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§1. Introduction

Monotone inclusions provide an effective template to model a wide spectrum of problems in op-
timization and nonlinear analysis [3, 7, 8, 18, 20, 26, 29]. The question of combining monotone
and linear operators in a fashion that preserves monotonicity has been a recurrent topic; see, e.g.,
[5, 6, 9, 10, 19]. One such construct is the resolvent mixture [19], an operation that includes in
particular the resolvent average [2]. It combines finitely many monotone and linear operators
in such a way that the resolvent of the resulting operator is the sum of the individual linearly
composed resolvents. Our objective is to extend this construct to arbitrary families of operators.
Our analysis rests on the concept of Hilbert direct integrals of families of monotone operators
proposed in [11]. Considering the case when the underlying operators are subdifferentials leads
us to introduce the Hilbert direct integral of a family of convex functions, a notion that extends
proximal mixtures of finite families and, in particular, the proximal average.
Our main contributions are the following.

• We introduce the notion of an integral resolvent mixture for arbitrary families of monotone
operators acting on different spaces. This construction exploits the notion of Hilbert direct
integrals of set-valued and linear operators from [11]. One of its salient features is that
its resolvent is the Lebesgue integral of the linearly composed resolvents of the individual
operators. A dual operation of integral resolvent comixture is also investigated.

• We introduce the notion of an integral proximal mixture for arbitrary families of functions
defined on different spaces. Its proximity operator turns out to be the Lebesgue integral of
the linearly composed proximity operators of the individual functions. A dual operation of
integral proximal comixture is also investigated.

• As an instance of an integral resolvent mixture, we propose a notion of resolvent expectation
for a family of maximally monotone operators and, likewise, of proximal expectation for a
family of functions. These notions extend those of resolvent and proximal averages for finite
families.

• We apply the above tools to the relaxation of systems of monotone inclusions involving
linear operators. Applications fitting this framework are described and a proximal-type al-
gorithm is proposed.

The paper is organized as follows. In Section 2, we set our notation and provide necessary
theoretical tools. In Section 3, we study the integral resolvent mixture of a family of monotone
operators. Section 4 is dedicated to the integral proximal mixture of a family of functions. In
Section 5, we present an application to systems of monotone inclusions and discuss some special
cases of interest arising in data analysis.

§2. Notation and background

We first present our notation, which follows [3].
LetH be a real Hilbert space with power set 2H , identity operator IdH , scalar product 〈 · | · 〉H ,

associated norm ‖ · ‖H , and quadratic kernel QH = ‖ · ‖2H/2.
Let � be a nonempty closed convex subset of H . Then proj� is the projection operator onto �

and #� is the normal cone operator of� .
Let ) : H → H and g ∈ ]0,+∞[. Then) is nonexpansive if it is 1-Lipschitzian, g-cocoercive if

(∀G ∈ H)(∀~ ∈ H) 〈G − ~ |)G −)~〉H > g ‖)G −)~‖2H , (2.1)

and ) is firmly nonexpansive if it is 1-cocoercive.
Let � : H → 2H . The graph of � is gra� =

{
(G, G∗) ∈ H ×H | G∗ ∈ �G

}
, the inverse of � is

the operator �−1 : H → 2H with graph gra�−1 =
{
(G∗, G) ∈ H ×H | G∗ ∈ �G

}
, the domain of

� is dom� =
{
G ∈ H | �G ≠ ∅

}
, the range of � is ran� =

⋃
G∈dom� �G , the set of zeros of � is
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zer� =
{
G ∈ H | 0 ∈ �G

}
, the resolvent of � is �� = (IdH + �)−1, and the Yosida approximation

of � of index W ∈ ]0, +∞[ is

W� = � �
(
W−1IdH

)
=

(
�−1 + W IdH

)−1
=
IdH − �W�

W
. (2.2)

Suppose that� is monotone. Then� is maximally monotone if any extension of gra� is no longer
monotone in H ⊕ H . In this case, dom �� = H and �� is firmly nonexpansive.
Let 5 : H → [−∞,+∞] and set dom 5 =

{
G ∈ H | 5 (G) < +∞

}
. The Moreau envelope of 5 is

5 �QH : H → [−∞, +∞] : G ↦→ inf
~∈H

(
5 (~) +QH (G − ~)

)
(2.3)

and the conjugate of 5 is

5 ∗ : H → [−∞,+∞] : G∗ ↦→ sup
G∈H

(
〈G | G∗〉H − 5 (G)

)
. (2.4)

Now suppose that 5 ∈ �0(H), that is, 5 is lower semicontinuous, convex, and such that −∞ ∉

5 (H) ≠ {+∞}. The subdifferential of 5 is the maximally monotone operator

m5 : H → 2H : G ↦→
{
G∗ ∈ H | (∀~ ∈ H) 〈~ − G | G∗〉H + 5 (G) 6 5 (~)

}
(2.5)

and the proximity operator prox5 = �m5 of 5 maps every G ∈ H to the unique minimizer of the
function H → ]−∞, +∞] : ~ ↦→ 5 (~) +QH (G − ~).
Finally, given a measure space (S,F, `), the symbol ∀` means “for `-almost every” [31].

Definition 2.1 ([19, Definition 1.1]). Let H and X be real Hilbert spaces, let � : H → 2H ,
and let ! : X → H be linear and bounded. The resolvent composition of � with ! is the operator
! ⋄� : X → 2X given by

! ⋄� =
(
!∗ ◦ �� ◦ !

)−1 − IdX (2.6)

and the resolvent cocomposition of � with ! is ! ˛ � = (! ⋄�−1)−1.
Definition 2.2 ([19,Definition 1.4]). LetH and X be real Hilbert spaces, let 5 : H → [−∞, +∞],
and let ! : X → H be linear and bounded. The proximal composition of 5 with ! is the function
! ⋄ 5 : X → [−∞,+∞] given by

! ⋄ 5 =
(
(5 ∗ �QH ) ◦ !

)∗ −QX, (2.7)

and the proximal cocomposition of 5 with ! is ! ˛ 5 = (! ⋄ 5 ∗)∗.
Here are some notation and facts regarding integration in Hilbert spaces. Let (S,F, `) be a

complete f-finite measure space and letH be a separable real Hilbert space. For every ? ∈ [1,+∞[,
set

L
?
(
S,F, `;H

)
=

{
G : S → H

���� G is (F,BH)-measurable and

∫

S

‖G (l)‖?
H
`(3l) < +∞

}
, (2.8)

where BH is the Borel f-algebra of H. The Lebesgue (also called Bochner) integral of a mapping
G ∈ L1(S,F, `;H) is denoted by

∫

S G (l)`(3l); see [31, Section V.§7] for background.We denote
by !? (S,F, `;H) the space of equivalence classes of `-a.e. equal mappings in L? (S,F, `;H).
Lemma 2.3. Let (S,F, `) be a complete f-finite measure space, let H be a separable real Hilbert

space, and let G ∈ L1(S,F, `;H). Then the following hold:

(i) [31, Théorème 5.7.13] ‖
∫

S G (l)`(3l)‖H 6
∫

S ‖G (l)‖H `(3l).
(ii) Let x∗ ∈ H. Then the function S → R : l ↦→ 〈G (l) | x∗〉H is `-integrable and

∫

S

〈G (l) | x∗〉H `(3l) =
〈
∫

S

G (l)`(3l)
���� x

∗
〉

H

. (2.9)
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(iii) Suppose that ` is a probability measure. Then






∫

S

G (l)`(3l)





2

H

6

∫

S

‖G (l)‖2H `(3l). (2.10)

Proof. (ii): Apply [31, Théorème 5.8.16] with the continuous linear functional ! = 〈 · | x∗〉H.
(iii): We derive from (i) and the Cauchy–Schwarz inequality that







∫

S

G (l)`(3l)





2

H

6

����

∫

S

1S (l)‖G (l)‖H `(3l)
����
2

6 `(S)
∫

S

‖G (l)‖2H `(3l), (2.11)

which concludes the proof.

Notation 2.4. Let (S,F, `) be a complete f-finite measure space, let X and H be separable real
Hilbert spaces, and let (Tl )l∈S be a family of operators from X to H such that, for every x ∈ X,
the mapping S → H : l ↦→ Tlx is (F,BH)-measurable. Let

D =

{
x ∈ X

����

∫

S

‖Tlx‖H `(3l) < +∞
}
. (2.12)

Then
∫

S

Tl`(3l) : D → H : x ↦→
∫

S

Tlx `(3l). (2.13)

In particular, if ` is a probability measure, then

E(Tl )l∈S =

∫

S

Tl`(3l) (2.14)

is the `-expectation of the family (Tl )l∈S .

The following setup describes the main functional setting employed in the paper. As in [11], it
relies on the notion of a Hilbert direct integral of Hilbert spaces [25].

Assumption 2.5. Let (S,F, `) be a complete f-finite measure space, let (Hl )l∈S be a family of
real Hilbert spaces, and let

∏
l∈S Hl be the usual real vector space of mappings G defined on S

such that (∀l ∈ S) G (l) ∈ Hl . Let ((Hl )l∈S ,G) be an F-measurable vector field of real Hilbert

spaces, that is,G is a vector subspace of
∏

l∈S Hl which satisfies the following:

[A] For every G ∈G, the function S → R : l ↦→ ‖G (l)‖Hl
is F-measurable.

[B] For every G ∈ ∏
l∈S Hl ,

[
(∀~ ∈G) S → R : l ↦→ 〈G (l) |~(l)〉Hl

is F-measurable
]

⇒ G ∈G. (2.15)

[C] There exists a sequence (4=)=∈N inG such that (∀l ∈ S) span{4= (l)}=∈N = Hl .

Set

ℌ =

{
G ∈G

����

∫

S

‖G (l)‖2Hl
`(3l) < +∞

}
, (2.16)

and letH be the real Hilbert space of equivalence classes of `-a.e. equal mappings in ℌ equipped
with the scalar product

〈 · | ·〉H : H ×H → R : (G,~) ↦→
∫

S

〈G (l) |~(l)〉Hl
`(3l), (2.17)

where we adopt the common practice of designating by G both an equivalence class in H and a
representative of it in ℌ. We write

H =
G∫ ⊕

S

Hl`(3l) (2.18)

and callH the Hilbert direct integral of ((Hl )l∈S ,G) [25].
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Here are some instances of Hilbert direct integrals [11].

Example 2.6. Let ? ∈ N r {0}, let (U: )16:6? be a family in ]0,+∞[, let (H: )16:6? be separable
real Hilbert spaces, letG = H1 × · · · × H? be the usual Cartesian product vector space, and set

S = {1, . . . , ?}, F = 2{1,...,?}, and
(
∀: ∈ {1, . . . , ?}

)
`
(
{:}

)
= U: . (2.19)

Then ((H: )16:6?,G) is an F-measurable vector field of real Hilbert spaces and
G∫ ⊕

S Hl`(3l) is
the weighted Hilbert direct sum of (H: )16:6? , namely the Hilbert space obtained by equippingG
with the scalar product

(
(x: )16:6?, (y: )16:6?

)
↦→

?∑

:=1

U: 〈x: | y:〉H:
. (2.20)

Example 2.7. Let (U: ):∈N be a family in ]0,+∞[, let (H: ):∈N be separable real Hilbert spaces, let
G =

∏
:∈N H: , and set

S = N, F = 2N, and (∀: ∈ N) `
(
{:}

)
= U: . (2.21)

Then ((H: ):∈N,G) is an F-measurable vector field of real Hilbert spaces and
G∫ ⊕

S Hl`(3l) is the
Hilbert space obtained by equipping the vector space

ℌ =

{
(x: ):∈N ∈G

����
∑

:∈N
U: ‖x: ‖2H:

< +∞
}

(2.22)

with the scalar product

(
(x: ):∈N, (y: ):∈N

)
↦→

∑

:∈N
U: 〈x: | y:〉H:

. (2.23)

Example 2.8. Let (S,F, `) be a complete f-finite measure space, letH be a separable real Hilbert
space, and set

[
(∀l ∈ S) Hl = H

]
and G =

{
G : S → H | G is (F,BH)-measurable

}
. (2.24)

Then ((Hl )l∈S ,G) is an F-measurable vector field of real Hilbert spaces and

G∫ ⊕

S

Hl`(3l) = !2
(
S,F, `;H

)
. (2.25)

§3. Integral resolvent mixtures

Our setting hinges on the following assumptions.

Assumption 3.1. Assumption 2.5 and the following are in force:

[A] For every l ∈ S , Al : Hl → 2Hl is maximally monotone.
[B] For every G ∈ ℌ, the mapping l ↦→ �Al

G (l) lies inG.

[C] dom
G∫ ⊕

S Al`(3l) ≠ ∅, where

G∫ ⊕

S

Al`(3l) : H → 2H : G ↦→
{
G∗ ∈ H | (∀`l ∈ S) G∗(l) ∈ AlG (l)

}
(3.1)

is the Hilbert direct integral of the operators (Al )l∈S relative toG [11].

Assumption 3.2. Assumption 2.5 and the following are in force:
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[A] X is a separable real Hilbert space.
[B] For every l ∈ S , Ll : X → Hl is linear and bounded.
[C] For every x ∈ X, the mapping eLx : l ↦→ Llx lies inG.
[D] 0 <

∫

S ‖Ll ‖2`(3l) 6 1.

The main purpose of this section is to study the following objects which mix families of mono-
tone and linear operators.

Definition 3.3. Suppose that Assumptions 3.1 and 3.2 are in force. The integral resolvent mixture

of (Al )l∈S and (Ll )l∈S is

⋄
M(Ll ,Al )l∈S =

(
∫

S

(
L∗l ◦ �Al

◦ Ll
)
`(3l)

)−1
− IdX, (3.2)

and the integral resolvent comixture of (Al )l∈S and (Ll )l∈S is

˛

M(Ll ,Al )l∈S =
( ⋄
M

(
Ll ,A

−1
l

)
l∈S

)−1
. (3.3)

We start off with some properties of integrals of composite Lipschitzian operators.

Proposition 3.4. Suppose that Assumption 2.5 is in force. Let X be a separable real Hilbert space,

let V : S → ]0,+∞[ be F-measurable and such that ess sup V < +∞, and for every l ∈ S , let

Tl : Hl → Hl be V (l)-Lipschitzian and let Ll : X → Hl be linear and bounded. Suppose that the

following are satisfied:

[A] For every G ∈ ℌ, the mapping l ↦→ TlG (l) lies inG.
[B] There exists I ∈ ℌ such that the mapping l ↦→ TlI(l) lies in ℌ.
[C] For every x ∈ X, the mapping eLx : l ↦→ Llx lies inG.
[D]
∫

S ‖Ll ‖
2`(3l) < +∞.

Set

T =

∫

S

(
L∗l ◦ Tl ◦ Ll

)
`(3l) and g =

∫

S

‖Ll ‖2V (l)`(3l). (3.4)

Then the following hold:

(i) T : X → X is well defined and g-Lipschitzian.

(ii) Define ! : X → H : x ↦→ eLx and ) =
G∫ ⊕

S Tl`(3l). Then ! is well defined, linear, and

bounded with ‖!‖ 6
√
∫

S ‖Ll ‖2`(3l), and T = !∗ ◦) ◦ !.
(iii) Suppose that, for every l ∈ S , Tl is 1/V (l)-cocoercive and Ll ≠ 0. Then the following are

satisfied:

(a) T is 1/g-cocoercive.
(b)

{
∫

S L∗l (TlG (l))`(3l) | G ∈ ℌ
}
⊂ ran T.

(c) int
{
∫

S L∗l (TlG (l))`(3l) | G ∈ ℌ
}
⊂ ran T.

Proof. Observe that, by [11, Proposition 3.12(i)], the functionS → R : l ↦→ ‖Ll ‖ isF-measurable
and, by [D],

g 6 (ess sup V)
∫

S

‖Ll ‖2`(3l) < +∞. (3.5)

We set (∀l ∈ S) Rl = L∗l ◦ Tl ◦ Ll .
(i): Let x ∈ X. It results from [11, Proposition 3.12(ii)] that the mapping l ↦→ Llx lies in ℌ. In

turn, [A] ensures that themappingl ↦→ Tl (Llx) lies inG. Therefore, we deduce from [C] and [11,
Lemma 2.2(i)] that, for every y ∈ X, the function S → R : l ↦→ 〈y | Rlx〉X = 〈Lly | Tl (Llx)〉Hl

is F-measurable. Thus, since (S,F, `) is a complete f-finite measure space and X is separable,
we infer from [31, Théorème 5.6.24] that the mapping S → X : l ↦→ Rlx is (F,BX)-measurable.
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Next, since ess sup V < +∞, it follows from [A], [B], and [11, Proposition 3.4(i)] that, for every
G ∈ ℌ, the mappingl ↦→ TlG (l) lies inℌ; in particular,

∫

S ‖Tl0‖2Hl
`(3l) < +∞. Hence, because

(∀y ∈ X) (∀l ∈ S) ‖Rlx − Rly‖X 6 ‖Ll ‖ ‖Tl (Llx) − Tl (Lly)‖Hl

6 ‖Ll ‖V (l)‖Llx − Lly‖Hl

6 ‖Ll ‖2V (l)‖x − y‖X, (3.6)

we derive from the triangle and Cauchy–Schwarz inequalities that
∫

S

‖Rlx‖X `(3l) 6
∫

S

‖Rlx − Rl0‖X `(3l) +
∫

S

‖Rl0‖X `(3l)

6 g ‖x‖X +
∫

S

‖Ll ‖ ‖Tl0‖Hl
`(3l)

6 g ‖x‖X +
√
∫

S

‖Ll ‖2`(3l)
√
∫

S

‖Tl0‖2Hl
`(3l)

< +∞. (3.7)

Thus, [31, Théorème 5.7.21] implies that T : X → X is well defined. Moreover, by virtue of (3.6)
and Lemma 2.3(i), T is g-Lipschitzian.
(ii): Thanks to [11, Items (ii) and (v) in Proposition 3.12], ! : X → H is a well-defined bounded

linear operator with adjoint

!∗ : H → X : G∗ ↦→
∫

S

L∗lG
∗(l)`(3l) (3.8)

and ‖!‖ 6
√
∫

S ‖Ll ‖2`(3l). On the other hand, [11, Proposition 3.4(i)] asserts that ) : H → H
and that, for every G ∈ H , a representative of )G in ℌ is the mapping l ↦→ TlG (l). Altogether,
for every x ∈ X, because l ↦→ Llx is a representative of !x in ℌ, we deduce that

!∗
(
) (!x)

)
=

∫

S

L∗l
(
Tl (Llx)

)
`(3l) = Tx, (3.9)

as announced.
(iii)(a): Take x ∈ X and y ∈ X. Define an F-measurable function onS by U : S → ]0,+∞[ : l ↦→

‖Ll ‖2V (l)/g and a probability measure P on F by P : M ↦→
∫

M U (l)`(3l). Then we derive from
items (ii) and (iii) of Lemma 2.3 together with [31, Théorème 5.10.13] that

〈x − y | Tx − Ty〉X =

∫

S

〈
x − y

�� L∗l
(
Tl (Llx)

)
− L∗l

(
Tl (Lly)

) 〉
X
`(3l)

=

∫

S

〈
Llx − Lly

�� Tl (Llx) − Tl (Lly)
〉
Hl

`(3l)

>

∫

S

1

V (l)


Tl (Llx) − Tl (Lly)



2
Hl

`(3l)

>

∫

S

1

‖Ll ‖2V (l)


L∗l

(
Tl (Llx)

)
− L∗l

(
Tl (Lly)

)

2
X
`(3l)

=
1

g

∫

S





1

U (l) (Rlx − Rly)




2

X
P(3l)

>
1

g







∫

S

1

U (l) (Rlx − Rly)P(3l)





2

X

=
1

g







∫

S

(
Rlx − Rly

)
`(3l)






2

X

=
1

g
‖Tx − Ty‖2X. (3.10)
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(iii)(b) and (iii)(c): Define ! and ) as in (ii), and recall that T = !∗ ◦ ) ◦ !. In the light of
[3, Corollary 20.28], (i) and (iii)(a) imply that T is maximally monotone. At the same time, we
deduce from [11, Proposition 3.4(ii)] that) : H → H is cocoercive. Thus, it results from (3.8), [3,
Example 25.20(i)], and [28, Theorem 5] that

{
∫

S

L∗l
(
TlG (l)

)
`(3l)

���� G ∈ ℌ

}
= !∗(ran) ) ⊂ ran

(
!∗ ◦) ◦ !

)
= ranT (3.11)

and that

int

{
∫

S

L∗l
(
TlG (l)

)
`(3l)

���� G ∈ ℌ

}
= int !∗(ran) ) ⊂ ran

(
!∗ ◦) ◦ !

)
= ran T, (3.12)

which completes the proof.

The main properties of integral resolvent mixtures can now be laid out.

Theorem 3.5. Suppose that Assumptions 3.1 and 3.2 are in force. Set

W =
⋄
M(Ll ,Al )l∈S and C =

˛

M(Ll ,Al )l∈S . (3.13)

Then the following hold:

(i) W−1 =
˛

M(Ll ,A−1
l )l∈S and C−1 =

⋄
M(Ll ,A−1

l )l∈S .
(ii) W and C are maximally monotone.

(iii) C = (IdX +
∫

S (L∗l ◦ �Al
◦ Ll − L∗l ◦ Ll )`(3l))−1 − IdX.

(iv) Suppose that ` is a probability measure and that, for every l ∈ S , Ll is an isometry. Then

W = C.

(v) �W =
∫

S (L∗l ◦ �Al
◦ Ll )`(3l).

(vi) �C = IdX +
∫

S (L∗l ◦ �Al
◦ Ll − L∗l ◦ Ll )`(3l).

(vii) W � IdX = IdX −
∫

S (L∗l ◦ (A−1
l � IdHl

) ◦ Ll )`(3l).
(viii) C � IdX =

∫

S (L∗l ◦ (Al � IdHl
) ◦ Ll )`(3l).

(ix) zerC = zer
∫

S (L∗l ◦ (Al � IdHl
) ◦ Ll )`(3l).

(x) domW =
{
∫

S L∗lG∗(l)`(3l) | G∗ ∈ H and (∀`l ∈ S) G∗(l) ∈ domAl

}
.

(xi) ranC =
{
∫

S L∗lG∗(l)`(3l) | G∗ ∈ H and (∀`l ∈ S) G∗(l) ∈ ranAl

}
.

(xii) int domW = int
{
∫

S L∗l (�Al
G (l))`(3l) | G ∈ H

}
.

(xiii) int ranC = int
{
∫

S L∗l (�A−1
l
G (l))`(3l) | G ∈ H

}
.

(xiv) Suppose that, for everyl ∈ S ,Al is nonexpansive with domAl = Hl . ThenC is nonexpansive.

(xv) Let g ∈ ]0,+∞[, set X = (g + 1)/
∫

S ‖Ll ‖2`(3l) − 1, and suppose that, for every l ∈ S , Al is

g-cocoercive with domAl = Hl . Then C is X-cocoercive.

Proof. Set

� =
G∫ ⊕

S

Al`(3l). (3.14)

Then [11, Theorem 3.8(i)] states that� is maximallymonotone, and [11, Theorem 3.8(ii)(a)] asserts
that, for every G ∈ ℌ, the mapping l ↦→ �Al

G (l) lies in ℌ and

�� =
G∫ ⊕

S

�Al
`(3l). (3.15)

Therefore, by Assumption 3.2[D] and items (i) and (iii)(a) of Proposition 3.4,

∫

S

(
L∗l ◦ �Al

◦ Ll
)
`(3l) : X → X is a well-defined firmly nonexpansive operator, (3.16)
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which confirms that W is well defined. Additionally, it follows from Proposition 3.4(ii) and As-
sumption 3.2[D] that

! : X → H : x ↦→ eLx is a well-defined bounded linear operator such that ‖!‖ 6 1, (3.17)

and

(∀x ∈ X) !∗
(
�� (!x)

)
=

∫

S

L∗l
(
�Al

(Llx)
)
`(3l). (3.18)

Moreover, the adjoint of ! is given by [11, Proposition 3.12(v)]

!∗ : H → X : G∗ ↦→
∫

S

L∗lG
∗(l)`(3l). (3.19)

Likewise, appealing to [11, Proposition 3.7], we deduce that C is well defined and

(∀x ∈ X) !∗
(
��−1 (!x)

)
=

∫

S

L∗l
(
�A−1

l
(Llx)

)
`(3l). (3.20)

Hence, by virtue of Definition 2.1,

W = ! ⋄� and C = ! ˛ �. (3.21)

(i): A consequence of (3.2) and (3.3).
(ii): In the light of [19, Theorem 4.5(i)–(ii)], the claim follows from (3.17) and (3.21).
(iii): A consequence of (3.18), (3.19), (3.21), and [19, Proposition 4.1(ii)].
(iv): By (2.17) and (3.17),

(∀x ∈ X) ‖!x‖2H =

∫

S

‖Llx‖2Hl
`(3l) =
∫

S

‖x‖2X `(3l) = `(S)‖x‖2X = ‖x‖2X, (3.22)

which shows that ! is an isometry. Consequently, the conclusion follows from (3.21) and [19,
Proposition 4.1(iii)].
(v): An immediate consequence of (3.2).
(vi): An immediate consequence of (iii).
(vii): This follows from (3.21), [19, Proposition 4.1(xiv)], and (3.18).
(viii): This follows from (3.21), [19, Proposition 4.1(xv)], and (3.20).
(ix): Use (ii), (viii), and [3, Proposition 23.38].

(x): Set * =
{
G ∈ H | (∀`l ∈ S) G (l) ∈ domAl

}
. Then * = dom� [11, Theorem 3.8(iii)].

Hence, [19, Theorem 4.5(vi)] implies that

domW = !∗ (dom�) = !∗
(
dom�

)
= !∗(* ) = !∗ (* ). (3.23)

This and (3.19) yield the desired identity.
(xi): Combine (3.3), (x), and the fact that (∀l ∈ S) domA−1

l = ranAl .
(xii): Use (3.2) and Proposition 3.4(iii)(c).
(xiii): A consequence of (3.3) and (xii).
(xiv): It follows from [11, Theorem 3.8(v)(a)] that

for every G ∈ ℌ, the mapping l ↦→ projAlG (l) 0 = AlG (l) lies inG. (3.24)

Hence, [11, Proposition 3.4(i)] implies that � is nonexpansive with dom� = H . Hence, it follows
from [19, Proposition 4.9] and (3.21) that C is nonexpansive.
(xv): We argue as in (xiv) to deduce that � : H → H is g-cocoercive. On the other hand, (3.17)

ensures that ‖!‖ <
√
g + 1. Thus, it follows from (3.21), [19, Proposition 4.8], and Proposition 3.4(ii)

that C = ! ˛ � is cocoercive with constant (g + 1)‖!‖−2 − 1 > X .
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Remark 3.6. Themotivation for calling
⋄
M(Ll ,Al )l∈S an integral resolvent mixture comes from

Theorem 3.5(v).

Let us provide some examples of integral resolvent mixtures.

Example 3.7. Consider the setting of Example 2.6. Then (3.2) becomes

⋄
M(L: ,A: )16:6? =

(
?∑

:=1

U:L
∗
: ◦ �A: ◦ L:

)−1
− IdX, (3.25)

which is the resolvent mixture introduced in [19, Example 3.4].

Example 3.8. Let (S,F, `) be a complete f-finite measure space and let (ql )l∈S be a family
in �0(R) such that the function S × R → ]−∞, +∞] : (l, x) ↦→ ql (x) is F ⊗ BR-measurable and
(∀l ∈ S) ql > ql (0) = 0. Further, let X be a separable real Hilbert space and let 4 ∈ !2(S,F, `;X)
be such that 0 <

∫

S ‖4 (l)‖
2
X `(3l) 6 1. Set

(∀l ∈ S) Al = mql and Ll = 〈 · | 4 (l)〉X. (3.26)

Then

⋄
M(Ll ,Al )l∈S =

(
∫

S

(
proxql

〈 · | 4 (l)〉X
)
4 (l)`(3l)

)−1
− IdX . (3.27)

For instance, suppose that, for every l ∈ S , ql is the support function of a closed interval Cl in
R containing 0, with Xl = inf Cl and dl = supCl . Now set

W =
⋄
M(Ll ,Al )l∈S and (∀x ∈ X)

{
S−(x) =

{
l ∈ S | 〈x | 4 (l)〉X > dl

}

S−(x) =
{
l ∈ S | 〈x | 4 (l)〉X < Xl

}
.

(3.28)

Then

(∀x ∈ X) �Wx =

∫

S− (x)

(
〈x | 4 (l)〉X − dl

)
4 (l)`(3l)+
∫

S− (x)

(
〈x | 4 (l)〉X − Xl

)
4 (l)`(3l). (3.29)

This process provides a representation of x which eliminates the contributions of the coefficients
〈x | 4 (l)〉X ∈ [Xl , dl]. For instance, in the context of Example 2.7, if (4 (:)):∈N is an orthonormal
basis and C: = [−d: , d:], then �W is known as a soft-thresholder and it has been used extensively
in data analysis [21, 24].

Proof. LetG =
{
G : S → R | G is F-measurable

}
and, for every l ∈ S , let Hl = R. Then, in view

of Example 2.8, Assumption 2.5 is satisfied and

H =
G∫ ⊕

S

Hl`(3l) = !2
(
S,F, `;R

)
. (3.30)

Since (S,F, `) is complete, we deduce from [30, Corollary 14.34 and Exercise 14.38] that, for every
G ∈ G, the function S → R : l ↦→ proxql

G (l) lies inG. Additionally, for every l ∈ S , since
0 ∈ Argminql , we get 0 ∈ Al0 and �Al

0 = proxql
0 = 0. Hence, the family (Al )l∈S satisfies

Assumption 3.1. Next, since 4 : S → X is (F,BX)-measurable, we deduce that, for every x ∈ X,
the mapping S → R : l ↦→ 〈x | 4 (l)〉X = Llx lies inG. Further,

(∀l ∈ S) L∗l : R→ X : x ↦→ x4 (l) (3.31)

and
∫

S

‖Ll ‖2`(3l) =
∫

S

‖4 (l)‖2X `(3l) = ‖4‖2H ∈ ]0, 1]. (3.32)
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This confirms that Assumption 3.2 is satisfied. Therefore, we obtain (3.27) by invoking (3.2). Next,
let us establish (3.29). Take x ∈ X. Thanks to the F-measurability of the function S → R : l ↦→
proxql

〈x | 4 (l)〉X, we obtain

S− (x) =
{
l ∈ S | 〈x | 4 (l)〉X − projCl

〈x | 4 (l)〉X > 0
}

=
{
l ∈ S | proxql

〈x | 4 (l)〉X > 0
}

∈ F. (3.33)

Likewise, S− (x) ∈ F. On the other hand, by [3, Example 24.34],

(∀l ∈ S) proxql
: R→ R : x ↦→




x − dl , if x > dl ;

0, if x ∈ Cl ;

x − Xl , if x < Xl .

(3.34)

Therefore, we obtain (3.29) by using Theorem 3.5(v) and the fact that (∀l ∈ S) �Al
= proxql

.

Next, we define the resolvent expectation of a family of maximally monotone operators.

Definition 3.9. Let (S,F,P) be a complete probability space, let H be a separable real Hilbert
space, and let (Al )l∈S be a family of maximally monotone operators from H to 2H. Suppose
that, for every x ∈ H, the mapping S → H : l ↦→ �Al

x is (F,BH)-measurable and that
∫

S ‖ �Al
0‖2H `(3l) < +∞. Using the notation (2.14), the resolvent expectation of the family (Al )l∈S

is

⋄
E(Al )l∈S =

(
E(�Al

)l∈S
)−1 − IdH. (3.35)

Example 3.10. Consider the measure space (S,F, `) of Example 2.6 with the additional assump-
tion that

∑?

:=1
U: = 1. Let H be a separable real Hilbert space and let (A: )16:6? be maximally

monotone operators from H to 2H. Then (3.35) becomes

⋄
E(A: )16:6? =

( ?∑

:=1

U: �A:

)−1
− IdH, (3.36)

which is the resolvent average studied in [2].

Let us relate resolvent expectations to integral resolvent mixtures.

Proposition 3.11. Consider the setting of Example 2.8 with the additional assumption that ` is

a probability measure. Let (Al )l∈S be a family of maximally monotone operators from H to 2H

such that, for every x ∈ H, the mapping S → H : l ↦→ �Al
x is (F,BH)-measurable and that

∫

S ‖ �Al
0‖2H `(3l) < +∞. Then

⋄
E(Al )l∈S =

⋄
M(IdH,Al )l∈S =

˛

M(IdH,Al )l∈S . (3.37)

Proof. Appealing to [14, Lemma III.14] and the continuity of the operators (�Al
)l∈S , we infer

that the mapping S × H → H : (l, x) ↦→ �Al
x is (F ⊗ BH,BH)-measurable. Thus, for every

G ∈ ℌ, the mapping S → H : l ↦→ �Al
G (l) is (F,BH)-measurable, i.e., it lies inG. On the other

hand, letting � =
G∫ ⊕

S Al`(3l) and A : S → H : l ↦→ �Al
0 yields −A ∈ �A , which implies that

dom� ≠ ∅. Hence, it follows from (3.35) and (3.2) that
⋄
E(Al )l∈S =

⋄
M(IdH,Al )l∈S , while the

identity
⋄
M(IdH,Al )l∈S =

˛

M(IdH,Al )l∈S follows from Theorem 3.5(iv).

By specializing Theorem 3.5 to the scenario of Proposition 3.11, we obtain at once the following
properties of the resolvent expectation and, in particular, those of the resolvent average of finitely
many operators studied in [2].
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Corollary 3.12. Consider the setting of Definition 3.9. Then the following hold:

(i) (
⋄
E(Al )l∈S )−1 =

⋄
E(A−1

l )l∈S .

(ii)
⋄
E(Al )l∈S is maximally monotone.

(iii) �⋄
E(Al )l∈S

= E(�Al
)l∈S .

(iv) (
⋄
E(Al )l∈S ) � IdH = E(Al � IdH)l∈S .

(v) dom
⋄
E(Al )l∈S =

{
EG∗ | G∗ ∈ !2(S,F, P;H) and (∀`l ∈ S) G∗(l) ∈ domAl

}
.

(vi) ran
⋄
E(Al )l∈S =

{
EG∗ | G∗ ∈ !2(S,F, P;H) and (∀`l ∈ S) G∗(l) ∈ ranAl

}
.

(vii) int dom
⋄
E(Al )l∈S = int

{
E(�Al

G (l))l∈S | G ∈ !2(S,F, P;H)
}
.

(viii) int ran
⋄
E(Al )l∈S = int

{
E(�A−1

l
G (l))l∈S | G ∈ !2(S,F,P;H)

}
.

(ix) Suppose that, for every l ∈ S , Al is nonexpansive with domAl = Hl . Then
⋄
E(Al )l∈S is

nonexpansive.

(x) Let g ∈ ]0,+∞[ and suppose that, for every l ∈ S , Al is g-cocoercive with domAl = Hl .

Then
⋄
E(Al )l∈S is g-cocoercive.

§4. Integral proximal mixtures

The integral proximal mixture will be cast in the following setting.

Assumption 4.1. Assumption 2.5 and the following are in force:

[A] For every l ∈ S , fl : Hl → ]−∞,+∞] possesses a continuous affine minorant.
[B] There exists A ∈ ℌ such that the function l ↦→ fl (A (l)) lies in L1(S,F, `;R).
[C] There exists A ∗ ∈ ℌ such that the function l ↦→ f∗l (A ∗(l)) lies in L1(S,F, `;R).
[D] For every G∗ ∈ ℌ, the mapping l ↦→ proxf∗l G∗(l) lies inG.

Definition 4.2. Suppose that Assumptions 3.2 and 4.1 are in force. The integral proximal mixture

of (fl )l∈S and (Ll )l∈S is

⋄
M(Ll , fl )l∈S =

(
∫

S

(
(f∗l �QHl

) ◦ Ll
)
`(3l)

)∗
−QX, (4.1)

and the integral proximal comixture of (fl )l∈S and (Ll )l∈S is

˛

M(Ll , fl )l∈S =
( ⋄
M

(
Ll , f

∗
l

)
l∈S

)∗
. (4.2)

Item (viii) below connects Definitions 3.3 and 4.2.

Theorem 4.3. Suppose that Assumptions 3.2 and 4.1 are in force. Then the following hold:

(i)
⋄
M(Ll , fl )l∈S ∈ �0(X).

(ii)
˛

M(Ll , fl )l∈S ∈ �0(X).
(iii) Let x ∈ X. Then

( ⋄
M(Ll , fl )l∈S

)
(x)

= min

{
∫

S

f∗∗l
(
G (l)

)
`(3l) +QH (G) −QX(x)

���� G ∈ H and

∫

S

L∗lG (l)`(3l) = x

}
.

(iv) dom
⋄
M(Ll , fl )l∈S =

{
∫

S L∗lG (l)`(3l) | G ∈ H and (∀`l ∈ S) G (l) ∈ dom f∗∗l
}
.

(v) (
⋄
M(Ll , fl )l∈S )∗ =

˛

M(Ll , f∗l )l∈S = (QX −
∫

S (f∗l �QHl
) ◦ Ll `(3l))∗ −QX.
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(vi) (
˛

M(Ll , fl )l∈S )∗ =
⋄
M(Ll , f∗l )l∈S .

(vii)
⋄
M(Ll , fl )l∈S �QX +

˛

M(Ll , f∗l )l∈S �QX = QX.

(viii) m
⋄
M(Ll , fl )l∈S =

⋄
M(Ll , mf∗∗l )l∈S .

(ix) prox ⋄
M(Ll ,fl )l∈S

=
∫

S (L∗l ◦ proxf∗∗l ◦Ll )`(3l).
(x) prox ˛

M(Ll ,fl )l∈S
= IdX −
∫

S (L∗l ◦ proxf∗l ◦Ll )`(3l).

(xi)
˛

M(Ll , fl )l∈S �QX =
∫

S (f∗∗l �QHl
) ◦ Ll `(3l).

(xii) Argmin
˛

M(Ll , fl )l∈S = Argmin
∫

S (f∗∗l �QHl
) ◦ Ll `(3l).

(xiii) Suppose that ` is a probability measure and that, for every l ∈ S , Ll is an isometry. Then
⋄
M(Ll , fl )l∈S =

˛

M(Ll , fl )l∈S .

Proof. Set

g =
⋄
M(Ll , fl )l∈S and h =

˛

M(Ll , fl )l∈S . (4.3)

In the light of [3, Propositions 13.12(ii) and 13.10(ii)], we infer from [A] and [B] of Assumption 4.1
that (∀l ∈ S) f∗l ∈ �0(Hl ). Next, define r : S → R : l ↦→ −fl (A (l)). Then, by Assump-
tion 4.1[B], r ∈ L1(S,F, `;R). Additionally, (∀l ∈ S) f∗l > 〈 · | A (l)〉 + r (l). Hence, we con-
clude that the family (f∗l )l∈S satisfies the assumptions of [11, Theorem 4.7] and therefore that
the family (mf∗∗l )l∈S satisfies Assumption 3.1. Let us now check that the family (f∗l )l∈S satisfies
Assumption 4.1 by using the mapping A to fulfill [C]. To this end, we need to show that the func-
tion i : l ↦→ f∗∗l (A (l)) lies in L1(S,F, `;R). First, it follows from [11, Theorem 4.7(ix)] that i
is F-measurable. Further, since, for every l ∈ S , f∗∗l 6 fl , Assumption 4.1[B] implies that i is
majorized by an integrable function. Finally, since

(∀l ∈ S) f∗∗l > 〈· | A ∗(l)〉Hl
− f∗l

(
A ∗(l)

)
, (4.4)

Assumption 4.1[C] implies that i is minorized by an integrable function. Next, we observe that
[11, Theorem 4.7(i)–(ii)] assert that

6 : H → ]−∞, +∞] : G∗ ↦→
∫

S

f∗l
(
G∗(l)

)
`(3l) (4.5)

is a well-defined function in �0(H). Moreover, by [11, Theorem 4.7(viii)],

6 �QH : H → R : G∗ ↦→
∫

S

(f∗l �QHl
)
(
G∗(l)

)
`(3l) (4.6)

and, by [11, Theorem 4.7(ix)],

6∗ : H → ]−∞,+∞] : G ↦→
∫

S

f∗∗l
(
G (l)

)
`(3l). (4.7)

We also recall from (3.17) that

! : X → H : x ↦→ eLx is a well-defined bounded linear operator with ‖!‖ 6 1. (4.8)

(i): We deduce from (4.1), Moreau’s biconjugation theorem [3, Corollary 13.38], Definition 2.2,
and [19, Example 3.6(ii)] that

⋄
M(Ll , fl )l∈S =

(
(6 �QH ) ◦ !

)∗ −QX = ! ⋄6∗ ∈ �0(X). (4.9)

(ii): It follows from (i), Definition 2.2, and [19, Example 3.10(i)] that

h =
( ⋄
M

(
Ll , f

∗
l

)
l∈S

)∗
=

(
! ⋄6∗∗

)∗
= ! ˛ 6∗ ∈ �0(X). (4.10)
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(iii): We derive from (4.9) and [3, Corollary 15.28(i) and Proposition 13.24(i)] that

(∀x ∈ X) g(x) = min
{
(6 �QH )∗ (G) −QX(x) | G ∈ H and !∗G = x

}

= min
{
6∗ (G) +QH (G) −QX(x) | G ∈ H and !∗G = x

}
. (4.11)

Thus, (4.7) and (3.19) yield the announced identity.
(iv): Set * =

{
G ∈ H | (∀`l ∈ S) G (l) ∈ dom f∗∗l

}
. Then [11, Theorem 4.7(v)] states that

dom6∗ = * . Thus, it results from (4.9) and [19, Theorem 5.5(ii)] that

dom g = dom(! ⋄6∗) = !∗ (dom6∗) = !∗
(
dom6∗

)
= !∗(* ) = !∗ (* ), (4.12)

and the assertion follows from (3.19).
(v): It follows from (4.9), [19, Proposition 5.3(iv)], and (4.2) that

g∗ =
(
! ⋄6∗

)∗
= ! ˛ 6∗∗ =

˛

M(Ll , f∗l )l∈S . (4.13)

At the same time, we derive from (4.9), [3, Proposition 13.29], and (4.6) that

g∗ =
(
QX −

(
(6 �QH ) ◦ !

)∗∗)∗ −QX =

(
QX −
∫

S

(f∗l �QHl
) ◦ Ll `(3l)

)∗
−QX. (4.14)

(vi): Since 6 ∈ �0(H), we deduce from (4.10), [19, Proposition 5.3(v)], Moreau’s biconjugation
theorem, and (i) that

h∗ =
(
! ˛ 6∗

)∗
= ! ⋄6∗∗ = ! ⋄6 =

⋄
M(Ll , f∗l )l∈S . (4.15)

(vii): Use (i), (v), and [3, Theorem 14.3(i)].
(viii): In view of (4.9), we derive from [3, Theorem 18.15], [11, Theorem 4.7(iv)], and (3.19) that

m
⋄
M(Ll , fl )l∈S =

(
∇
(
(6 �QH ) ◦ !

) )−1
− IdX

=
(
!∗ ◦

(
∇(6 �QH )

)
◦ !

)−1
− IdX

=

(
∫

S

(
L∗l ◦ proxf∗∗l ◦Ll

)
`(3l)

)−1
− IdX (4.16)

=
⋄
M(Ll , mf∗∗l )l∈S . (4.17)

(ix): Use (4.16) and [3, Example 23.3].
(x): By [3, Proposition 13.16(iii)], (∀l ∈ S) f∗∗∗l = f∗l . Hence, it results from (ii), Moreau’s

decomposition [3, Theorem 14.3(ii)], (vi), and (ix) that

proxh = IdX − proxh∗

= IdX − prox ⋄
M(Ll ,f∗l )l∈S

= IdX −
∫

S

(
L∗l ◦ proxf∗∗∗l

◦Ll
)
`(3l)

= IdX −
∫

S

(
L∗l ◦ proxf∗l ◦Ll

)
`(3l). (4.18)

(xi): Because 6∗ ∈ �0(H), it results from (4.10), [19, Theorem 5.5(v)], [11, Theorem 4.7(viii)],
and (4.8) that

h �QX =
(
! ˛ 6∗

)
�QX = (6∗ �QH ) ◦ ! =

∫

S

( (
f∗∗l �QHl

)
◦ Ll

)
`(3l). (4.19)

(xii): Combine (xi) and [3, Proposition 17.5].
(xiii): In this case, ! is an isometry and the conclusion follows from [19, Proposition 5.3(vii)],

(4.9), and (4.10).
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Remark 4.4. The motivation for calling
⋄
M(Ll , fl )l∈S an integral proximal mixture comes from

Theorem 4.3(ix).

Example 4.5. Consider the setting of Example 2.6. Then (4.1) becomes

⋄
M(L: , f: )16:6? =

( ?∑

:=1

U: (f∗: �QH:
) ◦ L:

)∗
−QX, (4.20)

which is the proximal mixture introduced in [19, Example 5.9].

Our next illustration concerns a new object: the proximal expectation of a family of functions.

Definition 4.6. Let (S,F,P) be a complete probability space, let H be a separable real Hilbert
space, and let (fl )l∈S be a family of functions in �0(H) such that the function

S × H → ]−∞, +∞] : (l, x) ↦→ fl (x) (4.21)

is F ⊗ BH-measurable. Suppose that there exist A ∈ L2(S,F, P;H) and A ∗ ∈ L2(S,F, P;H) such
that the functions l ↦→ fl (A (l)) and l ↦→ f∗l (A ∗(l)) lie in L1(S,F, P;R). Using the notation
(2.14), the proximal expectation of the family (fl )l∈S is

⋄
E(fl )l∈S =

(
E
(
f∗l �QH

)
l∈S

)∗
−QH. (4.22)

Proposition 4.7. Consider the setting of Example 2.8 with the additional assumption that ` is a

probability measure. Let (fl )l∈S be a family of functions in �0(H) such that the function

S × H → ]−∞, +∞] : (l, x) ↦→ fl (x) (4.23)

is F ⊗ BH-measurable. Suppose that there exist A ∈ L2(S,F, `;H) and A ∗ ∈ L2(S,F, `;H) such
that the functions l ↦→ fl (A (l)) and l ↦→ f∗l (A ∗(l)) lie in L1(S,F, `;R). Then

⋄
E(fl )l∈S =

⋄
M(IdH, fl )l∈S =

˛

M(IdH, fl )l∈S . (4.24)

Proof. Note that

ℌ = L
2 (S,F, `;H

)
. (4.25)

Using the completeness of (S,F, `), we derive from [1, Théorème 2.3], [14, Lemma III.14], and
[3, Proposition 12.28] that, for every G ∈ ℌ, the mapping S → H : l ↦→ proxfl G (l) lies inG.
Thus, for every G∗ ∈ ℌ, using [3, Theorem 14.3(ii)], we deduce that the mapping S → H : l ↦→
proxf∗l G∗(l) = G∗(l) − proxfl G∗(l) also lies inG. Hence, the family (fl )l∈S satisfies Assump-
tion 4.1. Thus, invoking Notation 2.4, we deduce from Theorem 4.3(xiii), (4.1), and (4.22) that

˛

M(IdH, fl )l∈S =
⋄
M(IdH, fl )l∈S

=

(
∫

S

(
(f∗l �QH) ◦ IdH

)
`(3l)

)∗
−QH

=
(
E
(
f∗l �QH

)
l∈S

)∗
−QH

=
⋄
E(fl )l∈S , (4.26)

as announced.

Combining Theorem 4.3, Proposition 3.11, and Proposition 4.7 yields at once the following
properties of the proximal expectation.
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Proposition 4.8. Consider the setting of Definition 4.6. Then the following hold:

(i)
⋄
E(fl )l∈S ∈ �0(H).

(ii) Let x ∈ H. Then

(⋄
E(fl )l∈S

)
(x)

= min

{
∫

S

(
fl

(
G (l)

)
+QH

(
G (l)

))
P(3l) −QH(x)

���� G ∈ !2
(
S,F, P;H

)
and EG = x

}
. (4.27)

(iii) dom
⋄
E(fl )l∈S =

{
EG | G ∈ !2(S,F,P;H) and (∀`l ∈ S) G (l) ∈ dom fl

}
.

(iv) (
⋄
E(fl )l∈S )∗ =

⋄
E(f∗l )l∈S = (E(fl �QH)l∈S )∗ −QH.

(v) m
⋄
E(fl )l∈S =

⋄
E(mfl )l∈S .

(vi)
⋄
E(fl )l∈S �QH = E(fl �QH)l∈S .

(vii) prox⋄
E(fl )l∈S

= E(proxfl )l∈S .

(viii) Argmin
⋄
E(fl )l∈S = ArgminE(fl �QH)l∈S .

Remark 4.9. In Definition 4.6, consider the measure space (S,F, `) of Example 2.6 with the
additional assumption that

∑?

:=1
U: = 1. Then the proximal expectation becomes

⋄
E(f: )16:6? =

( ?∑

:=1

U:
(
f∗: �QH

)
)∗

−QH. (4.28)

(i) The function of (4.28) is the proximal average of the family (f: )16:6? . By specializing Propo-
sition 4.8 to this setting, we recover properties of the proximal average found in [4].

(ii) Let (f: )16:6? be functions in �0(H). In some data analysis applications (see, e.g., [16, 27, 32]),

(4.28) has been used instead of the standard average
∑?

:=1
U: f: . The latter can be regarded as

the empirical ?-sample approximation to the true expectation E(fl )l∈S arising from a fam-
ily (fl )l∈S in �0(H). Likewise, we can regard the proximal average (4.28) as the empirical

approximation to the proximal expectation
⋄
E(fl )l∈S .

Remark 4.10. The strategy described in Remark 4.9(ii) can be generalized as follows. Let ` be
a probability measure. Then it may be appropriate in certain variational problems to replace the

standard composite average
∫

S (fl ◦ Ll )`(3l) by the integral proximal comixture
˛

M(Ll , fl )l∈S
of Definition 4.2. The latter is easier to handle numerically as its proximity operator is explicitly
given by Theorem 4.3(x) and it follows from Theorem 4.3(xii) that its set of minimizers coincides
with that of the function

∫

S ((fl �QHl
) ◦ Ll )`(3l).

§5. Relaxation of systems of monotone inclusions

We place our focus on the following general system of composite monotone inclusions.

Problem 5.1. Suppose that Assumptions 3.1 and 3.2 are in force and that V ≠ {0} is a closed
vector subspace of X. The task is to

find x ∈ V such that (∀`l ∈ S) 0 ∈ Al (Llx). (5.1)

The instantiations of Problem 5.1 found in [19, 22, 23] (see also [13, 15] for further special cases)
correspond to the setting of Example 2.6 with finitely many inclusions, that is,

find x ∈ V such that
(
∀: ∈ {1, . . . , ?}

)
0 ∈ A: (L:x). (5.2)
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On the other hand, the instantiation of [12] corresponds to the setting of Example 2.8 where ` is a
probability measure, V = H and, for every l ∈ S , Al is the normal cone operator of a nonempty
closed convex subset Cl of H and Ll = IdH, that is,

find x ∈ H such that (∀`l ∈ S) x ∈ Cl . (5.3)

The last problem is known as the stochastic convex feasibility problem. Our formulation targets
a much broader inclusion model than those.
Of interest to us are the scenarios in which Problem 5.1 has no solution and must be replaced by

a relaxed one which furnishes meaningful solutions. We consider the following relaxation which
corresponds, in the special case of Example 2.6, to that proposed in [23].

Problem 5.2. Suppose that Assumptions 3.1 and 3.2 are in force and that V ≠ {0} is a closed
vector subspace of X, and let W ∈ ]0, +∞[. The task is to

find x ∈ X such that 0 ∈
(
projV ⋄

˛

M(Ll , WAl )l∈S
)
x. (5.4)

Let us examine the interplay between Problems 5.1 and 5.2.

Proposition 5.3. Consider the settings of Problems 5.1 and 5.2, let S1 and S2 be their respective sets

of solutions, and setW = projV ⋄
˛

M(Ll , WAl )l∈S . Then the following hold:

(i) W is maximally monotone.
(ii) �W = projV ◦(IdX +

∫

S (L∗l ◦ (�WAl
− IdHl

) ◦ Ll )`(3l)) ◦ projV.
(iii) S1 and S2 are closed convex sets.
(iv) Problem 5.2 is an exact relaxation of Problem 5.1 in the sense that S1 ≠ ∅ ⇒ S2 = S1.
(v) S2 = zer(#V +

∫

S (L∗l ◦ (WAl ) ◦ Ll )`(3l)).

Proof. Set � =
G∫ ⊕

S Al`(3l) and

! : X → H : x ↦→ eLx. (5.5)

Then [11, Proposition 3.5] asserts that

�W� =
G∫ ⊕

S

�WAl
`(3l) and W� =

G∫ ⊕

S

WAl `(3l). (5.6)

In addition, it follows from [11, Proposition 3.12] that ! is a well-defined bounded linear operator
with adjoint

!∗ : H → X : G∗ ↦→
∫

S

L∗lG
∗(l)`(3l) (5.7)

and such that ‖!‖ 6 1. We also recall from (3.21) that

˛

M(Ll , WAl )l∈S = ! ˛ (W�). (5.8)

Further, (5.1) is equivalent to

find x ∈ V such that 0 ∈ �(!x) (5.9)

and (5.4) is equivalent to

find x ∈ X such that 0 ∈
(
projV ⋄

(
! ˛ (W�)

) )
x. (5.10)

(i): We derive from [11, Theorem 3.8(i)] that � is maximally monotone and hence from [19,
Theorem 4.5(ii)] that ! ˛ (W�) is likewise. In turn, [19, Theorem 4.5(i)] and (5.8) assert that W =

projV ⋄ (! ˛ (W�)) is maximally monotone.
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(ii): By invoking successively [19, Theorem 6.3(ii)], (5.6), and (5.7), we obtain

�W = projV ◦
(
IdX + !∗ ◦ (�W� − IdH ) ◦ !

)
◦ projV

= projV ◦
(
IdX +
∫

S

(
L∗l ◦ (�WAl

− IdHl
) ◦ Ll

)
`(3l)

)
◦ projV . (5.11)

(iii): Use (5.9), (5.10), and [19, Theorem 6.3(iii)].
(iv): Combine (5.10) and [19, Theorem 6.3(v)].
(v): Using (5.10), [19, Theorem 6.3(vi)], (5.6), and (5.7), we obtain

S2 = zer
(
#V + !∗ ◦ (W�) ◦ !

)
= zer

(
#V +
∫

S

(
L∗l ◦ (WAl ) ◦ Ll

)
`(3l)

)
, (5.12)

which concludes the proof.

We now present an algorithm to solve Problem 5.2.

Proposition 5.4. Suppose that Problem 5.2 has a solution, let (_=)=∈N be a sequence in ]0, 2[ such
that

∑
=∈N _= (2 − _=) = +∞, and let x0 ∈ V. Iterate

for = = 0, 1, . . .


for `-almost every l ∈ S⌊
~= (l) = Llx=
@= (l) = ~= (l) − �WAl

~= (l)
z= =
∫

S L∗l (@= (l))`(3l)
x=+1 = x= − _= projV z= .

(5.13)

Then (x=)=∈N converges weakly to a solution to Problem 5.2.

Proof. Set W = projV ⋄
˛

M(Ll , WAl )l∈S and recall from Proposition 5.3(ii) that

�W = projV ◦
(
IdX +
∫

S

(
L∗l ◦ (�WAl

− IdHl
) ◦ Ll

)
`(3l)

)
◦ projV . (5.14)

We derive from (5.13), (5.6), and (5.7) that (x=)=∈N is generated by the proximal point algorithm

(∀= ∈ N) x=+1 = x= + _= (�Wx= − x=). (5.15)

It then follows from [17, Lemma 2.2(vi)] that (x=)=∈N converges weakly to a point in zerW, i.e., a
solution to (5.4).

Example 5.5. Let us specialize Problem 5.1 to the scenario in which

(∀l ∈ S) Al =
(
IdHl

− Tl + rl
)−1 − IdHl

,

where

{
Tl : Hl → Hl is firmly nonexpansive

rl ∈ Hl .
(5.16)

Then (5.1) becomes

find x ∈ V such that (∀`l ∈ S) Tl (Llx) = rl . (5.17)

This model has been considered in [23] in the setting of Example 2.6. There, S is a finite set and
each rl models the observation of an unknown signal x ∈ H through a Wiener system, i.e., the
concatenation of a nonlinear operator Tl and a linear transformation Ll . Our framework allows

18



us to extend it to models with a continuum of observations. In this context, and (5.4) yields the
relaxed problem

find x ∈ V such that

∫

S

L∗l
(
Tl (Llx) − rl

)
`(3l) ∈ V⊥ . (5.18)

Furthermore, (5.13) becomes

for = = 0, 1, . . .


for `-almost every l ∈ S⌊
~= (l) = Llx=
@= (l) = Tl~= (l) − rl

z= =
∫

S L∗l (@= (l))`(3l)
x=+1 = x= − _= projV z= .

(5.19)
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