Nonsmooth geometry and active sets

Adrian Lewis

ORIE Cornell

Optimization, Games and Dynamics
Paris, November 2011

Outline

- Partly smooth functions:
- power
- ubiquity
- elegance
- BFGS and nonsmoothness
- A composite proximal algorithm
- Semi-algebraic sets and generic variational geometry
- The foundations of active-set methods

Example: minimizing a max-function

Suppose $\bar{x} \in \mathbf{R}^{n}$ minimizes a pointwise max of smooth functions

$$
f(x)=\max _{i \in I} f_{i}(x)
$$

with affine-independent $\nabla f_{i}(\bar{x})$ for i in the active set

$$
\bar{I}=\left\{i: f_{i}(\bar{x})=f(\bar{x})\right\}=I(\bar{x})
$$

Since f is smooth on the active manifold

$$
\mathcal{M}=\{x: I(x)=\bar{I}\}
$$

classical calculus shows Clarke stationarity: zero lies in

$$
\left\{\sum_{i \in \bar{I}} \lambda_{i} \nabla f_{i}(\bar{x}): \lambda \geq 0, \quad \sum_{i \in \bar{I}} \lambda_{i}=1\right\}
$$

and this set is just the subdifferential

$$
\partial f(\bar{x})=\operatorname{conv}\left\{\lim \nabla f\left(x^{r}\right): x^{r} \rightarrow \bar{x}\right\}
$$

Partial smoothness of f relative to \mathcal{M}

- Good behavior on the active manifold: as $x \in \mathcal{M}$ varies, $f(x)$ varies smoothly and $\partial f(x)$ varies continuously.
- Prox-regularity: points near $(\bar{x}, f(\bar{x}))$ have unique nearest points in the epigraph $\{(x, t): t \geq f(x)\}$.
- Sharpness: $\partial f(\bar{x})$ spans the normal space $N_{\mathcal{M}}(\bar{x})$.

What the active manifold captures

Assume nondegeneracy: $0 \in \operatorname{ri} \partial f(\bar{x})$ ("strict complementarity").
Active set methods Approximately stationary points lie on \mathcal{M} :

$$
x^{r} \rightarrow \bar{x}, y^{r} \rightarrow 0, y^{r} \in \partial f\left(x^{r}\right) \Rightarrow x^{r} \in \mathcal{M} \text { eventually. }
$$

We call such \mathcal{M} identifiable (Wright '93).
Partly smooth 2nd-order conditions Around \bar{x},
f grows at least quadratically $\left.\Leftrightarrow f\right|_{\mathcal{M}}$ grows quadratically.
(verifiable simply via a Hessian.)
Sensitivity analysis In this case, \mathcal{M} consists of all nearby approximately stationary points: for small $\delta>0$,

$$
\mathcal{M}=(\partial f)^{-1}(\delta B) \text { locally around } \bar{x}
$$

These properties involve only f, NOT its algebraic presentation.

Example: minimizing eigenvalue products via BFGS

The active manifold emerges, even without explicit structure in f. Given

$$
A \in \mathbf{S}_{+}^{20} \quad \text { (the } 20 \text {-by- } 20 \text { positive definite matrices) }
$$

consider an eigenvalue-product problem (Anstreicher-Lee '04)

$$
\min \left\{\prod_{i=1}^{14} \lambda_{i}(A \circ X): X \in \mathbf{S}_{+}^{20}, X_{i i}=1 \forall i\right\}
$$

Numerically, the optimal \bar{X} has $\lambda_{14}(A \circ \bar{X})$ having multiplicity 9 :

$$
\lambda_{5}>\lambda_{6}=\cdots=\lambda_{14}>\lambda_{15}
$$

Matrix analysis predicts partial smoothness relative to a manifold \mathcal{M} of dimension $\frac{9 \cdot 10}{2}-1=44$. We "see" \mathcal{M} numerically!

Minimization by BFGS

To minimize smooth $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$...
Current iterate $x \in \mathbf{R}^{n}$ and positive definite $H \approx \nabla^{2} f(x)^{-1}$. Define

$$
p=-H \nabla f(x), \quad x_{\text {new }}=x+\bar{\alpha} p
$$

where step $\bar{\alpha}>0$ chosen by line search (eg doubling and bisection) on $\phi(\alpha)=f(x+\alpha p)$ to satisfy Wolfe conditions:

$$
\phi(\bar{\alpha})-\phi(0)<\frac{1}{3} \phi^{\prime}(0) \bar{\alpha} \text { and } \phi^{\prime}(\bar{\alpha})>\frac{2}{3} \phi^{\prime}(0)
$$

Update H and repeat.

- In practice, if feasible, BFGS is often most popular.
- In theory, BFGS converges for convex coercive f (Powell '76), but may fail for \mathbf{C}^{∞} nonconvex f (Dai '02).
- BFGS often works well for nonsmooth f (Lemaréchal '82)!

Revealing the active manifold numerically

For Anstreicher-Lee, $44(=\operatorname{dim} \mathcal{M}) \mathrm{H}$-eigenvalues $\rightarrow 0 \ldots$

\ldots. and the corresponding eigenspace is tangent to \mathcal{M} : the objective is smooth along \mathcal{M} and "sharp" orthogonally.

BFGS for nonsmooth optimization (L-Overton '10)

Function values for BFGS applied to $f(x, y)=w\left|y-x^{2}\right|+(1-y)^{2}$, with $w=1,2,4,8$.

A conjecture

Apply BFGS to any "concrete" Lipschitz $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, with random initial point and H. Then almost surely:

- function values converge linearly;
- limit points of iterates are Clarke stationary;
- assuming convergence to a partly smooth point, the eigenstructure of H reveals the active manifold.
"Concrete" might mean semi-algebraic - graph of f a finite union of sets, each defined by finitely-many polynomial inequalities.

What if we assume more structure? How, then, are active manifolds useful?

Composite optimization: the framework

Solve

$$
\min _{x \in \mathbf{R}^{n}} h(c(x))
$$

for given functions

$$
\begin{array}{ll}
\text { nonsmooth } & h: \mathbf{R}^{m} \rightarrow \mathbf{R} \text { finite and convex } \\
\mathbf{C}^{2} \text {-smooth } & c: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} .
\end{array}
$$

Key computational assumption
"Structure" in h lets us easily solve proximal linearizations

$$
\min _{d \in \mathbf{R}^{n}} h(\tilde{c}(d))+\mu\|d\|^{2}
$$

for linear approximations \tilde{c}.
(Extensions allow prox-regular and extended-valued h.)

A proximal algorithm (L-Wright '09)

Current iterate x, prox parameter $\mu>0$.
Linear approximation

$$
\tilde{c}(d)=c(x)+\nabla c(x) d \approx c(x+d)
$$

Find the unique proximal step $d(x, \mu)$ minimizing

$$
h(\tilde{c}(d))+\mu\|d\|^{2} .
$$

If

$$
\text { actual decrease }=h(c(x))-h(c(x+d))
$$

less than half

$$
\text { predicted decrease }=h(c(x))-h(\tilde{c}(d)),
$$

reject: $\mu \leftarrow 2 \mu$; otherwise,
accept: $x \leftarrow x+d, \quad \mu \leftarrow \frac{\mu}{2}$.
Repeat.

Example: exact penalties

Replace constrained optimization

$$
\min _{x}\left\{f(x): g_{i}(x) \leq 0\right\}
$$

by unconstrained minimization of

$$
f(x)+\nu \sum_{i} g_{i}^{+}(x)=h(c(x))
$$

(for some $\nu>0$), where

$$
c=\left(f, g_{1}, \ldots, g_{k}\right), \quad h\left(f, g_{1}, \ldots, g_{k}\right)=f+\nu \sum_{i} g_{i}^{+}
$$

Easy proximal linearizations

$$
\min _{d} a_{0}^{T} d+\sum_{i}\left(a_{i}^{T} d+b_{i}\right)^{+}+\mu\|d\|^{2}
$$

(via specialized quadratic programming).
Related ideas: Yuan '85, Burke '85, Fletcher-Sainz de la Maza '89, Wright '90, KNITRO (Byrd et al. '05), Friedlander et al. 07.

Examples: Compressive sensing. . .

(Candès, Donoho, Tao et al. '06...)
We seek sparse solutions to linear systems $E x=g$ via

$$
\min _{x}\|E x-g\|^{2}+\tau\|x\|_{1} .
$$

In statistics, LASSO and LARS (Tibshirani et al. '96, '04) similar.
Proximal linearizations are separable:

$$
\min _{d \in \mathbf{R}^{n}} a^{T} d+\tau\|x+d\|_{1}+\mu\|d\|^{2}
$$

Need just $O(n)$ operations: implemented as SpaRSA (Wright-Nowak-Figueiredo '09)
Analogously, for low-rank X satisfying a linear system $E(X)=g$, Candès et al. '08 suggest

$$
\min _{X}\|E(X)-g\|^{2}+\tau\|X\|_{*},
$$

where $\|\cdot\|_{*}$ is the nuclear norm (sum of singular values).

Speed

The proximal algorithm is

- simple
- versatile
- applicable to huge problems
but slow. For example:
- $h=$ id gives steepest descent with trust region radius $\frac{1}{2 \mu}$.
- $c=$ id gives the classical proximal point method (Rockafellar '76).
Both methods typically converge linearly but slowly.
Previous special cases use the initial step d to predict active constraints, and hence accelerate using a 2 nd-order model.

Accelerating the proximal algorithm

Minimizing $h \circ c$ generates iterates x_{r} and proximal steps d_{r}.
Theorem (L-Wright '09)
Any limit point \bar{x} of $\left(x_{r}\right)$ is stationary.
Assume the partly smooth 2 nd-order conditions (so $x_{r} \rightarrow \bar{x}$). In particular, h is partly smooth at $c(\bar{x})$ relative to a manifold \mathcal{M}.
Theorem (Hare-L '05)
Eventually $c_{r}=c\left(x_{r}\right)+\nabla c\left(x_{r}\right) d_{r} \in \mathcal{M}$.
Proof.
Use the identifiability property of \mathcal{M}.
If h is simple, $\partial h\left(c_{r}\right)$ is computable, and orthogonal to M at c_{r}.
So we

- "track" M
- use 2 nd-order properties of c and $\left.h\right|_{M}$.
(Cf. earlier references and Mifflin-Sagastizábal '05.)

Structure versus intrinsic geometry

Explicit structure in the presentation of h may help us

- implement acceleration ideas
- check 2nd-order conditions for sensitivity analysis.

But our key idea, partial smoothness, is geometric: intrinsic to h.
How typically do the partly smooth 2nd-order conditions hold?
Generic strict complementarity and primal-dual nondegeneracy holds in various structured settings:

- nonlinear programs (Spingarn-Rockafellar '79)
- complementarity problems (Saigal-Simon '73)
- semidefinite programs (Alizadeh et al. '97, Shapiro '97)
- conic convex programs (Pataki-Tunçel '01)
- sublinear-smooth composites (Bonnans-Shapiro '00).

Classical results

For simplicity, fix $c=$ id. Given data $v \in \mathbf{R}^{n}$, consider conjugation:

$$
\min _{x}\left\{h(x)-v^{\top} x\right\} \quad\left(=-h^{*}(v)\right) .
$$

Theorem (Mazur '33)
For convex coercive h and generic v, the optimal solution is unique (and also, for almost all v, nondegenerate (Drusvyatskiy-L '10).)

Theorem (Sard '42, Spingarn-Rockafellar '79)
For $\mathbf{C}^{2} h$ and almost all v, quadratic growth holds at all local mins.

An intrinsic approach: semi-algebraic sets

Earlier work on generic optimality relies on the structural presentation of h.

By contrast, we assume only that the graph of h is semi-algebraic.

That is, it can be presented as
a finite union of sets, each defined by finitely-many polynomial inequalities.

But our approach is intrinsic, independent of this presentation.
We can recognize semi-algebraic sets via "quantifier elimination": linear maps preserve semi-algebraicity (Tarski-Seidenberg '31).

Furthermore, semi-algebraic sets have dimension, so, for a semi-algebraic subset of a convex set generic \Leftrightarrow dense.

Prevalence of partial smoothness

Theorem (Bolte-Daniilidis-L '09)
Given semi-algebraic convex $h: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}=\mathbf{R} \cup\{+\infty\}$, consider

$$
\min _{x}\left\{h(x)-v^{\top} x\right\} .
$$

For generic $v \in \operatorname{dom} h^{*}$ (ensuring finite value), the unique optimal solution satisfies the partly smooth $2 n d$-order conditions.

For nonconvex h, these properties generically hold around all the (finitely-many) stationary points (Drusvyatskiy-L '11).

Semi-algebraic geometry gives an excellent testbed for "concrete" variational analysis...

A semi-algebraic aside: thin subdifferential graphs

If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is smooth, ∇f has everywhere n-dimensional graph.
Theorem (Minty '62)
If $f: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$ is convex, ∂f has everywhere n-dimensional graph.
(... with computational implications for equations on the graph.)

We say $y \in \partial^{P} f(x)$ (the proximal subdifferential) if some quadratic $q \leq f$ (locally) satisfies $q(x)=f(x), \nabla q(x)=y$.
$\partial^{P} f$ usually has large graph: $2 n$-dimensional (Borwein-Wang '00). But. . .

Theorem (Drusvyatskiy-L-loffe '10)
If $f: \mathbf{R}^{n} \rightarrow \overline{\mathbf{R}}$ is semi-algebraic, $\partial^{P} f$ has everywhere n-dimensional graph.

Identifying active sets: mathematical foundations

The partly smooth 2nd-order conditions are

- powerful \checkmark
- ubiquitous \checkmark
- mathematically elegant??

Focus on the identifiability property of \mathcal{M} at stationary \bar{x} :

$$
x^{r} \rightarrow \bar{x}, y^{r} \rightarrow 0, y^{r} \in \partial f\left(x^{r}\right) \Rightarrow x^{r} \in \mathcal{M} \text { eventually. }
$$

Call an identifiable set locally minimal if any other identifiable set contains it, locally around \bar{x}. When do such sets exist?

- Not always, even for finite convex f : for example $\sqrt{x_{1}^{2}+x_{2}^{4}}$.
- Always for polyhedral (or "fully amenable") f.

Identifiable manifolds

Suppose $0 \in \partial f(\bar{x})$. We've seen:
partial smoothness + nondegeneracy $\Rightarrow \exists$ identifiable manifold.
Partial smoothness (and prox-regularity) at \bar{x} for 0 is enough.
Theorem (Drusvyatskiy-L-Zhang '11)
The converse is also true. Manifold \mathcal{M} is then locally minimal, and

$$
\partial f=\partial\left(f+\delta_{\mathcal{M}}\right) \text { locally around }(\bar{x}, 0)
$$

So, in essence, partial smoothness is simple and natural.
(Note: the Mordukhovich generalized Hessian is then easy:

$$
\partial^{2} f(\bar{x} \mid 0) w= \begin{cases}\nabla_{\mathcal{M}}^{2} f(\bar{x}) w+N_{\mathcal{M}}(\bar{x}) & \text { if } w \perp N_{\mathcal{M}}(\bar{x}) \\ \emptyset & \text { otherwise }\end{cases}
$$

where $\nabla_{\mathcal{M}}^{2}$ is the Riemannian Hessian.)

Summary

- Partial smoothness as a conceptual tool for sensitivity and acceleration
- Nonsmooth optimization via BFGS.
- A simple and versatile proximal algorithm for composite optimization
- Generic properties in semi-algebraic variational analysis
- The foundations of active-set methods

