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Abstract

Several methods for solving systems of equilibrium problems in Hilbert spaces – and for find-
ing best approximations thereof – are presented and their convergence properties are established.
The proposed methods include proximal-like block-iterative algorithms for general systems, as
well as regularization and splitting algorithms for single equilibrium problems. The problem of
constructing approximate equilibria in the case of inconsistent systems is also considered.

1 Introduction

Let H be a real Hilbert space, let K be a nonempty closed convex subset of H, and let (Fi)i∈I be a
countable family of bifunctions from K2 to R. We address the broad class of problems whose basic
formulation reduces to solving the system of equilibrium problems

find x ∈ K such that (∀i ∈ I)(∀y ∈ K) Fi(x, y) ≥ 0. (1.1)

In the case of a single equilibrium, i.e., I is a singleton, the formulation (1.1) was shown in [5, 24]
to cover monotone inclusion problems, saddle point problems, variational inequality problems,
minimization problems, Nash equilibria in noncooperative games, vector equilibrium problems, as
well as certain fixed point problems (see also [15]). The above formulation extends this formalism
to systems of such problems, covering in particular various forms of feasibility problems [2, 11]. We
shall also address the problem of finding a best approximation to a point a ∈ H from the solutions
to (1.1), namely

project a onto S =
⋂

i∈I

Si, where (∀i ∈ I) Si =
{

z ∈ K | (∀y ∈ K) Fi(z, y) ≥ 0
}

. (1.2)
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Our main objective is to devise algorithms for solving (1.1) and (1.2) and to analyze their
asymptotic behavior under the standing assumption that the bifunctions (Fi)i∈I all satisfy the
following set of standard properties.

Condition 1.1 The bifunction F : K2 → R is such that:

(i) (∀x ∈ K) F (x, x) = 0.

(ii) (∀(x, y) ∈ K2) F (x, y) + F (y, x) ≤ 0.

(iii) For every x ∈ K, F (x, ·) : K → R is lower semicontinuous and convex.

(iv) (∀(x, y, z) ∈ K3) lim
ε→0+

F
(

(1− ε)x+ εz, y
)

≤ F (x, y).

While some methods have been proposed to solve (1.1) in this context in the case of a single
bifunction (see [22, 23] and, in the case of Euclidean spaces, [13, 17, 20]), we are not aware of any
result for systems of equilibrium problems. In addition, there does not seem to be any iterative
algorithm in the literature to solve (1.2), even in the case of a single bifunction. Our analysis will
also bring to light new connections between equilibrium programming and standard optimization
methods.

The remainder of the paper is organized as follows. In section 2, we define our notation and
provide technical facts that will be used in subsequent sections. In section 3, we establish conver-
gence results for parallel, proximal-like, block-iterative methods to solve (1.1) and (1.2). In the case
of a single equilibrium problem, an alternative approach to (1.2) based on regularization ideas is
presented in section 4. In section 5, we address problems with a single bifunction which can be split
into two components, and devise forward-backward-like algorithms for solving them. In section 6,
these results are applied to the problem of finding approximate solutions to (1.1) and (1.2) in the
inconsistent case, i.e., when S = Ø.

2 Notation and preliminary results

2.1 Notation

Throughout the paper N denotes the set of nonnegative integers and H is a real Hilbert space
with scalar product 〈· | · 〉, norm ‖ · ‖, and distance d. K is a fixed nonempty closed convex subset
of H and Id denotes the identity operator on H. The expressions xn ⇀ x and xn → x denote
respectively the weak and strong convergence to x of a sequence (xn)n∈N in H, and W(xn)n∈N its
set of weak cluster points. The class of all proper, lower semicontinuous, convex functions from H
to ]−∞,+∞] is denoted by Γ0(H). Now let C be a subset of H. Then intC is the interior of C,
dC its distance function, and ιC its indicator function, which takes the value 0 on C and +∞ on its
complement. If C is nonempty, closed, and convex, then PC denotes the projection operator onto
C. Finally, FixT = {x ∈ H | Tx = x} denotes the set of fixed points of an operator T : H → H.
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2.2 Set-valued operators

Let A : H → 2H be a set-valued operator. The sets domA = {x ∈ H | Ax 6= Ø} and grA =
{(x, u) ∈ H2 | u ∈ Ax} are the domain and the graph of A, respectively. The inverse A−1 of A is
the set-valued operator with graph {(u, x) ∈ H2 | u ∈ Ax}. The resolvent of A is JA = (Id+A)−1

and its Yosida approximation of index γ ∈ ]0,+∞[ is

γA =
Id−JγA

γ
. (2.1)

Moreover, A is monotone if

(∀(x, u) ∈ grA)(∀(y, v) ∈ grA) 〈x− y | u− v 〉 ≥ 0, (2.2)

and maximal monotone if, furthermore, grA is not properly contained in the graph of any monotone
operator B : H → 2H. If A is monotone, then JA is single-valued on dom JA; in addition, if A is
maximal monotone, then dom JA = H (see [1, section 3.5] for details).

Lemma 2.1 Let A : H → 2H be a maximal monotone operator and let γ ∈ ]0,+∞[. Then

J( γ
A
) = Id+

1

γ + 1

(

J(γ+1)A − Id
)

. (2.3)

Proof. Let (x, y) ∈ H2. Then

y = J( γ
A
)x ⇔ y =

(

γ + 1

γ
Id−

1

γ
JγA

)−1

x

⇔ (γ + 1)y − γx = JγAy

⇔ y ∈ (γ + 1)y − γx+ γA
(

(γ + 1)y − γx
)

⇔ x− y ∈ A
(

(γ + 1)y − γx
)

⇔ x−
(

(γ + 1)y − γx
)

∈ (γ + 1)A
(

(γ + 1)y − γx
)

⇔ (γ + 1)y − γx = J(γ+1)Ax

⇔ y = x+
1

γ + 1

(

J(γ+1)Ax− x
)

. (2.4)

The subdifferential of a proper function f : H → ]−∞,+∞] is the set-valued operator

∂f : H → 2H : x 7→
{

u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)
}

. (2.5)

The normal cone operator of a nonempty closed convex set C ⊂ H is NC = ∂ιC . If f ∈ Γ0(H),
then ∂f is maximal monotone and

proxf = J∂f (2.6)

is Moreau’s proximity operator [21]; moreover, the Moreau envelope of index γ ∈ ]0,+∞[ of f is
the function γf : x 7→ miny∈H f(y) + 1

2γ ‖x− y‖2.

3



Lemma 2.2 Let f ∈ Γ0(H) and γ ∈ ]0,+∞[. Then

prox( γ
f
) = Id+

1

γ + 1

(

prox(γ+1)f − Id
)

. (2.7)

Proof. Since [21, Proposition 7.d] implies that ∂
(

γf
)

= γ(∂f), it suffices to set A = ∂f in
Lemma 2.1.

2.3 Nonlinear operators

Definition 2.3 Let T : H → H be a single-valued operator with domT = H. Then T

(i) belongs to the class T [3] if (∀(x, y) ∈ H × FixT ) 〈y − Tx | x− Tx〉 ≤ 0;

(ii) is nonexpansive if (∀(x, y) ∈ H2) ‖Tx− Ty‖ ≤ ‖x− y‖;

(iii) is firmly nonexpansive if (∀(x, y) ∈ H2) ‖Tx− Ty‖2 ≤ 〈Tx− Ty | x− y 〉;

(iv) is α-averaged for some α ∈ ]0, 1[ if T = (1 − α) Id+αR for some nonexpansive operator

R : domR = H → H [8]. The class of α-averaged operators on H is denoted by A(α).

The following relationships exist between these types of operators (see, e.g., [3, Proposition 2.3]
and [12, Lemma 2.1]):

T ∈ T ⇐ T is firmly nonexpansive ⇔ Id−T is firmly nonexpansive
⇓ m

T is nonexpansive T ∈ A(12).
(2.8)

Lemma 2.4 [11, Proposition 2.4] Let (Ti)i∈I be a finite family of operators in T such that C =
⋂

i∈I Fix Ti 6= Ø and let (ωi)i∈I be real numbers in ]0, 1] such that
∑

i∈I ωi = 1. Define

(∀x ∈ H) L
(

x, (Ti)i∈I , (ωi)i∈I
)

=











∑

i∈I ωi‖Tix− x‖2

‖
∑

i∈I ωiTix− x‖2
, if x /∈ C;

1, otherwise,

(2.9)

and

T : H → H : x 7→ x+ λ(x)

(

∑

i∈I

ωiTix− x

)

, where 0 < λ(x) ≤ L
(

x, (Ti)i∈I , (ωi)i∈I
)

. (2.10)

Then:

(i) For all x ∈ H, L
(

x, (Ti)i∈I , (ωi)i∈I
)

is a well defined number in [1,+∞[.

(ii) FixT = C.

(iii) T ∈ T.
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2.4 Convergence of two T-class algorithms

Algorithm 2.5 Given ε ∈ ]0, 1] and x0 ∈ H, a sequence (xn)n∈N is constructed inductively as
follows: for every n ∈ N, select Tn ∈ T and set xn+1 = xn + (2− ε)(Tnxn − xn).

Theorem 2.6 Let (xn)n∈N be an arbitrary orbit of Algorithm 2.5 and let C be a nonempty closed

convex subset of H such that C ⊂
⋂

n∈N Fix Tn. Then:

(i) (xn)n∈N is bounded.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞ and
∑

n∈N ‖Tnxn − xn‖2 < +∞.

(iii) (xn)n∈N converges weakly to a point in C if and only if W(xn)n∈N ⊂ C.

Proof. For C =
⋂

n∈N Fix Tn, this is precisely [3, Theorem 2.9]. However, in view of [3, Proposi-
tion 2.1], the results remain true as stated above.

The second algorithm, which goes back to [16] (see also [10]), concerns the best approximation
of the point a in (1.2).

Algorithm 2.7

Step 0. Set n = 0 and x0 = a.

Step 1. Select Tn ∈ T.

Step 2. Set πn = 〈x0 − xn | xn − Tnxn 〉, µn = ‖x0−xn‖2, νn = ‖xn−Tnxn‖2, and ρn = µnνn−π2
n.

Step 3. If ρn = 0 and πn < 0, then stop; otherwise set

xn+1 =























Tnxn, if ρn = 0 and πn ≥ 0;

x0 + (1 + πn/νn)(Tnxn − xn), if ρn > 0 and πnνn ≥ ρn;

xn +
νn
ρn

(πn(x0 − xn) + µn(Tnxn − xn)), if ρn > 0 and πnνn < ρn.

(2.11)

Step 4. Set n = n+ 1 and go to Step 1.

As shown in [3, Proposition 3.4(v)], the above algorithm does generate an infinite sequence
(xn)n∈N for any starting point x0 ∈ H provided that

⋂

n∈N Fix Tn 6= Ø.

Theorem 2.8 Let (xn)n∈N be an arbitrary orbit of Algorithm 2.7 and let C be a nonempty closed

convex subset of H such that C ⊂
⋂

n∈N Fix Tn. Then:
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(i) (xn)n∈N is bounded.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞ and
∑

n∈N ‖Tnxn − xn‖2 < +∞.

(iii) (xn)n∈N converges strongly to the projection of a onto C if and only if W(xn)n∈N ⊂ C.

Proof. For C =
⋂

n∈N Fix Tn, this is precisely [3, Theorem 3.5(ii)&(v)&(iv)]. However, an inspection
of the proofs of [3, section 3] shows that the assertions remain true as stated above.

2.5 Convergence of compositions of averaged operators

Algorithm 2.9 Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn

(

T1,n

(

T2,nxn + e2,n
)

+ e1,n − xn
)

, (2.12)

where T1,n ∈ A(α1,n) and T2,n ∈ A(α2,n), with (α1,n, α2,n) ∈ ]0, 1[2, (e1,n, e2,n) ∈ H2, and λn ∈ ]0, 1].

In the above iteration, e1,n and e2,n model errors induced by the inexact evaluation of the
operators T1,n and T2,n, respectively.

Theorem 2.10 [12, Theorem 6.3] Suppose that the following conditions are satisfied.

(i) G =
⋂

n∈N Fix
(

T1,nT2,n

)

6= Ø.

(ii) limλn > 0, limα1,n < 1, and limα2,n < 1.

(iii) For every subsequence (xkn)n∈N of an orbit (xn)n∈N generated by Algorithm 2.9, we have











































(∀x ∈ G)
∑

n∈N

‖(Id−T1,n)T2,nxn + (Id−T2,n)x‖
2 < +∞

(∀x ∈ G)
∑

n∈N

‖(Id−T2,n)xn − (Id−T2,n)x‖
2 < +∞

∑

n∈N

‖T1,nT2,nxn − xn‖
2 < +∞

xkn ⇀ z

⇒ z ∈ G. (2.13)

(iv)
∑

n∈N ‖e1,n‖ < +∞ and
∑

n∈N ‖e2,n‖ < +∞.

Then every orbit of Algorithm 2.9 converges weakly to a point in G.
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2.6 Resolvents of bifunctions

The following notion appears implicitly in [5].

Definition 2.11 The resolvent of a bifunction F : K2 → R is the set-valued operator

JF : H → 2K : x 7→
{

z ∈ K | (∀y ∈ K) F (z, y) + 〈z − x | y − z 〉 ≥ 0
}

. (2.14)

Lemma 2.12 Suppose that F : K2 → R satisfies Condition 1.1 and let

SF =
{

x ∈ K | (∀y ∈ K) F (x, y) ≥ 0
}

. (2.15)

Then:

(i) dom JF = H.

(ii) JF is single-valued and firmly nonexpansive.

(iii) FixJF = SF .

(iv) SF is closed and convex.

Proof. (i): [5, Corollary 1] asserts that for every x ∈ H there exists a point z ∈ K such that

(∀y ∈ K) F (z, y) + 〈z − x | y − z 〉 ≥ 0. (2.16)

(ii): This statement is implicitly given in [5, p. 135], we provide the details for complete-
ness. Fix (x, x′) ∈ H2 and let z ∈ JFx, z′ ∈ JFx

′. Then F (z, z′) ≥ 〈x− z | z′ − z 〉
and F (z′, z) ≥ 〈x′ − z′ | z − z′ 〉. Therefore, by Condition 1.1(ii), 0 ≥ F (z, z′) + F (z′, z) ≥
〈(x− x′)− (z − z′) | z′ − z 〉, hence

〈

x− x′
∣

∣ z − z′
〉

≥ ‖z − z′‖2. (2.17)

In particular, for x = x′, we obtain z = z′, which implies that JF is single-valued. In turn, we
derive from (2.17) that JF is firmly nonexpansive. (iii): Take x ∈ K. Then x ∈ Fix JF ⇔ x = JFx
⇔ (∀y ∈ K) F (x, y) + 〈x− x | y − x〉 ≥ 0 ⇔ (∀y ∈ K) F (x, y) ≥ 0 ⇔ x ∈ SF . (iv): Follows from
(iii), (ii), and (2.8) since the fixed point set of a nonexpansive operator is closed and convex [14,
Proposition 1.5.3].

Lemma 2.13 Suppose that F : K2 → R satisfies Condition 1.1. Let (xn)n∈N be a sequence in H
and (γn)n∈N a sequence in ]0,+∞[. Define

(∀n ∈ N) zn = JγnFxn and un = (xn − zn)/γn, (2.18)

and suppose that

zn ⇀ x and un → u. (2.19)

Then x ∈ K and (∀y ∈ K) F (x, y) + 〈u | x− y 〉 ≥ 0.
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Proof. It follows from Lemma 2.12(i)&(ii) that the sequence (zn)n∈N is well defined and from (2.14)
that it lies in K, which is weakly closed. Therefore x ∈ K. On the other hand, it follows from
Condition 1.1(iii) that F (y, ·) is weak lower semicontinuous for every y ∈ K. Therefore, we derive
from Condition 1.1(ii), (2.18), and (2.14) that

(∀y ∈ K) F (y, x) ≤ limF (y, zn) ≤ lim−F (zn, y) ≤ lim 〈un | zn − y 〉 = 〈u | x− y 〉 , (2.20)

where the last equality follows from (2.19) and the sequential continuity of 〈· | · 〉 on Hstrong×Hweak.
Now fix y ∈ K and define, for every ε ∈ ]0, 1], xε = (1− ε)x+ εy. Then, for every ε ∈ ]0, 1], xε ∈ K
by convexity of K and, in turn, Condition 1.1(i), Condition 1.1(iii), and (2.20) yield

0 = F (xε, xε)

≤ (1− ε)F (xε, x) + εF (xε, y)

≤ (1− ε) 〈u | x− xε 〉+ εF (xε, y)

= ε(1− ε) 〈u | x− y 〉+ εF (xε, y), (2.21)

whence F (xε, y) ≥ (1 − ε) 〈u | y − x〉. In view of Condition 1.1(iv), we conclude that F (x, y) ≥
lim
ε→0+

F (xε, y) ≥ 〈u | y − x〉.

Next, we recall an important technical fact that will be required subsequently.

Lemma 2.14 [5, Lemma 1] Let C1 and C2 be two nonempty convex subsets of H such that C1 is

weakly compact. Let the function Φ: C1×C2 → R be concave and upper semicontinuous in the first

argument, and convex in the second argument. Assume furthermore that

(∀y ∈ C2) max
u∈C1

Φ(u, y) ≥ 0. (2.22)

Then

(∃u ∈ C1)(∀y ∈ C2) Φ(u, y) ≥ 0. (2.23)

We complete this section with concrete examples of resolvents of bifunctions.

Lemma 2.15 Let A : H → 2H be a maximal monotone operator, let f ∈ Γ0(H), let C ⊂ H be a

nonempty closed convex set, and let µ ∈ ]0,+∞[.

(i) Suppose that K ⊂ int domA and set

(∀(x, y) ∈ K2) F (x, y) = max
u∈Ax

〈u | y − x〉 . (2.24)

Then F satisfies Condition 1.1 and JF = JA+NK
.

(ii) Set

K = H and (∀(x, y) ∈ H2) F (x, y) = 〈 µAx | y − x〉 . (2.25)

Then F satisfies Condition 1.1 and JF = Id+ 1
µ+1

(

J(µ+1)A − Id
)

.
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(iii) Set

K = H and (∀(x, y) ∈ H2) F (x, y) =
〈

x− proxµf x | y − x
〉

/µ. (2.26)

Then F satisfies Condition 1.1 and JF = Id+ 1
µ+1(prox(µ+1)f − Id).

(iv) Set

K = H and (∀(x, y) ∈ H2) F (x, y) = 〈x− PCx | y − x〉 /µ. (2.27)

Then F satisfies Condition 1.1 and JF = Id+ 1
µ+1(PC − Id).

(v) Suppose that K ⊂ dom f and set

(∀(x, y) ∈ K2) F (x, y) = f(y)− f(x). (2.28)

Then F satisfies Condition 1.1 and JF = proxf+ιK .

Proof. (i): By [25, Theorem 2.28], A is locally bounded on int domA. Therefore, it follows from [1,
Proposition 3.5.6.1] that the sets (Ax)x∈K are weakly compact and that, for every (x, y) ∈ K2, the
weakly continuous function 〈· | y − x〉 achieves its maximum over Ax. Hence, F is well defined. In
addition, F satisfies Condition 1.1: Indeed, item (i) there is obvious, item (ii) follows at once from
the monotonicity of A, and item (iii) from the fact that F (x, ·) is the supremum of the family of lower
semicontinuous convex functions (〈u | · − x〉)u∈Ax. Finally, to establish item (iv) in Condition 1.1,
let us observe that our assumptions imply that A |int domA is a weak-usco operator [25, section 7].
Hence, it follows from [4, Théorème VI.3.2] that, for every y ∈ K, F (·, y) is upper semicontinuous
and, therefore, that Condition 1.1(iv) holds. Now take x and z in H. Then Lemma 2.12(ii) and
(2.14) yield

z = JFx ⇔ z ∈ K and (∀y ∈ K) max
u∈Az

〈y − z | u+ z − x〉 ≥ 0

⇔ z ∈ K and (∃u ∈ Az)(∀y ∈ K) 〈y − z | u+ z − x〉 ≥ 0 (2.29)

⇔ (∃u ∈ Az) x− z − u ∈ NKz

⇔ x ∈ z +Az +NKz

⇔ z = (Id+A+NK)−1x

⇔ z = JA+NK
x, (2.30)

where we have used Lemma 2.14 (with C1 = Az, C2 = K, and Φ(u, y) = 〈y − z | u+ z − x〉) to get
(2.29). (ii): µA is a single-valued maximal monotone operator with domain H [1, Theorem 3.5.9].
Using this operator in (2.24) yields (2.25), and it follows from (i) that JF = J

(
µ
A)
, which proves

the assertion via Lemma 2.1. (iii): Set A = ∂f in (ii) and use (2.1) and (2.6). (iv): Set f = ιC
in (iii). (v): It is easily verified that F satisfies Condition 1.1. Now take x and z in H. Then it
follows from (2.14), (2.28), and (2.5) that

z = JFx ⇔ z ∈ K and (∀y ∈ K) 〈y − z | x− z 〉+ f(z) ≤ f(y)

⇔ (∀y ∈ H) 〈y − z | x− z 〉+ f(z) + ιK(z) ≤ f(y) + ιK(y)

⇔ x− z ∈ ∂(f + ιK)(z)

⇔ z = proxf+ιK x. (2.31)
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Remark 2.16 In all of the above examples, the function F (·, y) is actually upper semicontinuous
for every y ∈ K.

3 Block-iterative algorithms

The main objective of this section is to apply Theorem 2.6 and Theorem 2.8 with a suitable choice
of the sequence (Tn)n∈N to solve (1.1) and (1.2). It is recalled that (Fi)i∈I is a countable (finite
or countably infinite) family of bifunctions from K2 to R which all satisfy Condition 1.1. We shall
use the following construction, in which the operator L is defined by (2.9).

Procedure 3.1 Fix δ ∈ ]0, 1[. At every iteration n ∈ N, xn is available and Tn is constructed
according to the following steps.

➀ Ø 6= In ⊂ I, In finite.

➁ (∀i ∈ In) γi,n ∈ ]0,+∞[.

➂ (∀i ∈ In) ωi,n ∈ [0, 1],
∑

i∈In
ωi,n = 1, and

(∃ j ∈ In)







‖Jγj,nFj
xn − xn‖ = max

i∈In
‖Jγi,nFi

xn − xn‖

ωj,n ≥ δ.

➃ (∀x ∈ H) λn(x) ∈
[

δ, L
(

x, (Jγi,nFi
)i∈I+n , (ωi,n)i∈I+n

)]

, where I+n =
{

i ∈ In | ωi,n > 0
}

.

➄ Tn : H → H : x 7→ x+ λn(x)
(

∑

i∈I+n
ωi,nJγi,nFi

x− x
)

.

Condition 3.2

(i) The set S in (1.2) is nonempty.

(ii) (Tn)n∈N is constructed as in Procedure 3.1.

(iii) There exist strictly positive integers (Mi)i∈I such that

(∀(i, n) ∈ I ×N) i ∈
n+Mi−1
⋃

k=n

Ik. (3.1)
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(iv) For every i ∈ I and every strictly increasing sequence (pn)n∈N in N such that i ∈
⋂

n∈N Ipn ,
infn∈N γi,pn > 0.

Theorem 3.3 Suppose that Condition 3.2 is satisfied. Then:

(i) Every orbit of Algorithm 2.5 converges weakly to a solution to (1.1).

(ii) Every orbit of Algorithm 2.7 converges strongly to the unique solution to (1.2).

Proof. We are going to show that the two assertions follow from Theorem 2.6 and Theorem 2.8
with C = S. We first observe that Lemma 2.12(iv) guarantees that the sets (Si)i∈I in (1.2) are
closed and convex. Accordingly, it follows from Condition 3.2(i) that S is nonempty, closed, and
convex. Problem (1.2) therefore possesses a unique solution. Moreover, for all n ∈ N, the weights
(ωi,n)i∈I+n are real numbers in ]0, 1] such that

∑

i∈I+n
ωi,n = 1. On the other hand, it follows from

Lemma 2.12(i)&(ii) and (2.8) that

(∀n ∈ N)(∀i ∈ In) Jγi,nFi
∈ T. (3.2)

Therefore, Lemma 2.4(iii) yields
(∀n ∈ N) Tn ∈ T. (3.3)

Furthermore, we derive from (1.2), Lemma 2.12(iii), and Lemma 2.4(ii) that

(∀n ∈ N) S =
⋂

i∈I

Si ⊂
⋂

i∈I+n

Fix Jγi,nFi
= Fix Tn. (3.4)

Therefore S ⊂
⋂

n∈N Fix Tn. Now let i be an index in I, let (xn)n∈N be a sequence generated by
either algorithm, and let x ∈ W(xn)n∈N, say xkn ⇀ x. Then, in view of Theorem 2.6(iii) and
Theorem 2.8(iii), it is enough to show that x ∈ Si, i.e.,

x ∈ K and (∀y ∈ K) Fi(x, y) ≥ 0. (3.5)

Theorem 2.6(ii) and Theorem 2.8(ii) assert that
∑

n∈N ‖xn+1 − xn‖2 < +∞ and
∑

n∈N ‖Tnxn −
xn‖2 < +∞. Now fix z ∈ S and set β = supn∈N ‖xn − z‖. Then β < +∞ by Theorem 2.6(i) and
Theorem 2.8(i). On the other hand, we derive from (3.2), (3.4), and Definition 2.3(i) that

(∀n ∈ N)(∀j ∈ In) ‖Jγj,nFj
xn − xn‖

2 ≤
〈

z − xn
∣

∣ Jγj,nFj
xn − xn

〉

. (3.6)
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Thus, it follows from Procedure 3.1➂, (3.6), the Cauchy-Schwarz inequality, and Procedure 3.1➃&➄

that

(∀n ∈ N) δmax
j∈In

‖Jγj,nFj
xn − xn‖

2 ≤
∑

j∈In

ωj,n

∥

∥Jγj,nFj
xn − xn

∥

∥

2

≤

〈

z − xn

∣

∣

∣

∣

∣

∣

∑

j∈In

ωj,nJγj,nFj
xn − xn

〉

≤ β

∥

∥

∥

∥

∥

∥

∑

j∈I+n

ωj,nJγj,nFj
xn − xn

∥

∥

∥

∥

∥

∥

≤
βλn(xn)

δ

∥

∥

∥

∥

∥

∥

∑

j∈I+n

ωj,nJγj,nFj
xn − xn

∥

∥

∥

∥

∥

∥

= β‖Tnxn − xn‖/δ. (3.7)

Therefore, since Tnxn − xn → 0, we obtain

max
j∈In

‖Jγj,nFj
xn − xn‖ → 0. (3.8)

After passing to a subsequence of (xkn)n∈N if necessary, we assume that, for every n ∈ N, kn+1 ≥
kn +Mi. Then Condition 3.2(iii) asserts that there exists a sequence (pn)n∈N in N such that

(∀n ∈ N) kn ≤ pn ≤ kn +Mi − 1 < kn+1 ≤ pn+1 and i ∈ Ipn . (3.9)

However, xpn − xkn → 0 since
∑

n∈N ‖xn+1 − xn‖2 < +∞ and

(∀n ∈ N) ‖xpn − xkn‖ ≤
kn+Mi−2
∑

l=kn

‖xl+1 − xl‖ ≤
√

Mi − 1

√

∑

l≥kn

‖xl+1 − xl‖2. (3.10)

Hence, xpn ⇀ x. On the other hand, we derive from (3.8) and (3.9) that

zpn − xpn → 0, where (∀n ∈ N) zpn = Jγi,pnFi
xpn . (3.11)

In turn, we obtain
zpn ⇀ x. (3.12)

Now set, for every n ∈ N, upn = (xpn − zpn)/γi,pn . Then (3.11) and Condition 3.2(iv) imply that

upn → 0. (3.13)

Altogether, it follows from (3.12), (3.13), and Lemma 2.13 that (3.5) is satisfied.

Remark 3.4

12



• By considering the special cases described in Lemma 2.15, one can recover from Theorem 3.3
various convergence results for block-iterative methods involving resolvents of maximal mono-
tone operators, proximity operators, or projection operators (see [3] and [11] and the refer-
ences therein). For instance, suppose that I = {1, . . . ,m} and that (Si)i∈I is a family of
closed convex sets in H with associated projection operators (Pi)i∈I . Now fix ε ∈ ]0, 1[, define
i : N → I : n 7→ (nmodulom) + 1, and set

K = H and (∀i ∈ I)(∀(x, y) ∈ H2) Fi(x, y) = 〈x− Pix | y − x〉 /(1 − ε). (3.14)

Then it follows from Lemma 2.15(iv) that, for every i ∈ I, Fi satisfies Condition 1.1 and
JFi

= Id+(Pi − Id)/(2 − ε). Now set

(∀n ∈ N) λn ≡ 1, In = {i(n)}, and γi(n),n = 1. (3.15)

Then Theorem 3.3(i) states that, if S =
⋂

i∈I Si 6= Ø, the sequence produced by the cyclic
projections method

x0 ∈ H and (∀n ∈ N) xn+1 = Pi(n)xn (3.16)

converges weakly to a point in S. This classical result is due to Bregman [6, Theorem 1].

• It follows from the analysis of [11] that the conclusion of Theorem 3.3(i) remains true if
certain errors are present in evaluation of the resolvents in Procedure 3.1.

In the case when the family (Fi)i∈I consists of a single bifunction F , Problem (1.1) reduces to

find x ∈ K such that (∀y ∈ K) F (x, y) ≥ 0. (3.17)

Moreover, we have L ≡ 1 and, for λn ≡ 1/(2 − ε) in Procedure 3.1, the iteration described by
Algorithm 2.5 assumes the form

x0 ∈ K and (∀n ∈ N) xn+1 = JγnFxn, where γn ∈ ]0,+∞[ . (3.18)

Theorem 3.3(i) states that every sequence (xn)n∈N so constructed converges weakly to a solution
to (3.17) provided that infn∈N γn > 0 (see also [13, 20, 22, 23] for related results). This statement
can be refined as follows.

Theorem 3.5 Suppose that F : K2 → R satisfies Condition 1.1 and that the set S of solutions to

(3.17) is nonempty. Let (xn)n∈N be an arbitrary sequence generated by (3.18), where
∑

n∈N γ2n =
+∞. Then (xn)n∈N converges weakly to a point in S.

Proof. Let n ∈ N. It follows from (3.18) and (2.14) that

{

0 ≤ γnF (xn+1, xn+2) + 〈xn+1 − xn | xn+2 − xn+1 〉

0 ≤ γn+1F (xn+2, xn+1) + 〈xn+2 − xn+1 | xn+1 − xn+2 〉 .
(3.19)
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Now set zn = JγnFxn and un = (xn − zn)/γn. Then (3.19) yields

{

〈un | xn+2 − xn+1 〉 ≤ F (xn+1, xn+2)

〈un+1 | xn+1 − xn+2 〉 ≤ F (xn+2, xn+1)
(3.20)

and it therefore follows from Condition 1.1(ii) that

〈un − un+1 | xn+2 − xn+1 〉 ≤ F (xn+1, xn+2) + F (xn+2, xn+1) ≤ 0. (3.21)

Consequently, we have 〈un+1 − un | un+1 〉 ≤ 0 and, by Cauchy-Schwarz, ‖un+1‖ ≤ ‖un‖. Therefore

(‖un‖)n∈N converges. (3.22)

Let us now apply Theorem 2.6 with (Tn)n∈N = (JγnF )n∈N. We first obtain from Theorem 2.6(ii) that
∑

n∈N γ2n‖un‖
2 =

∑

n∈N ‖zn−xn‖2 < +∞. Since
∑

n∈N γ2n = +∞, it follows that lim ‖un‖ = 0 and,
consequently, (3.22) yields un → 0. Now suppose that xkn ⇀ x. Then, in view of Theorem 2.6(iii),
it remains to show that x ∈ S. As seen above,

ukn → 0. (3.23)

On the other hand, since zn − xn → 0, we have

zkn ⇀ x. (3.24)

Combining (3.23), (3.24), and Lemma 2.13, we conclude that x solves (3.17).

Remark 3.6 Consider the setting of Lemma 2.15(i) with K = H. Then, for every n ∈ N, JγnF =
(Id+γnA)

−1 reduces to the usual resolvent of γnA and Theorem 3.5 therefore corresponds to [7,
Proposition 8] (see also [8, Theorem 2.6(a)]).

4 A regularization method

In this section, we suppose that the family (Fi)i∈I consists of a single bifunction F . Then the
problem (1.2) of finding the best approximation to the point a becomes

project a onto S =
{

z ∈ K | (∀y ∈ K) F (z, y) ≥ 0
}

. (4.1)

We now describe an alternative to Theorem 3.3(ii) to solve this problem.

Algorithm 4.1

Step 0. Set n = 0 and x0 = a.

Step 1. Let αn ∈ ]0, 1[, γn ∈ ]0,+∞[, and en ∈ H.

14



Step 2. Set xn+1 = αna+ (1− αn)
(

JγnFxn + en).

Step 3. Set n = n+ 1 and go to Step 1.

We shall study this iterative scheme in the context described below.

Condition 4.2

(i) The set S in (4.1) is nonempty.

(ii) αn → 0 and
∑

n∈N αn = +∞.

(iii) γn → +∞.

(iv)
∑

n∈N ‖en‖ < +∞.

Theorem 4.3 Suppose that F : K2 → R satisfies Condition 1.1 and that Condition 4.2 is satisfied.

Then every orbit of Algorithm 4.1 converges strongly to the unique solution to (4.1).

Proof. In view of Lemma 2.12(iv) and Condition 4.2(i), Problem (4.1) does possess a unique
solution. Now let (xn)n∈N be an orbit of Algorithm 4.1 and set

(∀n ∈ N) zn = JγnFxn and un = (xn − zn)/γn. (4.2)

It follows from Lemma 2.12(i)–(iii), and (2.8) that

(∀x ∈ S)(∀n ∈ N) ‖zn − x‖ = ‖JγnFxn − JγnFx‖ ≤ ‖xn − x‖. (4.3)

Therefore

(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖ ≤ αn‖a− x‖+ (1− αn)
(

‖zn − x‖+ ‖en‖
)

≤ αn‖a− x‖+ (1− αn)‖xn − x‖+ ‖en‖. (4.4)

Since x0 = a, we obtain by induction

(∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖a− x‖+
n
∑

k=0

‖ek‖. (4.5)

Hence, it follows from Condition 4.2(iv) that (xn)n∈N is bounded and, in turn, from (4.3) that
(zn)n∈N is bounded. Consequently, (xn − zn)n∈N is bounded and we derive from (4.2) and Condi-
tion 4.2(iii) that

un → 0. (4.6)

Now let (zkn)n∈N be a subsequence of (zn)n∈N such that

〈a− PSa | zkn − PSa〉 → lim 〈a− PSa | zn − PSa〉 , (4.7)
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and such that (zkn)n∈N converges weakly to some point z ∈ H. Then it follows from (4.6) and
Lemma 2.13 that z ∈ S. We therefore deduce from Lemma 2.12(iv) and the standard characteri-
zation of projections onto convex sets that

〈a− PSa | zkn − PSa〉 → 〈a− PSa | z − PSa〉 ≤ 0. (4.8)

Therefore, (4.7) and Condition 4.2(iv) imply that

lim 〈a− PSa | zn + en − PSa〉 ≤ 0. (4.9)

Next, we observe that

(∀n ∈ N) ‖xn+1 − PSa‖
2 = ‖αn(a− PSa) + (1− αn)

(

zn + en − PSa
)

‖2

= α2
n‖a− PSa‖

2 + (1− αn)
2‖zn + en − PSa‖

2

+2αn(1− αn) 〈a− PSa | zn + en − PSa〉

≤ α2
n‖a− PSa‖

2 + (1− αn)
(

‖zn − PSa‖+ ‖en‖
)2

+2αn(1− αn) 〈a− PSa | zn + en − PSa〉 . (4.10)

Now let us fix ε ∈ ]0,+∞[. We infer from Condition 4.2(ii)&(iv) and (4.9) the existence of an
index q ∈ N such that, for every n ≥ q,

αn‖a− PSa‖
2 ≤ ε,

∑

k≥q

‖ek‖ ≤ ε, and 〈a− PSa | zn + en − PSa〉 ≤ ε. (4.11)

Thus, it follows from (4.10), (4.11), and (4.3) that, for every n ≥ q,

‖xn+1 − PSa‖
2 ≤ 3αnε+ (1− αn)

(

‖zn − PSa‖
2 + β‖en‖

)

≤ 3αnε+ (1− αn)‖xn − PSa‖
2 + β‖en‖, (4.12)

where β = supn∈N
(

‖en‖ + 2‖zn − PSa‖
)

< +∞. Hence, we obtain by induction that, for every
n ≥ q,

‖xn+1 − PSa‖
2 ≤ 3

(

1−
n
∏

k=q

(1− αk)
)

ε

+
(

n
∏

k=q

(1− αk)
)

‖xq − PSa‖
2 + β

n
∑

k=q

‖ek‖. (4.13)

However, it follows from Condition 4.2(ii) that
∏n

k=q(1 − αk) → 0 [19, Theorem 3.7.7]. Therefore,
(4.13), Condition 4.2(iv), and (4.11) yield

lim ‖xn − PSa‖
2 ≤ 3ε+ β

∑

k≥q

‖ek‖ ≤ ε(3 + β), (4.14)

and hence we conclude that ‖xn − PSa‖2 → 0.

Remark 4.4 Consider the setting of Lemma 2.15(i) with K = H. Then, for every n ∈ N, JγnF =
(Id+γnA)

−1 and Theorem 4.3 therefore corresponds to [18, Theorem 1].
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5 Splitting

In this section, we return to the single equilibrium problem (3.17) in instances when the bifunction
F can be broken up into the sum of two terms, say

F : (x, y) 7→ F0(x, y) + 〈Bx | y − x〉 , where F0 : K
2 → R and B : H → H. (5.1)

In this scenario, (3.17) becomes

find x ∈ K such that (∀y ∈ K) F0(x, y) + 〈Bx | y − x〉 ≥ 0. (5.2)

Our objective is to devise a splitting algorithm in which the bifunction F0 and the operator B are
employed in separate steps at each iteration. It is assumed throughout this section that

F0 : K
2 → R satisfies Condition 1.1 (5.3)

and that
βB is firmly nonexpansive on domB = H, for some β ∈ ]0,+∞[ . (5.4)

Moreover, we denote by G the set of solutions to (5.2), i.e.,

G =
{

x ∈ K | (∀y ∈ K) F0(x, y) + 〈Bx | y − x〉 ≥ 0
}

. (5.5)

Remark 5.1 The bifunction F defined in (5.1) satisfies Condition 1.1. Indeed, by (5.4), B is
continuous and monotone on H, hence maximal monotone [1, Proposition 3.5.7]. Thus, it follows
from Lemma 2.15(i) that the bifunction (x, y) 7→ 〈Bx | y − x〉 satisfies Condition 1.1. In view of
(5.3), so does the sum F in (5.1).

Proposition 5.2 Let γ ∈ ]0, 2β[ and set SF0,B =
{

x ∈ K | Bx = 0 and (∀y ∈ K) F0(x, y) ≥ 0
}

.

Then:

(i) G = Fix JγF0

(

Id−γB
)

.

(ii) JγF0

(

Id−γB
)

is nonexpansive.

(iii) G is closed and convex.

(iv) Suppose that SF0,B 6= Ø. Then G = SF0,B.

Proof. Note that, by (5.3) and Lemma 2.12(i), dom JγF0
= H. (i): Let x ∈ H. Then, in view of

(2.14) and Lemma 2.12(ii),

x ∈ G ⇔ x ∈ K and (∀y ∈ K) F0(x, y) + 〈Bx | y − x〉 ≥ 0

⇔ x ∈ K and (∀y ∈ K) γF0(x, y) + 〈x− (x− γBx) | y − x〉 ≥ 0

⇔ x = JγF0

(

x− γBx
)

. (5.6)
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(ii): It follows from (5.4) and (2.8) that βB ∈ A(12) and hence from [12, Lemma 2.3] that Id−γB ∈
A( γ

2β ). On the other hand, (5.3), Lemma 2.12(ii) and (2.8) yield JγF0
∈ A(12). Hence JγF0

and
Id−γB are nonexpansive and so is their composition. (iii): The assertion follows from (ii), (i),
and [14, Proposition 1.5.3]. Alternatively, this claim follows from Remark 5.1 and Lemma 2.12(iv).
(iv): Set T1 = JγF0

and T2 = Id−γB. Then, on the one hand, (i) yields FixT1T2 = G and, on
the other hand, Lemma 2.12(iii) yields Fix T1 ∩ Fix T2 = SF0,B . Now, as seen above, the operators
T1 and T2 are averaged. Therefore it follows from [8, Lemma 2.1] that Fix T1 ∩ Fix T2 6= Ø ⇒
Fix T1 ∩ FixT2 = Fix T1T2, which completes the proof.

We now describe a splitting algorithm and analyze its convergence.

Algorithm 5.3

Step 0. Fix x0 ∈ H and set n = 0.

Step 1. Take λn ∈ ]0, 1], γn ∈ ]0, 2β[, an ∈ H, and bn ∈ H.

Step 2. Set xn+1 = xn + λn

(

JγnF0

(

xn − γn(Bxn + bn)
)

+ an − xn

)

.

Step 3. Set n = n+ 1 and go to Step 1.

Theorem 5.4 Suppose that the following conditions are satisfied:

(i) G 6= Ø.

(ii) limλn > 0 and 0 < lim γn ≤ lim γn < 2β.

(iii)
∑

n∈N ‖an‖ < +∞ and
∑

n∈N ‖bn‖ < +∞.

Then every orbit of Algorithm 5.3 converges weakly to a point in G.

Proof. Let (xn)n∈N be an arbitrary orbit of Algorithm 5.3. Set

(∀n ∈ N) T1,n = JγnF0
and T2,n = Id−γnB. (5.7)

Then the update rule at Step 2 of Algorithm 5.3 assumes the form given in (2.12) and, moreover,
it follows from (5.3), Lemma 2.12(i)&(ii) and (2.8) that (T1,n)n∈N lies in A(12 ). Likewise, it follows
from (5.4) and (2.8) that βB ∈ A(12) and hence from [12, Lemma 2.3] that (∀n ∈ N) T2,n ∈ A(γn2β ).
Thus, Algorithm 5.3 is a special case of Algorithm 2.9 with α1,n = 1/2, α2,n = γn/(2β), e1,n = an,
and e2,n = −γnbn. We shall show that all the conditions of Theorem 2.10 are satisfied. First,
Proposition 5.2(i) yields

G =
⋂

n∈N

Fix
(

T1,nT2,n

)

. (5.8)
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Hence, item (i) in Theorem 2.10 is implied by (i) above. Moreover, items (ii) and (iv) in Theo-
rem 2.10 are implied by (ii) and (iii) above. Let us now verify item (iii) in Theorem 2.10. To this
end, let us fix a suborbit (xkn)n∈N of Algorithm 5.3, x ∈ G, and set

(∀n ∈ N) zn = JγnF0
(xn − γnBxn) and un =

xn − zn
γn

−Bxn. (5.9)

In view of (5.7) and (ii), (2.13) holds if






















un → −Bx

Bxn → Bx

zn − xn → 0

xkn ⇀ z

⇒ z ∈ G. (5.10)

Since B is continuous and monotone on H, it is maximal monotone [1, Proposition 3.5.7]. Therefore
grB is sequentially weakly-strongly closed in H2 [1, Proposition 3.5.6.2], and the conditions xkn ⇀
z and Bxkn → Bx imply Bx = Bz. Consequently, the condition zn − xn → 0 yields

zkn ⇀ z and ukn → −Bz. (5.11)

It therefore follows from (5.9) and Lemma 2.13 that

z ∈ K and (∀y ∈ K) F0(z, y) + 〈Bz | y − z 〉 ≥ 0, (5.12)

i.e., z ∈ G. Therefore, the conclusion follows from Theorem 2.10.

Remark 5.5 We point out some connections between Theorem 5.4 and existing results.

• In the special case when γn ≡ γ, λn ≡ 1, an ≡ 0, and bn ≡ 0, Theorem 5.4 follows from [23,
Theorem 1].

• As in Lemma 2.15(i), let A : H → 2H be a maximal monotone operator such that K ⊂
int domA and set F0 : K

2 → R : (x, y) 7→ maxu∈Ax 〈u | y − x〉. Then

x ∈ H solves (5.2) ⇔ x ∈ K and (∀y ∈ K) max
u∈Ax

〈u+Bx | y − x〉 ≥ 0

⇔ x ∈ K and (∃u ∈ Ax)(∀y ∈ K) 〈u+Bx | y − x〉 ≥ 0 (5.13)

⇔ (∃u ∈ Ax) − u−Bx ∈ NKx

⇔ 0 ∈ Ax+Bx+NKx, (5.14)

where we have used Lemma 2.14 to get (5.13). Thus, (5.2) coincides with the problem of
finding a zero of A+B +NK . In particular, if K = H, then JγnF0

= JγnA by Lemma 2.15(i)
and therefore Algorithm 5.3 produces the forward-backward iteration

xn+1 = xn + λn

(

JγnA
(

xn − γn(Bxn + bn)
)

+ an − xn

)

, (5.15)

for finding a zero of A + B. In this context, for λn ≡ 1, an ≡ 0, and bn ≡ 0, Theorem 5.4
corresponds to [26, Proposition 1(c)].
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We now turn to the problem of finding the best approximation to a point a ∈ H from G.

Theorem 5.6 Let ε ∈ ]0, 1[ and γ ∈ ]0, 2β[, and let (xn)n∈N be an arbitrary orbit of Algorithm 2.7

generated with

(∀n ∈ N) Tn = Id+λn

(

JγF0
(Id−γB)− Id

)

, where ε ≤ λn ≤ 1/2. (5.16)

Then:

(i) If G 6= Ø, (xn)n∈N converges strongly to PGa.

(ii) If G = Ø, ‖xn‖ → +∞.

Proof. In view of Proposition 5.2(i)&(ii), the assertions follow from [3, Corollary 6.6(ii)].

6 Inconsistent problems

We now consider problems (1.1) and (1.2) with finitely many sets, say I = {0, . . . ,m}. In this
section we aim at solving these problems when the assumption S 6= Ø is relaxed. We shall use the
following notion, which was introduced in [23].

Definition 6.1 The Yosida approximation of index ρ ∈ ]0,+∞[ of a bifunction F : K2 → R is

the set-valued operator ρF : H2 → 2R : (x, y) 7→ 〈x− JρFx | y − x〉 /ρ.

In the present context, (1.1) becomes

find x ∈ K such that (∀i ∈ {0, . . . ,m})(∀y ∈ K) Fi(x, y) ≥ 0. (6.1)

We recall that its set of solutions is denoted by S, while each Fi satisfies Condition 1.1. Now, let
us fix (ρi)1≤i≤m in ]0,+∞[. When (6.1) has no solution, it can be approximated by the problem

find x ∈ K such that (∀y ∈ K) F0(x, y) +
m
∑

i=1

ρiFi(x, y) ≥ 0, (6.2)

in which the bifunctions (Fi)1≤i≤m have been replaced by their Yosida approximations, which are
single-valued operators by Lemma 2.12(ii). This approximation is justified by item (iii) below. We
henceforth denote by G the set of solutions to (6.2).

Proposition 6.2 Let γ ∈
]

0, 2/(
∑m

i=1 ρ
−1
i )
[

. Then:

(i) G = Fix JγF0

(

Id+ γ
∑m

i=1(JρiFi
− Id)/ρi

)

.
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(ii) G is closed and convex.

(iii) Suppose that S 6= Ø. Then G = S.

Proof. Problem (6.2) is a special case of Problem (5.2)–(5.4) with

B =

m
∑

i=1

Id−JρiFi

ρi
and β =

1
∑m

i=1 1/ρi
. (6.3)

Indeed, set (∀i ∈ {1, . . . ,m}) ωi = β/ρi. Then
∑m

i=1 ωi = 1. Moreover, it follows from
Lemma 2.12(ii) and (2.8) that the operators (Id−JρiFi

)1≤i≤m are firmly nonexpansive. There-
fore, their convex combination βB =

∑m
i=1 ωi(Id−JρiFi

) is also firmly nonexpansive. Hence (5.3)
and (5.4) hold and we can apply Proposition 5.2(i)&(iii) to obtain at once (i) and (ii). To show
(iii), we first observe that Lemma 2.12(iii) asserts that

S = SF0
∩

m
⋂

i=1

FixJρiFi
, where SF0

=
{

x ∈ K | (∀y ∈ K) F0(x, y) ≥ 0
}

. (6.4)

Now suppose that S 6= Ø. Then
⋂m

i=1 FixJρiFi
6= Ø and it therefore follows from (2.8) and

Lemma 2.4(ii) with λ ≡ 1 that Fix
∑m

i=1 ωiJρiFi
=
⋂m

i=1 FixJρiFi
. Consequently, it results from

(6.3) that

(∀x ∈ H) Bx = 0 ⇔ x ∈ Fix

m
∑

i=1

ωiJρiFi
=

m
⋂

i=1

Fix JρiFi
, (6.5)

and we deduce from (6.4) that S coincides with the set SF0,B introduced in Proposition 5.2. Hence
SF0,B 6= Ø and Proposition 5.2(iv) yields G = SF0,B = S.

Specializing Algorithm 5.3 and Theorem 5.4 to (6.3), we obtain the following result.

Algorithm 6.3

Step 0. Fix x0 ∈ H and set n = 0.

Step 1. Take λn ∈ ]0, 1], γn ∈
]

0, 2/(
∑m

i=1 ρ
−1
i )
[

, an ∈ H, and (bi,n)1≤i≤m ∈ Hm.

Step 2. Set xn+1 = xn + λn

(

JγnF0

(

xn + γn
∑m

i=1(JρiFi
xn + bi,n − xn)/ρi

)

+ an − xn

)

.

Step 3. Set n = n+ 1 and go to Step 1.

Corollary 6.4 Suppose that the following conditions are satisfied.

(i) G 6= Ø.

(ii) limλn > 0 and 0 < lim γn ≤ lim γn < 2/(
∑m

i=1 ρ
−1
i ).
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(iii)
∑

n∈N ‖an‖ < +∞ and max1≤i≤m
∑

n∈N ‖bi,n‖ < +∞.

Then every orbit of Algorithm 6.3 converges weakly to a point in G.

Likewise, a direct reformulation of Theorem 5.6 for the scenario (6.3) yields a sequence that
converges strongly to the best approximation to a point a ∈ H from the solutions to (6.2).

Remark 6.5 Let (Si)1≤i≤m be a family of closed convex sets in H with associated projection
operators (Pi)1≤i≤m, and let (ρi)1≤i≤m be numbers in [1,+∞[ such that

∑m
i=1 1/ρi = 1. Now set

K = H, F0 = 0, and (∀i ∈ {1, . . . ,m})(∀(x, y) ∈ H2) Fi(x, y) =
(

d2Si
(y)− d2Si

(x)
)

/2. (6.6)

Then (6.1) corresponds to the basic convex feasibility problem of finding a point in S =
⋂m

i=1 Si

and the bifunctions (Fi)1≤i≤m satisfy Condition 1.1 by Lemma 2.15(v). Now let (∀i ∈ {1, . . . ,m})
fi = ρid

2
Si
/2 = 1/ρiιSi

. Then it follows from Lemma 2.15(v) and Lemma 2.2 that

(∀i ∈ {1, . . . ,m}) JρiFi
= proxfi = Id+

ρi
ρi + 1

(Pi − Id). (6.7)

Thus, we deduce from Proposition 6.2(i) that the set of solutions to (6.2) is G = Fix
∑m

i=1 JρiFi
/ρi.

Now set (∀i ∈ {1, . . . ,m}) ωi = 1/(ρi + 1). Then x ∈ G ⇔
∑m

i=1 ωi(x − Pix) = 0 ⇔
∇
∑m

i=1 ωid
2
Si
(x) = 0. Hence, G = Argmin

∑m
i=1 ωid

2
Si
. On the other hand, Corollary 6.4

with λn ≡ 1, an ≡ 0, and bi,n ≡ 0 asserts that, if G 6= Ø and if (γn)n∈N ∈ ]0, 2[N satisfies
0 < lim γn ≤ lim γn < 2, every sequence (xn)n∈N generated by the iteration

x0 ∈ H and (∀n ∈ N) xn+1 = xn + γn

m
∑

i=1

ωi(Pixn − xn) (6.8)

converges weakly to a point in G. This framework was considered in [9] to deal with inconsistent
signal feasibility problems.
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