤N and (proxφ2,k

)1≤k≤N
can be calculated explicitly [14, Examples 4.2 and 4.4].
The proximity operator of f1 can thus be deduced from

Proposition 1, the separability of this function, and [21,

Lemma 2.8 and 2.9]. For every k ∈ {1, . . . , N}, the val-

ues of µ1,k, µ2,k, p1,k, and p2,k are chosen using a max-
imum likelihood approach in a subband-adaptive man-

ner with p1,k and p2,k in {1, 4/3, 3/2, 2}. The value of

ϑ is selected so as to maximize the signal-to-noise-ratio

(SNR). The SNR between an image y and the origi-

nal image y is defined as 20 log10(‖y‖/‖y − y‖). In our
experiments we also propose to compare the restored

images in terms of structural similarity (SSIM) [44].

The SSIM takes on values from -1 to 1. The value 1 is

achieved for two identical images. The disparity map
has been estimated by using the method described in

[32]. Note that the existence of a solution to Problem 6

is secured by the fact that f1+ f2 is a coercive function

in Γ0(R
N ⊕ R

N ) [21, Propositions 3.1(i) and 5.15(i)].

Thus, Problem 6 is a special case of Problem 2. In this
context, setting λn ≡ 1, the forward-backward algo-

rithm assumes the following form.

Initialization


σ1 = σ2 = 12

ϑ = 0 or ϑ = 1.6× 10−3

γ =1.9/
(
max{σ−2

1 ‖L1‖2, σ−2
2 ‖L2‖2}+ϑ(1 +‖D‖2)

)

x1,0 = z1
x2,0 = z2

For n = 0, 1, . . .


y1,n = σ−2
1 L⊤

1 (L1x1,n − z1) + ϑ(x1,n −Dx2,n)

y2,n = σ−2
2 L⊤

2 (L2x2,n − z2)− ϑD⊤(x1,n −Dx2,n)

x1,n+1=

N∑

k=1

(
proxγφ1,k

〈x1,n− γy1,n | e1,k〉
)
e1,k

x2,n+1=

N∑

k=1

(
proxγφ2,k

〈x2,n− γy2,n | e2,k〉
)
e2,k

When ϑ = 0, there is no coupling between the left

and right views (images in the third row of Figure 1). As
can be observed in Figure 1, the coupling term leads to

a significant improvement of the restoration, especially

for the most degraded image (bottom-left image).

Using ϑ = 1.6 × 10−3, we compare the forward-

backward algorithm of Theorem 1 (implemented with
λn ≡ 1 and γn ≡ 1.99/β) to a multicomponent version

of the Beck-Teboulle algorithm [9] and a multicompo-

nent version of the Nesterov algorithm [35]. Although,
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contrary to the forward-backward algorithm, the Beck-

Teboulle and Nesterov algorithms do not insure con-

vergence of the iterates, they are known to provide a

theoretically optimal convergence rate for the objective

function. However, in this example, their performance
appear to be quite comparable on that score (see Fig-

ure 2).

1 2 3 4 5 6 7 8 9

10^5

3.10^5

2.10^5

Fig. 2 Convergence of the objective function in Problem 6 for
the forward-backward algorithm (solid line), the Nesterov algo-
rithm (dotted line), and the Beck-Teboulle algorithm (dashed
line) versus iteration number.

5.2 Multispectral image denoising

5.2.1 Problem formulation

A common multispectral image processing problem is

to denoise m images (yi)1≤i≤m in R
N from noisy ob-

servations (zi)1≤i≤m given by

(∀i ∈ {1, . . . ,m}) zi = yi + wi, (63)

where (wi)1≤i≤m are realizations of mutually indepen-

dent zero-mean white Gaussian noise processes with re-

spective variances (σ2
i )1≤i≤m. Early methods for multi-

spectral image recovery are described in [28]. A tutorial

on wavelet-based multispectral denoising can be found

in [13].

To solve this denoising problem, we assume that, for

every i ∈ {1, . . . ,m}, yi satisfies some constraint repre-
sented by a nonempty closed convex set Ci ⊂ R

N , and

that it admits a sparse decomposition in an orthonor-

mal basis (ei,k)1≤k≤N of RN . In addition, similarities

between the images are promoted by penalizing a dis-
tance between their components in some orthonormal

basis (bk)1≤k≤N of R
N . These considerations lead to

the variational problem

minimize
y1∈C1,..., ym∈Cm

m∑

i=1

1

2σ2
i

‖yi−zi‖2+
m∑

i=1

N∑

k=1

µ̃i,k|〈yi | ei,k〉|

+

m−1∑

i=1

m∑

j=i+1

ϑ̃i,j

N∑

k=1

|〈yi − yj | bk〉| (64)

where, for every i ∈ {1, . . . ,m}, {µ̃i,k}1≤k≤N ⊂ ]0,+∞[

and {ϑ̃i,j}i+1≤j≤m ⊂ ]0,+∞[. After appropriate rescal-

ing of the variables, this problem can be reformulated

as follows.

Problem 7 For every i ∈ {1, . . . ,m}, let {µi,k}1≤k≤N ⊂
]0,+∞[ and {ϑi,j}i+1≤j≤m ⊂ ]0,+∞[. The objective is

to

minimize
x1∈RN ,..., xm∈RN

p− 1

2

m∑

i=1

‖xi − σ−1
i zi‖2

+

m∑

i=1

N∑

k=1

µi,kσi|〈xi | ei,k〉|

+

m−1∑

i=1

m∑

j=i+1

ϑi,j

N∑

k=1

|〈σixi − σjxj | bk〉|

+

m∑

i=1

ιCi
(σixi). (65)

To cast this problem in the format of Problem 1, let
us define

J =
{
(i, j) ∈ N

2
∣∣ 1 ≤ i ≤ m− 1, i+ 1 ≤ j ≤ m

}
(66)

and

i : J →
{
1, . . . ,m(m− 1)/2

}

(i, j) 7→ m(i − 1)− i(i+ 1)/2 + j. (67)

Moreover, let us set p = m(m− 1)/2 + 3 and





(∀(i, j) ∈ J) fi(i,j) : (x1, . . . , xm) 7→

ϑi,j

N∑

k=1

|〈σixi − σjxj | bk〉|

fp−2 : (x1, . . . , xm) 7→
m∑

i=1

N∑

k=1

µi,kσi|〈xi | ei,k〉|

fp−1 : (x1, . . . , xm) 7→
m∑

i=1

ιCi
(σixi)

fp : (x1, . . . , xm) 7→ p− 1

2

m∑

i=1

‖xi − σ−1
i zi‖2.

(68)

Note that, for every k ∈ {1, . . . , p−2}, dom fk = (RN )m

and dom fp−1 = σ−1
1 C1×· · ·×σ−1

m Cm. Hence, since the

sets (Ci)1≤i≤m are nonempty, (49) holds and Problem 7
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can be solved by the Dykstra-like algorithm presented

in Theorem 4, with H1 = · · · = Hm = R
N . An ex-

plicit form of the proximity operators of the functions

(fk)1≤k≤m(m−1)/2 can be deduced from Proposition 3.

Indeed, for every (i, j) ∈ J , we can set in this propo-
sition H1 = · · · = Hm = G = R

N , (∀k ∈ {1, . . . , N})
and φk = ϑi,j | · |, and define the matrices (Lℓ)1≤ℓ≤m in

R
N×N as

(∀ℓ ∈ {1, . . . ,m}) Lℓ =





σℓ I , if ℓ = i;

−σℓ I , if ℓ = j;

0 otherwise.

(69)

Finally, the proximity operator of fp−2 can be derived
from Proposition 1 combined with the separability of

this function, [21, Lemma 2.8 and 2.9], and [14, Exam-

ple 4.2]. The proximity operator of fp−1 is provided in

Example 1.

5.2.2 Numerical experiments

Figure 3 shows the results obtained on a multispec-

tral image of size 256 × 256 (N = 2562) with 3 chan-

nels (m = 3) and pixel values in the range [0, 255].

These images are corrupted by white Gaussian noises

with standard deviations σ1 = 11, σ2 = 12, and
σ3 = 13 (the corresponding SNR values are indicated

in Figure 3). On the other hand, (bk)1≤k≤N is the

Haar orthonormal wavelet basis on 3 resolution levels

and, for every i ∈ {1, . . . ,m}, (ei,k)1≤k≤N are symm-
let orthonormal wavelet bases (length 6) on 3 resolu-

tion levels. The values of the regularization parame-

ters ((µi,k)1≤i≤3)1≤k≤N (chosen subband-adaptive by

a maximum likelihood approach), and of the coupling

parameters ϑ1,2, ϑ1,3, and ϑ2,3 are selected so as to max-
imize the SNR. For every i ∈ {1, . . . ,m}, Ci = [0, 255]N

models the constraint on the range of pixel values. The

resulting Dykstra-like algorithm is described below.

Initialization


σ1 = 11 ; σ2 = 12 ; σ3 = 13

y1,1,0 = . . . = y1,5,0 = x1,0 = z1
y2,1,0 = . . . = y2,5,0 = x2,0 = z2
y3,1,0 = . . . = y3,5,0 = x3,0 = z3
α1,2 = σ2

1 + σ2
2

α1,3 = σ2
1 + σ2

3

α2,3 = σ2
2 + σ2

3

For n = 0, 1, . . .


u1,1,n = y1,1,n

+α−1
1,2σ1

∑N
k=1

(
proxα1,2ϑ1,2|·| 〈σ1y1,1,n − σ2y2,1,n | bk〉

+〈σ1y1,1,n − σ2y2,1,n | bk〉
)
bk

u2,1,n = y2,1,n

−α−1
1,2σ2

∑N
k=1

(
proxα1,2ϑ1,2|·| 〈σ1y1,1,n − σ2y2,1,n | bk〉

+〈σ1y1,1,n − σ2y2,1,n | bk〉
)
bk

u3,1,n = y3,1,n

u1,2,n = y1,2,n

+α−1
1,3σ1

∑N
k=1

(
proxα1,3ϑ1,3|·| 〈σ1y1,2,n − σ3y3,2,n | bk〉

+〈σ1y1,2,n − σ3y3,2,n | bk〉
)
bk

u2,2,n = y2,2,n
u3,2,n = y3,2,n

−α−1
1,3σ3

∑N
k=1

(
proxα1,3ϑ1,3|·| 〈σ1y1,2,n − σ3y3,2,n | bk〉

+〈σ1y1,2,n − σ3y3,2,n | bk〉
)
bk

u1,3,n = y1,3,n
u2,3,n = y2,3,n

+α−1
2,3σ2

∑N
k=1

(
proxα2,3ϑ2,3|·| 〈σ2y2,3,n − σ3y3,3,n | bk〉

+〈σ2y2,3,n − σ3y3,3,n | bk〉
)
bk

u3,3,n = y3,3,n

−α−1
2,3σ3

∑N
k=1

(
proxα2,3ϑ2,3|·| 〈σ2y2,3,n − σ3y3,3,n | bk〉

+〈σ2y2,3,n − σ3y3,3,n | bk〉
)
bk

u1,4,n =
∑N

k=1

(
proxµ1,kσ1|·| 〈y1,4,n | e1,k〉

)
e1,k

u2,4,n =
∑N

k=1

(
proxµ2,kσ2|·| 〈y2,4,n | e2,k〉

)
e2,k

u3,4,n =
∑N

k=1

(
proxµ3,kσ3|·| 〈y3,4,n | e3,k〉

)
e3,k

u1,5,n = PC1
(σ1 y1,5,n)

u2,5,n = PC2
(σ2 y2,5,n)

u3,5,n = PC3
(σ3 y3,5,n)

x1,n+1 = (u1,1,n + u1,2,n + u1,3,n + u1,4,n + u1,5,n)/5

x2,n+1 = (u2,1,n + u2,2,n + u2,3,n + u2,4,n + u2,5,n)/5
x3,n+1 = (u3,1,n + u3,2,n + u3,3,n + u3,4,n + u3,5,n)/5

For j = 1, . . . , 5
y1,j,n+1 = x1,n+1 + y1,j,n − u1,j,n
y2,j,n+1 = x2,n+1 + y2,j,n − u2,j,n
y3,j,n+1 = x3,n+1 + y3,j,n − u3,j,n

It can be observed from the images displayed on the
second and third columns of Figure 3 that the introduc-

tion of the coupling term has a significant influence on

denoising performance. Moreover, in our experiments,
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Original image y1 Original image y2 Original image y3

Degraded image z1 Degraded image z2 Degraded image z3
SNR = 16.2 dB – SSIM = 0.47 SNR = 8.28 dB – SSIM = 0.38 SNR = 7.08 dB – SSIM = 0.45

Restored y1 without coupling term Restored y2 without coupling term Restored y3 without coupling term
SNR = 22.3 dB – SSIM = 0.78 SNR = 17.4 dB – SSIM = 0.85 SNR = 13.2 dB – SSIM = 0.75

Restored y1 with coupling term Restored y2 with coupling term Restored y3 with coupling term
SNR = 24.2 dB – SSIM = 0.87 SNR = 19.3 dB – SSIM = 0.91 SNR = 14.7 dB – SSIM = 0.82

Fig. 3 Multispectral restoration.
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we observed that better results were obtained when dif-

ferent bases (bk)1≤k≤N , (e1,k)1≤k≤N , . . . , (em,k)1≤k≤N
were employed.

It turns out that, in this particular problem,

an alternative solution method is PPXA (see Theo-

rem 3) applied to the minimization of the sum of the

m(m− 1)/2+2 functions f1, f2, . . . , fp−2, and fp−1+fp
defined in (68). The proximity operator of the latter
is given by [21, Lemma 2.6(i)]. Indeed, the qualifica-

tion condition (see (48)) is satisfied since dom f1 =

· · · = dom fp−2 = (RN )m and, (∀i ∈ {1, . . . ,m})
intCi = ]0, 255[ 6= ∅. The choice of the PPXA pa-
rameters has been optimized empirically for speed of

convergence and set to λn ≡ 1.3, γ = 1, and ω1 = · · · =
ωp−1 = 1/(p− 1). In Figure 4, ‖xn − x∞‖/‖x0 − x∞‖
is plotted as a function of computation time, where

(xn)n∈N =
(
(x1,n, x2,n, x3,n)

)
n∈N

is the sequence gen-
erated by an algorithm and x∞ is the unique solution

to Problem 7. In our experiments, 500 iterations were

used to produce this solution.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4 Problem 7: Convergence profiles of the Dykstra-like algo-
rithm (solid line) and of PPXA (dashed line) versus computation
time in seconds.

5.3 Structure–texture image decomposition

An important problem in image processing is to de-

compose an image into elementary structures. In the
context of denoising, this decomposition was investi-

gated in [37] with a total variation potential. In [31], a

different potential was used to better penalize strongly

oscillating components. The resulting variational prob-
lem is not straightforward. Numerical methods were

proposed in [4,41] and experiments were performed

for image denoising and analysis problems based on

a geometry-texture decomposition. Another challeng-

ing problem is to extract meaningful components from

a blurred and noise-corrupted image. In the presence

of additive Gaussian noise, a decomposition into ge-

ometry and texture components is proposed in [2,23].
The method developed in the present paper, will make

it possible to consider general (not necessarily addi-

tive and Gaussian) noise models and arbitrary linear

degradation operators. We consider a simple geometry-
texture decomposition from a degraded observation.

5.3.1 Problem formulation

In this experiment, the observed image z ∈ R
N is ob-

tained by multiplying the original image x ∈ R
N with a

matrix T ∈ R
N×N , which models a blur, and corrupt-

ing Tx by a Poisson noise with scaling parameter α. It

is assumed that

T has its entries in [0,+∞[ and

each of its rows is nonzero. (70)

The inverse problem we address is to obtain the decom-

position of x into the sum of a geometry and a texture

component, say

x = R1(x1) +R2(x2), (71)

where R1 : R
N1 7→ R

N and R2 : R
N2 7→ R

N are known

operators. The vectors x1 ∈ R
N1 and x2 ∈ R

N2 to be

estimated parameterize, respectively, the geometry and

the texture components.

We consider a simple instance of (71) involving a

linear mixture: N1 = N , R1 : x1 7→ x1, and R2 : x2 7→
F⊤x2, where F

⊤ ∈ R
N×K is a linear tight frame syn-

thesis operator. In other words, the information regard-

ing the texture component pertains to the coefficients

x2 of its decomposition in the frame. The tightness con-

dition implies that

F⊤F = ν Id , for some ν ∈ ]0,+∞[ . (72)

Thus, the original image is decomposed as x = x1 +

F⊤x2. It is known a priori that x ∈ C1 ∩ C2, where

C1 = [0, 255]N (73)

models the constraint on the range of pixel values, and

C2 =

{
x ∈ R

N
∣∣ x̂ = (ηk)1≤k≤N ,

∑

k∈I

|ηk|2 ≤ δ

}
, (74)

for some δ ∈ ]0,+∞[, models an energy constraint on

the 2-D DFT x̂ of the original image in some low fre-

quency band I ⊂ {1, . . . , N}. In addition, to limit the
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total variation [11] of the geometrical component, the

potential x 7→ ψ(Hx, V x) is used, with

ψ :
(
(ηk)1≤k≤N , (ζk)1≤k≤N

)
7→

χ

N∑

k=1

√
|ηk|2 + |ζk|2, (75)

where H ∈ R
N×N and V ∈ R

N×N are matrix represen-

tations of the horizontal and vertical discrete differen-

tiation operators, respectively, and where χ ∈ ]0,+∞[.

Furthermore, to promote sparsity in the frame of the
texture component of the image, the potential

h : (ηk)1≤k≤K 7→
K∑

k=1

τk|ηk| (76)

is introduced, where {τk}1≤k≤K ⊂ ]0,+∞[. Finally,

as a data fidelity term well adapted to Poisson noise,

we employ the generalized Kullback-Leibler divergence
with a scaling parameter α ∈ ]0,+∞[. Upon setting

z = (ζk)1≤k≤N , this leads to the function

g : (ξk)1≤k≤N 7→
N∑

k=1

φk(ξk), (77)

where, for every k ∈ {1, . . . ,K},

φk : R → ]−∞,+∞]

ξ 7→





−ζk ln(ξ) + αξ, if ζk ≥ 0 and ξ > 0;

0, if ξ = 0;

+∞, otherwise.

(78)

Altogether, the variational problem is to

minimize
x1∈R

N, x2∈R
K

x1+F
⊤x2∈C1

x1+F
⊤x2∈C2

ψ(Hx1, V x1) + h(x2)

+ g(Tx1 + TF⊤x2). (79)

This problem is a particular case of (2) with m = 2,

p = 4, and





f1 : (x1, x2) 7→ ψ(Hx1, V x1) + h(x2),

f2 : (x1, x2) 7→ g(Tx1 + TF⊤x2),

f3 : (x1, x2) 7→ ιC1
(x1 + F⊤x2),

f4 : (x1, x2) 7→ ιC2
(x1 + F⊤x2).

(80)

However, since the operators (proxfi)1≤i≤4 are not

easily implementable, we cannot apply directly Theo-
rems 1, 2, or 3. To circumvent this difficulty, a strategy

is to decompose (79) into an equivalent problem by in-

troducing auxiliary variables.

A first equivalent problem to (79) is

minimize
x1,x2,x3,x4,x5,x6

x3=x1+F
⊤x2

x3∈C1∩C2

x4=Tx3

x5=Hx1, x6=V x1

ψ(x5, x6) + h(x2) + g(x4), (81)

where we have introduced the auxiliary variables

(x3, x4, x5, x6) ∈ R
N ⊕R

N ⊕R
N ⊕R

N . Problem (81) is
a particular case of (2) with m = 6, p = 3, and




f1 : (x1, . . . , x6) 7→ h(x2) + ιC1
(x3)

+g(x4) + ψ(x5, x6),

f2 : (x1, . . . , x6) 7→ ιC2
(x3),

f3 : (x1, . . . , x6) 7→ ι{0}(x1 + F⊤x2 − x3)

+ι{0}(Tx3 − x4) + ι{0}(Hx1 − x5)

+ι{0}(V x1 − x6).

(82)

In this formulation, the rôle of f3 is to impose the con-
straints x1 + F⊤x2 = x3, Tx3 = x4, Hx1 = x5, and

V x1 = x6. As seen in Example 1, proxιC1

= PC1
and

proxιC2

= PC2
. On the other hand, the proximity oper-

ators of ψ, h, and g can be obtained from [19, Proposi-

tion 2.8(i)], [21, Example 2.16], and [17, Example 30],
respectively. In turn, since f1 is separable, its proxim-

ity operator follows straightforwardly componentwise.

Now set

L1 =




I F⊤ − I [0] [0] [0]

[0] [0] T − I [0] [0]
H [0] [0] [0] − I [0]

V [0] [0] [0] [0] − I


 . (83)

It follows from (82) and (83) that f3 = ιkerL1
, where

kerL1 =
{
x ∈ H

∣∣ L1x = 0
}
. Hence, by Example 1

and [24, Chapter 8],

proxf3 = PkerL1
= I −L⊤

1

(
L1L

⊤
1

)−1
L1. (84)

Under the assumption that the matrices T , H , and V

are block-circulant with circulant blocks, they are diag-

onalized by the 2-D DFT. Hence, combining (84), (83),
and (72) we deduce that proxf3 is computable explic-

itly. On the other hand, it follows from (82), (76), (73),

(77), (75), (74), and (83) that





ri dom f1 = R
N × R

K × intC1

× ]0,+∞[
N × R

N × R
N

ri dom f2 = R
N × R

K × intC2

×R
N × R

N × R
N

ri dom f3 = kerL1.

(85)

Hence, qualification condition (48) reduces to

(∃ (x1, . . . , x6) ∈ kerL1)

{
x3 ∈ intC1 ∩ intC2

x4 ∈ ]0,+∞[
N
,

(86)
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which is equivalent to

(∃(x1, . . . , x6) ∈ R
N × R

K × R
N × R

N × R
N × R

N )




x1 + F⊤x2 = x3 ∈ intC1 ∩ intC2,

T x3 = x4 ∈ ]0,+∞[
N

Hx1 = x5

V x1 = x6.

(87)

This condition is satisfied if

T (int(C1 ∩ C2)) ∩ ]0,+∞[
N 6= ∅. (88)

Indeed, let y ∈ T (int(C1 ∩C2))∩ ]0,+∞[
N
. Then there

exists x ∈ int(C1 ∩ C2) such that Tx = y ∈ ]0,+∞[
N
.

Hence, for every x2 ∈ R
K , if we set x3 = x, x4 =

y = Tx3, x1 = x3 − F⊤x2, x5 = Hx1, and V x1 = x6,

(87) is seen to hold. Since (73) and (74) yield int(C1 ∩
C2) 6= ∅, we deduce from (70) that (88) (and hence

(48)) is satisfied. Thus, (81) can be solved by PPXA

(see Theorem 3 and Remark 3).
Another equivalent formulation of (79) is

minimize
x1,x2,x3,x4,x5,x6,x7

x3=x1+F
⊤x2

x4=Tx3

x5=Hx1, x6=V x1

x7=x3

x3∈C1, x7∈C2

ψ(x5, x6) + h(x2) + g(x4), (89)

where the additional auxiliary variable x7 ∈ R
N has

been introduced. Problem (89) is a particular case of
(2) with m = 7, p = 2, and




f1 : (x1, . . . , x7) 7→ h(x2) + ιC1
(x3)

+g(x4) + ψ(x5, x6)

+ιC2
(x7)

f2 : (x1, . . . , x7) 7→ ι{0}(x1 + F⊤x2 − x3)

+ι{0}(Tx3 − x4) + ι{0}(Hx1 − x5)

+ι{0}(V x1 − x6) + ι{0}(x3 − x7).

(90)

As previously observed, since the proximity operators

of ψ, h, g, ιC1
, and ιC2

are easily computable, so is

proxf1 . Furthermore, if we set

L2 =




I F⊤ − I [0] [0] [0] [0]

[0] [0] T − I [0] [0] [0]
H [0] [0] [0] − I [0] [0]

V [0] [0] [0] [0] − I [0]

[0] [0] I [0] [0] [0] − I



, (91)

it can be deduced from (90) that the proximity operator

of f2 = ιkerL2
can be computed like that of ιkerL1

. We

derive from (90), (76), (73), (77), (75), (74), and (91)

that




ri dom f1 = R
N × R

K × intC1

× ]0,+∞[
N × R

N × R
N × intC2

ri dom f2 = kerL2.

(92)

Hence, arguing as above, (45) reduces to (88), which is

seen to be satisfied. This shows that (89) can be solved

by the Douglas-Rachford algorithm (see Theorem 2 and

Remark 2(ii)).

5.3.2 Numerical experiments

Figure 5 shows the results of the decomposition into

geometry and texture components of an electron mi-

croscopy image of size 512× 512 (N = 5122) degraded
by a Gaussian blur of size 5× 5 and Poisson noise with

scaling parameter α = 0.5. The parameter χ of (75)

and the parameters (τk)1≤k≤K of (76) are selected so

as to maximize the SNR. The matrix F is a tight frame

version of the dual-tree transform proposed in [15] us-
ing symmlet of length 6 applied over 3 resolution lev-

els (ν = 2 and K = 2N). The same discrete gradient

matrices H and V as in [4] are used. We aim at com-

paring the PPXA and Douglas-Rachford algorithms in
the image decomposition problem under consideration.

In both algorithms we set λn ≡ 1.

In this context, setting ω1 = ω2 = ω3 = 1/3, PPXA

assumes the following form.

Initialization


γ = 100

(y1,1,0, . . . , y6,1,0) = (z, F⊤z, z, z, z, z)

(y1,2,0, . . . , y6,2,0) = (z, F⊤z, z, z, z, z)
(y1,3,0, . . . , y6,3,0) = (z, F⊤z, z, z, z, z)

For i = 1, . . . , 6⌊
xi,0 = (yi,1,0 + yi,2,0 + yi,3,0)/3

For n = 0, 1, . . .


u1,1,n = y1,1,n
u2,1,n = prox3γh(y2,1,n)

u3,1,n = PC1
(y3,1,n)

u4,1,n = prox3γg(y4,1,n)

(u5,1,n, u6,1,n) = prox3γψ(y5,1,n, y6,1,n)

(u1,2,n, u2,2,n) = (y1,2,n, y2,2,n)

u3,2,n = PC2
(y3,2,n)

(u4,2,n, u5,2,n, u6,2,n) = (y4,2,n, y5,2,n, y6,2,n)

(u1,3,n, . . . , u6,3,n) = PkerL1
(y1,3,n, . . . , y6,3,n)

For i = 1, . . . , 6

si,n = (1/3)

3∑

k=1

ui,k,n

yi,1,n+1 = yi,1,n + 2si,n − xi,n − ui,1,n
yi,2,n+1 = yi,2,n + 2si,n − xi,n − ui,2,n
yi,3,n+1 = yi,3,n + 2si,n − xi,n − ui,3,n
xi,n+1 = xi,n + si,n − xi,n
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Original image x Degraded image z
SNR = 14.2 dB – SSIM = 0.74.

Geometry component x1. Texture component F⊤x2.

Restored image x3

SNR = 17.7 dB – SSIM = 0.86.

Fig. 5 Decomposition and restoration results.
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On the other hand, the Douglas-Rachford algorithm

reduces to the following.

Initialization
⌊
γ = 100

(x1,0, . . . , x7,0) = (z, F⊤z, z, z, z, z, z)

For n = 0, 1, . . .


y1,n = x1,n
y2,n = proxγh(x2,n)

y3,n = PC1
(x3,n)

y4,n = proxγg(x4,n)

(y5,n, y6,n) = proxγψ(x5,n, x6,n)

y7,n = PC2
(x7,n)

(u1,n, . . . , u7,n)

= PkerL2

(
2(y1,n, . . . , y7,n)− (x1,n, . . . , x7,n)

)

For i = 1, . . . , 7

⌊ xi,n+1 = xi,n + ui,n − yi,n

In Figure 6, the value of ‖yn − y∞‖/‖y0 − y∞‖ for

the sequence (yn)n∈N =
(
(y1,n, . . . , y7,n)

)
n∈N

of The-
orem 2 and ‖xn − x∞‖/‖x0 − x∞‖ for the sequence

(xn)n∈N =
(
(x1,n, . . . , x6,n)

)
n∈N

of Theorem 3 (where

y∞ and x∞ denote the respective limits) are plotted

as a function of the computation time in seconds. In

our experiments, 1000 iterations were used to produce
a solution.
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Fig. 6 Convergence profiles of the Douglas-Rachford algorithm
(solid line) and PPXA (dashed line) versus computation time in
seconds.

6 Conclusion

In this paper, the proximal formalism has been applied

to multicomponent signal/image processing. Expres-

sions of new proximity operators in product spaces have

been derived. The proposed multicomponent frame-

work has been illustrated through three different ap-
plications: stereocospy, multispectral imagery, and de-

composition into geometry and texture components.

Another field of application in which these techniques

could be useful is the processing of color images. The
proposed proximal formalism can also be used to derive

algorithms for complex signal and image processing by

regarding a complex signal as a signal with m = 2 real

components, namely its real and imaginary parts.
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Bull. Soc. Math. France 93, 273–299 (1965)

34. Nesterov, Yu.: A method of solving a convex programming
problem with convergence rate O(1/k2). Soviet Math. Dokl.
27, 372–376 (1983)

35. Nesterov, Yu.: Primal-dual subgradient methods for convex
problems. Math. Program. 120, 221–259 (2009)
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