Nonsmooth geometry and active sets

Adrian Lewis

ORIE Cornell

Optimization, Games and Dynamics

Paris, November 2011

24



Outline
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» Semi-algebraic sets and generic variational geometry

» The foundations of active-set methods
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Example: minimizing a max-function
Suppose X € R" minimizes a pointwise max of smooth functions

f(x) = max fi(x),

iel

with affine—independent Vfi(x) for i in the active set

{l: (X —f(x)} = I(x).
Since f is smooth on the active manifold
= {x:I(x) =1},

classical calculus shows Clarke stationarity: zero lies in
{Z)\;Vﬁ(i) A>0, Y A= 1},
iel iel
and this set is just the subdifferential

0f(x) = conv{limVf(x"): x" — x}.



Partial smoothness of f relative to M

» Good behavior on the active manifold: as x € M varies,
f(x) varies smoothly and 9f(x) varies continuously.

» Prox-regularity: points near ()'(, f()’()) have unique
nearest points in the epigraph {(x,t): t > f(x)}.

» Sharpness: 0f(x) spans the normal space N (x).
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What the active manifold captures

Assume nondegeneracy: 0 € ri Of (x) (“strict complementarity”).

Active set methods Approximately stationary points lie on M:

x" =X,y =0, yh€0f(x") = x" & M eventually.

We call such M identifiable (Wright '93).

Partly smooth 2nd-order conditions Around X,
f grows at least quadratically < f|a grows quadratically.

(verifiable simply via a Hessian.)

Sensitivity analysis In this case, M consists of all nearby
approximately stationary points: for small § > 0,

M = (9f)"Y(6B) locally around X.

These properties involve only f, NOT its algebraic presentation.
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Example: minimizing eigenvalue products via BFGS

The active manifold emerges, even without explicit structure in f.
Given

A€ ST (the 20-by-20 positive definite matrices)

consider an eigenvalue-product problem (Anstreicher-Lee '04)
14
min { [ (AoX): X €S, X;=1 VI}.
i=1

Numerically, the optimal X has A14(A o X) having multiplicity 9:
A5 > Ag =+ = 14 > Azs.

Matrix analysis predicts partial smoothness relative to a manifold
M of dimension % —1=44, We “see” M numerically!

6
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Minimization by BFGS

To minimize smooth f: R” — R...
Current iterate x € R" and positive definite H ~ V2f(x)~!. Define

p:—HVf(X), Xnew = X + Qp,

where step @ > 0 chosen by line search (eg doubling and bisection)
on ¢(a) = f(x + ap) to satisfy Wolfe conditions:

4(@) ~ 6(0) < ;6/(0)a and ¢/(a) > 24/(0).
Update H and repeat.

» In practice, if feasible, BFGS is often most popular.

» In theory, BFGS converges for convex coercive f (Powell '76),
but may fail for C> nonconvex f (Dai '02).

» BFGS often works well for nonsmooth f (Lemaréchal '82)!



Revealing the active manifold numerically

For Anstreicher-Lee, 44 (= dim M) H-eigenvalues — 0. ..

Log egenalue product, N=20, =400, = 4 37938e-+000

eigenvalues of H
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...and the corresponding eigenspace is tangent to M:
the objective is smooth along M and “sharp” orthogonally.



BFGS for nonsmooth optimization (L-Overton "10)

Y
R . -
LYY \ M
o 4 ‘\ .
& L
10 ‘ B ‘ L el ‘ ‘ ‘
0 50 100 150 200 250 300 350 400 450

Function values for BFGS applied to
f(x,y) = wly — x?| + (1 — y)?, with w = 1,2,4,8.



A conjecture

Apply BFGS to any “concrete” Lipschitz f: R" — R,
with random initial point and H. Then almost surely:

» function values converge linearly;
» limit points of iterates are Clarke stationary;

» assuming convergence to a partly smooth point, the
eigenstructure of H reveals the active manifold.

“Concrete” might mean semi-algebraic — graph of f a finite union
of sets, each defined by finitely-many polynomial inequalities.

What if we assume more structure?
How, then, are active manifolds useful?
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Composite optimization: the framework

Solve

min h(c(x))

for given functions

nonsmooth h: R™ — R finite and convex

C2-smooth c¢: R" — R™.

Key computational assumption
“Structure” in h lets us easily solve proximal linearizations

in h(e(d d|?
min h(&(d)) + plld]*,

for linear approximations ¢.

(Extensions allow prox-regular and extended-valued h.)
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A proximal algorithm (L-Wright '09)
Current iterate x, prox parameter p > 0.
Linear approximation

¢(d) = c(x)+Ve(x)d = c(x+d).
Find the unique proximal step d(x, ) minimizing

h(&(d)) + ulldI.

actual decrease = h(c(x)) — h(c(x + d))

less than half
predicted decrease = h(c(x)) — h(&(d)),

reject: p < 2u; otherwise,
accept: x — x+d, p—¥§.

Repeat.
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Example: exact penalties
Replace constrained optimization

min {f(x) : gi(x) < 0}
by unconstrained minimization of
F)+vY gt(x) = h(c(x))
(for some v > 0), where

C:(f;g17-~-,gk)7 h(fagbagk):f—i_yzgl—i_
i
Easy proximal linearizations
min ag d + Z(a,-Td + b))t + pld|?
1

(via specialized quadratic programming).
Related ideas: Yuan '85, Burke '85, Fletcher-Sainz de la Maza '89,
Wright '90, KNITRO (Byrd et al. '05), Friedlander et al. 07.
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Examples: Compressive sensing. . .

(Candés, Donoho, Tao et al. '06...)
We seek sparse solutions to linear systems Ex = g via

min [|Ex — g|* + 7x]1-
In statistics, LASSO and LARS (Tibshirani et al. '96, '04) similar.
Proximal linearizations are separable:
min a'd +7||x + d||1 + ul|d|*.
deRn
Need just O(n) operations: implemented as SpaRSA
(Wright-Nowak-Figueiredo '09)

Analogously, for low-rank X satisfying a linear system E(X) = g,
Candes et al. '08 suggest

min | E(X) — ]2 + 71X

where || - ||« is the nuclear norm (sum of singular values).
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Speed

The proximal algorithm is
» simple
> versatile
» applicable to huge problems

but slow. For example:
1

» h = id gives steepest descent with trust region radius o

» ¢ = id gives the classical proximal point method
(Rockafellar '76).

Both methods typically converge linearly but slowly.

Previous special cases use the initial step d to predict active
constraints, and hence accelerate using a 2nd-order model.
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Accelerating the proximal algorithm
Minimizing h o ¢ generates iterates x, and proximal steps d,.
Theorem (L-Wright '09)
Any limit point X of (x,) is stationary.
Assume the partly smooth 2nd-order conditions (so x, — X). In
particular, h is partly smooth at c(X) relative to a manifold M.

Theorem (Hare-L '05)

Eventually ¢, = c(x,) + Ve(x,)d, € M.

Proof.

Use the identifiability property of M. O
If his simple, dh(c,) is computable, and orthogonal to M at c,.

So we
» “track” M
» use 2nd-order properties of ¢ and h|y.

(Cf. earlier references and Mifflin-Sagastizabal '05.)

16 /24



Structure versus intrinsic geometry

Explicit structure in the presentation of h may help us
» implement acceleration ideas

» check 2nd-order conditions for sensitivity analysis.

But our key idea, partial smoothness, is geometric: intrinsic to h.
How typically do the partly smooth 2nd-order conditions hold?

Generic strict complementarity and primal-dual nondegeneracy
holds in various structured settings:

» nonlinear programs (Spingarn-Rockafellar '79)

complementarity problems (Saigal-Simon '73)

>
» semidefinite programs (Alizadeh et al. '97, Shapiro '97)
» conic convex programs (Pataki-Tungel '01)

>

sublinear-smooth composites (Bonnans-Shapiro '00).
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Classical results

For simplicity, fix ¢ = id. Given data v € R”, consider conjugation:

mxin {h(x) - vTx} (= —h*(v)).

Theorem (Mazur '33)

For convex coercive h and generic v, the optimal solution is unique
(and also, for almost all v, nondegenerate (Drusvyatskiy-L '10).)

Theorem (Sard '42, Spingarn-Rockafellar '79)

For C2 h and almost all v, quadratic growth holds at all local mins.
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An intrinsic approach: semi-algebraic sets

Earlier work on generic optimality relies on

the structural presentation of h.

By contrast, we assume only that

the graph of h is semi-algebraic.

That is, it can be presented as

a finite union of sets, each defined by finitely-many
polynomial inequalities.

But our approach is intrinsic, independent of this presentation.

We can recognize semi-algebraic sets via “quantifier elimination”:
linear maps preserve semi-algebraicity (Tarski-Seidenberg '31).

Furthermore, semi-algebraic sets have dimension, so,
for a semi-algebraic subset of a convex set generic < dense.
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Prevalence of partial smoothness

Theorem (Bolte-Daniilidis-L '09)

Given semi-algebraic convex h: R" — R = RU {400}, consider

min {h(x) - vTx}.

X

For generic v € dom h* (ensuring finite value), the unique optimal
solution satisfies the partly smooth 2nd-order conditions.

For nonconvex h, these properties generically hold around all the
(finitely-many) stationary points (Drusvyatskiy-L '11).

Semi-algebraic geometry gives an excellent testbed for
“concrete” variational analysis. ..
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A semi-algebraic aside: thin subdifferential graphs

If f: R” — R is smooth, Vf has everywhere n-dimensional graph.

Theorem (Minty '62)
If f: R" — R is convex, Of has everywhere n-dimensional graph.

(...with computational implications for equations on the graph.)

We say y € 0Ff(x) (the proximal subdifferential) if

some quadratic g < f (locally) satisfies g(x) = f(x), Vq(x) = y.
OPf usually has large graph: 2n-dimensional (Borwein-Wang '00).
But. ..

Theorem (Drusvyatskiy-L-loffe '10)

If f: R" — R is semi-algebraic, O"f has everywhere n-dimensional
graph.
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|dentifying active sets: mathematical foundations

The partly smooth 2nd-order conditions are
» powerful v'
» ubiquitous v
» mathematically elegant??
Focus on the identifiability property of M at stationary x:

x" =X,y =0, y" € 0f(x") = x" € M eventually. ‘

Call an identifiable set locally minimal if any other identifiable set
contains it, locally around x. When do such sets exist?

» Not always, even for finite convex f: for example |/x? + x5 .
» Always for polyhedral (or “fully amenable”) f.
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|dentifiable manifolds
Suppose 0 € Of(x). We've seen:

partial smoothness + nondegeneracy =- d identifiable manifold.

Partial smoothness (and prox-regularity) at X for 0 is enough.

Theorem (Drusvyatskiy-L-Zhang '11)

The converse is also true. Manifold M is then locally minimal, and

Of = O(f +90r) locally around (x,0).

So, in essence, partial smoothness is simple and natural.
(Note: the Mordukhovich generalized Hessian is then easy:

Vi f w4+ Nag(x) i w L Nay(x)

U] otherwise,

D*f(x|0)w = {

where Vg\/l is the Riemannian Hessian.)
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Summary

v

Partial smoothness as a conceptual tool for sensitivity and
acceleration

v

Nonsmooth optimization via BFGS.

v

A simple and versatile proximal algorithm for composite
optimization

v

Generic properties in semi-algebraic variational analysis

The foundations of active-set methods

v
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