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Example: minimizing a max-function
Suppose x̄ ∈ Rn minimizes a pointwise max of smooth functions

f (x) = max
i∈I

fi (x),

with affine-independent ∇fi (x̄) for i in the active set

Ī =
{

i : fi (x̄) = f (x̄)
}

= I (x̄).

Since f is smooth on the active manifold

M = {x : I (x) = Ī},

classical calculus shows Clarke stationarity: zero lies in{∑
i∈Ī

λi∇fi (x̄) : λ ≥ 0,
∑
i∈Ī

λi = 1
}
,

and this set is just the subdifferential

∂f (x̄) = conv{lim∇f (x r ) : x r → x̄}.
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Partial smoothness of f relative to M
I Good behavior on the active manifold: as x ∈M varies,

f (x) varies smoothly and ∂f (x) varies continuously.
I Prox-regularity: points near

(
x̄ , f (x̄)

)
have unique

nearest points in the epigraph
{

(x , t) : t ≥ f (x)
}

.
I Sharpness: ∂f (x̄) spans the normal space NM(x̄).
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What the active manifold captures
Assume nondegeneracy: 0 ∈ ri ∂f (x̄) (“strict complementarity”).

Active set methods Approximately stationary points lie on M:

x r → x̄ , y r → 0, y r ∈ ∂f (x r ) ⇒ x r ∈M eventually.

We call such M identifiable (Wright ’93).

Partly smooth 2nd-order conditions Around x̄ ,

f grows at least quadratically ⇔ f |M grows quadratically.

(verifiable simply via a Hessian.)

Sensitivity analysis In this case, M consists of all nearby
approximately stationary points: for small δ > 0,

M = (∂f )−1(δB) locally around x̄ .

These properties involve only f , NOT its algebraic presentation.
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Example: minimizing eigenvalue products via BFGS

The active manifold emerges, even without explicit structure in f .
Given

A ∈ S20
+ (the 20-by-20 positive definite matrices)

consider an eigenvalue-product problem (Anstreicher-Lee ’04)

min
{ 14∏

i=1

λi (A ◦ X ) : X ∈ S20
+ , Xii = 1 ∀i

}
.

Numerically, the optimal X̄ has λ14(A ◦ X̄ ) having multiplicity 9:

λ5 > λ6 = · · · = λ14 > λ15.

Matrix analysis predicts partial smoothness relative to a manifold
M of dimension 9·10

2 − 1 = 44. We “see” M numerically!
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Minimization by BFGS

To minimize smooth f : Rn → R. . .

Current iterate x ∈ Rn and positive definite H ≈ ∇2f (x)−1. Define

p = −H∇f (x), xnew = x + ᾱp,

where step ᾱ > 0 chosen by line search (eg doubling and bisection)
on φ(α) = f (x + αp) to satisfy Wolfe conditions:

φ(ᾱ)− φ(0) <
1

3
φ′(0)ᾱ and φ′(ᾱ) >

2

3
φ′(0).

Update H and repeat.

I In practice, if feasible, BFGS is often most popular.

I In theory, BFGS converges for convex coercive f (Powell ’76),
but may fail for C∞ nonconvex f (Dai ’02).

I BFGS often works well for nonsmooth f (Lemaréchal ’82)!
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Revealing the active manifold numerically

For Anstreicher-Lee, 44 (= dimM) H-eigenvalues → 0. . .

. . . and the corresponding eigenspace is tangent to M:
the objective is smooth along M and “sharp” orthogonally.
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BFGS for nonsmooth optimization (L-Overton ’10)

Function values for BFGS applied to
f (x , y) = w |y − x2|+ (1− y)2, with w = 1, 2, 4, 8.
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A conjecture

Apply BFGS to any “concrete” Lipschitz f : Rn → R,
with random initial point and H. Then almost surely:

I function values converge linearly;

I limit points of iterates are Clarke stationary;

I assuming convergence to a partly smooth point, the
eigenstructure of H reveals the active manifold.

“Concrete” might mean semi-algebraic — graph of f a finite union
of sets, each defined by finitely-many polynomial inequalities.

What if we assume more structure?
How, then, are active manifolds useful?
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Composite optimization: the framework

Solve
min
x∈Rn

h
(
c(x)

)
for given functions

nonsmooth h : Rm → R finite and convex

C2-smooth c : Rn → Rm.

Key computational assumption
“Structure” in h lets us easily solve proximal linearizations

min
d∈Rn

h
(
c̃(d)

)
+ µ‖d‖2,

for linear approximations c̃ .

(Extensions allow prox-regular and extended-valued h.)
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A proximal algorithm (L-Wright ’09)
Current iterate x , prox parameter µ > 0.
Linear approximation

c̃(d) = c(x) +∇c(x)d ≈ c(x + d).

Find the unique proximal step d(x , µ) minimizing

h
(
c̃(d)

)
+ µ‖d‖2.

If
actual decrease = h

(
c(x)

)
− h
(
c(x + d)

)
less than half

predicted decrease = h
(
c(x)

)
− h
(
c̃(d)

)
,

reject: µ← 2µ; otherwise,
accept: x ← x + d , µ← µ

2 .
Repeat.
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Example: exact penalties
Replace constrained optimization

min
x

{
f (x) : gi (x) ≤ 0

}
by unconstrained minimization of

f (x) + ν
∑

i

g +
i (x) = h

(
c(x)

)
(for some ν > 0), where

c = (f , g1, . . . , gk), h(f , g1, . . . , gk) = f + ν
∑

i

g +
i .

Easy proximal linearizations

min
d

aT
0 d +

∑
i

(aT
i d + bi )

+ + µ‖d‖2

(via specialized quadratic programming).

Related ideas: Yuan ’85, Burke ’85, Fletcher-Sainz de la Maza ’89,
Wright ’90, KNITRO (Byrd et al. ’05), Friedlander et al. 07.
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Examples: Compressive sensing. . .
(Candès, Donoho, Tao et al. ’06. . . )
We seek sparse solutions to linear systems Ex = g via

min
x
‖Ex − g‖2 + τ‖x‖1.

In statistics, LASSO and LARS (Tibshirani et al. ’96, ’04) similar.

Proximal linearizations are separable:

min
d∈Rn

aT d + τ‖x + d‖1 + µ‖d‖2.

Need just O(n) operations: implemented as SpaRSA
(Wright-Nowak-Figueiredo ’09)

Analogously, for low-rank X satisfying a linear system E (X ) = g ,
Candès et al. ’08 suggest

min
X
‖E (X )− g‖2 + τ‖X‖∗,

where ‖ · ‖∗ is the nuclear norm (sum of singular values).
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Speed

The proximal algorithm is

I simple

I versatile

I applicable to huge problems

but slow. For example:

I h = id gives steepest descent with trust region radius 1
2µ .

I c = id gives the classical proximal point method
(Rockafellar ’76).

Both methods typically converge linearly but slowly.

Previous special cases use the initial step d to predict active
constraints, and hence accelerate using a 2nd-order model.
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Accelerating the proximal algorithm
Minimizing h ◦ c generates iterates xr and proximal steps dr .

Theorem (L-Wright ’09)

Any limit point x̄ of (xr ) is stationary.

Assume the partly smooth 2nd-order conditions (so xr → x̄). In
particular, h is partly smooth at c(x̄) relative to a manifold M.

Theorem (Hare-L ’05)

Eventually cr = c(xr ) +∇c(xr )dr ∈M.

Proof.
Use the identifiability property of M.

If h is simple, ∂h(cr ) is computable, and orthogonal to M at cr .

So we
I “track” M
I use 2nd-order properties of c and h|M .

(Cf. earlier references and Mifflin-Sagastizábal ’05.)
16 / 24



Structure versus intrinsic geometry

Explicit structure in the presentation of h may help us

I implement acceleration ideas

I check 2nd-order conditions for sensitivity analysis.

But our key idea, partial smoothness, is geometric: intrinsic to h.

How typically do the partly smooth 2nd-order conditions hold?

Generic strict complementarity and primal-dual nondegeneracy
holds in various structured settings:

I nonlinear programs (Spingarn-Rockafellar ’79)

I complementarity problems (Saigal-Simon ’73)

I semidefinite programs (Alizadeh et al. ’97, Shapiro ’97)

I conic convex programs (Pataki-Tunçel ’01)

I sublinear-smooth composites (Bonnans-Shapiro ’00).
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Classical results

For simplicity, fix c = id. Given data v ∈ Rn, consider conjugation:

min
x

{
h(x)− vT x

} (
= − h∗(v)

)
.

Theorem (Mazur ’33)

For convex coercive h and generic v , the optimal solution is unique
(and also, for almost all v , nondegenerate (Drusvyatskiy-L ’10).)

Theorem (Sard ’42, Spingarn-Rockafellar ’79)

For C2 h and almost all v , quadratic growth holds at all local mins.
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An intrinsic approach: semi-algebraic sets

Earlier work on generic optimality relies on

the structural presentation of h.

By contrast, we assume only that

the graph of h is semi-algebraic.

That is, it can be presented as

a finite union of sets, each defined by finitely-many
polynomial inequalities.

But our approach is intrinsic, independent of this presentation.

We can recognize semi-algebraic sets via “quantifier elimination”:
linear maps preserve semi-algebraicity (Tarski-Seidenberg ’31).

Furthermore, semi-algebraic sets have dimension, so,
for a semi-algebraic subset of a convex set generic ⇔ dense.
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Prevalence of partial smoothness

Theorem (Bolte-Daniilidis-L ’09)

Given semi-algebraic convex h : Rn → R̄ = R ∪ {+∞}, consider

min
x

{
h(x)− vT x

}
.

For generic v ∈ dom h∗ (ensuring finite value), the unique optimal
solution satisfies the partly smooth 2nd-order conditions.

For nonconvex h, these properties generically hold around all the
(finitely-many) stationary points (Drusvyatskiy-L ’11).

Semi-algebraic geometry gives an excellent testbed for
“concrete” variational analysis. . .
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A semi-algebraic aside: thin subdifferential graphs

If f : Rn → R is smooth, ∇f has everywhere n-dimensional graph.

Theorem (Minty ’62)

If f : Rn → R̄ is convex, ∂f has everywhere n-dimensional graph.

(. . . with computational implications for equations on the graph.)

We say y ∈ ∂Pf (x) (the proximal subdifferential) if
some quadratic q ≤ f (locally) satisfies q(x) = f (x), ∇q(x) = y .

∂Pf usually has large graph: 2n-dimensional (Borwein-Wang ’00).

But. . .

Theorem (Drusvyatskiy-L-Ioffe ’10)

If f : Rn → R̄ is semi-algebraic, ∂Pf has everywhere n-dimensional
graph.
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Identifying active sets: mathematical foundations

The partly smooth 2nd-order conditions are

I powerful X

I ubiquitous X

I mathematically elegant??

Focus on the identifiability property of M at stationary x̄ :

x r → x̄ , y r → 0, y r ∈ ∂f (x r ) ⇒ x r ∈M eventually.

Call an identifiable set locally minimal if any other identifiable set
contains it, locally around x̄ . When do such sets exist?

I Not always, even for finite convex f : for example
√

x2
1 + x4

2 .

I Always for polyhedral (or “fully amenable”) f .
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Identifiable manifolds
Suppose 0 ∈ ∂f (x̄). We’ve seen:

partial smoothness + nondegeneracy ⇒ ∃ identifiable manifold.

Partial smoothness (and prox-regularity) at x̄ for 0 is enough.

Theorem (Drusvyatskiy-L-Zhang ’11)

The converse is also true. Manifold M is then locally minimal, and

∂f = ∂(f + δM) locally around (x̄ , 0).

So, in essence, partial smoothness is simple and natural.

(Note: the Mordukhovich generalized Hessian is then easy:

∂2f (x̄ |0)w =

{
∇2
Mf (x̄)w + NM(x̄) if w ⊥ NM(x̄)

∅ otherwise,

where ∇2
M is the Riemannian Hessian.)
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Summary

I Partial smoothness as a conceptual tool for sensitivity and
acceleration

I Nonsmooth optimization via BFGS.

I A simple and versatile proximal algorithm for composite
optimization

I Generic properties in semi-algebraic variational analysis

I The foundations of active-set methods
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