Nonsmooth geometry and active sets

Adrian Lewis

ORIE Cornell

Optimization, Games and Dynamics

Paris, November 2011

Outline

Partly smooth functions:

- power
- ubiquity
- elegance
- BFGS and nonsmoothness
- A composite proximal algorithm
- Semi-algebraic sets and generic variational geometry
- The foundations of active-set methods

Example: minimizing a max-function

Suppose $\bar{x} \in \mathbf{R}^n$ minimizes a pointwise max of smooth functions

$$f(x) = \max_{i \in I} f_i(x),$$

with affine-independent $\nabla f_i(\bar{x})$ for *i* in the active set

$$\bar{I} = \{i: f_i(\bar{x}) = f(\bar{x})\} = I(\bar{x}).$$

Since f is smooth on the active manifold

$$\mathcal{M} = \{x : I(x) = \overline{I}\},\$$

classical calculus shows Clarke stationarity: zero lies in

$$\Big\{\sum_{i\in \overline{I}}\lambda_i
abla f_i(ar{x}):\lambda\geq 0, \ \ \sum_{i\in \overline{I}}\lambda_i=1\Big\},$$

and this set is just the subdifferential

$$\partial f(\bar{x}) = \operatorname{conv} \{ \lim \nabla f(x^r) : x^r \to \bar{x} \}.$$

Partial smoothness of f relative to \mathcal{M}

- ▶ Good behavior on the active manifold: as $x \in M$ varies, f(x) varies smoothly and $\partial f(x)$ varies continuously.
- Prox-regularity: points near (x̄, f(x̄)) have unique nearest points in the epigraph {(x, t) : t ≥ f(x)}.
- Sharpness: $\partial f(\bar{x})$ spans the normal space $N_{\mathcal{M}}(\bar{x})$.

What the active manifold captures

Assume nondegeneracy: $0 \in \operatorname{ri} \partial f(\bar{x})$ ("strict complementarity").

Active set methods Approximately stationary points lie on \mathcal{M} :

 $x^r o ar{x}, \ y^r o 0, \ y^r \in \partial f(x^r) \ \Rightarrow \ x^r \in \mathcal{M}$ eventually.

We call such \mathcal{M} identifiable (Wright '93).

Partly smooth 2nd-order conditions Around \bar{x} ,

f grows at least quadratically $\Leftrightarrow f|_{\mathcal{M}}$ grows quadratically.

(verifiable simply via a Hessian.)

Sensitivity analysis In this case, M consists of *all* nearby approximately stationary points: for small $\delta > 0$,

 $\mathcal{M} = (\partial f)^{-1}(\delta B)$ locally around \bar{x} .

These properties involve only f, **NOT** its algebraic presentation.

Example: minimizing eigenvalue products via BFGS

The active manifold emerges, even without explicit structure in f. Given

 $A \in \mathbf{S}^{20}_+$ (the 20-by-20 positive definite matrices)

consider an eigenvalue-product problem (Anstreicher-Lee '04)

$$\min\Big\{\prod_{i=1}^{14}\lambda_i(A\circ X):X\in \mathbf{S}^{20}_+,\ X_{ii}=1\ \forall i\Big\}.$$

Numerically, the optimal \bar{X} has $\lambda_{14}(A \circ \bar{X})$ having multiplicity 9:

$$\lambda_5 > \lambda_6 = \cdots = \lambda_{14} > \lambda_{15}.$$

Matrix analysis predicts partial smoothness relative to a manifold \mathcal{M} of dimension $\frac{9 \cdot 10}{2} - 1 = 44$. We "see" \mathcal{M} numerically!

Minimization by BFGS

To minimize smooth $f: \mathbf{R}^n \to \mathbf{R}$...

Current iterate $x \in \mathbf{R}^n$ and positive definite $H \approx \nabla^2 f(x)^{-1}$. Define

$$p = -H\nabla f(x), \quad x_{new} = x + \bar{\alpha}p,$$

where step $\bar{\alpha} > 0$ chosen by line search (eg doubling and bisection) on $\phi(\alpha) = f(x + \alpha p)$ to satisfy Wolfe conditions:

$$\phi(ar{lpha})-\phi(0)<rac{1}{3}\phi'(0)ar{lpha} ext{ and } \phi'(ar{lpha})>rac{2}{3}\phi'(0).$$

Update *H* and **repeat**.

- ► In practice, if feasible, BFGS is often most popular.
- In theory, BFGS converges for convex coercive f (Powell '76), but may fail for C[∞] nonconvex f (Dai '02).
- ▶ BFGS often works well for nonsmooth *f* (Lemaréchal '82)!

Revealing the active manifold numerically

For Anstreicher-Lee, 44 (= dim \mathcal{M}) *H*-eigenvalues $\rightarrow 0...$

... and the corresponding eigenspace is tangent to \mathcal{M} : the objective is smooth along \mathcal{M} and "sharp" orthogonally.

BFGS for nonsmooth optimization (L-Overton '10)

Function values for BFGS applied to $f(x, y) = w|y - x^2| + (1 - y)^2$, with w = 1, 2, 4, 8.

A conjecture

Apply BFGS to any "concrete" Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$, with random initial point and H. Then almost surely:

- function values converge linearly;
- limit points of iterates are Clarke stationary;
- assuming convergence to a partly smooth point, the eigenstructure of *H* reveals the active manifold.

"Concrete" might mean semi-algebraic — graph of f a finite union of sets, each defined by finitely-many polynomial inequalities.

What if we assume more structure? How, then, are active manifolds useful?

Composite optimization: the framework

Solve

 $\min_{x\in\mathbf{R}^n}h(c(x))$

for given functions

nonsmooth $h: \mathbb{R}^m \to \mathbb{R}$ finite and convex \mathbb{C}^2 -smooth $c: \mathbb{R}^n \to \mathbb{R}^m$.

Key computational assumption

"Structure" in *h* lets us easily solve proximal linearizations

$$\min_{d\in \mathbf{R}^n} h(\tilde{c}(d)) + \mu \|d\|^2,$$

for linear approximations \tilde{c} .

(Extensions allow prox-regular and extended-valued h.)

A proximal algorithm (L-Wright '09)

Current iterate x, prox parameter $\mu > 0$. Linear approximation

$$\tilde{c}(d) = c(x) + \nabla c(x)d \approx c(x+d).$$

Find the unique proximal step $d(x, \mu)$ minimizing

 $h\big(\tilde{c}(d)\big) + \mu \|d\|^2.$

lf

actual decrease
$$= h(c(x)) - h(c(x+d))$$

less than half

predicted decrease =
$$h(c(x)) - h(\tilde{c}(d))$$
,

reject: $\mu \leftarrow 2\mu$; otherwise, **accept:** $x \leftarrow x + d$, $\mu \leftarrow \frac{\mu}{2}$. **Repeat.**

Example: exact penalties

Replace constrained optimization

$$\min_{x} \left\{ f(x) : g_i(x) \leq 0 \right\}$$

by unconstrained minimization of

$$f(x) + \nu \sum_{i} g_i^+(x) = h(c(x))$$

(for some $\nu > 0$), where

$$c = (f, g_1, \ldots, g_k), \quad h(f, g_1, \ldots, g_k) = f + \nu \sum_i g_i^+.$$

Easy proximal linearizations

$$\min_{d} a_{0}^{T}d + \sum_{i} (a_{i}^{T}d + b_{i})^{+} + \mu \|d\|^{2}$$

(via specialized quadratic programming).

Related ideas: Yuan '85, Burke '85, Fletcher-Sainz de la Maza '89, Wright '90, KNITRO (Byrd et al. '05), Friedlander et al. 07.

Examples: Compressive sensing... (Candès, Donoho, Tao et al. '06...) We seek sparse solutions to linear systems Ex = g via

$$\min_{x} \|Ex - g\|^2 + \tau \|x\|_1.$$

In statistics, LASSO and LARS (Tibshirani et al. '96, '04) similar. Proximal linearizations are separable:

$$\min_{d \in \mathbf{R}^n} a^T d + \tau \| x + d \|_1 + \mu \| d \|^2.$$

Need just O(n) operations: implemented as SpaRSA (Wright-Nowak-Figueiredo '09)

Analogously, for low-rank X satisfying a linear system E(X) = g, Candès et al. '08 suggest

$$\min_{X} \|E(X) - g\|^2 + \tau \|X\|_*,$$

where $\|\cdot\|_*$ is the nuclear norm (sum of singular values).

Speed

The proximal algorithm is

- simple
- versatile
- applicable to huge problems

but slow. For example:

- h = id gives steepest descent with trust region radius $\frac{1}{2u}$.
- c = id gives the classical proximal point method (Rockafellar '76).

Both methods typically converge linearly but slowly.

Previous special cases use the initial step d to predict active constraints, and hence accelerate using a 2nd-order model.

Accelerating the proximal algorithm

Minimizing $h \circ c$ generates iterates x_r and proximal steps d_r .

Theorem (L-Wright '09)

Any limit point \bar{x} of (x_r) is stationary.

Assume the partly smooth 2nd-order conditions (so $x_r \to \bar{x}$). In particular, h is partly smooth at $c(\bar{x})$ relative to a manifold \mathcal{M} .

```
Theorem (Hare-L '05)
```

```
Eventually c_r = c(x_r) + \nabla c(x_r) d_r \in \mathcal{M}.
```

Proof.

Use the identifiability property of \mathcal{M} .

If h is simple, $\partial h(c_r)$ is computable, and orthogonal to M at c_r .

So we

- ▶ "track" *M*
- use 2nd-order properties of c and $h|_M$.

(Cf. earlier references and Mifflin-Sagastizábal '05.)

Structure versus intrinsic geometry

Explicit structure in the presentation of h may help us

- implement acceleration ideas
- check 2nd-order conditions for sensitivity analysis.

But our key idea, partial smoothness, is geometric: intrinsic to h.

How typically do the partly smooth 2nd-order conditions hold?

Generic strict complementarity and primal-dual nondegeneracy holds in various structured settings:

- nonlinear programs (Spingarn-Rockafellar '79)
- complementarity problems (Saigal-Simon '73)
- semidefinite programs (Alizadeh et al. '97, Shapiro '97)
- conic convex programs (Pataki-Tunçel '01)
- sublinear-smooth composites (Bonnans-Shapiro '00).

Classical results

For simplicity, fix c = id. Given data $v \in \mathbf{R}^n$, consider conjugation:

$$\min_{x} \left\{ h(x) - v^{T}x \right\} \quad (= -h^{*}(v)).$$

Theorem (Mazur '33)

For convex coercive h and generic v, the optimal solution is unique (and also, for almost all v, nondegenerate (Drusvyatskiy-L '10).)

Theorem (Sard '42, Spingarn-Rockafellar '79) For C^2 h and almost all v, quadratic growth holds at all local mins.

An intrinsic approach: semi-algebraic sets

Earlier work on generic optimality relies on the structural presentation of h.

By contrast, we assume only that

the graph of h is semi-algebraic.

That is, it can be presented as

a finite union of sets, each defined by finitely-many polynomial inequalities.

But our approach is intrinsic, independent of this presentation.

We can recognize semi-algebraic sets via "quantifier elimination": linear maps preserve semi-algebraicity (Tarski-Seidenberg '31).

Furthermore, semi-algebraic sets have dimension, so, for a semi-algebraic subset of a convex set generic \Leftrightarrow dense.

Prevalence of partial smoothness

Theorem (Bolte-Daniilidis-L '09) Given semi-algebraic convex $h: \mathbb{R}^n \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$, consider

$$\min_{x} \Big\{ h(x) - v^T x \Big\}.$$

For generic $v \in \text{dom } h^*$ (ensuring finite value), the unique optimal solution satisfies the partly smooth 2nd-order conditions.

For nonconvex *h*, these properties generically hold around all the (finitely-many) stationary points (Drusvyatskiy-L '11).

Semi-algebraic geometry gives an excellent testbed for "concrete" variational analysis. . .

A semi-algebraic aside: thin subdifferential graphs

If $f : \mathbf{R}^n \to \mathbf{R}$ is smooth, ∇f has everywhere *n*-dimensional graph.

Theorem (Minty '62)

If $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ is convex, ∂f has everywhere n-dimensional graph. (...with computational implications for equations on the graph.)

We say $y \in \partial^{P} f(x)$ (the proximal subdifferential) if some quadratic $q \leq f$ (locally) satisfies q(x) = f(x), $\nabla q(x) = y$.

 $\partial^{P} f$ usually has large graph: 2*n*-dimensional (Borwein-Wang '00). But...

Theorem (Drusvyatskiy-L-loffe '10)

If $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic, $\partial^P f$ has everywhere n-dimensional graph.

Identifying active sets: mathematical foundations

The partly smooth 2nd-order conditions are

- ► powerful 🗸
- ▶ ubiquitous √
- mathematically elegant??

Focus on the identifiability property of \mathcal{M} at stationary \bar{x} :

$$x^r o ar{x}, \ y^r o 0, \ y^r \in \partial f(x^r) \ \Rightarrow \ x^r \in \mathcal{M}$$
 eventually.

Call an identifiable set locally minimal if any other identifiable set contains it, locally around \bar{x} . When do such sets exist?

- ► Not always, even for finite convex f: for example $\sqrt{x_1^2 + x_2^4}$.
- Always for polyhedral (or "fully amenable") f.

Identifiable manifolds

Suppose $0 \in \partial f(\bar{x})$. We've seen:

partial smoothness + nondegeneracy $\Rightarrow \exists$ identifiable manifold.

Partial smoothness (and prox-regularity) at \bar{x} for 0 is enough.

Theorem (Drusvyatskiy-L-Zhang '11)

The converse is also true. Manifold \mathcal{M} is then locally minimal, and

 $\partial f = \partial (f + \delta_{\mathcal{M}})$ locally around $(\bar{x}, 0)$.

So, in essence, partial smoothness is simple and natural. (Note: the Mordukhovich generalized Hessian is then easy:

$$\partial^2 f(\bar{x}|0)w = egin{cases}
abla^2_{\mathcal{M}} f(\bar{x})w + \mathcal{N}_{\mathcal{M}}(\bar{x}) & ext{if } w \perp \mathcal{N}_{\mathcal{M}}(\bar{x}) \\
onumber \emptyset & ext{otherwise},
\end{cases}$$

where $\nabla^2_{\mathcal{M}}$ is the Riemannian Hessian.)

Summary

- Partial smoothness as a conceptual tool for sensitivity and acceleration
- Nonsmooth optimization via BFGS.
- A simple and versatile proximal algorithm for composite optimization
- Generic properties in semi-algebraic variational analysis
- The foundations of active-set methods