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Method of Successive Projections 
for Finding a Common Point 

of Sets in Metric Spaces 

P. L .  C O M B E T T E S  1 A N D  [']{. J .  T R U S S E L L  2 

Communicated by E. Polak 

Abstract. Many problems in applied mathematics can be abstracted 
into finding a common point of a finite collection of sets. If all the sets 
are closed and convex in a Hilbert space, the method of successive 
projections (MOSP) has been shown to converge to a solution point, 
i.e., a point in the intersection of the sets. These assumptions are however 
not suitable for a broad class of problems. In this paper, we generalize 
the MOSP to collections of  approximately compact sets in metric spaces. 
We first define a sequence of successive projections (SOSP) in such a 
context and then proceed to establish conditions for the convergence 
of a SOSP to a solution point. Finally, we demonstrate an application 
of the method to digital signal restoration. 

Key Words. Successive projections, convergence, nonlinear optimiz- 
ation, set-valued projections, metric spaces. 

1. Introduction 

In pu re  and  a p p l i e d  ma thema t i c s ,  ideas  can of ten most  s imply  and  
conc i se ly  be  expressed  in te rms o f  set concep t s  and  set nota t ions .  In  this  
pape r ,  we add res s  the b r o a d  class o f  a p p l i e d  p r o b l e m s  whose  bas ic  fo rmula-  
t ion is as fo l lows:  given a finite co l lec t ion  o f  sets in an abs t rac t  space ,  find 
a po in t  which  be longs  to the i r  in tersect ion,  A m o n g  the n u m e r o u s  p r o b l e m s  
which  have been  fo rma l i zed  wi thin  this  genera l  f r amework ,  we can 
specif ica l ly  men t ion  the so lu t ion  o f  systems o f  l inear  equa t ions  (Ref.  I) ,  
mu l t i - cons t r a ined  op t im iza t i on  (Ref.  2), b a n d - l i m i t e d  ex t r apo l a t i on  
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(Ref. 3), control (Ref. 4), signal restoration (Refs. 5, 6, 7), tomographic 
image reconstruction (Ref. 8), and electron microscopy (Ref. 9). Additional 
references can be found in Refs. 10 and 11. 

For purpose of  illustration, let us give a nonlinear programming 
example with m constraints in R". Suppose that it is desired to find a feasible 
point y which gives some objective function J a value at most J0, i.e., find 
y in N" such that 

J(Y)<-Jo and f ( y ) < - O , i = l , . . . , m ,  (1) 

where the functionals { f ~ , . . . ,  fm} represent the constraints. The set theoretic 
formulation of  this problem reads: Find 

y E S S/, (2) 
i=o 

where 

So = {x e ~" I J (x )  <- J0}, (3a) 

Si = {x~R' l f (x) - -<0} ,  i =  1 , . . . ,  m. (3b) 

Let {S~ , . . . ,  Sin} be a collection of sets in an abstract space X, with a 
nonempty intersection S. It is sought to establish a mathematical procedure 
which, under proper  assumptions, will produce a solution to our basic 
problem, i.e., a point in S. If  all the sets are closed and convex in a Hilbert 
space X, then the method of  successive projections (MOSP) has been shown 
to yield a solution, as will be seen in Section 3. There is however a vast 
body of  problems whose set-theoretic formulation does not comply with 
the requirements stated above, which narrows considerably the scope of  
the MOSP. For instance, one of the sets may not be convex or the underlying 
space may not be hilbertian. 

The objective of this paper is to extend the MOSP to collections of 
approximately compact sets in metric spaces and to set forth conditions for 
the convergence of  the method to a solution. The paper is organized as 
follows. Section 2 is devoted to preliminary definitions and results. In 
Section 3, a brief review of the MOSP in Hilbert spaces is given. In Section 
4, the MOSP is generalized to metric spaces and convergence results are 
established. An application of  the method to the problem of digital signal 
restoration is demonstrated in Section 5. Finally, our conclusions appear 
in Section 6. 

2. Projections in Metric Spaces 

We devote this section to providing some elements of the theory of 
projections in metric spaces. In the following, X is a metric space with 
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distance d. The closed ball of  center x and radius r in X is denoted by 
B(x, r). The closure of  a set S is denoted by S. 

2.1. Brief Review of Set-Valued Maps. Let X~, X: ,  and X3 be topologi- 
cal spaces. The class of  nonempty  closed subsets of  Xi is denoted by 2 x,. 
By a set-valued map from X~ into 2 x2, we mean a function T which assigns 
to each point x in X~ a set T(x) in 2x< Following Kuratowski (ReE 12), a 
set-valued map T from X~ into 2 x= is said to be upper  semicontinuous 
(u.s.c.) at a point Xo in X~ if, for every open neighborhood V of T(xo), 
there exists an open neighborhood U of  x0 such that T(x) C V, Vx ~ U. T 
is said to be u.s.c, if it is u.s.c, at every point in X1. I f  T is u.s.c, and if we 
further assume that X2 is a metric space, then T is closed in the sense that 
the set {(x, y ) ~  X~ x X21y c T(x)} is closed in the topological product  X~ x 
X2. Berge (Ref. 13) defines u.s.c, maps in a slightly different manner  by 
imposing that, in addition to the above, the set T(x) be compact  in )(2 for 
all x in X~. Thereafter,  we shall call such a map upper  Berge semicontinuous 
(u.B.s.c.). 

I f  T~ : X1 -> 2 x= and T2 : X2-+ 2 x'  are two set-valued maps, then the image 
under the composit ion T = T2 o T~ of  a point x of  X~ is defined as 

r ( x ) =  1,.,) r2(y). 
ye  Tl(X) 

Theorem 2.1. See ReL 13. Let X1, X2, and X3 be metric spaces. Let 
7"1 be a u.s.c. [respectively u.B.s.c.] set-valued map from X1 into 2 x2, and 
let 7"2 be a u.s.c. [respectively u.B.s.c.] set-valued map from X2 into 2 x~. 
Then, the composit ion product  T = T2 o T~ is a u.s.c. [respectively u.B.s.c.] 
set-valued map  from X~ into 2 x3. 

2.2. Projections and Set Properties in Metric Spaces. Let S be a non- 
empty subset of  (X, d). The distance fi'om a point x in X to S is given by 

Cs(X) = inf{d(x, Y)IY ~ S}. 

It is well known that Cs is continuous and that 

¢s(x)=Oevxe,~,  V x e X  

(Ref. 14). I f  x is a point in X, we shall call y a projection of x onto S if y 
belongs to S and Cs(X) = d(x, y). S is said to be proximinal if every point 
in X has at least one projection onto S, and S is called a Chebyshev set if 
every point o f  X has exactly one projection onto S. S is said to be boundedty 
compact  if its intersection with an arbitrary closed ball is compact ,  and S 
is called approximately compact  if, for every x in X, every sequence {Y~}~_>0 
of  points in S such that {d(x,y,)}n>o converges to Cs(X) possesses a 
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subsequence converging to a point in S. The notion of approximative 
compactness was introduced by Efimov and Stechkin for real Banach spaces 
(Ref, 15) and was naturally extended to arbitrary metric spaces by Singer 
(Ref. 16). 

Theorem 2.2. Let S be a nonempty subset of a metric space X. Then, 
each property in the following list implies the next: 

(i) S is compact; 
(ii) S is boundedly compact; 
(iii) S is approximately compact; 
(iv) S is proximinal; 
(v) S is closed. 

In addition, 
(ii) through 

if X is a finite-dimensional normed vector space, properties 
(v) are equivalent. 

Proof. ( i )~ ( i i )  is trivial; ( i i )~( i i i )  and ( i i i )~( iv)  are due to Efimov 
and Stechkin (Ref. 15); ( iv )~(v)  because no point in S - S  admits a 
projection onto S. The last assertion follows from the fact that, in such a 
metric space X, all the closed balls are compact and therefore every closed 
set is boundedly compact. [] 

2.3. Projection Maps. By the projection operator onto a Chebyshev 
subset S of  X, we mean the function ~s from X onto S which maps every 
point x into its unique projection onto S. By the projection map onto a 
proximinal subset S of X, we mean the set-valued map Hs defined by 

I I s  : X - +  2 s 

x ~-+ {y  ~ S 1 4~s(X) = d ( x ,  y)}. (4) 

Theorem 2.3. The projection map onto a nonempty approximately 
[respectively boundedly] compact subset S of a metric space X is u.s.c. 
[respectively u.B.s.c.] from X into 2 s. 

Proof. The first part of the theorem is due to Singer (Ref. 16) and 
the part in brackets is simply proven by noting that 

n s ( x ) = S n B ( x ,  6s(X)), V x ~ X .  (5) 

Hence, if S is boundedly compact, the set Us(X) is compact for all x 
in X. [] 
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3. Method of Successive Projections in Hilbert Spaces 

The theory of successive projections in Hilbert spaces rests on the 
following result. 

Theorem 3.1. See Ref. 17. Let S be a nonempty convex and complete 
subset of  a pre-Hilbert space X with scalar product  (. 1. ). Then, 

(i) S is a Chebyshev set; 
(ii) Re(x-~rs(x) ly-~s(x))<-O , VxEX,  r y e S .  

Definition 3.1. Let {S~, . . . ,  Sin} be an ordered collection of nonempty 
closed and convex subsets of  a HUbert space X. For every i in { 1 , . . . ,  m} 
we denote by 7ri the projection operator onto the (Chebyshev) set Si, and 
by rr the composition rr, . . . . .  1r,~. Given a point x0 in X, we shall call a 
sequence of  successive projections (SOSP) the sequence {x,}~0 constructed 
according to the recursion 

x.+,--- Tr(x.)= ~r"+'(Xo), V n c N .  (6) 

Proposition 3.1. Suppose that, in addition to the hypotheses of 
Definition 3.1, the intersection S of the sets is nonempty. Then, if the SOSP 
converges, it is to a point in S. 

ProoL By a corollary of  Theorem 3.1, each ~ri is continuous (Ref. 
17). Hence, ~r is continuous and, if the SOSP {x.}._>o converges to a point 
x, {Tr(x.)}._>0 converges to ~r(x). Consequently, by (6), {x.+l}._>0 converges 
to 7r(x). Hence, x = ~r(x). But since every fixed point of 1r is in S (Ref. 5), 
it follows that x is in S. 5 

The main convergence results of the MOSP in Hilbert spaces can now 
be stated. 

Theorem 3.2. Let {St . . . .  , Sin} be an ordered collection of  closed and 
convex subsets of  a Hilbert space X whose intersection S is not empty. 
Then, for every Xo in X:  

(i) the SOSP converges weakly to a point in S; 
(ii) the SOSP converges strongly to a point in S if one of  the sets is 

boundedly compact; 
(iii) the SOSP converges strongly to a point in S if all the sets are 

linear varieties. 
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The first assertion is due to Br~gman (ReL 18) and the second to Stiles 
(Ref. 19). Assertion (iii) was proved by Halperin (Ref. 20) for vector 
subspaces, but his proof  can routinely be extended to linear varieties. For 
m = 2, Halperin's result is known as the alternating projection theorem and 
is due to Von Neumann (Ref. 21). If  the dimension of X is finite, (i) and 
(ii) are equivalent and (iii) is a particular case of  (i), because then a closed 
set is boundedly compact and the notions of  weak and strong convergence 
coincide. 

For completeness, let us mention that, in order to improve the speed 
of convergence of  the MOSP, Gubin et al. (Ref. 10) have introduced relaxed 
projection operators which extend the projections beyond the boundary of 
the sets. It is also noted that, in the MOSP presented above, the sets are 
activated in cyclic order at each iteration. Other schemes have been con- 
sidered in the literature, which aim at an optimal speed of  convergence. In 
that respect, Ottavy (Ref. 11) has recently presented a unified framework 
for the study of  a very broad class of  projection algorithms, along with 
strong convergence results. 

4. Method of Successive Projections in Metric Spaces 

As was seen in the introduction, the framework of the MOSP as 
described in the previous section is unsuitable for a wide class of  problems. 
In this section, we shall broaden the scope of the MOSP by placing ourselves 
in the general setting of  a metric space where {S~ , . . . ,  S,,} is a collection 
of  proximinal sets. 

4.1. Cyclic Projection Map 

Definition 4.1. Let F = { S i , . . . ,  Sin} be an ordered collection of 
proximinal sets in a metric space X. For every i in { 1 , . . . ,  m}, we denote 
by Hi the projection map onto S~, regarded as a set-valued map from X 
into 2 x. Then, the composition map I I=H1  . . . . .  H,, will be called the 
cyclic projection map of  F. 

Theorem 4.1. The cyclic projection map of an arbitrary ordered finite 
collection of nonempty approximately [respectively boundedly] com- 
pact sets in a metric space X is a u.s.c. [respectively u.B.s.c.] map from X 
into 2 × . 
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Proof. It is done by Theorem 2.3 and by invoking Theorem 2.1 
inductively. [] 

4.2. Sequence of Successive Projections 

Definition 4.2. Let II be the cyclic projection map of  an ordered 
collection of  proximinal sets F = { $ 1 , . . . ,  S,~} in a metric space X. Then, 
given a point Xo in X, we shall call a SOSP (relative to F and Xo) any 
sequence {x,},~o constructed according to the recursion 

x~+~II(x,), g n ~ N .  (7) 

In words, one selects a projection Ym of  XO onto Sin, then a projection 
Ym-1 of Ym onto Sm_~, and so on. The projection of Y2 onto $1 which has 
been selected is x~. A SOSP {x,},_~o is constructed by continuing this cyclic 
process ad infinitum. It is noted that such a sequence exists, since I-I(x) ¢ ~ ,  
Vx ~ X. Moreover, since the values of II are subsets of  $1, the sequence 
{x,},~_l lies in $1. 

For a given collection F and a point Xo, the uniqueness of  a SOSP 
depends on the properties of  the sets in the region where the iterations are 
performed. Clearly, for every starting point xo, the cyclic projection map 
of  a collection of Chebyshev sets generates a unique SOSP. In connection 
with the question of uniqueness, let us mention two important properties 
of  a space which is frequently encountered in applications, namely the 
finite-dimensional Euclidean space E. First, the class of Chebyshev sets and 
the class of  nonempty closed and convex sets coincide in E (Ref. 22). 
Second, the points which admit more than one projection onto a nonempty 
closed subset of  E form a set of  Lebesgue measure zero (Ref. 23). 

Proposition 4.1. Let II be the cyclic projection map of  an ordered 
finite collection of nonempty approximately compact sets in a metric space. 
Then, if a SOSP converges, it is to a fixed point of gi. 

Proofl Let {x,},_~o be a SOSP that converges to a point x. Then, 
{x,+l},_~o converges to x and x,,+l ~ rI(x,) ,  Vn ~N. II is u.s.c, by Theorem 
4.1 and afortiori closed. Hence, x c H ( x ) .  [] 

Unlike Proposition 3.1, the above proposition does not guarantee that 
the limit of  a convergent SOSP is a solution point, Indeed, H may admit 
fixed points outside the solution set. In this respect, Fig. 1 shows a system 
of  two closed sets in the Euclidean plane, where x is a fixed point of  the 
cyclic projection map 1-[ which lies outside the intersection S. In that 
example, the set of  fixed points of II is F = {x} ~ S. 
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Fig. 1. Fixed points and region of attraction. 

Definition 4.3. Let F = { S I , . . . , S m }  be an ordered collection of 
proximinal  sets in a metric space X whose intersection S is not empty. Let 
I I  be the cyclic projection map of  F, and let Y be the set of  points in $1 - S 
from which an iteration step may fail to reduce ~bs, 

Y = {x c S, - S I 3 x '  e H(x)  such that C~s(X') >- qSs(X)}. (8) 

We shall define the radius of  attraction of  F as 

=(inf{(bs(X)]Xe Y}, if Y # O ,  

P l+oO, otherwise, (9) 

and the region of  attraction of  F as 

R = S w {x e $114~s(X) < p}. (10) 

Two direct consequences of  Definition 4.3 are 

(9s(X')<(gs(X), V x e R - S ,  V x ' e  I I (x) ,  (11) 

and 

I I (x )  C R, V x e R .  (12) 

It is important  to note that, under our assumptions on the collection of  sets 
F, the radius of  attraction p can assume all the values in [0, +co]. For 
instance, the case p = + 00 occurs when F consists of  two intersecting straight 
lines in the Euclidean plane. Then, the region of  attraction is S1 itself. 
Figure 1 illustrates a case where 0 < p <  + 0o for a collection F = {S1, $2} of 
closed subsets of  the Euclidean plane. The shaded area represents the region 
of  attraction R of  F. In the case where p = 0, the region of  attraction reduces 
to the solution set S. The following example illustrates this case. 

Example 4.1. Let X be the Euclidean real line. For every n in N, we 
define 

a , , = l / n  and b , , = ( 3 n + 2 ) / ( 3 n ( n + l ) ) ,  if n > 0 ,  (13a) 

ao = bo = 0. (13b) 
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Consider  the collection F = {S~, $2} in X where 

S ~ = U { a n }  and S2=Cfl {b,}. 
n--O n~O 

We claim that the radius of  attraction of F is zero. 

495 

(14) 

Proof. First of all, we check that F satisfies the assumptions of  
Definition 4.3. It is readily seen that, Vn ~ N, 

n > 0 ~ a n + ~  < bn<a~. (15) 

Thus, S = {0} ~ • and, since the sets $l and $2 are closed, they are proximinat 
in X by Theorem 2.2. Now, let E be a fixed positive real number.  Then, 
there exists an n in N such that 1/(n + 1) < E. Whence, there exists an x = a,+~ 
in S~ - S such that 49s(X ) < E. Let 17 = 1~1 o I ~  2 and p be respectively the cyclic 
projection map  and the radius of  attraction of  F. From (13a) and (15), 

I I2 (x)={b ,+ ,}  and FI,(b,+l)={a,+,}={x}. 

We conclude that 

ri(x)={x}, 

and hence x lies in the set Y of  (8). Thus, necessarily, p < e. Since e can 
be arbitrarily small, it follows that p = 0. [] 

Definition 4.4. Let F = { S 1 , . . . ,  Sin} be an ordered collection of 
proximinal sets in a metric space X whose intersection S is nonempty. Let 
R and 17 be respectively the region of attraction and the cyclic projection 
map of  F. We shall say that a point Xo in X is a point of attraction of F if, 
for every SOSP {xn}~o, there exists a nonnegative integer v such that x~, 
belongs to R. We shall call the smallest such v the index of  attraction of  a 
given SOSP. 

It follows readily from Definition 4.4, (11), and (12) that, if  xo is a 
point  of  attraction and {x,}.~_o a SOSP with index of  attraction u, then 
{~bs(X~)},_~. is a nonincreasing sequence and 

x~+° ~ {x ~ S, J 4~s(X) <- 6s(X~)} c R, Vn e N. (16) 

In words, the tail of  every SOSP starting at a point of  attraction lies in the 
region of  attraction, Moreover,  (11) implies that all the fixed points of  1-[ 
in R belong to the solution set. Thus, if all the sets are approximately 
compact  in Definition 4.4, the limit of  every convergent SOSP starting at a 
point of  attraction is a solution point on account of  Proposition 4.1. 
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4.3. Convergence Result. We remind the reader that a topological 
space is said to be connected if it is not the union of two disjoint nonempty  
closed sets and that a compact  connected Hausdorff  topological space is 
said to be a continuum (Ref. 12). Moreover,  we shall say that a continuum 
is nontrivial if  it does not reduce to @ or a singleton. 

Theorem 4.2. Let {xn},~0 be a sequence of points in a compact  subset 
of  a metric space (X, d) such that {d(x , ,  x,+~)}n_>o converges to zero. Then, 
either {x,},_>o converges or its set of  cluster points is a nontrivial continuum. 

Proof. This is a straightforward generalization of  a theorem given in 
Ref. 24 for Euclidean spaces. [] 

The following lemma will be needed subsequently. 

Lemma 4.1. Let S and S~ be respectively a nonempty bounded and 
a nonempty  boundedly compact  set in a metric space, and let a be a 
nonnegative real number. Then, the set {x c S~[ ~bs(X) -< a} is compact.  

Proof. Let 

A = {x e $11 Cs(X) <- a}. 

Clearly, by continuity of  Cs, A is closed. Since S is bounded,  it is contained 
in a closed ball centered at some point z in S, say B(z, r). Now let x be an 
arbitrary point in A. Then, there exists a point y in S such that 

d(x , y )<-a+½.  

Hence, 

1 r t" d(z,  x) <- d(z,  y) + d(x, y) <- r+ a +~ = 

Therefore,  x belongs to the closed ball B of  center z and radius r', and it 
follows that A C B n SI. Hence, A is a closed subset of  B n $1 which is 
compact,  since $1 is boundedly compact.  Thus, A is compact.  [] 

We are now ready to present the main result. 

Theorem 4.3. Let F = { S ~ , . . . ,  Sin} be an ordered collection of  approxi-  
mately compact  sets in a metric space X, whose intersection S is nonempty  
and bounded,  and such that S~ is boundedly compact.  Let Xo be a point of  
attraction of  F, let {x,},_>o be an arbitrary SOSP, and let C be the set of  
its cluster points. Then, either {x,},>o converges to a point in S or C is a 
nontrivial continuum in S. A sufficient condition for the former is that 

E ~s(X.)< +~ .  
n ~ 0  
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Proof. Let rI = rI~ . . . . .  l-I., be the cyclic projection map of  F, and 
let R be its region of attraction. Since xo is a point of attraction of F, the 
SOSP {x.}n_~o possesses an index of attraction v. From (16), the sequence 
{xn}._~ lies in the set 

a = {x ~ S1 [d)s(X) <- Cs(X~)}, 

which is compact by Lemma 4.1. Hence, {x.}.~o admits a cluster point y. 
By continuity of  ~bs, &s(Y) is a cluster point of  {¢s(X.)}.~o. But, as 
{¢s(X~)}.~ is a nonincreasing sequence bounded from below, it must 
converge to &s(Y). Moreover, 

Cs(X~+,) -> Cs(Y), Vn ~ iN. 

Now, suppose that y ¢ S. Then, since y E A C R, ( t t )  yields 

¢s(Y') < Cs(Y), Vy ' e  II(y). 

Consider the open neighborhood 

v = {z e x l ¢~(z)  < ¢~(y)} 

of  H(y).  H is u.s.c, at y by Theorem 4.1. It follows that there exists an open 
neighborhood U of  y such that H ( x ) C  V, Vx ~ U. But y is a cluster point 
of  {x,},~,  and, hence, there exists a positive integer n such that x~+._~ ~ U. 
The successor x,+, of x,+, _~ in the SOSP belongs to II(x~+,_~) and therefore 
to V. Consequently, Cs(X,+~)<d~s(y), which contradicts a previous 
inequality statement. Hence, y e 5:. Thus, {4)s(X,)},_>o converges to zero and 
Q # C C S .  

Now, let n be fixed in N, and let Yo = x,.  For every j in { 0 , . . . ,  m - 1}, 
we denote by y~+~ the projection of  y~ onto S~_~, which has been selected 
in the process of  obtaining x~+~. We have x,+~ =y~ .  It is noted that S is 
boundedly compact as a closed subset of S~. Hence, by Theorem 2.2, there 
exists a point z in S which is a projection of Y0 onto S. Since z belongs to 
each S,,_j, we have 

d()) ,  )).~) = inf{d(y~, y) ly  c S~_j} 

<-d(yj, z), V j e { O , . . . , m - 1 } .  (17) 

Let d = d(yo, z). Let us prove that 

d(yj, z)<-2~d, Vj e { 0 , . . . ,  m}. (18) 

The statement is clearly true for j = 0. For any integer j in {0 . . . .  , m - 1 }  
for which (18) holds, (17) yields 

d(yj+l, z) <-- d()~j, Y~+l) + d(yj, z) <- 2d(yj, z) <- 2J+~ d, (19) 
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which completes the proof  by induction. By using (17) and (18), we get 

m - 1  m - 1  

d(x,,,x,,+~)<- Y. d(yj, y.i+l)<- E d(yj, z) 
j = 0  j = O  

rtl --  1 

< 2 2 J d = ( 2 " - l )  d. (20) 
j = O  

It is easy to see that d = ¢bs(X~). Therefore, 

d(x.,x.+l)<-(2m-1)C~s(X.), V n ~ .  (21) 

Since {~bs(X.)}.>o converges to zero, so does {d(x., x.+l)}.~_o. Thus, since 
C C S, it follows from Theorem 4.2 that either {x.}.~o converges to a point 
in S or C is a nontrivial continuum in S. 

To prove the last assertion, it is enough to show that {x.}._~o is a Cauchy 
sequence. Let p and q be any two nonnegative integers such that p < q. We 
have 

q--1 + ~  

d(xp, Xq)~ Z d(xn, Xn+l)~ E d(xn, xn+l) 
n = p  n ~ p  

~ ( 2 m - 1 )  ~ ~s(X.). (22) 
n = p  

Since the rightmost expression in (22) is nothing but the tail of  a conver- 
gent series, it must go to zero as p goes to infinity, which concludes the 
proof. [] 

Comment 4.1. In the proof  of  Theorem 4.3, it is shown that, without 
any summability assumption on {4~s(X~)}n_>o, the sequence {d(x,,, Xn+0}n_>0 
converges to zero. It is noted that, in an ultrametric space, i.e., a metric 
space (X, d) such that 

d(x,z)<_sup{d(x,y),d(y,z)}, V(x ,y , z )EX ~, (23) 

this condition guarantees that {x,}n>o is a Cauchy sequence (Ref. 14), which 
would establish at once its convergence. Ultrametric spaces are however 
seldom encountered in applications; see Bourbaki (Refs. 14, 17) and 
Dieudonn6 (Ref. 25) for examples and properties. 

4.4. Questions Relative to the Implementation of the MOSP. In the 
previous sections, the MOSP has been developed as a conceptual mathemati- 
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cal procedure for obtaining a point in the intersection S of a collection 
F = { $ 1 , . . . ,  Sin} of sets in a metric space X. We shall now address the main 
issues pertaining to its implementation. In the following discussion, it is 
assumed that X = ~", as is the case in most applied problems. Moreover, 
because of its computational advantages, the Euclidean norm II" II is chosen 
to metrize Nn. By Theorem 2.2, in such a metric space, Theorem 4.3 applies 
to finite collections of closed sets whose intersection is nonempty and 
bounded. 

Closedness and Boundedness Restrictions on the Sets. We have 

g~ = {x ~ X l a (x ,  s~) = o}. 

Hence, the requirement that the sets be closed is not restrictive, since we 
can always replace a set by its closure. Moreover, the condition that the 
solution set be bounded should not cause concern for, in practice, there 
are always boundedness constraints on the components of  a feasible so- 
lution. Thus, the conditions of  closedness and boundedness on the sets are 
quite mild and can always be satisfied in applied problems. 

Computation of the Projections. For a fixed x in N", let &x denote the 
functional c~x:y ~-~ I Ix-y t l  2. Each elementary step of the MOSP involves 
the computation of a projection yp of a point x onto a proximinal subset 
St of R", i.e., a global minimum of &x over S~. As there exists no universal 
method to solve efficiently this quadratic minimization problem, a complete 
discussion is neither possible nor intended. In practice, the projection onto 
a given Si should be considered on a case-by-case basis. 

If S~ is convex, any local minimum of ~bx is a global one. Specific 
algorithms have been established for special cases such as polyhedrons 
(Ref. 26) or polytopes (Ref. 27). Generally speaking, quadratic programming 
algorithms are of interest when S~ is specified by functional inequalities. In 
applied problems, an equation is often available for the boundary of  S~, e.g., 

os, = {x e e "  jA(x)  = 0}.  

Since the projection of  a point in $7 onto S; belongs to OS~, the problem 
can be approached via the method of  Lagrange multipliers. If  S; is character- 
ized only by a contact function, the quadratic programming algorithm of 
Ref. 28 can be used. If S~ is not convex, 4~x may admit several local minima 
and, thus, the problem of finding a projection of x is one of  global optimi- 
zation. In some problems, there may not be criteria for deciding whether a 
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local solution is global and global optimization methods must be employed. 
Both deterministic and stochastic procedures have been proposed in the 
literature to solve the global optimization problem, and we refer the reader 
to Ref. 29 for a detailed survey. Recent developments of  the stochastic 
approach can be found in Ref. 30 and in the references therein. Stochastic 
methods should be used when there is no certainty that deterministic 
algorithms will produce a global minimum to some acceptable degree of 
accuracy. They are regarded as very reliable tools which, under relatively 
mild conditions, offer an asymptotic guarantee of convergence (in some 
probabilistic sense) to a global solution. 

Finding a Point of Attraction. In Theorem 4.3, it is stated that the 
iterations should be started at a point of  attraction. Since our definition of 
a point of  attraction is not constructive, such a point may be difficult to 
find. Indeed, because of  the geometrical complexity of  the system of  sets, 
it is usually impractical to characterize a p r i o r i  the region of  attraction and 
to establish whether or not a point is a point of  attraction. This potential 
limitation of  the MOSP should however be mitigated by noting that in a 
practical application an approximate solution is often available. Since points 
of  attraction are more likely to be found in the vicinity of the solution set, 
this approximate solution is a good candidate for a starting point o f a  SOSP. 
Then, the point y produced by the algorithm is accepted as a solution if it 
belongs to all the sets. If it does not, then none of the points in the 
corresponding SOSP belong to the region of attraction. Hence, loosely 
speaking, a new starting point should be chosen outside the path followed 
by that unsuccessful SOSP. A heuristic way to do this is to start the iterations 
at the symmetric x~ of  x0 with respect to y, i.e., x~ = 2y - x0. In general, this 
method does not ensure that a point of  attraction will be found. Nonetheless, 
it has been used successfully in most of  our applications. 

Stopping Rule. In practical problems, the MOSP presented above 
consists in generating a sequence of points {x~},,~0, where xo is a point of  
attraction of  F, according to the following algorithm: 

V n  ~ N ,  s t o p  i f  xn  ~ S~, V i  ~ {1,  . . . , m}; 

else, let xn+~ be any point in l-/(xn). (24) 

Under the hypotheses of Theorem 4.3, if a solution is not obtained in a 
finite number of  iterations, it is any cluster point or the limit of {xn},~o. 
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Since we are interested in obtaining a solution in finite time, it remains to 
discuss a practical convergence criterion for the MOSP. 

In the proof  of Theorem 4.3, it was seen that, ifxo is a point of  attraction 
of F and {x,},~o a SOSP, then the sequence {i[x,+~-x.tl}n_~0 converges to 
zero. Therefore, the following criterion can be used as a stopping rule: 

][x.+~-x.[[ ~ e. (25) 

Such a criterion has notorious drawbacks. It may for instance stop the 
algorithm prematurely in case of  slow convergence. Another problem is 
that the choice of  the parameter e is somewhat arbitrary. We shall however 
adopt  it, because it has proven useful in practice. It is noted that the MOSP 
does nat necessarily yield a solution point in a literal sense since, because 
of  the truncation of  the SOSP, it may produce a point which does not 
exactly lie in all the Si's. From a practica| standpoint, this should not raise 
concern, because slight deviations are usually allowable in specifying the 
boundaries of  the S~'s. 

5. Application to Digital Signal Restoration 

5.1. Introduction, The purpose of this section is to illustrate an appli- 
cation of the method developed above to digital signal restoration. The 
digital restoration problem is to estimate the original form of a blurred and 
noise-corrupted discrete signal. It is a common problem of various fields 
of  engineering, from image processing to seismology. 

Conventional restoration methods seek to produce an estimate of 
the original signal which is optimum in terms of a predefined criterion 
[e.g., least-squares (Wiener filtering), constrained least-squares, m a x i m u m  
a posteriori ,  and maximum entropy]; see Ref. 31. tn recent years, set-theoretic 
signal restoration has been reported to outperform these conventional 
methods (Refs. 5, 6, 7). In that approach, consistency with all the available 
a priori  knowledge serves as an estimation criterion. Each piece of  a priori  

knowledge is represented by a property set in [2 n. A restored signal is any' 
point in the intersection S of  these sets and, therefore, the set theoretic 
restoration problem takes the form of  (2). It is important to note that the 
problems presented in Refs. 5, 6, 7 were solved by using the algorithm of  
Theorem 3.2 in the Euclidean space (in the signal recovery literature, this 
algorithm is often referred to as POCS, for projection onto convex sets). 
Therefore, only convex property sets could be considered in these studies, 
which precluded the incorporation of some useful pieces of a priori  infor- 
mation. 
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Fig. 2. Original signal. 

5.2. Signal Degradation. In these simulations, we employ the standard 
shift-invariant linear degradation model (Ref. 31) 

d = H a  + w, (26) 

where d is the n x 1 degraded signal vector, H the n x n known blur matrix, 
a the n x 1 original signal vector, and w the n x 1 noise vector. In the results 
shown here, n = 64 and the original signal a is the simulated X-ray fluores- 
cence spectrum displayed in Fig. 2. Such signals feature high-resolution 
patterns together with large zero regions and are often used to test restoration 
methods. This signal was blurred by convolution with a Gaussian-shaped 
impulse response with a standard deviation of two points. This impulse 
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Fig. 3, Degraded signal. 
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response constitutes a good model for the finite resolution of  the measure- 
ment instruments. Zero-mean Gaussian white noise with variance o -2 = 0.002 
was then added to obtain the degraded signal d seen in Fig. 3. 

5.3. Set Theoretic Restoration. tR" is equipped with the Euclidean 
norm [1. ]1. In order to perform a set-theoretic restoration, we first need to 
construct sets in 1~" from the available a priori knowledge. As was shown 
in Ref. 6, property sets can be constructed by constraining the sample 
statistics of  the estimation residual 

r = r (d )  = d - H a  

to agree, within some confidence coefficient, with those known properties 
of  the noise w. Let r~ be the ith component  of  r. From the knowledge that 
the noise is zero mean white and Gaussian with power o -2, we can construct 
the set $1 of  estimates which give residual points within some confidence 
interval 

S , = (  2"] G, where G={aeI~l{r,]<-6o}, (27) 
i=l 

the set $2 of  estimates which give a residual sample variance consistent 
with the noise power 

S 2 = ( a  c ~ n l l ] d  - Hail2 ~ •v}, (28) 

and the set $3 of estimates which give a residual periodogram consistent 
with the whiteness and the normality of  the noise 

$3 = {d  ~ " l J R k ]  2-<- 3p, V k  c { 1 , . . . ,  n / 2 -  1}}, (29) 

where Rk is the kth component  of the discrete Fourier transform of  r. The 
expressions of  60, 3~, and 8, along with the derivations of  the projection 
operators onto the closed and convex sets G ,  $2, and $3 can be found in 
Ref. 6. In the simulations, the confidence coefficient was fixed to 95%. 

As an X-ray fluorescence spectrum, the original signa! is nonnegative 
and does not possess more than a few nonzero values, say z (given that 
n = 64, a standard value is z = 9). The set of  all vectors with nonnegative 
components  whose number  of  nonzero values does not exceed z will be 
denoted by $4. If  {ei]l-< i ~ n} denotes the standard orthonormal basis of  
~n and $5 the set of  vectors with nonnegative components,  $4 can be 
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described as the intersection of $5 with the union of the n I/z !(n - z ) !  vector 
subspaces of R" generated by z distinct ei's. Clearly, $4 is proximinal but 
not convex. A projection of a vector a in R" onto $4 is simply obtained by 
retaining z of the largest nonnegative components of a and by setting the 
remaining components to zero. 

In implementing the POCS, $4 cannot be used because it is not convex. 
We can however use its closed and convex superset $5. The degraded signal 
served as a starting point for the iterations and sequential projections onto 
the Ci's, $2, Ss, and $5 were carried out. The coefficient in the stopping 
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rule of  (25) was set to e = 10 -2. Convergence to the estimate displayed in 
Fig. 4 was obtained in 45 iterations. 

The MOSP of Theorem 4.3 was then used. It allows us to incorporate 
the nonconvex set $4. As noted in Section 4, points of attraction are more 
likely to be found in the vicinity of  the solution set S. Because the degraded 
signal x still retains some of the features of the original signal, it constitutes 
a sensible choice for a starting point. The MOSP was implemented by 
projecting sequentially onto the C~'s, $2, $3, and $4. As above, e was set 
to 10 -2. Convergence to the feasible signal displayed in Fig. 5 was achieved 
in 60 iterations. Since more a priori knowledge has been used, it is not 
surprising that the MOSP gave a better restoration than the POCS. Indeed, 
the three peaks on the left are more sharply recovered and the separation 
between the two main peaks has been improved. Moreover, all the artifacts 
which appeared in the flat regions of the signal have been removed. 

5.4. Other Applications. There are other problems in which the 
authors have successfully employed the MOSP with the inclusion of noncon- 
vex sets. For instance, remaining in the framework of  signal restoration, 
the nonconvex set of  signals whose Euclidean norm is bounded from below 
(minimum energy constraint) and that of signals with a prescribed Fourier 
transform magnitude have been used. Another application is the problem 
of  estimating the parameters of an autoregressive time series of order p 
from a finite sample path. In that problem, an important constraint is the 
stationarity of  the autoregressive process, which gives rise to a nonconvex 
set in the coefficient space for p > 2. This set is also encountered in the 
identification of  purely recursive stable discrete systems. 

6. Conclusions 

A method for obtaining a common point of a finite collection of sets 
in a metric space has been presented. This method was developed by 
generalizing the method of successive projections for closed and convex 
sets in Hilbert spaces to approximately compact sets in metric spaces. 
Sequences of  successive projections were constructed via the composition 
of  the set-valued projection maps onto the individual sets. It was shown 
that, under certain hypotheses, a solution could be obtained as any  cluster 
point or the limit of  any such sequence. Potential applications of this result 
are found in any problem whose set-theoretic format cannot be reduced to 
that of  closed and convex sets in a Hilbert space (e.g., nonconvex program- 
ming in arbitrary normed vector spaces). 
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