Integral Resolvent and Proximal Mixtures[∗]

MINH N. BÙI¹ AND PATRICK L. COMBETTES²

¹University of Graz Department of Mathematics and Scientific Computing, NAWI Graz 8010 Graz, Austria minh.bui@uni-graz.at

²North Carolina State University Department of Mathematics Raleigh, NC 27695, USA plc@math.ncsu.edu

Dedicated to the memory of Boris T. Polyak

Abstract. Using the theory of Hilbert direct integrals, we introduce and study a monotonicitypreserving operation, termed the integral resolvent mixture. It combines arbitrary families of monotone operators acting on different spaces and linear operators. As a special case, we investigate the resolvent expectation, an operation which combines monotone operators in such a way that the resulting resolvent is the Lebesgue expectation of the individual resolvents. Along the same lines, we introduce an operation that mixes arbitrary families of convex functions defined on different spaces and linear operators to create a composite convex function. Such constructs have so far been limited to finite families of operators and functions. The subdifferential of the integral proximal mixture is shown to be the integral resolvent mixture of the individual subdifferentials. Applications to the relaxation of systems of composite monotone inclusions are presented.

Keywords. Hilbert direct integral, integral proximal mixture, integral resolvent mixture, monotone operator, proximal expectation, resolvent expectation.

Communicated by Stefan Ulbrich.

[∗]Contact author: P. L. Combettes. Email: plc@math.ncsu.edu. Phone: +1 919 515 2671. The work of P. L. Combettes was supported by the National Science Foundation under grant CCF-2211123.

§1. Introduction

Monotone inclusions provide an effective template to model a wide spectrum of problems in optimization and nonlinear analysis [\[3,](#page-18-0) [7,](#page-18-1) [8,](#page-18-2) [18,](#page-19-0) [20,](#page-19-1) [26,](#page-19-2) [29\]](#page-19-3). The question of combining monotone and linear operators in a fashion that preserves monotonicity has been a recurrent topic; see, e.g., [\[5,](#page-18-3) [6,](#page-18-4) [9,](#page-18-5) [10,](#page-18-6) [19\]](#page-19-4). One such construct is the resolvent mixture [\[19\]](#page-19-4), an operation that includes in particular the resolvent average [\[2\]](#page-18-7). It combines finitely many monotone and linear operators in such a way that the resolvent of the resulting operator is the sum of the individual linearly composed resolvents. Our objective is to extend this construct to arbitrary families of operators. Our analysis rests on the concept of Hilbert direct integrals of families of monotone operators proposed in [\[11\]](#page-18-8). Considering the case when the underlying operators are subdifferentials leads us to introduce the Hilbert direct integral of a family of convex functions, a notion that extends proximal mixtures of finite families and, in particular, the proximal average.

Our main contributions are the following.

- We introduce the notion of an integral resolvent mixture for arbitrary families of monotone operators acting on different spaces. This construction exploits the notion of Hilbert direct integrals of set-valued and linear operators from [\[11\]](#page-18-8). One of its salient features is that its resolvent is the Lebesgue integral of the linearly composed resolvents of the individual operators. A dual operation of integral resolvent comixture is also investigated.
- We introduce the notion of an integral proximal mixture for arbitrary families of functions defined on different spaces. Its proximity operator turns out to be the Lebesgue integral of the linearly composed proximity operators of the individual functions. A dual operation of integral proximal comixture is also investigated.
- As an instance of an integral resolvent mixture, we propose a notion of resolvent expectation for a family of maximally monotone operators and, likewise, of proximal expectation for a family of functions. These notions extend those of resolvent and proximal averages for finite families.
- We apply the above tools to the relaxation of systems of monotone inclusions involving linear operators. Applications fitting this framework are described and a proximal-type algorithm is proposed.

The paper is organized as follows. In Section [2,](#page-1-0) we set our notation and provide necessary theoretical tools. In Section [3,](#page-4-0) we study the integral resolvent mixture of a family of monotone operators. Section [4](#page-11-0) is dedicated to the integral proximal mixture of a family of functions. In Section [5,](#page-15-0) we present an application to systems of monotone inclusions and discuss some special cases of interest arising in data analysis.

§2. Notation and background

We first present our notation, which follows [\[3\]](#page-18-0).

Let H be a real Hilbert space with power set 2^H , identity operator Id_H, scalar product $\langle \cdot | \cdot \rangle_H$, associated norm $\|\cdot\|_{\mathcal{H}}$, and quadratic kernel $\mathcal{Q}_{\mathcal{H}} = \|\cdot\|_{\mathcal{H}}^2/2$.

Let C be a nonempty closed convex subset of $\mathcal H.$ Then proj_C is the projection operator onto C and N_C is the normal cone operator of C.

Let $T: \mathcal{H} \to \mathcal{H}$ and $\tau \in [0, +\infty)$. Then T is nonexpansive if it is 1-Lipschitzian, τ -cocoercive if

$$
(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \quad \langle x - y | Tx - Ty \rangle_{\mathcal{H}} \ge \tau || Tx - Ty||_{\mathcal{H}}^2,
$$
\n(2.1)

and T is firmly nonexpansive if it is 1-cocoercive.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$. The graph of A is gra $A = \{(x, x^*) \in \mathcal{H} \times \mathcal{H} \mid x^* \in Ax\}$, the inverse of A is the operator $A^{-1}: \mathcal{H} \to 2^{\mathcal{H}}$ with graph gra $A^{-1} = \{(x^*, x) \in \mathcal{H} \times \mathcal{H} \mid x^* \in Ax\}$, the domain of A is dom $A = \{x \in \mathcal{H} \mid Ax \neq \emptyset\}$, the range of A is ran $A = \bigcup_{x \in \text{dom } A} Ax$, the set of zeros of A is

zer $A = \{x \in \mathcal{H} \mid 0 \in Ax\}$, the resolvent of A is $J_A = (\text{Id}_{\mathcal{H}} + A)^{-1}$, and the Yosida approximation of A of index $v \in [0, +\infty)$ is

$$
Y_A = A \Box \left(\gamma^{-1} \mathrm{Id}_{\mathcal{H}} \right) = \left(A^{-1} + \gamma \mathrm{Id}_{\mathcal{H}} \right)^{-1} = \frac{\mathrm{Id}_{\mathcal{H}} - J_{\gamma A}}{\gamma}.
$$
 (2.2)

Suppose that A is monotone. Then A is maximally monotone if any extension of gra A is no longer monotone in $H \oplus H$. In this case, dom $J_A = H$ and J_A is firmly nonexpansive.

Let $f: \mathcal{H} \to [-\infty, +\infty]$ and set dom $f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$. The Moreau envelope of f is

$$
f \sqcup \mathcal{Q}_{\mathcal{H}} : \mathcal{H} \to [-\infty, +\infty] : x \mapsto \inf_{y \in \mathcal{H}} (f(y) + \mathcal{Q}_{\mathcal{H}}(x - y))
$$
\n(2.3)

and the conjugate of f is

$$
f^* \colon \mathcal{H} \to [-\infty, +\infty] \colon x^* \mapsto \sup_{x \in \mathcal{H}} (\langle x \mid x^* \rangle_{\mathcal{H}} - f(x)). \tag{2.4}
$$

Now suppose that $f \in \Gamma_0(\mathcal{H})$, that is, f is lower semicontinuous, convex, and such that $-\infty \notin$ $f(\mathcal{H}) \neq \{+\infty\}$. The subdifferential of f is the maximally monotone operator

$$
\partial f: \mathcal{H} \to 2^{\mathcal{H}}: x \mapsto \left\{ x^* \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \langle y - x | x^* \rangle_{\mathcal{H}} + f(x) \leq f(y) \right\}
$$
(2.5)

and the proximity operator prox $_f = J_{\partial f}$ of f maps every $x \in \mathcal{H}$ to the unique minimizer of the function $\mathcal{H} \to]-\infty, +\infty] : y \mapsto f(y) + \mathcal{Q}_{\mathcal{H}}(x-y).$

Finally, given a measure space $(\Omega, \mathcal{F}, \mu)$, the symbol \forall^{μ} means "for μ -almost every" [\[31\]](#page-19-5).

Definition 2.1 ([\[19,](#page-19-4) Definition 1.1]). Let H and X be real Hilbert spaces, let $A: H \rightarrow 2^H$, and let $L: X \rightarrow \mathcal{H}$ be linear and bounded. The *resolvent composition* of A with L is the operator $L \diamond A : X \to 2^X$ given by

$$
L \diamond A = (L^* \circ J_A \circ L)^{-1} - \text{Id}_X \tag{2.6}
$$

and the *resolvent cocomposition* of A with L is $L \bullet A = (L \diamond A^{-1})^{-1}$.

Definition 2.2 ([\[19,](#page-19-4) Definition 1.4]). Let H and X be real Hilbert spaces, let $f: H \to [-\infty, +\infty]$, and let $L: X \rightarrow \mathcal{H}$ be linear and bounded. The *proximal composition* of f with L is the function $L \diamond f: X \rightarrow [-\infty, +\infty]$ given by

$$
L \diamond f = ((f^* \sqcup \mathcal{Q}_{\mathcal{H}}) \circ L)^* - \mathcal{Q}_{\mathsf{X}},\tag{2.7}
$$

and the *proximal cocomposition* of f with L is $L \bullet f = (L \circ f^*)^*$.

Here are some notation and facts regarding integration in Hilbert spaces. Let $(\Omega, \mathcal{F}, \mu)$ be a complete σ -finite measure space and let H be a separable real Hilbert space. For every $p \in [1, +\infty]$, set

$$
\mathcal{L}^{p}(\Omega, \mathcal{F}, \mu; H) = \left\{ x \colon \Omega \to H \; \middle| \; x \text{ is } (\mathcal{F}, \mathcal{B}_{H}) \text{-measurable and } \int_{\Omega} ||x(\omega)||_{H}^{p} \mu(d\omega) < +\infty \right\}, \tag{2.8}
$$

where B_H is the Borel σ -algebra of H. The Lebesgue (also called Bochner) integral of a mapping $x \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu; H)$ is denoted by $\int_{\Omega} x(\omega) \mu(d\omega)$; see [\[31,](#page-19-5) Section V.§7] for background. We denote by $L^p(\Omega, \mathcal{F}, \mu; \mathsf{H})$ the space of equivalence classes of μ -a.e. equal mappings in $\mathscr{L}^p(\Omega, \mathcal{F}, \mu; \mathsf{H})$.

Lemma 2.3. Let $(\Omega, \mathcal{F}, \mu)$ be a complete σ -finite measure space, let H be a separable real Hilbert space, and let $x \in \mathscr{L}^1(\Omega, \mathcal{F}, \mu; \mathsf{H})$. Then the following hold:

- (i) [\[31,](#page-19-5) Théorème 5.7.13] $\|\int_{\Omega} x(\omega) \mu(d\omega)\|_{\mathcal{H}} \leq \int_{\Omega} \|x(\omega)\|_{\mathcal{H}} \mu(d\omega).$
- (ii) Let $x^* \in H$. Then the function $\Omega \to \mathbb{R}$: $\omega \mapsto \langle x(\omega) | x^* \rangle_H$ is μ -integrable and

$$
\int_{\Omega} \langle x(\omega) \mid x^* \rangle_{\mathcal{H}} \mu(d\omega) = \left\langle \int_{\Omega} x(\omega) \mu(d\omega) \mid x^* \right\rangle_{\mathcal{H}}.
$$
\n(2.9)

(iii) Suppose that μ is a probability measure. Then

$$
\left\| \int_{\Omega} x(\omega) \mu(d\omega) \right\|_{H}^{2} \le \int_{\Omega} \|x(\omega)\|_{H}^{2} \mu(d\omega).
$$
\n(2.10)

Proof. [\(ii\):](#page-2-0) Apply [\[31,](#page-19-5) Théorème 5.8.16] with the continuous linear functional $L = \langle \cdot | \mathbf{x}^* \rangle_H$. [\(iii\):](#page-3-0) We derive from [\(i\)](#page-2-1) and the Cauchy–Schwarz inequality that

$$
\left\| \int_{\Omega} x(\omega) \mu(d\omega) \right\|_{\mathsf{H}}^2 \le \left| \int_{\Omega} 1_{\Omega}(\omega) \| x(\omega) \|_{\mathsf{H}} \mu(d\omega) \right|^2 \le \mu(\Omega) \int_{\Omega} \| x(\omega) \|_{\mathsf{H}}^2 \mu(d\omega), \tag{2.11}
$$

which concludes the proof. \Box

Notation 2.4. Let $(\Omega, \mathcal{F}, \mu)$ be a complete σ -finite measure space, let X and H be separable real Hilbert spaces, and let $(T_{\omega})_{\omega \in \Omega}$ be a family of operators from X to H such that, for every $x \in X$, the mapping $\Omega \to H: \omega \mapsto T_{\omega}x$ is $(\mathcal{F}, \mathcal{B}_H)$ -measurable. Let

$$
D = \left\{ x \in X \middle| \int_{\Omega} ||T_{\omega}x||_{H} \mu(d\omega) < +\infty \right\}.
$$
\n(2.12)

Then

$$
\int_{\Omega} \mathsf{T}_{\omega}\mu(d\omega) : \mathsf{D} \to \mathsf{H} : \mathsf{x} \mapsto \int_{\Omega} \mathsf{T}_{\omega}\mathsf{x} \,\mu(d\omega). \tag{2.13}
$$

In particular, if μ is a probability measure, then

$$
E(T_{\omega})_{\omega \in \Omega} = \int_{\Omega} T_{\omega} \mu(d\omega)
$$
\n(2.14)

is the μ -expectation of the family $(T_{\omega})_{\omega \in \Omega}$.

The following setup describes the main functional setting employed in the paper. As in [\[11\]](#page-18-8), it relies on the notion of a Hilbert direct integral of Hilbert spaces [\[25\]](#page-19-6).

Assumption 2.5. Let $(\Omega, \mathcal{F}, \mu)$ be a complete σ -finite measure space, let $(H_{\omega})_{\omega \in \Omega}$ be a family of real Hilbert spaces, and let $\prod_{\omega \in \Omega} H_{\omega}$ be the usual real vector space of mappings x defined on Ω such that $(\forall \omega \in \Omega) x(\omega) \in H_{\omega}$. Let $((H_{\omega})_{\omega \in \Omega}, \mathfrak{G})$ be an *F-measurable vector field of real Hilbert* spaces, that is, $\mathfrak G$ is a vector subspace of $\prod_{\omega\in\Omega}\mathsf H_\omega$ which satisfies the following:

[A] For every $x \in \mathfrak{G}$, the function $\Omega \to \mathbb{R}: \omega \mapsto ||x(\omega)||_{H_{\omega}}$ is \mathcal{F} -measurable.

[B] For every $x \in \prod_{\omega \in \Omega} H_{\omega}$,

$$
\left[\left(\forall y \in \mathfrak{G} \right) \ \Omega \to \mathbb{R} : \omega \mapsto \langle x(\omega) \, | \, y(\omega) \rangle_{\mathsf{H}_{\omega}} \text{ is } \mathcal{F}\text{-measurable } \right] \implies x \in \mathfrak{G}. \tag{2.15}
$$

[C] There exists a sequence $(e_n)_{n\in\mathbb{N}}$ in \mathfrak{G} such that $(\forall \omega \in \Omega)$ $\overline{\text{span}}\{e_n(\omega)\}_{n\in\mathbb{N}} = \mathsf{H}_{\omega}$. Set

$$
\mathfrak{H} = \left\{ x \in \mathfrak{G} \; \middle| \; \int_{\Omega} ||x(\omega)||_{\mathsf{H}_{\omega}}^2 \mu(d\omega) < +\infty \right\},\tag{2.16}
$$

and let H be the real Hilbert space of equivalence classes of μ -a.e. equal mappings in $\mathfrak H$ equipped with the scalar product

$$
\langle \cdot | \cdot \rangle_{\mathcal{H}} \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R} \colon (x, y) \mapsto \int_{\Omega} \langle x(\omega) | y(\omega) \rangle_{H_{\omega}} \mu(d\omega), \tag{2.17}
$$

where we adopt the common practice of designating by x both an equivalence class in H and a representative of it in ℌ. We write

$$
\mathcal{H} = \int_{\Omega}^{\Phi} H_{\omega} \mu(d\omega) \tag{2.18}
$$

and call H the Hilbert direct integral of $((H_{\omega})_{\omega \in \Omega}, \mathfrak{G})$ [\[25\]](#page-19-6).

Here are some instances of Hilbert direct integrals [\[11\]](#page-18-8).

Example 2.6. Let $p \in \mathbb{N} \setminus \{0\}$, let $(\alpha_k)_{1 \leq k \leq p}$ be a family in]0, + ∞ [, let $(H_k)_{1 \leq k \leq p}$ be separable real Hilbert spaces, let $\mathfrak{G} = H_1 \times \cdots \times H_p$ be the usual Cartesian product vector space, and set

$$
\Omega = \{1, ..., p\}, \quad \mathcal{F} = 2^{\{1, ..., p\}}, \quad \text{and} \quad (\forall k \in \{1, ..., p\}) \ \mu(\{k\}) = \alpha_k. \tag{2.19}
$$

Then $((H_k)_{1\leq k\leq p},\mathfrak{G})$ is an F-measurable vector field of real Hilbert spaces and $\mathfrak{G}^{\oplus}_{\Omega}H_{\omega}\mu(d\omega)$ is the weighted Hilbert direct sum of $(H_k)_{1 \leq k \leq p}$, namely the Hilbert space obtained by equipping $\mathfrak G$ with the scalar product

$$
((x_k)_{1 \le k \le p}, (y_k)_{1 \le k \le p}) \mapsto \sum_{k=1}^p \alpha_k \langle x_k | y_k \rangle_{H_k}.
$$
\n(2.20)

Example 2.7. Let $(\alpha_k)_{k \in \mathbb{N}}$ be a family in $]0, +\infty[$, let $(H_k)_{k \in \mathbb{N}}$ be separable real Hilbert spaces, let $\mathfrak{G} = \prod_{k \in \mathbb{N}} \mathsf{H}_k$, and set

$$
\Omega = \mathbb{N}, \quad \mathcal{F} = 2^{\mathbb{N}}, \quad \text{and} \quad (\forall k \in \mathbb{N}) \ \mu(\{k\}) = \alpha_k. \tag{2.21}
$$

Then $((H_k)_{k\in\mathbb{N}},\mathfrak{G})$ is an \mathfrak{F} -measurable vector field of real Hilbert spaces and $\mathfrak{G}^{\oplus}_{\Omega}H_{\omega}\mu(d\omega)$ is the Hilbert space obtained by equipping the vector space

$$
\mathfrak{H} = \left\{ (\mathbf{x}_k)_{k \in \mathbb{N}} \in \mathfrak{G} \; \middle| \; \sum_{k \in \mathbb{N}} \alpha_k ||\mathbf{x}_k||_{\mathsf{H}_k}^2 < +\infty \right\}
$$
\n(2.22)

with the scalar product

$$
((x_k)_{k \in \mathbb{N}}, (y_k)_{k \in \mathbb{N}}) \mapsto \sum_{k \in \mathbb{N}} \alpha_k \langle x_k | y_k \rangle_{H_k}.
$$
 (2.23)

Example 2.8. Let $(\Omega, \mathcal{F}, \mu)$ be a complete σ -finite measure space, let H be a separable real Hilbert space, and set

$$
[(\forall \omega \in \Omega) \ H_{\omega} = H] \text{ and } \mathfrak{G} = \{x \colon \Omega \to H \mid x \text{ is } (\mathcal{F}, \mathcal{B}_H)\text{-measurable}\}.
$$
 (2.24)

Then $((H_{\omega})_{\omega \in \Omega}, \mathfrak{G})$ is an F-measurable vector field of real Hilbert spaces and

$$
\int_{\Omega}^{\Phi} H_{\omega} \mu(d\omega) = L^2(\Omega, \mathcal{F}, \mu; \mathsf{H}).
$$
\n(2.25)

§3. Integral resolvent mixtures

Our setting hinges on the following assumptions.

Assumption 3.1. Assumption [2.5](#page-3-1) and the following are in force:

- [A] For every $\omega \in \Omega$, A_{ω} : $H_{\omega} \to 2^{H_{\omega}}$ is maximally monotone.
- [B] For every $x \in \mathfrak{H}$, the mapping $\omega \mapsto J_{A_{\omega}}x(\omega)$ lies in \mathfrak{G} .
- [C] dom ${}^{6}C_{\Omega} A_{\omega} \mu(d\omega) \neq \emptyset$, where

$$
\int_{\Omega}^{\oplus} A_{\omega} \mu(d\omega) : \mathcal{H} \to 2^{\mathcal{H}} : x \mapsto \left\{ x^* \in \mathcal{H} \mid (\forall^{\mu} \omega \in \Omega) \ x^*(\omega) \in A_{\omega} x(\omega) \right\} \tag{3.1}
$$

is the Hilbert direct integral of the operators $(A_{\omega})_{\omega \in \Omega}$ relative to \mathfrak{G} [\[11\]](#page-18-8).

Assumption 3.2. Assumption [2.5](#page-3-1) and the following are in force:

- [A] X is a separable real Hilbert space.
- [B] For every $\omega \in \Omega$, L_{ω} : $X \to H_{\omega}$ is linear and bounded.
- [C] For every $x \in X$, the mapping $e_L x: \omega \mapsto L_\omega x$ lies in §.
- [D] $0 < \int_{\Omega} ||L_{\omega}||^2 \mu(d\omega) \leq 1.$

The main purpose of this section is to study the following objects which mix families of monotone and linear operators.

Definition 3.3. Suppose that Assumptions [3.1](#page-4-1) and [3.2](#page-4-2) are in force. The integral resolvent mixture of $(A_{\omega})_{\omega \in \Omega}$ and $(L_{\omega})_{\omega \in \Omega}$ is

$$
\stackrel{\circ}{M}(L_{\omega}, A_{\omega})_{\omega \in \Omega} = \left(\int_{\Omega} (L_{\omega}^{*} \circ J_{A_{\omega}} \circ L_{\omega}) \mu(d\omega) \right)^{-1} - \mathrm{Id}_{X}, \tag{3.2}
$$

and the *integral resolvent comixture* of $(A_{\omega})_{\omega \in \Omega}$ and $(L_{\omega})_{\omega \in \Omega}$ is

$$
\mathbf{\hat{M}}(\mathsf{L}_{\omega}, \mathsf{A}_{\omega})_{\omega \in \Omega} = \left(\mathbf{\hat{M}}(\mathsf{L}_{\omega}, \mathsf{A}_{\omega}^{-1})_{\omega \in \Omega}\right)^{-1}.\tag{3.3}
$$

We start off with some properties of integrals of composite Lipschitzian operators.

Proposition 3.4. Suppose that Assumption [2.5](#page-3-1) is in force. Let X be a separable real Hilbert space, let $\beta: \Omega \to [0, +\infty[$ be $\mathcal{F}\text{-}measurable and such that ess sup $\beta < +\infty$, and for every $\omega \in \Omega$, let$ T_{ω} : $H_{\omega} \to H_{\omega}$ be $\beta(\omega)$ -Lipschitzian and let L_{ω} : X $\to H_{\omega}$ be linear and bounded. Suppose that the following are satisfied:

- [A] For every $x \in \mathfrak{H}$, the mapping $\omega \mapsto T_{\omega}x(\omega)$ lies in \mathfrak{G} .
- [B] There exists $z \in \mathfrak{H}$ such that the mapping $\omega \mapsto T_{\omega}z(\omega)$ lies in \mathfrak{H} .
- [C] For every $x \in X$, the mapping $e_L x: \omega \mapsto L_\omega x$ lies in 6.
- [D] $\int_{\Omega} ||L_{\omega}||^2 \mu(d\omega) < +\infty.$

Set

$$
T = \int_{\Omega} \left(L_{\omega}^{*} \circ T_{\omega} \circ L_{\omega} \right) \mu(d\omega) \quad \text{and} \quad \tau = \int_{\Omega} ||L_{\omega}||^{2} \beta(\omega) \mu(d\omega). \tag{3.4}
$$

Then the following hold:

- (i) $T: X \rightarrow X$ is well defined and τ -Lipschitzian.
- (ii) Define $L: X \to H: x \mapsto e_L x$ and $T = {}^{66} \int_{\Omega} {}^{6} \tau_{\omega} \mu(d\omega)$. Then L is well defined, linear, and bounded with $||L|| \leq \sqrt{\int_{\Omega} ||L_{\omega}||^{2} \mu(d\omega)}$, and $T = L^* \circ T \circ L$.
- (iii) Suppose that, for every $\omega \in \Omega$, T_{ω} is $1/\beta(\omega)$ -cocoercive and $L_{\omega} \neq 0$. Then the following are satisfied:
	- (a) T is $1/\tau$ -cocoercive.
	- (b) $\left\{ \int_{\Omega} L_{\omega}^{*}(T_{\omega}x(\omega))\mu(d\omega) \mid x \in \mathfrak{H} \right\} \subset \overline{\operatorname{ran}} T.$
	- (c) $\int \int_{\Omega} L_{\omega}^*(T_{\omega}x(\omega))\mu(d\omega) \mid x \in \mathfrak{H}$ $\subset \text{ran } T$.

Proof. Observe that, by [\[11,](#page-18-8) Proposition 3.12(i)], the function $\Omega \to \mathbb{R}$: $\omega \mapsto ||L_{\omega}||$ is F-measurable and, by [\[D\],](#page-5-0)

$$
\tau \le (\text{ess sup }\beta) \int_{\Omega} ||L_{\omega}||^2 \mu(d\omega) < +\infty. \tag{3.5}
$$

We set $(\forall \omega \in \Omega)$ $R_{\omega} = L_{\omega}^* \circ T_{\omega} \circ L_{\omega}$.

[\(i\):](#page-5-1) Let $x \in X$. It results from [\[11,](#page-18-8) Proposition 3.12(ii)] that the mapping $\omega \mapsto L_{\omega}x$ lies in \mathfrak{H} . In turn, [\[A\]](#page-5-2) ensures that the mapping $\omega \mapsto T_{\omega}(L_{\omega}x)$ lies in \mathfrak{G} . Therefore, we deduce from [\[C\]](#page-5-3) and [\[11,](#page-18-8) Lemma 2.2(i)] that, for every $y \in X$, the function $\Omega \to \mathbb{R}: \omega \mapsto \langle y | R_{\omega} x \rangle_{X} = \langle L_{\omega} y | T_{\omega} (L_{\omega} x) \rangle_{H_{\omega}}$ is F-measurable. Thus, since $(\Omega, \mathcal{F}, \mu)$ is a complete σ -finite measure space and X is separable, we infer from [\[31,](#page-19-5) Théorème 5.6.24] that the mapping $\Omega \to X: \omega \mapsto R_{\omega}x$ is $(\mathcal{F}, \mathcal{B}_X)$ -measurable. Next, since ess sup $\beta < +\infty$, it follows from [\[A\],](#page-5-2) [\[B\],](#page-5-4) and [\[11,](#page-18-8) Proposition 3.4(i)] that, for every $x \in \mathfrak{H}$, the mapping $\omega \mapsto \mathsf{T}_{\omega} x(\omega)$ lies in \mathfrak{H} ; in particular, $\int_{\Omega} ||\mathsf{T}_{\omega} 0||_{\mathsf{H}_{\omega}}^2 \mu(d\omega) < +\infty$. Hence, because

$$
(\forall y \in X)(\forall \omega \in \Omega) \quad ||R_{\omega}x - R_{\omega}y||_X \le ||L_{\omega}|| ||T_{\omega}(L_{\omega}x) - T_{\omega}(L_{\omega}y)||_{H_{\omega}}\le ||L_{\omega}|| \beta(\omega)||L_{\omega}x - L_{\omega}y||_{H_{\omega}}\le ||L_{\omega}||^2 \beta(\omega)||x - y||_X,
$$
\n(3.6)

we derive from the triangle and Cauchy–Schwarz inequalities that

$$
\int_{\Omega} ||R_{\omega}x||_{X} \mu(d\omega) \le \int_{\Omega} ||R_{\omega}x - R_{\omega}0||_{X} \mu(d\omega) + \int_{\Omega} ||R_{\omega}0||_{X} \mu(d\omega)
$$
\n
$$
\le \tau ||x||_{X} + \int_{\Omega} ||L_{\omega}|| ||T_{\omega}0||_{H_{\omega}} \mu(d\omega)
$$
\n
$$
\le \tau ||x||_{X} + \sqrt{\int_{\Omega} ||L_{\omega}||^{2} \mu(d\omega)} \sqrt{\int_{\Omega} ||T_{\omega}0||_{H_{\omega}}^{2} \mu(d\omega)}
$$
\n
$$
< +\infty.
$$
\n(3.7)

Thus, [\[31,](#page-19-5) Théorème 5.7.21] implies that T: $X \rightarrow X$ is well defined. Moreover, by virtue of [\(3.6\)](#page-6-0) and Lemma [2.3](#page-2-2)[\(i\),](#page-2-1) T is τ -Lipschitzian.

[\(ii\):](#page-5-5) Thanks to [\[11,](#page-18-8) Items (ii) and (v) in Proposition 3.12], $L: X \rightarrow \mathcal{H}$ is a well-defined bounded linear operator with adjoint

$$
L^* \colon \mathcal{H} \to X \colon x^* \mapsto \int_{\Omega} L^*_{\omega} x^*(\omega) \mu(d\omega) \tag{3.8}
$$

and $\|L\|\leqslant \sqrt{\int_{\Omega}\|\mathsf{L}_{\omega}\|^2\mu(d\omega)}.$ On the other hand, [\[11,](#page-18-8) Proposition 3.4(i)] asserts that $T\colon \mathcal{H}\to \mathcal{H}$ and that, for every $x \in \mathcal{H}$, a representative of Tx in \mathfrak{H} is the mapping $\omega \mapsto T_{\omega}x(\omega)$. Altogether, for every $x \in X$, because $\omega \mapsto L_{\omega}x$ is a representative of Lx in \mathfrak{H} , we deduce that

$$
L^*\big(T(L\mathbf{x})\big) = \int_{\Omega} \mathsf{L}_{\omega}^*\big(T_{\omega}(\mathsf{L}_{\omega}\mathbf{x})\big) \mu(d\omega) = \mathsf{Tx},\tag{3.9}
$$

as announced.

[\(iii\)\(a\):](#page-5-6) Take $x \in X$ and $y \in X$. Define an F-measurable function on Ω by $\alpha: \Omega \to [0, +\infty[$: $\omega \mapsto$ $||L_{\omega}||^2 \beta(\omega)/\tau$ and a probability measure P on \mathcal{F} by P: $\Xi \mapsto \int_{\Xi} \alpha(\omega) \mu(d\omega)$. Then we derive from items [\(ii\)](#page-2-0) and [\(iii\)](#page-3-0) of Lemma [2.3](#page-2-2) together with [\[31,](#page-19-5) Théorème 5.10.13] that

$$
\langle x - y | Tx - Ty \rangle_{X} = \int_{\Omega} \langle x - y | L_{\omega}^{*} (T_{\omega} (L_{\omega} x)) - L_{\omega}^{*} (T_{\omega} (L_{\omega} y)) \rangle_{X} \mu(d\omega)
$$

\n
$$
= \int_{\Omega} \langle L_{\omega} x - L_{\omega} y | T_{\omega} (L_{\omega} x) - T_{\omega} (L_{\omega} y) \rangle_{H_{\omega}} \mu(d\omega)
$$

\n
$$
\geq \int_{\Omega} \frac{1}{\beta(\omega)} ||T_{\omega} (L_{\omega} x) - T_{\omega} (L_{\omega} y) ||_{H_{\omega}}^{2} \mu(d\omega)
$$

\n
$$
\geq \int_{\Omega} \frac{1}{||L_{\omega}||^{2} \beta(\omega)} ||L_{\omega}^{*} (T_{\omega} (L_{\omega} x)) - L_{\omega}^{*} (T_{\omega} (L_{\omega} y)) ||_{X}^{2} \mu(d\omega)
$$

\n
$$
= \frac{1}{\tau} \int_{\Omega} \left\| \frac{1}{\alpha(\omega)} (R_{\omega} x - R_{\omega} y) \right\|_{X}^{2} P(d\omega)
$$

\n
$$
\geq \frac{1}{\tau} \left\| \int_{\Omega} \frac{1}{\alpha(\omega)} (R_{\omega} x - R_{\omega} y) P(d\omega) \right\|_{X}^{2}
$$

\n
$$
= \frac{1}{\tau} \left\| \int_{\Omega} (R_{\omega} x - R_{\omega} y) \mu(d\omega) \right\|_{X}^{2}
$$

\n
$$
= \frac{1}{\tau} ||Tx - Ty||_{X}^{2}.
$$
 (3.10)

[\(iii\)\(b\)](#page-5-7) and [\(iii\)\(c\):](#page-5-8) Define L and T as in [\(ii\),](#page-5-5) and recall that $T = L^* \circ T \circ L$. In the light of [\[3,](#page-18-0) Corollary 20.28], [\(i\)](#page-5-1) and $(iii)(a)$ imply that T is maximally monotone. At the same time, we deduce from [\[11,](#page-18-8) Proposition 3.4(ii)] that $T: H \to H$ is cocoercive. Thus, it results from [\(3.8\)](#page-6-1), [\[3,](#page-18-0) Example 25.20(i)], and [\[28,](#page-19-7) Theorem 5] that

$$
\left\{ \int_{\Omega} \mathsf{L}_{\omega}^* \big(\mathsf{T}_{\omega} \mathsf{x}(\omega) \big) \mu(d\omega) \; \middle| \; \mathsf{x} \in \mathfrak{H} \right\} = L^* \left(\operatorname{ran} T \right) \subset \overline{\operatorname{ran}} \big(L^* \circ T \circ L \big) = \overline{\operatorname{ran}} \, \mathsf{T} \tag{3.11}
$$

and that

$$
\mathrm{int}\left\{\int_{\Omega} \mathsf{L}_{\omega}^* \big(\mathsf{T}_{\omega} x(\omega)\big) \mu(d\omega)\middle|\, x \in \mathfrak{H}\right\} = \mathrm{int}\, L^* (\mathrm{ran}\, T) \subset \mathrm{ran}\big(L^* \circ T \circ L\big) = \mathrm{ran}\, \mathsf{T},\tag{3.12}
$$

which completes the proof. \Box

The main properties of integral resolvent mixtures can now be laid out.

Theorem 3.5. Suppose that Assumptions [3.1](#page-4-1) and [3.2](#page-4-2) are in force. Set

$$
W = \mathring{M}(L_{\omega}, A_{\omega})_{\omega \in \Omega} \quad \text{and} \quad C = \mathring{M}(L_{\omega}, A_{\omega})_{\omega \in \Omega}.
$$
 (3.13)

Then the following hold:

- (i) $W^{-1} = \mathbf{\hat{N}}$ $\mathring{M}(L_{\omega}, A_{\omega}^{-1})_{\omega \in \Omega}$ and $C^{-1} = \mathring{M}(L_{\omega}, A_{\omega}^{-1})_{\omega \in \Omega}$.
- (ii) W and C are maximally monotone.
- (iii) $C = (Id_X + \int_{\Omega} (L_{\omega}^* \circ J_{A_{\omega}} \circ L_{\omega} - L_{\omega}^* \circ L_{\omega}) \mu(d\omega))^{-1} - Id_X.$
- (iv) Suppose that μ is a probability measure and that, for every $\omega \in \Omega$, L_{ω} is an isometry. Then $W = C$.
- (v) $J_W = \int_{\Omega} (L_{\omega}^* \circ J_{A_{\omega}} \circ L_{\omega}) \mu(d\omega).$
- (vi) $J_C = \text{Id}_X + \int_{\Omega} (L_{\omega}^* \circ J_{A_{\omega}} \circ L_{\omega} - L_{\omega}^* \circ L_{\omega}) \mu(d\omega).$
- (vii) $W \Box \text{Id}_X = \text{Id}_X - \int_{\Omega} (L_{\omega}^* \circ (A_{\omega}^{-1} \Box \text{Id}_{H_{\omega}}) \circ L_{\omega}) \mu(d\omega).$
- (viii) $C \Box \text{Id}_X = \int_{\Omega} (L_{\omega}^* \circ (A_{\omega} \Box \text{Id}_{H_{\omega}}) \circ L_{\omega}) \mu(d\omega).$
- (ix) $\text{zer } C = \text{zer } \int_{\Omega} (L_{\omega}^* \circ (A_{\omega} \Box \text{Id}_{H_{\omega}}) \circ L_{\omega}) \mu(d\omega).$ Ω
- (x) $\overline{\text{dom}} \, W = \left\{ \int_{\Omega} L_{\omega}^* x^*(\omega) \mu(d\omega) \mid x^* \in \mathcal{H} \text{ and } (\forall^{\mu} \omega \in \Omega) \, x^*(\omega) \in \text{dom} \, A_{\omega} \right\}.$
- (xi) $\overline{\tan} C = \left\{ \int_{\Omega} L_{\omega}^* x^* (\omega) \mu(d\omega) \mid x^* \in \mathcal{H} \text{ and } (\forall^{\mu} \omega \in \Omega) \ x^* (\omega) \in \tan A_{\omega} \right\}.$
- (xii) int dom $W = \inf \{ \int_{\Omega} L_{\omega}^*(J_{A_{\omega}} x(\omega)) \mu(d\omega) \mid x \in \mathcal{H} \}.$
- (xiii) int ran C = int $\{\int_{\Omega} L_{\omega}^*(J_{A_{\omega}}^{\{-1}}x(\omega))\mu(d\omega) \mid x \in \mathcal{H}\}.$
- (xiv) Suppose that, for every $\omega \in \Omega$, A_{ω} is nonexpansive with dom $A_{\omega} = H_{\omega}$. Then C is nonexpansive.
- (xv) Let $\tau \in]0, +\infty[$, set $\delta = (\tau + 1)/\int_{\Omega} ||L_{\omega}||^2 \mu(d\omega) 1$, and suppose that, for every $\omega \in \Omega$, A_{ω} is τ -cocoercive with dom $A_{\omega} = H_{\omega}$. Then C is δ -cocoercive.

Proof. Set

$$
A = \int_{\Omega}^{\mathfrak{G}} A_{\omega} \mu(d\omega). \tag{3.14}
$$

Then [\[11,](#page-18-8) Theorem 3.8(i)] states that A is maximally monotone, and [11, Theorem 3.8(ii)(a)] asserts that, for every $x \in \mathfrak{H}$, the mapping $\omega \mapsto J_{A_{\omega}}x(\omega)$ lies in \mathfrak{H} and

$$
J_A = \int_{\Omega}^{\oplus} J_{A_{\omega}} \mu(d\omega). \tag{3.15}
$$

Therefore, by Assumption [3.2](#page-4-2)[\[D\]](#page-5-9) and items [\(i\)](#page-5-1) and [\(iii\)\(a\)](#page-5-6) of Proposition [3.4,](#page-5-10)

$$
\int_{\Omega} \left(L_{\omega}^{*} \circ J_{A_{\omega}} \circ L_{\omega} \right) \mu(d\omega) : X \to X \text{ is a well-defined firmly nonexpansive operator,}
$$
 (3.16)

which confirms that W is well defined. Additionally, it follows from Proposition $3.4(ii)$ $3.4(ii)$ and Assumption [3.2](#page-4-2)[\[D\]](#page-5-9) that

$$
L: X \to H: x \mapsto e_L x
$$
 is a well-defined bounded linear operator such that $||L|| \le 1$, (3.17)

and

$$
(\forall x \in X) \quad L^*[J_A(Lx)] = \int_{\Omega} L^*_{\omega} (J_{A_{\omega}}(L_{\omega}x)) \mu(d\omega).
$$
\n(3.18)

Moreover, the adjoint of L is given by [\[11,](#page-18-8) Proposition 3.12(v)]

$$
L^* \colon \mathcal{H} \to X \colon x^* \mapsto \int_{\Omega} L_{\omega}^* x^*(\omega) \mu(d\omega). \tag{3.19}
$$

Likewise, appealing to [\[11,](#page-18-8) Proposition 3.7], we deduce that C is well defined and

$$
(\forall \mathbf{x} \in \mathbf{X}) \quad L^* \big(J_{A^{-1}}(L \mathbf{x}) \big) = \int_{\Omega} L^*_{\omega} \big(J_{A_{\omega}^{-1}}(L_{\omega} \mathbf{x}) \big) \mu(d\omega). \tag{3.20}
$$

Hence, by virtue of Definition [2.1,](#page-2-3)

$$
W = L \diamond A \quad \text{and} \quad C = L \bullet A. \tag{3.21}
$$

[\(i\):](#page-7-0) A consequence of (3.2) and (3.3) .

- [\(ii\):](#page-7-1) In the light of [\[19,](#page-19-4) Theorem 4.5(i)–(ii)], the claim follows from (3.17) and (3.21) .
- [\(iii\):](#page-7-2) A consequence of [\(3.18\)](#page-8-2), [\(3.19\)](#page-8-3), [\(3.21\)](#page-8-1), and [\[19,](#page-19-4) Proposition 4.1(ii)].
- [\(iv\):](#page-7-3) By [\(2.17\)](#page-3-2) and [\(3.17\)](#page-8-0),

$$
(\forall x \in X) \quad ||Lx||_{\mathcal{H}}^2 = \int_{\Omega} ||L_{\omega}x||_{H_{\omega}}^2 \mu(d\omega) = \int_{\Omega} ||x||_X^2 \mu(d\omega) = \mu(\Omega) ||x||_X^2 = ||x||_X^2,
$$
 (3.22)

which shows that L is an isometry. Consequently, the conclusion follows from (3.21) and $[19, 10]$ Proposition 4.1(iii)].

[\(v\):](#page-7-4) An immediate consequence of [\(3.2\)](#page-5-11).

[\(vi\):](#page-7-5) An immediate consequence of [\(iii\).](#page-7-2)

[\(vii\):](#page-7-6) This follows from (3.21) , [\[19,](#page-19-4) Proposition 4.1(xiv)], and (3.18) .

[\(viii\):](#page-7-7) This follows from (3.21) , $[19,$ Proposition 4.1(xv)], and (3.20) .

 (ix) : Use (ii) , $(viii)$, and $[3,$ Proposition 23.38].

[\(x\):](#page-7-9) Set $U = \{x \in \mathcal{H} \mid (\forall^{\mu} \omega \in \Omega) \ x(\omega) \in \text{dom}\ A_{\omega}\}.$ Then $\overline{U} = \overline{\text{dom}} A$ [\[11,](#page-18-8) Theorem 3.8(iii)]. Hence, [\[19,](#page-19-4) Theorem 4.5(vi)] implies that

$$
\overline{\text{dom }W} = \overline{L^*(\text{dom }A)} = \overline{L^*(\overline{\text{dom }A)}} = \overline{L^*(\overline{U})} = \overline{L^*(U)}.
$$
\n(3.23)

This and [\(3.19\)](#page-8-3) yield the desired identity.

[\(xi\):](#page-7-10) Combine [\(3.3\)](#page-5-12), [\(x\),](#page-7-9) and the fact that ($\forall \omega \in \Omega$) dom $A_{\omega}^{-1} = \text{ran } A_{\omega}$.

[\(xii\):](#page-7-11) Use (3.2) and Proposition $3.4(iii)(c)$ $3.4(iii)(c)$.

 $(xiii)$: A consequence of (3.3) and (xii) .

[\(xiv\):](#page-7-13) It follows from [\[11,](#page-18-8) Theorem $3.8(v)(a)$] that

for every
$$
x \in \mathfrak{H}
$$
, the mapping $\omega \mapsto \text{proj}_{A_{\omega}x(\omega)} 0 = A_{\omega}x(\omega)$ lies in 6. (3.24)

Hence, [\[11,](#page-18-8) Proposition 3.4(i)] implies that A is nonexpansive with dom $A = H$. Hence, it follows from [\[19,](#page-19-4) Proposition 4.9] and [\(3.21\)](#page-8-1) that C is nonexpansive.

[\(xv\):](#page-7-14) We argue as in [\(xiv\)](#page-7-13) to deduce that A: $H \rightarrow H$ is τ -cocoercive. On the other hand, [\(3.17\)](#page-8-0) ensures that $||L|| < \sqrt{\tau + 1}$. Thus, it follows from [\(3.21\)](#page-8-1), [\[19,](#page-19-4) Proposition 4.8], and Proposition [3.4](#page-5-10)[\(ii\)](#page-5-5) that $C = L \cdot A$ is cocoercive with constant $(\tau + 1) ||L||^{-2} - 1 \ge \delta$.

Remark 3.6. The motivation for calling $\mathring{M}(L_{\omega}, A_{\omega})_{\omega \in \Omega}$ an integral resolvent mixture comes from Theorem $3.5(v)$ $3.5(v)$.

Let us provide some examples of integral resolvent mixtures.

Example 3.7. Consider the setting of Example [2.6.](#page-4-3) Then [\(3.2\)](#page-5-11) becomes

$$
\stackrel{\circ}{\mathcal{M}}(\mathsf{L}_k, \mathsf{A}_k)_{1 \le k \le p} = \left(\sum_{k=1}^p \alpha_k \mathsf{L}_k^* \circ J_{\mathsf{A}_k} \circ \mathsf{L}_k\right)^{-1} - \mathrm{Id}_X,\tag{3.25}
$$

which is the *resolvent mixture* introduced in [\[19,](#page-19-4) Example 3.4].

Example 3.8. Let $(\Omega, \mathcal{F}, \mu)$ be a complete σ -finite measure space and let $(\phi_{\omega})_{\omega \in \Omega}$ be a family in $\Gamma_0(\mathbb{R})$ such that the function $\Omega \times \mathbb{R} \to]-\infty, +\infty] : (\omega, x) \mapsto \phi_\omega(x)$ is $\mathcal{F} \otimes \mathcal{B}_{\mathbb{R}}$ -measurable and $(\forall \omega \in \Omega) \phi_{\omega} \ge \phi_{\omega}(0) = 0$. Further, let X be a separable real Hilbert space and let $e \in L^2(\Omega, \mathcal{F}, \mu; X)$ be such that $0 < \int_{\Omega} ||e(\omega)||_{X}^{2} \mu(d\omega) \le 1$. Set

$$
(\forall \omega \in \Omega) \quad A_{\omega} = \partial \phi_{\omega} \quad \text{and} \quad L_{\omega} = \langle \cdot \mid e(\omega) \rangle_{\chi}.
$$

Then

$$
\stackrel{\circ}{M}(L_{\omega}, A_{\omega})_{\omega \in \Omega} = \left(\int_{\Omega} (\text{prox}_{\phi_{\omega}} \langle \cdot | e(\omega) \rangle_{X}) e(\omega) \mu(d\omega) \right)^{-1} - \text{Id}_{X}.
$$
\n(3.27)

For instance, suppose that, for every $\omega \in \Omega$, ϕ_{ω} is the support function of a closed interval C_{ω} in R containing 0, with $\delta_{\omega} = \inf C_{\omega}$ and $\rho_{\omega} = \sup C_{\omega}$. Now set

$$
W = \overset{\circ}{M}(L_{\omega}, A_{\omega})_{\omega \in \Omega} \text{ and } (\forall x \in X) \begin{cases} \Omega^{-}(x) = \{ \omega \in \Omega \mid \langle x | e(\omega) \rangle_{X} > \rho_{\omega} \} \\ \Omega_{-}(x) = \{ \omega \in \Omega \mid \langle x | e(\omega) \rangle_{X} < \delta_{\omega} \} . \end{cases}
$$
(3.28)

Then

$$
(\forall x \in X) \quad J_{W}x = \int_{\Omega^{-}(x)} (\langle x | e(\omega) \rangle_{X} - \rho_{\omega}) e(\omega) \mu(d\omega) + \int_{\Omega_{-}(x)} (\langle x | e(\omega) \rangle_{X} - \delta_{\omega}) e(\omega) \mu(d\omega). \tag{3.29}
$$

This process provides a representation of x which eliminates the contributions of the coefficients $\langle x | e(\omega) \rangle_{x} \in [\delta_{\omega}, \rho_{\omega}]$. For instance, in the context of Example [2.7,](#page-4-4) if $(e(k))_{k \in \mathbb{N}}$ is an orthonormal basis and $C_k = [-\rho_k, \rho_k]$, then J_w is known as a soft-thresholder and it has been used extensively in data analysis [\[21,](#page-19-8) [24\]](#page-19-9).

Proof. Let $\mathfrak{G} = \{x : \Omega \to \mathbb{R} \mid x \text{ is } \mathcal{F}\text{-measurable}\}\$ and, for every $\omega \in \Omega$, let $H_{\omega} = \mathbb{R}$. Then, in view of Example [2.8,](#page-4-5) Assumption [2.5](#page-3-1) is satisfied and

$$
\mathcal{H} = \int_{\Omega}^{\Phi} H_{\omega} \mu(d\omega) = L^2(\Omega, \mathcal{F}, \mu; \mathbb{R}).
$$
\n(3.30)

Since $(\Omega, \mathcal{F}, \mu)$ is complete, we deduce from [\[30,](#page-19-10) Corollary 14.34 and Exercise 14.38] that, for every $x \in \mathfrak{G}$, the function $\Omega \to \mathbb{R}: \omega \mapsto \text{prox}_{\phi_{\omega}} x(\omega)$ lies in \mathfrak{G} . Additionally, for every $\omega \in \Omega$, since $0 \in \text{Argmin} \phi_\omega$, we get $0 \in A_\omega 0$ and $J_{A_\omega} 0 = \text{prox}_{\phi_\omega} 0 = 0$. Hence, the family $(A_\omega)_{\omega \in \Omega}$ satisfies Assumption [3.1.](#page-4-1) Next, since $e: \Omega \to X$ is $(\mathcal{F}, \mathcal{B}_X)$ -measurable, we deduce that, for every $x \in X$, the mapping $\Omega \to \mathbb{R}: \omega \mapsto \langle x | e(\omega) \rangle_{x} = L_{\omega}x$ lies in 6. Further,

$$
(\forall \omega \in \Omega) \quad L_{\omega}^* \colon \mathbb{R} \to X \colon x \mapsto xe(\omega) \tag{3.31}
$$

and

$$
\int_{\Omega} ||L_{\omega}||^{2} \mu(d\omega) = \int_{\Omega} ||e(\omega)||_{X}^{2} \mu(d\omega) = ||e||_{\mathcal{H}}^{2} \in]0, 1].
$$
\n(3.32)

This confirms that Assumption [3.2](#page-4-2) is satisfied. Therefore, we obtain [\(3.27\)](#page-9-0) by invoking [\(3.2\)](#page-5-11). Next, let us establish [\(3.29\)](#page-9-1). Take $x \in X$. Thanks to the F-measurability of the function $\Omega \to \mathbb{R}$: $\omega \mapsto$ prox $_{\phi_\omega}$ (x | $e(\omega)\rangle_\chi$, we obtain

$$
\Omega^{-}(\mathbf{x}) = \{ \omega \in \Omega \mid \langle \mathbf{x} | e(\omega) \rangle_{\mathbf{x}} - \text{proj}_{C_{\omega}} \langle \mathbf{x} | e(\omega) \rangle_{\mathbf{x}} > 0 \}
$$

= $\{ \omega \in \Omega \mid \text{prox}_{\phi_{\omega}} \langle \mathbf{x} | e(\omega) \rangle_{\mathbf{x}} > 0 \}$
 $\in \mathcal{F}.$ (3.33)

Likewise, Ω _−(x) ∈ F. On the other hand, by [\[3,](#page-18-0) Example 24.34],

$$
(\forall \omega \in \Omega) \quad \text{prox}_{\phi_{\omega}} \colon \mathbb{R} \to \mathbb{R} \colon x \mapsto \begin{cases} x - \rho_{\omega}, & \text{if } x > \rho_{\omega}; \\ 0, & \text{if } x \in C_{\omega}; \\ x - \delta_{\omega}, & \text{if } x < \delta_{\omega}. \end{cases}
$$
 (3.34)

Therefore, we obtain [\(3.29\)](#page-9-1) by using Theorem [3.5](#page-7-15)[\(v\)](#page-7-4) and the fact that ($\forall \omega \in \Omega$) $J_{A_{\omega}} = \text{prox}_{\phi_{\omega}}$.

Next, we define the resolvent expectation of a family of maximally monotone operators.

Definition 3.9. Let (Ω, \mathcal{F}, P) be a complete probability space, let H be a separable real Hilbert space, and let $(A_{\omega})_{\omega \in \Omega}$ be a family of maximally monotone operators from H to 2^H. Suppose that, for every $x \in H$, the mapping $\Omega \to H: \omega \mapsto J_{A_{\omega}}x$ is $(\mathcal{F}, \mathcal{B}_{H})$ -measurable and that $\int_{\Omega} ||J_{A_{\omega}}0||^2_{H} \mu(d\omega) < +\infty$. Using the notation [\(2.14\)](#page-3-3), the *resolvent expectation* of the family $(A_{\omega})_{\omega \in \Omega}$ is

$$
\mathbf{\tilde{E}}(\mathbf{A}_{\omega})_{\omega \in \Omega} = (\mathbf{E}(J_{\mathbf{A}_{\omega}})_{\omega \in \Omega})^{-1} - \mathrm{Id}_{\mathbf{H}}.
$$
\n(3.35)

Example 3.10. Consider the measure space $(\Omega, \mathcal{F}, \mu)$ of Example [2.6](#page-4-3) with the additional assumption that $\sum_{k=1}^{p} \alpha_k = 1$. Let H be a separable real Hilbert space and let $(A_k)_{1 \leq k \leq p}$ be maximally monotone operators from H to 2^H . Then [\(3.35\)](#page-10-0) becomes

$$
\mathbf{E}(A_k)_{1 \leq k \leq p} = \left(\sum_{k=1}^p \alpha_k J_{A_k}\right)^{-1} - \mathrm{Id}_{H},\tag{3.36}
$$

which is the resolvent average studied in [\[2\]](#page-18-7).

Let us relate resolvent expectations to integral resolvent mixtures.

Proposition 3.11. Consider the setting of Example [2.8](#page-4-5) with the additional assumption that μ is a probability measure. Let $(A_\omega)_{\omega \in \Omega}$ be a family of maximally monotone operators from H to 2^H such that, for every $x \in H$, the mapping $\Omega \to H: \omega \mapsto J_{A_{\omega}}x$ is $(\mathcal{F}, \mathcal{B}_{H})$ -measurable and that $\int_{\Omega} ||J_{A_{\omega}}0||_{H}^{2} \mu(d\omega) < +\infty$. Then

$$
\mathring{\mathsf{E}}(\mathsf{A}_{\omega})_{\omega \in \Omega} = \mathring{\mathsf{M}}(\mathrm{Id}_{\mathsf{H}}, \mathsf{A}_{\omega})_{\omega \in \Omega} = \mathring{\mathsf{M}}(\mathrm{Id}_{\mathsf{H}}, \mathsf{A}_{\omega})_{\omega \in \Omega}.
$$
\n(3.37)

Proof. Appealing to [\[14,](#page-18-9) Lemma III.14] and the continuity of the operators $(J_{A_\omega})_{\omega \in \Omega}$, we infer that the mapping $\Omega \times H \to H: (\omega, x) \mapsto J_{A_{\omega}}x$ is $(\mathcal{F} \otimes \mathcal{B}_{H}, \mathcal{B}_{H})$ -measurable. Thus, for every $x \in \mathfrak{H}$, the mapping $\Omega \to H: \omega \mapsto J_{A_{\omega}}x(\omega)$ is $(\mathcal{F}, \mathcal{B}_{H})$ -measurable, i.e., it lies in \mathfrak{G} . On the other hand, letting $A = {}^{6}I_{\Omega}^{\oplus} A_{\omega} \mu(d\omega)$ and $r: \Omega \to H: \omega \mapsto J_{A_{\omega}} 0$ yields $-r \in Ar$, which implies that dom $A \neq \emptyset$. Hence, it follows from [\(3.35\)](#page-10-0) and [\(3.2\)](#page-5-11) that $\mathbb{E}(A_{\omega})_{\omega \in \Omega} = \mathcal{M}(Id_{H}, A_{\omega})_{\omega \in \Omega}$, while the identity $\mathring{M}(Id_H, A_\omega)_{\omega \in \Omega} = \mathring{M}(Id_H, A_\omega)_{\omega \in \Omega}$ follows from Theorem [3.5](#page-7-15)[\(iv\).](#page-7-3)

By specializing Theorem [3.5](#page-7-15) to the scenario of Proposition [3.11,](#page-10-1) we obtain at once the following properties of the resolvent expectation and, in particular, those of the resolvent average of finitely many operators studied in [\[2\]](#page-18-7).

Corollary 3.12. Consider the setting of Definition [3.9](#page-10-2). Then the following hold:

- (i) $(\mathring{\mathsf{E}}(\mathsf{A}_{\omega})_{\omega \in \Omega})^{-1} = \mathring{\mathsf{E}}(\mathsf{A}_{\omega}^{-1})_{\omega \in \Omega}$.
- (ii) $\mathring{\mathsf{E}}(\mathsf{A}_{\omega})_{\omega \in \Omega}$ is maximally monotone.
- (iii) J_{\circ} = $E(J_{A_{\omega}})_{\omega \in \Omega}$.
- (iv) $(\mathring{E}(A_{\omega})_{\omega \in \Omega}) \square \mathrm{Id}_{H} = E(A_{\omega} \square \mathrm{Id}_{H})_{\omega \in \Omega}$.
- (v) $\overline{\text{dom }\mathsf{E}}(\mathsf{A}_{\omega})_{\omega \in \Omega} = \overline{\{\text{Ex}^* \mid x^* \in L^2(\Omega, \mathcal{F}, \mathsf{P}; \mathsf{H}) \text{ and } (\forall^{\mu} \omega \in \Omega) \ x^*(\omega) \in \text{dom } \mathsf{A}_{\omega}\}}.$
- (vi) $\overline{\text{ran}} \mathcal{E}(A_{\omega})_{\omega \in \Omega} = \overline{\{Ex^* \mid x^* \in L^2(\Omega, \mathcal{F}, P; H) \text{ and } (\forall^{\mu} \omega \in \Omega) \ x^*(\omega) \in \text{ran} A_{\omega}\}}.$
- (vii) int dom $\mathbb{E}(\mathsf{A}_{\omega})_{\omega \in \Omega} = \mathrm{int}\big\{ \mathsf{E}(J_{\mathsf{A}_{\omega}}x(\omega))_{\omega \in \Omega} \mid x \in L^{2}(\Omega, \mathcal{F}, \mathsf{P}; \mathsf{H}) \big\}.$
- (viii) int ran $\mathcal{E}(\mathsf{A}_{\omega})_{\omega \in \Omega} = \mathrm{int}\big\{ \mathsf{E}(J_{\mathsf{A}_{\omega}^{-1}}x(\omega))_{\omega \in \Omega} \mid x \in L^{2}(\Omega, \mathcal{F}, \mathsf{P}; \mathsf{H}) \big\}.$
- (ix) Suppose that, for every $\omega \in \Omega$, A_{ω} is nonexpansive with dom $A_{\omega} = H_{\omega}$. Then $\mathring{E}(A_{\omega})_{\omega \in \Omega}$ is nonexpansive.
- (x) Let $\tau \in [0, +\infty[$ and suppose that, for every $\omega \in \Omega$, A_{ω} is τ -cocoercive with dom $A_{\omega} = H_{\omega}$. Then $\mathring{E}(A_{\omega})_{\omega \in \Omega}$ is τ -cocoercive.

§4. Integral proximal mixtures

The integral proximal mixture will be cast in the following setting.

Assumption 4.1. Assumption [2.5](#page-3-1) and the following are in force:

- [A] For every $\omega \in \Omega$, f_{ω} : H $_{\omega} \to$] – ∞ , + ∞] possesses a continuous affine minorant.
- [B] There exists $r \in \mathfrak{H}$ such that the function $\omega \mapsto f_{\omega}(r(\omega))$ lies in $\mathscr{L}^1(\Omega, \mathcal{F}, \mu; \mathbb{R})$.
- [C] There exists $r^* \in \mathfrak{H}$ such that the function $\omega \mapsto f^*_{\omega}(r^*(\omega))$ lies in $\mathscr{L}^1(\Omega, \mathcal{F}, \mu; \mathbb{R})$.
- [D] For every $x^* \in \mathfrak{H}$, the mapping $\omega \mapsto \text{prox}_{f^*_{\omega}} x^*(\omega)$ lies in \mathfrak{G} .

Definition 4.2. Suppose that Assumptions [3.2](#page-4-2) and [4.1](#page-11-1) are in force. The integral proximal mixture of $(f_{\omega})_{\omega \in \Omega}$ and $(L_{\omega})_{\omega \in \Omega}$ is

$$
\stackrel{\circ}{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} = \left(\int_{\Omega} \left((f_{\omega}^* \Box \mathcal{Q}_{H_{\omega}}) \circ L_{\omega} \right) \mu(d\omega) \right)^* - \mathcal{Q}_X, \tag{4.1}
$$

and the *integral proximal comixture* of $(f_{\omega})_{\omega \in \Omega}$ and $(L_{\omega})_{\omega \in \Omega}$ is

$$
\mathbf{\hat{M}}(\mathsf{L}_{\omega},\mathsf{f}_{\omega})_{\omega\in\Omega} = \left(\mathbf{\hat{M}}(\mathsf{L}_{\omega},\mathsf{f}_{\omega}^*)_{\omega\in\Omega}\right)^*.
$$
\n(4.2)

Item [\(viii\)](#page-12-0) below connects Definitions [3.3](#page-5-13) and [4.2.](#page-11-2)

Theorem 4.3. Suppose that Assumptions [3.2](#page-4-2) and [4.1](#page-11-1) are in force. Then the following hold:

- (i) $\mathring{M}(\mathsf{L}_{\omega}, \mathsf{f}_{\omega})_{\omega \in \Omega} \in \Gamma_0(\mathsf{X}).$
- (ii) $M(L_\omega, f_\omega)_{\omega \in \Omega} \in \Gamma_0(X)$.
- (iii) Let $x \in X$. Then

$$
\begin{aligned}\n&\big(\overset{\circ}{\mathsf{M}}(\mathsf{L}_{\omega},\mathsf{f}_{\omega})_{\omega\in\Omega}\big)(x) \\
&=\min\bigg\{\int_{\Omega}f_{\omega}^{**}\big(x(\omega)\big)\mu(d\omega)+\mathcal{Q}_{\mathcal{H}}(x)-\mathcal{Q}_{X}(x)\bigg|\ x\in\mathcal{H}\ \text{and}\ \int_{\Omega}\mathsf{L}_{\omega}^{*}x(\omega)\mu(d\omega)=x\bigg\}.\n\end{aligned}
$$

- (iv) $\overline{\text{dom}} \overset{\circ}{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} = \overline{\{ \int_{\Omega} L_{\omega}^* x(\omega) \mu(d\omega) \mid x \in \mathcal{H} \text{ and } (\forall^{\mu} \omega \in \Omega) \ x(\omega) \in \text{dom} f_{\omega}^{**} \}}.$
- (v) $(\mathring{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega})^* = \mathring{M}(L_{\omega}, f_{\omega}^*)_{\omega \in \Omega} = (\mathscr{Q}_{X} \int_{\Omega} (f_{\omega}^* \Box \mathscr{Q}_{H_{\omega}}) \circ L_{\omega} \mu(d\omega))^* \mathscr{Q}_{X}.$
- (vi) ($\ddot{\bullet}$ $M(L_{\omega}, f_{\omega})_{\omega \in \Omega}$)* = $M(L_{\omega}, f_{\omega})_{\omega \in \Omega}$.
- (vii) $\mathring{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} \square \mathcal{Q}_X + \mathring{N}$ $M(L_{\omega}, f_{\omega}^*)_{\omega \in \Omega} \square \mathcal{Q}_X = \mathcal{Q}_X.$
- $(\text{viii}) \ \partial \mathring{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} = \mathring{M}(L_{\omega}, \partial f_{\omega}^*)_{\omega \in \Omega}.$
- (ix) prox $\delta_{M(L_{\omega},f_{\omega})_{\omega\in\Omega}}$ $=\int_{\Omega}({\mathsf{L}}_{\omega}^* \circ \operatorname{prox}_{\mathsf{f}_{\omega}^{**}} \circ {\mathsf{L}}_{\omega}) \mu(d\omega).$
- (x) $\operatorname{prox}_{\hat{\mathsf{M}}(\mathsf{L}_{\omega}, \mathsf{f}_{\omega})_{\omega \in \Omega}} = \operatorname{Id}_{X} - \int_{\Omega} (\mathsf{L}_{\omega}^{*} \circ \operatorname{prox}_{\mathsf{f}_{\omega}^{*}} \circ \mathsf{L}_{\omega}) \mu(d\omega).$
- (xi) $\dot{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} \square \mathbb{Q}_X = \int_{\Omega} (f_{\omega}^{**} \square \mathbb{Q}_{H_{\omega}}) \circ L_{\omega} \mu(d\omega).$
- (xii) Argmin $M(L_{\omega}, f_{\omega})_{\omega \in \Omega} = \text{Argmin} \int_{\Omega} (f_{\omega}^{**} \Box \mathcal{Q}_{H_{\omega}}) \circ L_{\omega} \mu(d\omega).$
- (xiii) Suppose that μ is a probability measure and that, for every $\omega \in \Omega$, L_{ω} is an isometry. Then $\mathring{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} = \mathring{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega}.$

Proof. Set

$$
g = \mathring{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} \text{ and } h = \mathring{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega}.
$$
\n(4.3)

In the light of [\[3,](#page-18-0) Propositions 13.12(ii) and 13.10(ii)], we infer from [\[A\]](#page-11-3) and [\[B\]](#page-11-4) of Assumption [4.1](#page-11-1) that $(\forall \omega \in \Omega)$ $f^*_{\omega} \in \Gamma_0(H_{\omega})$. Next, define $\varrho: \Omega \to \mathbb{R}: \omega \mapsto -f_{\omega}(r(\omega))$. Then, by Assump-tion [4.1](#page-11-1)[\[B\],](#page-11-4) $\rho \in \mathscr{L}^1(\Omega, \mathcal{F}, \mu; \mathbb{R})$. Additionally, $(\forall \omega \in \Omega)$ $f_{\omega}^* \ge \langle \cdot | r(\omega) \rangle + \rho(\omega)$. Hence, we conclude that the family $(f_{\omega})_{\omega \in \Omega}$ satisfies the assumptions of [\[11,](#page-18-8) Theorem 4.7] and therefore that the family $(\partial f^*_{\omega})_{\omega \in \Omega}$ satisfies Assumption [3.1.](#page-4-1) Let us now check that the family $(f^*_{\omega})_{\omega \in \Omega}$ satisfies Assumption [4.1](#page-11-1) by using the mapping r to fulfill $[C]$. To this end, we need to show that the function $\varphi: \omega \mapsto f_{\omega}^{**}(r(\omega))$ lies in $\mathscr{L}^1(\Omega, \mathcal{F}, \mu; \mathbb{R})$. First, it follows from [\[11,](#page-18-8) Theorem 4.7(ix)] that φ is F-measurable. Further, since, for every $\omega \in \Omega$, $f_{\omega}^* \leq f_{\omega}$, Assumption [4.1](#page-11-1)[\[B\]](#page-11-4) implies that φ is majorized by an integrable function. Finally, since

$$
(\forall \omega \in \Omega) \quad f_{\omega}^{**} \geq \langle \cdot | r^*(\omega) \rangle_{H_{\omega}} - f_{\omega}^*(r^*(\omega)), \tag{4.4}
$$

Assumption [4.1](#page-11-1)^{[\[C\]](#page-11-5)} implies that φ is minorized by an integrable function. Next, we observe that [\[11,](#page-18-8) Theorem $4.7(i)$ –(ii)] assert that

$$
g: \mathcal{H} \to]-\infty, +\infty] : x^* \mapsto \int_{\Omega} f_{\omega}^*(x^*(\omega)) \mu(d\omega)
$$
\n(4.5)

is a well-defined function in $\Gamma_0(\mathcal{H})$. Moreover, by [\[11,](#page-18-8) Theorem 4.7(viii)],

$$
g \Box \mathcal{Q}_{\mathcal{H}} : \mathcal{H} \to \mathbb{R} : x^* \mapsto \int_{\Omega} (f_{\omega}^* \Box \mathcal{Q}_{H_{\omega}}) (x^*(\omega)) \mu(d\omega) \tag{4.6}
$$

and, by $[11,$ Theorem $4.7(ix)]$,

$$
g^*\colon \mathcal{H} \to]-\infty, +\infty]: x \mapsto \int_{\Omega} f_{\omega}^{**}(x(\omega))\mu(d\omega). \tag{4.7}
$$

We also recall from [\(3.17\)](#page-8-0) that

⋄

 $L: X \to H: x \mapsto e_L x$ is a well-defined bounded linear operator with $||L|| \le 1$. (4.8)

[\(i\):](#page-11-6) We deduce from [\(4.1\)](#page-11-7), Moreau's biconjugation theorem [\[3,](#page-18-0) Corollary 13.38], Definition [2.2,](#page-2-4) and [\[19,](#page-19-4) Example 3.6(ii)] that

$$
\dot{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} = ((g \Box \mathcal{Q}_{\mathcal{H}}) \circ L)^* - \mathcal{Q}_{X} = L \circ g^* \in \Gamma_0(X). \tag{4.9}
$$

[\(ii\):](#page-11-8) It follows from [\(i\),](#page-11-6) Definition [2.2,](#page-2-4) and $[19, Example 3.10(i)]$ that

$$
h = \left(\stackrel{\circ}{M}(\mathsf{L}_{\omega}, \mathsf{f}_{\omega}^*)_{\omega \in \Omega}\right)^* = \left(\mathsf{L} \diamond g^{**}\right)^* = \mathsf{L} \bullet g^* \in \Gamma_0(\mathsf{X}).\tag{4.10}
$$

[\(iii\):](#page-11-9) We derive from [\(4.9\)](#page-12-1) and [\[3,](#page-18-0) Corollary 15.28(i) and Proposition 13.24(i)] that

$$
(\forall x \in X) \quad g(x) = \min\{(g \sqcup \mathcal{Q}_{\mathcal{H}})^*(x) - \mathcal{Q}_X(x) \mid x \in \mathcal{H} \text{ and } L^*x = x\}
$$

= $\min\{g^*(x) + \mathcal{Q}_{\mathcal{H}}(x) - \mathcal{Q}_X(x) \mid x \in \mathcal{H} \text{ and } L^*x = x\}.$ (4.11)

Thus, [\(4.7\)](#page-12-2) and [\(3.19\)](#page-8-3) yield the announced identity.

[\(iv\):](#page-11-10) Set $U = \{x \in \mathcal{H} \mid (\forall^{\mu} \omega \in \Omega) \ x(\omega) \in \text{dom}\, f_{\omega}^{**}\}.$ Then [\[11,](#page-18-8) Theorem 4.7(v)] states that $\text{dom } g^* = U$. Thus, it results from [\(4.9\)](#page-12-1) and [\[19,](#page-19-4) Theorem 5.5(ii)] that

$$
\overline{\text{dom}}\,\text{g} = \overline{\text{dom}}(L \diamond g^*) = \overline{L^*(\text{dom}\,g^*)} = L^*(\overline{\text{dom}}\,g^*) = \overline{L^*(\overline{U})} = \overline{L^*(U)},\tag{4.12}
$$

and the assertion follows from [\(3.19\)](#page-8-3).

[\(v\):](#page-11-11) It follows from (4.9) , $[19,$ Proposition 5.3(iv)], and (4.2) that \overline{a}

$$
g^* = (L \diamond g^*)^* = L \bullet g^{**} = M(L_\omega, f_\omega^*)_{\omega \in \Omega}.
$$
\n(4.13)

At the same time, we derive from [\(4.9\)](#page-12-1), [\[3,](#page-18-0) Proposition 13.29], and [\(4.6\)](#page-12-3) that

$$
g^* = (\mathcal{Q}_X - ((g \Box \mathcal{Q}_\mathcal{H}) \circ L)^{**})^* - \mathcal{Q}_X = \left(\mathcal{Q}_X - \int_{\Omega} (f_{\omega}^* \Box \mathcal{Q}_{H_{\omega}}) \circ L_{\omega} \mu(d\omega) \right)^* - \mathcal{Q}_X.
$$
 (4.14)

[\(vi\):](#page-12-4) Since $q \in \Gamma_0(\mathcal{H})$, we deduce from [\(4.10\)](#page-12-5), [\[19,](#page-19-4) Proposition 5.3(v)], Moreau's biconjugation theorem, and [\(i\)](#page-11-6) that

$$
h^* = (L \bullet g^*)^* = L \diamond g^{**} = L \diamond g = \overset{\circ}{M}(L_{\omega}, f_{\omega}^*)_{\omega \in \Omega}.
$$
\n(4.15)

[\(vii\):](#page-12-6) Use [\(i\),](#page-11-6) [\(v\),](#page-11-11) and [\[3,](#page-18-0) Theorem 14.3(i)].

[\(viii\):](#page-12-0) In view of (4.9) , we derive from [\[3,](#page-18-0) Theorem 18.15], [\[11,](#page-18-8) Theorem 4.7(iv)], and [\(3.19\)](#page-8-3) that

$$
\partial \overset{\circ}{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega} = \left(\nabla \big((g \Box \mathcal{Q}_{\mathcal{H}}) \circ L\big)\right)^{-1} - \mathrm{Id}_{X}
$$
\n
$$
= \left(L^* \circ \big(\nabla (g \Box \mathcal{Q}_{\mathcal{H}})\big) \circ L\right)^{-1} - \mathrm{Id}_{X}
$$
\n
$$
= \left(\int_{\Omega} \big(L^*_{\omega} \circ \mathrm{prox}_{f^*_{\omega}} \circ L_{\omega}\big) \mu(d\omega)\right)^{-1} - \mathrm{Id}_{X}
$$
\n(4.16)

$$
= M(L_{\omega}, \partial f_{\omega}^{**})_{\omega \in \Omega}.
$$
\n
$$
(4.17)
$$

[\(ix\):](#page-12-7) Use [\(4.16\)](#page-13-0) and [\[3,](#page-18-0) Example 23.3].

[\(x\):](#page-12-8) By [\[3,](#page-18-0) Proposition 13.16(iii)], $(\forall \omega \in \Omega)$ $f_{\omega}^{***} = f_{\omega}^{*}$. Hence, it results from [\(ii\),](#page-11-8) Moreau's decomposition [\[3,](#page-18-0) Theorem 14.3(ii)], (vi) , and (ix) that

$$
\begin{aligned} \text{prox}_{h} &= \text{Id}_{X} - \text{prox}_{h^*} \\ &= \text{Id}_{X} - \text{prox}_{\hat{M}(L_{\omega}, f_{\omega}^*)_{\omega \in \Omega}} \\ &= \text{Id}_{X} - \int_{\Omega} \left(L_{\omega}^* \circ \text{prox}_{f_{\omega}^{***}} \circ L_{\omega} \right) \mu(d\omega) \\ &= \text{Id}_{X} - \int_{\Omega} \left(L_{\omega}^* \circ \text{prox}_{f_{\omega}^*} \circ L_{\omega} \right) \mu(d\omega). \end{aligned} \tag{4.18}
$$

[\(xi\):](#page-12-9) Because $g^* \in \Gamma_0(\mathcal{H})$, it results from [\(4.10\)](#page-12-5), [\[19,](#page-19-4) Theorem 5.5(v)], [\[11,](#page-18-8) Theorem 4.7(viii)], and [\(4.8\)](#page-12-10) that

$$
h \Box \mathcal{Q}_X = (L \bullet g^*) \Box \mathcal{Q}_X = (g^* \Box \mathcal{Q}_H) \circ L = \int_{\Omega} \Bigl(\bigl(f_{\omega}^{**} \Box \mathcal{Q}_{H_{\omega}} \bigr) \circ L_{\omega} \Bigr) \mu(d\omega).
$$
 (4.19)

[\(xii\):](#page-12-11) Combine [\(xi\)](#page-12-9) and [\[3,](#page-18-0) Proposition 17.5].

[\(xiii\):](#page-12-12) In this case, L is an isometry and the conclusion follows from [\[19,](#page-19-4) Proposition 5.3(vii)], (4.9) , and (4.10) . \Box

Remark 4.4. The motivation for calling $\stackrel{\circ}{M}(L_{\omega}, f_{\omega})_{\omega \in \Omega}$ an integral proximal mixture comes from Theorem [4.3](#page-11-13)[\(ix\).](#page-12-7)

Example 4.5. Consider the setting of Example [2.6.](#page-4-3) Then [\(4.1\)](#page-11-7) becomes

$$
\stackrel{\circ}{\mathcal{M}}\left(\mathsf{L}_k,\mathsf{f}_k\right)_{1\leq k\leq p} = \left(\sum_{k=1}^p \alpha_k (\mathsf{f}_k^* \sqcup \mathcal{Q}_{\mathsf{H}_k}) \circ \mathsf{L}_k\right)^* - \mathcal{Q}_\mathsf{X},\tag{4.20}
$$

which is the *proximal mixture* introduced in [\[19,](#page-19-4) Example 5.9].

Our next illustration concerns a new object: the proximal expectation of a family of functions.

Definition 4.6. Let (Ω, \mathcal{F}, P) be a complete probability space, let H be a separable real Hilbert space, and let $(f_{\omega})_{\omega \in \Omega}$ be a family of functions in $\Gamma_0(H)$ such that the function

$$
\Omega \times H \to]-\infty, +\infty]; \ (\omega, x) \mapsto f_{\omega}(x) \tag{4.21}
$$

is $\mathcal{F} \otimes \mathcal{B}_H$ -measurable. Suppose that there exist $r \in \mathcal{L}^2(\Omega, \mathcal{F}, P; H)$ and $r^* \in \mathcal{L}^2(\Omega, \mathcal{F}, P; H)$ such that the functions $\omega \mapsto f_{\omega}(r(\omega))$ and $\omega \mapsto f_{\omega}^*(r^*(\omega))$ lie in $\mathscr{L}^1(\Omega, \mathcal{F}, P; \mathbb{R})$. Using the notation [\(2.14\)](#page-3-3), the *proximal expectation* of the family $(f_{\omega})_{\omega \in \Omega}$ is

$$
\mathbf{\hat{E}}(\mathbf{f}_{\omega})_{\omega \in \Omega} = \left(\mathbf{E}(\mathbf{f}_{\omega}^{*} \Box \mathcal{Q}_{H})_{\omega \in \Omega}\right)^{*} - \mathcal{Q}_{H}.
$$
\n(4.22)

Proposition 4.7. Consider the setting of Example [2.8](#page-4-5) with the additional assumption that μ is a probability measure. Let $(f_{\omega})_{\omega \in \Omega}$ be a family of functions in $\Gamma_0(H)$ such that the function

$$
\Omega \times H \to]-\infty, +\infty]; \ (\omega, x) \mapsto f_{\omega}(x) \tag{4.23}
$$

is $\mathcal{F} \otimes \mathcal{B}_H$ -measurable. Suppose that there exist $r \in \mathcal{L}^2(\Omega, \mathcal{F}, \mu; H)$ and $r^* \in \mathcal{L}^2(\Omega, \mathcal{F}, \mu; H)$ such that the functions $\omega \mapsto f_{\omega}(r(\omega))$ and $\omega \mapsto f_{\omega}^*(r^*(\omega))$ lie in $\mathscr{L}^1(\Omega, \mathcal{F}, \mu; \mathbb{R})$. Then

$$
\mathbf{\hat{E}}(\mathbf{f}_{\omega})_{\omega \in \Omega} = \mathbf{\hat{M}}(\mathrm{Id}_{H}, \mathbf{f}_{\omega})_{\omega \in \Omega} = \mathbf{\hat{M}}(\mathrm{Id}_{H}, \mathbf{f}_{\omega})_{\omega \in \Omega}.
$$
\n(4.24)

Proof. Note that

 $\ddot{\bullet}$

 \Diamond

$$
\mathfrak{H} = \mathscr{L}^2(\Omega, \mathcal{F}, \mu; \mathsf{H}). \tag{4.25}
$$

Using the completeness of $(\Omega, \mathcal{F}, \mu)$, we derive from [\[1,](#page-18-10) Théorème 2.3], [\[14,](#page-18-9) Lemma III.14], and [\[3,](#page-18-0) Proposition 12.28] that, for every $x \in \mathfrak{H}$, the mapping $\Omega \to H: \omega \mapsto \text{prox}_{f_{\omega}} x(\omega)$ lies in \mathfrak{G} . Thus, for every $x^* \in \mathfrak{H}$, using [\[3,](#page-18-0) Theorem 14.3(ii)], we deduce that the mapping $\Omega \to H: \omega \mapsto$ $\text{prox}_{f^*_{\omega}} x^*(\omega) = x^*(\omega) - \text{prox}_{f^*_{\omega}} x^*(\omega)$ also lies in \mathfrak{G} . Hence, the family $(f_{\omega})_{\omega \in \Omega}$ satisfies Assump-tion [4.1.](#page-11-1) Thus, invoking Notation [2.4,](#page-3-4) we deduce from Theorem [4.3](#page-11-13)[\(xiii\),](#page-12-12) [\(4.1\)](#page-11-7), and [\(4.22\)](#page-14-0) that

$$
M(\mathrm{Id}_{H}, f_{\omega})_{\omega \in \Omega} = M(\mathrm{Id}_{H}, f_{\omega})_{\omega \in \Omega}
$$

\n
$$
= \left(\int_{\Omega} \left((f_{\omega}^{*} \Box \mathcal{Q}_{H}) \circ \mathrm{Id}_{H} \right) \mu(d\omega) \right)^{*} - \mathcal{Q}_{H}
$$

\n
$$
= \left(E(f_{\omega}^{*} \Box \mathcal{Q}_{H})_{\omega \in \Omega} \right)^{*} - \mathcal{Q}_{H}
$$

\n
$$
= \mathring{E}(f_{\omega})_{\omega \in \Omega}, \tag{4.26}
$$

 \Box as announced.

Combining Theorem [4.3,](#page-11-13) Proposition [3.11,](#page-10-1) and Proposition [4.7](#page-14-1) yields at once the following properties of the proximal expectation.

Proposition 4.8. Consider the setting of Definition [4.6](#page-14-2). Then the following hold:

- (i) $\mathbb{E}(f_{\omega})_{\omega \in \Omega} \in \Gamma_0(H)$.
- (ii) Let $x \in H$. Then

$$
(\mathring{\mathsf{E}}(\mathsf{f}_{\omega})_{\omega \in \Omega})(\mathsf{x})
$$

= min $\left\{ \int_{\Omega} \left(\mathsf{f}_{\omega}(\mathsf{x}(\omega)) + \mathcal{Q}_{\mathsf{H}}(\mathsf{x}(\omega)) \right) \mathsf{P}(d\omega) - \mathcal{Q}_{\mathsf{H}}(\mathsf{x}) \middle| \mathsf{x} \in L^{2}(\Omega, \mathcal{F}, \mathsf{P}; \mathsf{H}) \text{ and } \mathsf{E}\mathsf{x} = \mathsf{x} \right\}.$ (4.27)

- (iii) $\overline{\text{dom}} \mathcal{E}(f_{\omega})_{\omega \in \Omega} = \overline{\{Ex \mid x \in L^2(\Omega, \mathcal{F}, P; H) \text{ and } (\forall^{\mu} \omega \in \Omega) \ x(\omega) \in \text{dom} f_{\omega} \}}.$
- (iv) $(\mathring{\mathsf{E}}(\mathsf{f}_{\omega})_{\omega \in \Omega})^* = \mathring{\mathsf{E}}(\mathsf{f}_{\omega}^*)_{\omega \in \Omega} = (\mathsf{E}(\mathsf{f}_{\omega} \Box \mathcal{Q}_{\mathsf{H}})_{\omega \in \Omega})^* \mathcal{Q}_{\mathsf{H}}.$
- (v) $\partial \overset{\circ}{E}(f_{\omega})_{\omega \in \Omega} = \overset{\circ}{E}(\partial f_{\omega})_{\omega \in \Omega}$.
- (vi) $\mathring{\mathsf{E}}(\mathsf{f}_{\omega})_{\omega \in \Omega} \square \mathcal{Q}_{\mathsf{H}} = \mathsf{E}(\mathsf{f}_{\omega} \square \mathcal{Q}_{\mathsf{H}})_{\omega \in \Omega}$.
- (vii) $prox_{\epsilon}$
 $E(f_{\omega})_{\omega \in \Omega} = E(prox_{f_{\omega}})_{\omega \in \Omega}.$
- (viii) Argmin $\mathring{\mathsf{E}}(\mathsf{f}_{\omega})_{\omega \in \Omega} = \operatorname{Argmin} \mathsf{E}(\mathsf{f}_{\omega} \square \mathcal{Q}_{\mathsf{H}})_{\omega \in \Omega}$.

Remark 4.9. In Definition [4.6,](#page-14-2) consider the measure space $(\Omega, \mathcal{F}, \mu)$ of Example [2.6](#page-4-3) with the additional assumption that $\sum_{k=1}^{p} \alpha_k = 1$. Then the proximal expectation becomes

$$
\mathbf{\hat{E}}(\mathbf{f}_k)_{1 \le k \le p} = \left(\sum_{k=1}^p \alpha_k (\mathbf{f}_k^* \sqcup \mathcal{Q}_H) \right)^* - \mathcal{Q}_H.
$$
\n(4.28)

- (i) The function of [\(4.28\)](#page-15-1) is the *proximal average* of the family $(f_k)_{1\leq k\leq p}$. By specializing Proposition [4.8](#page-15-2) to this setting, we recover properties of the proximal average found in [\[4\]](#page-18-11).
- (ii) Let $(f_k)_{1\leq k\leq p}$ be functions in $\Gamma_0(H)$. In some data analysis applications (see, e.g., [\[16,](#page-18-12) [27,](#page-19-11) [32\]](#page-19-12)), [\(4.28\)](#page-15-1) has been used instead of the standard average $\sum_{k=1}^{p} \alpha_k f_k$. The latter can be regarded as the empirical *p*-sample approximation to the true expectation $E(f_\omega)_{\omega \in \Omega}$ arising from a family $(f_{\omega})_{\omega \in \Omega}$ in $\Gamma_0(H)$. Likewise, we can regard the proximal average [\(4.28\)](#page-15-1) as the empirical approximation to the proximal expectation $\mathring{\mathsf{E}}(\mathsf{f}_\omega)_{\omega \in \Omega}$.

Remark 4.10. The strategy described in Remark [4.9](#page-15-3)[\(ii\)](#page-15-4) can be generalized as follows. Let μ be a probability measure. Then it may be appropriate in certain variational problems to replace the standard composite average $\int_{\Omega} (f_{\omega} \circ L_{\omega}) \mu(d\omega)$ by the integral proximal comixture $M(L_{\omega}, f_{\omega})_{\omega \in \Omega}$ of Definition [4.2.](#page-11-2) The latter is easier to handle numerically as its proximity operator is explicitly given by Theorem $4.3(x)$ $4.3(x)$ and it follows from Theorem $4.3(xii)$ $4.3(xii)$ that its set of minimizers coincides with that of the function $\int_{\Omega} ((f_{\omega} \Box \mathcal{Q}_{H_{\omega}}) \circ L_{\omega}) \mu(d\omega)$.

§5. Relaxation of systems of monotone inclusions

We place our focus on the following general system of composite monotone inclusions.

Problem 5.1. Suppose that Assumptions [3.1](#page-4-1) and [3.2](#page-4-2) are in force and that $V \neq \{0\}$ is a closed vector subspace of X. The task is to

find
$$
x \in V
$$
 such that $(\forall^{\mu} \omega \in \Omega) \ 0 \in A_{\omega}(L_{\omega}x)$.
$$
(5.1)
$$

The instantiations of Problem [5.1](#page-15-5) found in [\[19,](#page-19-4) [22,](#page-19-13) [23\]](#page-19-14) (see also [\[13,](#page-18-13) [15\]](#page-18-14) for further special cases) correspond to the setting of Example [2.6](#page-4-3) with finitely many inclusions, that is,

find
$$
x \in V
$$
 such that $(\forall k \in \{1, ..., p\})$ $0 \in A_k(L_k x)$. (5.2)

On the other hand, the instantiation of [\[12\]](#page-18-15) corresponds to the setting of Example [2.8](#page-4-5) where μ is a probability measure, $V = H$ and, for every $\omega \in \Omega$, A_{ω} is the normal cone operator of a nonempty closed convex subset C_{ω} of H and $L_{\omega} = Id_H$, that is,

find
$$
x \in H
$$
 such that $(\forall^{\mu} \omega \in \Omega) \times \in C_{\omega}$. (5.3)

The last problem is known as the stochastic convex feasibility problem. Our formulation targets a much broader inclusion model than those.

Of interest to us are the scenarios in which Problem [5.1](#page-15-5) has no solution and must be replaced by a relaxed one which furnishes meaningful solutions. We consider the following relaxation which corresponds, in the special case of Example [2.6,](#page-4-3) to that proposed in [\[23\]](#page-19-14).

Problem 5.2. Suppose that Assumptions [3.1](#page-4-1) and [3.2](#page-4-2) are in force and that $V \neq \{0\}$ is a closed vector subspace of X, and let $\gamma \in [0, +\infty]$. The task is to

find
$$
x \in X
$$
 such that $0 \in (\text{proj}_V \diamond \mathbf{\hat{M}}(L_\omega, \gamma A_\omega)_{\omega \in \Omega})x$. (5.4)

Let us examine the interplay between Problems [5.1](#page-15-5) and [5.2.](#page-16-0)

Proposition 5.3. Consider the settings of Problems [5.1](#page-15-5) and [5.2](#page-16-0), let S_1 and S_2 be their respective sets of solutions, and set $W = \text{proj}_V \diamond$ ˛ $\mathsf{M}(\mathsf{L}_\omega,\gamma\mathsf{A}_\omega)_{\omega\in\Omega}$. Then the following hold:

- (i) W is maximally monotone.
- (ii) $J_W = \text{proj}_V \circ (\text{Id}_X + \int_{\Omega} (L_{\omega}^* \circ (J_{\gamma A_{\omega}} - \text{Id}_{H_{\omega}}) \circ L_{\omega}) \mu(d\omega)) \circ \text{proj}_V.$
- (iii) S_1 and S_2 are closed convex sets.
- (iv) Problem [5.2](#page-16-0) is an exact relaxation of Problem [5.1](#page-15-5) in the sense that $S_1 \neq \emptyset \Rightarrow S_2 = S_1$.
- (v) $S_2 = \text{zer}(N_V + \int_{\Omega} (L_{\omega}^* \circ ({}^{\gamma}A_{\omega}) \circ L_{\omega}) \mu(d\omega)).$

Proof. Set $A = {}^{6}C_{\Omega} \oplus A_{\omega} \mu(d\omega)$ and

$$
L: X \to \mathcal{H}: x \mapsto e_L x. \tag{5.5}
$$

Then [\[11,](#page-18-8) Proposition 3.5] asserts that

$$
J_{\gamma A} = \int_{\Omega}^{\oplus} J_{\gamma A_{\omega}} \mu(d\omega) \quad \text{and} \quad {}^{\gamma}A = \int_{\Omega}^{\oplus} {}^{\gamma}A_{\omega} \mu(d\omega). \tag{5.6}
$$

In addition, it follows from $[11,$ Proposition 3.12] that L is a well-defined bounded linear operator with adjoint

$$
L^* \colon \mathcal{H} \to X \colon x^* \mapsto \int_{\Omega} L_{\omega}^* x^*(\omega) \mu(d\omega) \tag{5.7}
$$

and such that $||L|| \le 1$. We also recall from [\(3.21\)](#page-8-1) that

$$
\mathbf{\hat{M}}(\mathsf{L}_{\omega}, \gamma \mathsf{A}_{\omega})_{\omega \in \Omega} = L \bullet (\gamma A). \tag{5.8}
$$

Further, [\(5.1\)](#page-15-6) is equivalent to

find
$$
x \in V
$$
 such that $0 \in A(Lx)$ (5.9)

and [\(5.4\)](#page-16-1) is equivalent to

find
$$
x \in X
$$
 such that $0 \in (\text{proj}_V \diamond (L \bullet (\gamma A)))$ x. (5.10)

[\(i\):](#page-16-2) We derive from [\[11,](#page-18-8) Theorem 3.8(i)] that A is maximally monotone and hence from [\[19,](#page-19-4) Theorem 4.5(ii)] that $L \bullet (\gamma A)$ is likewise. In turn, [\[19,](#page-19-4) Theorem 4.5(i)] and [\(5.8\)](#page-16-3) assert that W = proj $_V \diamond (L \bullet (\gamma A))$ is maximally monotone.

[\(ii\):](#page-16-4) By invoking successively [\[19,](#page-19-4) Theorem 6.3(ii)], (5.6) , and (5.7) , we obtain

$$
J_{\mathcal{W}} = \text{proj}_{\mathcal{V}} \circ (\text{Id}_{X} + L^* \circ (J_{\gamma A} - \text{Id}_{\mathcal{H}}) \circ L) \circ \text{proj}_{\mathcal{V}}
$$

= $\text{proj}_{\mathcal{V}} \circ (\text{Id}_{X} + \int_{\Omega} (L_{\omega}^* \circ (J_{\gamma A_{\omega}} - \text{Id}_{H_{\omega}}) \circ L_{\omega}) \mu(d\omega)) \circ \text{proj}_{\mathcal{V}}.$ (5.11)

[\(iii\):](#page-16-7) Use (5.9) , (5.10) , and $[19$, Theorem 6.3(iii)]. [\(iv\):](#page-16-10) Combine [\(5.10\)](#page-16-9) and [\[19,](#page-19-4) Theorem 6.3(v)]. [\(v\):](#page-16-11) Using (5.10) , $[19,$ Theorem 6.3 (vi)], (5.6) , and (5.7) , we obtain

$$
S_2 = \text{zer}(N_V + L^* \circ ({}^{\gamma}A) \circ L) = \text{zer}\bigg(N_V + \int_{\Omega} \left(L^*_{\omega} \circ ({}^{\gamma}A_{\omega}) \circ L_{\omega}\right) \mu(d\omega)\bigg),\tag{5.12}
$$

which concludes the proof. \Box

We now present an algorithm to solve Problem [5.2.](#page-16-0)

Proposition 5.4. Suppose that Problem [5.2](#page-16-0) has a solution, let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0, 2]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(2-\lambda_n) = +\infty$, and let $x_0 \in V$. Iterate

for
$$
n = 0, 1, ...
$$

\nfor μ -almost every $\omega \in \Omega$
\n
$$
\begin{cases}\n y_n(\omega) = L_{\omega} x_n \\
 q_n(\omega) = y_n(\omega) - J_{\gamma A_{\omega}} y_n(\omega) \\
 z_n = \int_{\Omega} L_{\omega}^*(q_n(\omega)) \mu(d\omega) \\
 x_{n+1} = x_n - \lambda_n \text{ proj}_V z_n.\n\end{cases}
$$
\n(5.13)

Then $(x_n)_{n \in \mathbb{N}}$ converges weakly to a solution to Problem [5.2](#page-16-0).

 $\ddot{\bullet}$

Proof. Set $W = \text{proj}_V \diamond$ $M(L_\omega, \gamma A_\omega)_{\omega \in \Omega}$ and recall from Proposition [5.3](#page-16-12)[\(ii\)](#page-16-4) that

$$
J_{\mathcal{W}} = \text{proj}_{\mathcal{V}} \circ \left(\text{Id}_{X} + \int_{\Omega} \left(L_{\omega}^{*} \circ (J_{\gamma A_{\omega}} - \text{Id}_{H_{\omega}}) \circ L_{\omega} \right) \mu(d\omega) \right) \circ \text{proj}_{\mathcal{V}}.
$$
 (5.14)

We derive from [\(5.13\)](#page-17-0), [\(5.6\)](#page-16-5), and [\(5.7\)](#page-16-6) that $(x_n)_{n \in \mathbb{N}}$ is generated by the proximal point algorithm

$$
(\forall n \in \mathbb{N}) \quad \mathbf{x}_{n+1} = \mathbf{x}_n + \lambda_n (J_W \mathbf{x}_n - \mathbf{x}_n). \tag{5.15}
$$

It then follows from [\[17,](#page-18-16) Lemma 2.2(vi)] that $(x_n)_{n \in \mathbb{N}}$ converges weakly to a point in zer W, i.e., a solution to (5.4) . \Box

Example 5.5. Let us specialize Problem [5.1](#page-15-5) to the scenario in which

$$
(\forall \omega \in \Omega) \quad A_{\omega} = (\mathrm{Id}_{H_{\omega}} - T_{\omega} + r_{\omega})^{-1} - \mathrm{Id}_{H_{\omega}},
$$
\nwhere\n
$$
\begin{cases}\nT_{\omega} : H_{\omega} \to H_{\omega} \text{ is firmly nonexpansive} \\
r_{\omega} \in H_{\omega}.\n\end{cases}
$$
\n(5.16)

Then [\(5.1\)](#page-15-6) becomes

find
$$
x \in V
$$
 such that $(\forall^{\mu} \omega \in \Omega) T_{\omega}(L_{\omega}x) = r_{\omega}$. (5.17)

This model has been considered in [\[23\]](#page-19-14) in the setting of Example [2.6.](#page-4-3) There, Ω is a finite set and each r_{ω} models the observation of an unknown signal $x \in H$ through a Wiener system, i.e., the concatenation of a nonlinear operator T_{ω} and a linear transformation L_{ω} . Our framework allows

us to extend it to models with a continuum of observations. In this context, and [\(5.4\)](#page-16-1) yields the relaxed problem

find
$$
x \in V
$$
 such that $\int_{\Omega} L_{\omega}^* (\mathsf{T}_{\omega}(\mathsf{L}_{\omega}x) - \mathsf{r}_{\omega}) \mu(d\omega) \in V^{\perp}.$ (5.18)

Furthermore, [\(5.13\)](#page-17-0) becomes

for
$$
n = 0, 1, ...
$$

\nfor μ -almost every $\omega \in \Omega$
\n
$$
\begin{cases}\n y_n(\omega) = L_{\omega} x_n \\
 q_n(\omega) = T_{\omega} y_n(\omega) - r_{\omega} \\
 z_n = \int_{\Omega} L_{\omega}^*(q_n(\omega)) \mu(d\omega) \\
 x_{n+1} = x_n - \lambda_n \text{proj}_V z_n.\n\end{cases}
$$
\n(5.19)

References

- [1] H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl., vol. 120, pp. 35–111, 1979.
- [2] S. Bartz, H. H. Bauschke, S. M. Moffat, and X. Wang, The resolvent average of monotone operators: Dominant and recessive properties, SIAM J. Optim., vol. 26, pp. 602–634, 2016.
- [3] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. Springer, New York, 2017.
- [4] H. H. Bauschke, R. Goebel, Y. Lucet, and X. Wang, The proximal average: Basic theory, SIAM J. Optim., vol. 19, pp. 766–785, 2008.
- [5] S. R. Becker and P. L. Combettes, An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery, J. Nonlinear Convex Anal., vol. 15, pp. 137–159, 2014.
- [6] R. I. Boţ, Conjugate Duality in Convex Optimization. Springer, Berlin, 2010.
- [7] H. Brézis and F. Browder, Partial differential equations in the 20th century, Adv. Math., vol. 135, pp. 76–144, 1998.
- [8] L. M. Briceño–Arias, D. Kalise, and F. J. Silva, Proximal methods for stationary mean field games with local couplings, SIAM J. Control Optim., vol. 56, pp. 801–836, 2018.
- [9] L. M. Briceño–Arias and F. Roldán, Resolvent of the parallel composition and the proximity operator of the infimal postcomposition, Optim. Lett., vol. 17, pp. 399–412, 2023.
- [10] F. E. Browder and C. P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., vol. 75, pp. 1347–1353, 1969.
- [11] M. N. Bùi and P. L. Combettes, Hilbert direct integrals of monotone operators, Canad. J. Math., to appear.
- [12] D. Butnariu and S. D. Flåm, Strong convergence of expected-projection methods in Hilbert spaces, Numer. Funct. Anal. Optim., vol. 16, pp. 601–636, 1995.
- [13] C. Byrne, Y. Censor, A. Gibali, and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., vol. 13, pp. 759–775, 2012.
- [14] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Springer, Berlin, 1977.
- [15] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, vol. 21, pp. 2071–2084, 2005.
- [16] Y.-M. Cheung and J. Lou, Proximal average approximated incremental gradient descent for composite penalty regularized empirical risk minimization, Machine Learn., vol. 106, pp. 595– 622, 2017.
- [17] P. L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal., vol. 16, pp. 727–748, 2009.
- [18] P. L. Combettes, Monotone operator theory in convex optimization, Math. Program., vol. B170, pp. 177–206, 2018.
- [19] P. L. Combettes, Resolvent and proximal compositions, Set-Valued Var. Anal., vol. 31, art. 22, 29 pp., 2023.
- [20] P. L. Combettes, The geometry of monotone operator splitting methods, Acta Numer., vol. 33, pp. 487–632, 2024.
- [21] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., vol. 4, pp. 1168–1200, 2005.
- [22] P. L. Combettes and Z. C. Woodstock, Reconstruction of functions from prescribed proximal points, *J. Approx. Theory*, vol. 268, art. 105606, 26 pp., 2021.
- [23] P. L. Combettes and Z. C. Woodstock, A variational inequality model for the construction of signals from inconsistent nonlinear equations, SIAM J. Imaging Sci., vol. 15, pp. 84–109, 2022.
- [24] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., vol. 57, pp. 1413–1457, 2004.
- [25] J. Dixmier, Les Algèbres d'Opérateurs dans l'Espace Hilbertien (Algèbres de von Neumann), 2e éd. Gauthier–Villars, Paris, 1969.
- [26] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York, 2003.
- [27] Z. Hu, K. Shaloudegi, G. Zhang, and Y. Yu, Federated learning meets multi-objective optimization, IEEE Trans. Network Sci. Engrg., vol. 9, pp. 2039–2051, 2022.
- [28] T. Pennanen, On the range of monotone composite mappings, J. Nonlinear Convex Anal., vol. 2, pp. 193–202, 2001.
- [29] R. T. Rockafellar, Network Flows and Monotropic Optimization. Wiley, New York, 1984.
- [30] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, 3rd printing. Springer, New York, 2009.
- [31] L. Schwartz, Analyse III – Calcul Intégral. Hermann, Paris, 1993.
- [32] Y.-L. Yu, Better approximation and faster algorithm using the proximal average, Proc. Conf. Adv. Neural Inform. Process. Syst., pp. 458–466, 2013.