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Foreword

This self-contained book offers a modern unifying presentation of three ba-
sic areas of nonlinear analysis, namely convex analysis, monotone operator
theory, and the fixed point theory of nonexpansive mappings.

This turns out to be a judicious choice. Showing the rich connections
and interplay between these topics gives a strong coherence to the book.
Moreover, these particular topics are at the core of modern optimization and
its applications.

Choosing to work in Hilbert spaces offers a wide range of applications,
while keeping the mathematics accessible to a large audience. Each topic is
developed in a self-contained fashion, and the presentation often draws on
recent advances.

The organization of the book makes it accessible to a large audience. Each
chapter is illustrated by several exercises, which makes the monograph an
excellent textbook. In addition, it offers deep insights into algorithmic aspects
of optimization, especially splitting algorithms, which are important in theory
and applications.

Let us point out the high quality of the writing and presentation. The au-
thors combine an uncompromising demand for rigorous mathematical state-
ments and a deep concern for applications, which makes this book remarkably
accomplished.

Montpellier (France), October 2010 Hédy Attouch



Preface

Three important areas of nonlinear analysis emerged in the early 1960s: con-
vex analysis, monotone operator theory, and the theory of nonexpansive map-
pings. Over the past four decades, these areas have reached a high level of
maturity, and an increasing number of connections have been identified be-
tween them. At the same time, they have found applications in a wide ar-
ray of disciplines, including mechanics, economics, partial differential equa-
tions, information theory, approximation theory, signal and image process-
ing, game theory, optimal transport theory, probability and statistics, and
machine learning.

The purpose of this book is to present a largely self-contained account
of the main results of convex analysis, monotone operator theory, and the
theory of nonexpansive operators in the context of Hilbert spaces. Authori-
tative monographs are already available on each of these topics individually.
A novelty of this book, and indeed, its central theme, is the tight interplay
among the key notions of convexity, monotonicity, and nonexpansiveness. We
aim at making the presentation accessible to a broad audience, and to reach
out in particular to the applied sciences and engineering communities, where
these tools have become indispensable. We chose to cast our exposition in the
Hilbert space setting. This allows us to cover many applications of interest
to practitioners in infinite-dimensional spaces and yet to avoid the technical
difficulties pertaining to general Banach space theory that would exclude a
large portion of our intended audience. We have also made an attempt to
draw on recent developments and modern tools to simplify the proofs of key
results, exploiting for instance heavily the concept of a Fitzpatrick function
in our exposition of monotone operators, the notion of Fejér monotonicity to
unify the convergence proofs of several algorithms, and that of a proximity
operator throughout the second half of the book.

The book in organized in 29 chapters. Chapters 1 and 2 provide back-
ground material. Chapters 3 to 7 cover set convexity and nonexpansive op-
erators. Various aspects of the theory of convex functions are discussed in
Chapters 8 to 19. Chapters 20 to 25 are dedicated to monotone operator the-
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ory. In addition to these basic building blocks, we also address certain themes
from different angles in several places. Thus, optimization theory is discussed
in Chapters 11, 19, 26, and 27. Best approximation problems are discussed
in Chapters 3, 19, 27, 28, and 29. Algorithms are also present in various
parts of the book: fixed point and convex feasibility algorithms in Chap-
ter 5, proximal-point algorithms in Chapter 23, monotone operator splitting
algorithms in Chapter 25, optimization algorithms in Chapter 27, and best
approximation algorithms in Chapters 27 and 29. More than 400 exercises
are distributed throughout the book, at the end of each chapter.

Preliminary drafts of this book have been used in courses in our institu-
tions and we have benefited from the input of postdoctoral fellows and many
students. To all of them, many thanks. In particular, HHB thanks Liangjin
Yao for his helpful comments. We are grateful to Hédy Attouch, Jon Borwein,
Stephen Simons, Jon Vanderwerff, Shawn Wang, and Isao Yamada for helpful
discussions and pertinent comments. PLC also thanks Oscar Wesler. Finally,
we thank the Natural Sciences and Engineering Research Council of Canada,
the Canada Research Chair Program, and France’s Agence Nationale de la
Recherche for their support.

Kelowna (Canada) Heinz H. Bauschke
Paris (France) Patrick L. Combettes
October 2010
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Chapter 5
Fejér Monotonicity and Fixed Point
Iterations

A sequence is Fejér monotone with respect to a set C' if each point in the
sequence is not strictly farther from any point in C' than its predecessor. Such
sequences possess very attractive properties that greatly simplify the analy-
sis of their asymptotic behavior. In this chapter, we provide the basic theory
for Fejér monotone sequences and apply it to obtain in a systematic fash-
ion convergence results for various classical iterations involving nonexpansive
operators.

5.1 Fejér Monotone Sequences

The following notion is central in the study of various iterative methods, in
particular in connection with the construction of fixed points of nonexpansive
operators.

Definition 5.1 Let C be a nonempty subset of H and let (z,)nen be a
sequence in H. Then (x,)nen is Fejér monotone with respect to C' if

(V2 € O)Yn €N) ||zng1 — || < ||lon — |- (5.1)

Example 5.2 Let (z,)nen be a bounded sequence in R that is increasing
(respectively decreasing). Then (z,)nen is Fejér monotone with respect to
[sup{zy, }nen, +0o[ (respectively |—oo, inf{x, }nen])-

Example 5.3 Let D be a nonempty subset of H, let T: D — D be a
quasinonexpansive—in particular, nonexpansive—operator such that Fix T' #
@, and let zg € D. Set (Vn € N) 2,11 = Tzp,. Then (zy,)nen is Fejér mono-
tone with respect to Fix T'.

We start with some basic properties.

75



76 5 Fejér Monotonicity and Fixed Point Iterations

Proposition 5.4 Let (x,)nen be a sequence in H and let C' be a nonempty
subset of H. Suppose that (zn)nen is Fejér monotone with respect to C. Then
the following hold:

(1) (xn)nen is bounded.

(i) For every x € C, (||zn — x| )nen converges.
(iil) (do(xn))nen is decreasing and converges.
Proof. (i): Let & € C. Then (5.1) implies that (z,,)nen lies in B(z; ||xg — z]|).

(ii): Clear from (5.1).
(iii): Taking the infimum in (5.1) over € C yields (Vn € N) do(2n11)
dc(l'n).

The next result concerns weak convergence.

<
]

Theorem 5.5 Let (z,)nen be a sequence in H and let C' be a nonempty sub-
set of H. Suppose that (x,)nen s Fejér monotone with respect to C and that
every weak sequential cluster point of (zn)nen belongs to C. Then (Zy)nen
converges weakly to a point in C.

Proof. The result follows from Proposition 5.4(ii) and Lemma 2.39. a

Example 5.6 Suppose that # is infinite-dimensional and let (z,,),en be an
orthonormal sequence in H. Then (x,),en is Fejér monotone with respect to
{0}. As seen in Example 2.25, z,, — 0 but z,, 4 0.

While a Fejér monotone sequence with respect to a closed convex set C
may not converge strongly, its “shadow” on C' always does.

Proposition 5.7 Let (z,)nen be a sequence in H and let C' be a nonempty
closed convex subset of H. Suppose that (z,)nen is Fejér monotone with re-
spect to C. Then the shadow sequence (Poxy)nen converges strongly to a
point in C.

Proof. Tt follows from (5.1) and (3.6) that, for every m and n in N,

| Pean — PC’xn+m||2 = ||Pczn — $n+mH2 + [|Tntm — PC’xn+m||2
+ 2(Pocxn — Tngm | Tntm — PoTntm)
< ||Pozn — anZ + d2c(33n+m)
+ 2 (Poxyn — PoTntm | Tntm — PoTnim)
+2 <Pan+m — Tnt+m ‘ Tn4+m — PC$n+m>
< dg(wn) = dE(Tngm)- (5.2)

Consequently, since (dc (2, ))nen Was seen in Proposition 5.4(iii) to converge,
(Pcxn)nen is a Cauchy sequence in the complete set C. m]

Corollary 5.8 Let (x,)nen be a sequence in H, let C' be a nonempty closed
convex subset of H, and let x € C. Suppose that (z,)nen is Fejér monotone
with respect to C' and that x, — x. Then Pocx, — x.
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Proof. By Proposition 5.7, (Poxy)nen converges strongly to some point y €
C. Hence, since x — Pcx,, — = —y and z, — Pox, — = — vy, it follows
from Theorem 3.14 and Lemma 2.41(iii) that 0 > (x — Poxy, | 2, — Poxn) —
|z — y||%. Thus, z = y. o

For sequences that are Fejér monotone with respect to closed affine sub-
spaces, Proposition 5.7 can be strengthened.

Proposition 5.9 Let (zy,)nen be a sequence in H and let C be a closed affine
subspace of H. Suppose that (x,)nen 18 Fejér monotone with respect to C.
Then the following hold:

(i) (vn € N) Pox,, = Powxyo.

(i) Suppose that every weak sequential cluster point of (zyn)nen belongs to
C. Then x, — Pcxg.

Proof. (i): Fix n € N, a € R, and set yo, = aPczg + (1 — o) Poxy,. Since C
is an affine subspace, y, € C, and it therefore follows from Corollary 3.20(i)
and (5.1) that

a2HPan - PCZ‘OH2 = || Pcxn — ya||2
< &y — Pownl® + | Pen — yall?
= [|zn — Yol
< [lzo = yall?
= ||lzo = Peaol* + || Pewo — yall?
= d%(z0) + (1 — @)?||Poxn — Poxol?. (5.3)

Consequently, (2 — 1)||Pexyn, — Poxol|? < d%(z0) and, letting o — +o00, we
conclude that Pox,, = Poxp.
(ii): Combine Theorem 5.5, Corollary 5.8, and (i). a

We now turn our attention to strong convergence properties.

Proposition 5.10 Let (z,,)nen be a sequence in H and let C be a subset of
H such that int C' # &. Suppose that (z,)nen s Fejér monotone with respect
to C. Then (x,)nen converges strongly to a point in H.

Proof. Take x € int C and p € Ry such that B(xz; p) C C. Define a sequence
(2n)nen in B(x; p) by

€T, if Tpi1=xn;
(VneN) z,= Tnt1 — Tn

4
o | (5.4)
Znt1 — onll

otherwise.

Then (5.1) yields (Vn € N) || zns1 — 2u]|? < ||2n — 20]|? and, after expanding,
we obtain
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(M EN) [2nss —al® < llen — 2l = 2pllzns —@all.  (5.5)

Thus, >, en 12n41 —Zal| < lzo—2]|?/(2p) and (2, )nen is therefore a Cauchy
sequence. O

Theorem 5.11 Let (z,,)nen be a sequence in H and let C' be a nonempty
closed convex subset of H. Suppose that (z,)nen is Fejér monotone with re-
spect to C. Then the following are equivalent:

(i) (zn)nen converges strongly to a point in C.
(i) (xn)nen possesses a strong sequential cluster point in C.
(i) L de- () = 0.

Proof. (1)=(ii): Clear.
(ii)=(iii): Suppose that xx, — = € C. Then dc¢(zy,) < ||zg, — x| — 0.
(iii)=-(i): Proposition 5.4(iii) implies that dc(z,) — 0. Hence, z, —
Pox,, — 0 and (i) follows from Proposition 5.7. O

We conclude this section with a linear convergence result.

Theorem 5.12 Let (z,,)nen be a sequence in H and let C' be a nonempty
closed convex subset of H. Suppose that (z,)nen is Fejér monotone with re-
spect to C' and that for some k € [0, 1],

(Vn eN) do(xpy1) < wdeo(zy). (5.6)
Then (Zn)nen converges linearly to a point © € C; more precisely,
(VneN) |z, —z| <2k"dc(z0). (5.7)

Proof. Theorem 5.11 and (5.6) imply that (x,, )nen converges strongly to some
point z € C. On the other hand, (5.1) yields

(Vn e N)(VYm € N)  |lzn — piml| < |20 — Poxn| + [[Znem — Poza||
< 2do(zy). (5.8)

Letting m — 400 in (5.8), we conclude that ||z, — z| < 2dc(zp). O

5.2 Krasnosel’skii—-Mann Iteration

Given a nonexpansive operator T', the sequence generated by the Banach—
Picard iteration x,+; = T, of (1.66) may fail to produce a fixed point of
T. A simple illustration of this situation is T'= —Id and zy # 0. In this case,
however, it is clear that the asymptotic reqularity property z,, — Tz, — 0
does not hold. As we shall now see, this property is critical.
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Theorem 5.13 Let D be a nonempty closed convex subset of H, let T: D —
D be a nonexpansive operator such that FixT # &, and let xg € D. Set

(VYneN) zp41=Tx, (5.9)

and suppose that x, — Tx, — 0. Then the following hold:

(1) (xn)nen converges weakly to a point in Fix T
(ii) Suppose that D = —D and that T is odd: (Vx € D) T(—xz) = —Tx.
Then (x,)nen converges strongly to a point in Fix T.

Proof. From Example 5.3, (2, )nen is Fejér monotone with respect to Fix T'.
(i): Let = be a weak sequential cluster point of (z,)nen, say xg, — .
Since Tz, — xx, — 0, Corollary 4.18 asserts that « € FixT. Appealing to
Theorem 5.5, the assertion is proved.
(ii): Since D = —D is convex, 0 € D and, since T is odd, 0 € FixT.
Therefore, by Fejér monotonicity, (Vn € N) ||zp41]| < ||zn]|- Thus, there
exists £ € Ry such that ||z,] J ¢. Now let m € N. Then, for every n € N,

[Znt14m + Tnsill = [T2npm — T(=20)|| < [[Tn4m + 2nl, (5.10)
and, by the parallelogram identity,
[ 2(Hxn+mu2 + meH2) — [@n4m — 2all®. (5.11)

However, since T'z,, — x,, — 0, we have lim,, ||Z+m — zn| = 0. Therefore,
since ||z || 4 £, (5.10) and (5.11) yield || Zp4m +2n|| 4 2¢ as n — +oo. In turn,
we derive from (5.11) that [|Zptm — 2n|? < 2(|2ntml|® + |2m]]?) — 462 — 0
as m,n — +oo. Thus, (z,)nen is a Cauchy sequence and x,, — = for some
x € D. Since z,41 — = and x,,41 = Tz, = Tx, we have z € FixT. O

We now turn our attention to an alternative iterative method, known as
the Krasnosel’skit—Mann algorithm.

Theorem 5.14 (Krasnosel’skii-Mann algorithm) Let D be a nonempty
closed convex subset of H, let T: D — D be a nonexpansive operator such that
FixT # @, let (An)nen be a sequence in [0, 1] such that Y, .y An(1 = An) =
+00, and let xg € D. Set

(VneN) zpp1 =an + A (Tay — 20). (5.12)

Then the following hold:

(i) (zn)nen is Fejér monotone with respect to Fix T.
(i) (Tzp — xn)nen converges strongly to 0.
(iil) (@ )nen converges weakly to a point in Fix T .

Proof. Since xg € D and D is convex, (5.12) produces a well-defined sequence
in D.
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(i): Tt follows from Corollary 2.14 and the nonexpansiveness of T that, for
every y € FixT and n € N,

[Znt1 = ylI* = 11 = An)(@n = y) + Aa(Tap — y)|
= (1= )llen =yl + Mol T2y — Tylf?
- /\n(l - )\n)”Txn - anQ
< Hxn_yuz_)‘n(l _)‘n)HTxn_xn”2~ (5.13)

Hence, (2, )nen is Fejér monotone with respect to Fix T

(ii): We derive from (5.13) that 3, o An (1= X)) [ Tn — 2 || < [|zo — /|-
Since ), cnyAn(l — An) = +00, we have lim || Tz, — x| = 0. However, for
every n € N,

|Tznt1 — Togrl| = [[T2ng1 — T + (1= An)(Txy — 20) ||
< Hxn+1 - -TTLH + (1 - /\n)HTxn - -TTLH
= HTxn - xn||~ (5.14)

Consequently, (||[Tz, — zn]|)nen converges and we must have Tz, — x,, — 0.

(iii): Let « be a weak sequential cluster point of (z,)nen, say zr, — z.
Then it follows from Corollary 4.18 that « € FixT. In view of Theorem 5.5,
the proof is complete. 0O

Proposition 5.15 Let « € 0,1, let T: H — H be an a-averaged oper-
ator such that FixT # &, let (A)nen be a sequence in [0,1/a] such that
Y onen Al —a),) = 400, and let xg € H. Set

(Vn €N) @pi1 =2y + Ao (Tzy — 2). (5.15)

Then the following hold:

(1) (xn)nen is Fejér monotone with respect to Fix T .
(i) (Txp — Tn)nen converges strongly to 0.
(iil) (zn)nen converges weakly to a point in FixT.

Proof. Set R=(1—-1/a)ld + (1/a)T and (Vn € N) u, = aX,. Then Fix R =
FixT and R is nonexpansive by Proposition 4.25. In addition, we rewrite
(5.15) as (Vn € N) zp41 = zp + M,L(Rmn — .Z‘n). Since (fn)nen lies in [0, 1]
and ) oy pin(1 — pin) = 400, the results follow from Theorem 5.14. O

Corollary 5.16 Let T: H — H be a firmly nonexpansive operator such that
FixT # @, let (An)nen be a sequence in [0,2] such that Y, .y An(2 — An) =
+o0, and let xg € H. Set (Vn € N) zpq1 = a0 + Ay, (Txn — xn) Then the
following hold:

(i) (zn)nen is Fejér monotone with respect to Fix T.
(i) (Txp — Tn)nen converges strongly to 0.
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(iil) (zn)nen converges weakly to a point in FixT.
Proof. In view of Remark 4.24(iii), apply Proposition 5.15 with « =1/2. 0O

Example 5.17 Let T: H — H be a firmly nonexpansive operator such that
FixT # o, let 9 € H, and set (Vn € N) z,41 = Txz,. Then (z,)nen
converges weakly to a point in FixT'.

The following type of iterative method involves a mix of compositions and
convex combinations of nonexpansive operators.

Corollary 5.18 Let (T;)icr be a finite family of nonexpansive operators
from H to H such that (o, FixT; # @, and let (a;)ier be real num-
bers in 10,1 such that, for every i € I, T; is a;-averaged. Let p be a
strictly positive integer, for every k € {1,...,p}, let my be a strictly
positive integer and wy be a strictly positive real mumber, and suppose
that i: {(k,l) | ke{l,...,p}, 1€ {1,...,mk}} — I is surjective and that
S _jwi =1. For every k € {1,...,p}, set I, = {i(k,1),...,i(k,m)}, and
set

a = max pg, where (Vke{l,...,p}) pr= Tk T (5.16)
1sksp me—1+
max &
i€l

and let (An)nen be a sequence in [0,1/a] such that Y
Furthermore, let xo € H and set

nen An(l—aX,) = +oo.

p
(Vn € N) Tpt+1 = Tn + An (ZwkTi(k,l) cee Ti(k,mk)xn — l’n> . (517)
k=1

Then (xn)nen converges weakly to a point in (;c; FixT;.

Proof. Set T = Y"}_; wr Ry, where (Vk € {1,...,p}) Ri = Tigi1) -+ Tk ) -
Then (5.17) reduces to (5.15) and, in view of Proposition 5.15, it suffices
to show that 7' is a-averaged and that FixT = (,.; FixT;. For every k €
{1,...,p}, it follows from Proposition 4.32 and (5.16) that Ry, is pg-averaged
and, from Corollary 4.37 that Fix Ry = ﬂielk Fix T;. In turn, we derive from
Proposition 4.30 and (5.16) that 7" is a-averaged and, from Proposition 4.34,
that Fix T = "} _, Fix Ry = (h_1 Nies, FixT; = ;o7 Fix T;. O

iely iel

Remark 5.19 It follows from Remark 4.24(iii) that Corollary 5.18 is appli-

cable to firmly nonexpansive operators and, a fortiori, to projection operators
by Proposition 4.8.

Corollary 5.18 provides an algorithm to solve a convex feasibility problem,
i.e., to find a point in the intersection of a family of closed convex sets. Here
are two more examples.
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Example 5.20 (string-averaged relaxed projections) Let (C;);cs be
a finite family of closed convex sets such that C' = (),.;C; # @. For
every i € I, let 5; € ]0,2[ and set T; = (1 — B;)Id + B;Pc,. Let p be
a strictly positive integer; for every k € {1,...,p}, let my be a strictly
positive integer and wy be a strictly positive real number, and suppose
that i: {(k:,l) | kEe{l,....p}, le{q,... ,mk}} — I is surjective and that
S b _, wk = 1. Furthermore, let 2y € H and set

p
(VneN) z,41 = ZwkTi(k,n o Tik,my) Tn- (5.18)
k=1

Then (z,)nen converges weakly to a point in C.

Proof. For every i € I, set a; = 3;/2 € ]0, 1[. Since, for every i € I, Proposi-
tion 4.8 asserts that Pg, is firmly nonexpansive, Corollary 4.29 implies that
T; is aj-averaged. Borrowing notation from Corollary 5.18, we note that for
every k € {1,...,p}, max;ey, a; € ]0,1[, which implies that py € ]0,1[ and
thus that « € ]0, 1[. Altogether, the result follows from Corollary 5.18 with
A = 1. 0O

Example 5.21 (parallel projection algorithm) Let (C;);cs be a finite
family of closed convex subsets of H such that C' = (,.; C; # @, let (A\n)nen
be a sequence in [0,2] such that > _yAn(2 — Ay) = +oo, let (w;)ier be
strictly positive real numbers such that Zie] w; =1, and let ¢ € H. Set

(Vn €N) Xpiy1 =an+ My < ZwiPixn — xn>, (5.19)
i€l

where, for every i € I, P, denotes the projector onto C;. Then (x,)nen
converges weakly to a point in C.

Proof. This is an application of Corollary 5.16(iii) with 7" =}, ; w; P;. In-
deed, since the operators (P;);er are firmly nonexpansive by Proposition 4.8,
their convex combination T is also firmly nonexpansive by Example 4.31.
Moreover, Proposition 4.34 asserts that FixT' = (,.; Fix P, = ,.; Ci = C.
Alternatively, apply Corollary 5.18. ]

5.3 Iterating Compositions of Averaged Operators

Our first result concerns the asymptotic behavior of iterates of a composition
of averaged nonexpansive operators with possibly no common fixed point.

Theorem 5.22 Let D be a nonempty weakly sequentially closed (e.g., closed
and convex) subset of H, let m be a strictly positive integer, set I =
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{1,...,m}, let (T;)ic1 be a family of nonexpansive operators from D to D
such that Fix(Ty -+ - Tp,) # &, and let (a;)ier be real numbers in |0, 1] such
that, for everyi € I, T; is a;-averaged. Let o € D and set

Then x, —T1 - Tx, — 0, and there exist points y1 € FixTy - Ty, y2 €
FixTy---T,,T1, ..., ym € FixT,,) 1 - - - Tyo—1 such that

zn = y1 = Ty, (5.21)

TrnTn — Ym = Tmy1, (5'22)
Tm—lexn — Ym-1 = Tm—lyTnv (523)
T3 Tpxn — ys3 = T3ya, (5.24)
T2 s TmZL'n — Y = Tgyg. (525)

Proof. Set T =Ty -+ Ty, and (Vi € I) 8; = (1 — o) /av;. Now take y € Fix T
The equivalence (1)< (iii) in Proposition 4.25 yields
|Znt1 = ylI* = | Tzn — Ty||2
<z Tnwn —Ta - Tryll®
— Bul|dd = T0) T -+ Ty, — (1d = T1) o - - - Ty
< len = ylI* = Binll(1d = Ty )z — (Id = T )yl
= Bm—1ll(Id = Tin—1)Tppn — (Id — Tm—l)Tmy”2 -
= B2l (1d = To)Ts - T — (1d = T2) T3 - -~ Ty |?
— All(1d =TTz -+ Topay — (To- - Ty — y)|I*>. (5.26)

Therefore, (z,)nen is Fejér monotone with respect to Fix T and

(Id — Tp)n, — (Id — Ty )y — 0, (5.27)

(Id = T—1) Ty — (Id — Ty 1) Ty — 0, (5.28)

(Id = To)Ts -+ Touwn — (Id — To) Ty - - - Ty — O, (5.29)
(Id = T)Ty -+ Tonatn — (To - Tony — y) — 0. (5.30)

Upon adding (5.27)-(5.30), we obtain z, — Tz, — 0. Hence, since T is
nonexpansive as a composition of nonexpansive operators, it follows from
Theorem 5.13(i) that (z,)nen converges weakly to some point y; € Fix T,
which provides (5.21). On the other hand, (5.27) yields Tpa, — 2, —
Tmy1 — y1.- So altogether T,,x, = Trny1 = Ym, and we obtain (5.22). In
turn, since (5.28) asserts that Ty,—1Tm@n — Tm@n = Tin—1Ym — Ym, We ob-
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tain Tpy—1Tm%n — Tm—1Ym = Ym—1, hence (5.23). Continuing this process,
we arrive at (5.25). O

As noted in Remark 5.19, results on averaged nonexpansive operators ap-
ply in particular to firmly nonexpansive operators and projectors onto convex
sets. Thus, by specializing Theorem 5.22 to convex projectors, we obtain the
iterative method described in the next corollary, which is known as the POCS
(Projections Onto Convex Sets) algorithm in the signal recovery literature.

Corollary 5.23 (POCS algorithm) Let m be a strictly positive integer,
set I =A{1,...,m}, let (Ci)icr be a family of nonempty closed convex subsets
of H, let (P;)ier denote their respective projectors, and let xo € H. Suppose
that Fix(Py -+ - Pp,) # @ and set

(VneN) zp41 =P Ppay,. (5.31)

Then there exists (y1,...,Ym) € C1 X -+ x Cp, such that x, — y1 = Piya,
menéym = Pmyly melpmxn_\ymfl = melym; ceey P3 t men_\y?; =
P3y4, and P2 s men — Y2 = ngg.

Proof. This follows from Proposition 4.8 and Theorem 5.22. O

Remark 5.24 In Corollary 5.23, suppose that, for some j € I, C; is
bounded. Then Fix(P; - - - P,,,) # &. Indeed, consider the circular composition
of the m projectors given by T' = P; - -- Py, Py - - - Pj_1. Then Proposition 4.8
asserts that T is a nonexpansive operator that maps the nonempty bounded
closed convex set C; to itself. Hence, it follows from Theorem 4.19 that there
exists a point € C; such that Tz = x.

The next corollary describes a periodic projection method to solve a convex
feasibility problem.

Corollary 5.25 Let m be a strictly positive integer, set I = {1,...,m}, let
(Ci)ier be a family of closed conver subsets of H such that C = (;c; Cs # 9,
let (P;)ier denote their respective projectors, and let xog € H. Set (¥n € N)
Tnt1 = P+ Ppay,. Then (z,)nen converges weakly to a point in C.

Proof. Using Corollary 5.23, Proposition 4.8, and Corollary 4.37, we obtain
rp —y1 € Fix(Py -+ Py,) = (;¢; Fix P, = C. Alternatively, this is a special
case of Example 5.20. O

Remark 5.26 If, in Corollary 5.25, all the sets are closed affine subspaces,
so is C' and we derive from Proposition 5.9(i) that x,, = Poxg. Corollary 5.28
is classical, and it states that the convergence is actually strong in this case.
In striking contrast, the example constructed in [146] provides a closed hy-
perplane and a closed convex cone in ¢2(N) for which alternating projections
converge weakly but not strongly.
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The next result will help us obtain a sharper form of Corollary 5.25 for
closed affine subspaces.

Proposition 5.27 Let T € B(H) be nonexpansive and let xg € H. Set V =
FixT and (Vn € N) 241 = Txy,. Then x, — Pyxog < Ty — Tpe1 — 0.

Proof. 1If x,, — Pyxg, then z, — x,41 — Pyzo — Pyxg = 0. Conversely,
suppose that z, — x,+1 — 0. We derive from Theorem 5.13(ii) that there
exists v € V such that z,, — v. In turn, Proposition 5.9(i) yields v = Py xy.

O

Corollary 5.28 (von Neumann—Halperin) Let m be a strictly positive
integer, set I = {1,...,m}, let (C;)iecs be a family of closed affine subspaces of
H such that C =(\,o; C; # &, let (P;)ier denote their respective projectors,
let xg € H, and set

i€l

(VneN) zp41 =P Ppay,. (5.32)
Then x,, — Pcxg.

Proof. Set T'= Py - - - P,,. Then T is nonexpansive, and FixT = C by Corol-
lary 4.37.

We first assume that each set C; is a linear subspace. Then T is odd,
and Theorem 5.22 implies that x,, — Tz, — 0. Thus, by Proposition 5.27,
r, — Poxg.

We now turn our attention to the general affine case. Since C' # &, there
exists y € C such that for every i € I, C; = y+V;, i.e., V; is the closed linear
subspace parallel to C;, and C = y+V, where V = (,.; V;. Proposition 3.17
implies that, for every @ € H, Pcx = Pyyve =y + Py(x —y) and (Vi € I)
Pix = Py v,x = y+ Py,(z — y). Using these identities repeatedly, we obtain

(VneN) z,41—y= Py, Py, )(xn —y). (5.33)
Invoking the already verified linear case, we get x, —y — Py(zo — y) and
conclude that x,, — y + Py (xg —y) = Poxo. m]
Exercises

Exercise 5.1 Find a nonexpansive operator T: H — H that is not firmly
nonexpansive and such that, for every zo € H, the sequence (T"xg)nen con-
verges weakly but not strongly to a fixed point of T'.

Exercise 5.2 Construct a non-Cauchy sequence (z,,)nen in R that is asymp-
totically regular, i.e., x, — xp4+1 — 0.
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Exercise 5.3 Find an alternative proof of Theorem 5.5 based on Corol-
lary 5.8 in the case when C is closed and convex.

Exercise 5.4 Let C be a nonempty subset of H and let (z,)nen be a se-
quence in H that is Fejér monotone with respect to C. Show that (x,,)nen is
Fejér monotone with respect to conv C.

Exercise 5.5 Let T: ‘H — H be a nonexpansive operator such that Fix T #
@, and let (z,,)nen be a sequence in H such that

(i) for every z € Fix T, (||zn, — z||)nen converges;
(ii) zp, — T2y, — 0.

Show that (z,)nen converges weakly to a point in Fix T

Exercise 5.6 Find a nonexpansive operator T: H — H that is not firmly
nonexpansive and such that, for every zg € H, the sequence (T"xg)nen con-
verges weakly but not strongly to a fixed point of T.

Exercise 5.7 Let m be a strictly positive integer, set I = {1,...,m}, let
(Ci)ier be a family of closed convex subsets of H such that C' = ,; C; # 9,
and let (P;);cr be their respective projectors. Derive parts (ii) and (iii) from
(i) and Theorem 5.5, and also from Corollary 5.18.

(i) Let i € I, let « € C;, and let y € H. Show that | Py —z||* < ||y — z||* —

1Py — yl>.
(ii) Set zp € H and

1
(VneN) x,11 = E(Plxn +PPx,+---+ P men). (5.34)

(a) Let z € C and n € N. Show that [|z,11 — z|? < ||z, — 2||* —
(1/m) Yo [P — 2.

(b) Let « be a weak sequential cluster point of (x,)nen. Show that
zeC.

(c) Show that (z,)nen converges weakly to a point in C.

(iii) Set ¢ € H and
1
(VneN) x,11 = m(P1P2xn+P2P3xn+~ . ~+Pm,1men). (5.35)

(a) Let z € C and n € N. Show that ||z,+1 — z|? < ||z, — 2||* —
S I Piazn = ) + | PiPisawn — Prpaza?)/(m = 1).

(b) Let  be a weak sequential cluster point of (x,)nen. Show that
zeC.

(¢) Show that (x,)nen converges weakly to a point in C.



Index

3* monotone, 354-356

accretive operator, 293

acute cone, 105

addition of functions, 6

addition of set-valued operators, 2

adjoint of a linear operator, 31

affine constraint, 386

affine hull, 1, 93

affine minorant, 133, 134, 168, 184,
191, 192, 207, 223, 224

affine operator, 3, 35, 44, 418

affine projector, 48, 62

affine subspace, 1, 43, 108

almost surely, 29

alternating minimizations, 162

alternating projection method,
406, 432

Anderson—Duffin theorem, 361

angle bounded operator, 361, 362

Apollonius’s identity, 30, 46

approximating curve, 64

asymptotic center, 117, 159, 195

asymptotic regularity, 78

at most single-valued, 2

Attouch—Brézis condition,
216

Attouch-Brézis theorem, 207, 209

autoconjugate function, 190, 239,
303

averaged nonexpansive operator,
67, 72, 80-82, 294, 298, 440

210,

Baillon-Haddad theorem, 270
ball, 43

Banach—Alaoglu theorem, 34
Banach—Picard theorem, 20
Banach—Steinhaus theorem, 31
barrier cone, 103, 156

base of a topology, 7, 9, 16, 33

460

base of neighborhoods, 23
best approximation, 44, 278, 410

best approximation algorithm,
410, 411, 431

biconjugate function, 181, 185,
190, 192

biconjugation theorem, 190

bilinear form, 39, 384, 385

Bishop—Phelps theorem, 107

Boltzmann—Shannon entropy, 137,
139

boundary of a set, 7

bounded below, 134, 184

Brézis-Haraux theorem, 358

Bregman distance, 258

Browder—-Gohde—Kirk theorem, 64

Brgndsted—Rockafellar  theorem,
236

Bunt-Motzkin theorem, 318

Burg’s entropy, 138, 151, 244

Cantor’s theorem, 17

Cauchy sequence, 17, 24, 34, 46

Cauchy—Schwarz inequality, 29

Cayley transform, 349

chain, 3

chain rule, 40

characterization of minimizers,
381

Chebyshev center, 249, 250

Chebyshev problem, 47

Chebyshev set, 44-47, 318

closed ball, 16

closed convex hull, 43

closed range, 220

closed set, 7, 8

closure of a set, 7, 22

cluster point, 7, 8



INDEX

cocoercive operator, 60, 61, 68, 70,
270, 294, 298, 325, 336, 339,
355, 370, 372, 377, 379, 438

coercive function, 158-161, 165,
202-204, 210

cohypomonotone operator, 337

common fixed points, 71

compact set, 7, 8, 13

complementarity problem, 376

complementary slackness, 291, 422

complete metric space, 17

composition of set-valued opera-
tors, 2

concave function, 113

cone, 1, 87, 285, 287, 376, 387, 389,
425

conical hull, 87

conjugate function, 181

conjugation, 181, 197, 226, 230

constrained minimization prob-
lem, 283, 285, 383

continuity, 9

continuous affine minorant, 168

continuous convex function, 123,
136

continuous function, 11

continuous linear functional, 31

continuous operator, 9, 63

convergence of a net, 7

convex combination, 44

convex cone, 87, 89, 179, 183, 285,
425

convex feasibility problem, 81, 84

convex function, 113, 155

convex hull, 43, 44

convex integrand, 118, 138, 193,
238

convex on a set, 114, 125

convex programming problem, 290

convex set, 43

convexity with respect to a cone,

285
core, 90, 95, 123, 207, 210, 214,
216, 241, 271

counting measure, 140

461
cyclically monotone operator, 326

Debrunner—Flor theorem, 315

decreasing function, 5

decreasing sequence of convex sets,
48, 417

demiclosedness principle, 63

dense hyperplane, 123

dense set, 7, 33, 123, 232

descent direction, 248, 249

descent lemma, 270

diameter of a set, 16

directed set, 3, 4, 22, 27

directional derivative, 241, 247

discontinuous linear functional,
32,123, 169

discrete entropy, 140

distance, 27

distance to a set, 16, 20, 24, 32, 34,
44,49, 98,167,170, 173, 177,
183, 185, 188, 238, 271, 272

domain of a function, 5, 6, 113

domain of a set-valued operator, 2

domain of continuity, 11

Douglas—Rachford algorithm, 366,
376, 401, 404

dual cone, 96

dual optimal value, 214

dual problem, 212, 214, 275, 279,
408

dual solution, 275, 279

duality, 211, 213, 275

duality gap, 212, 214-216, 221

Dykstra’s algorithm, 431, 432

Eberlein-Smulian theorem, 35

effective domain of a function, 6

Ekeland variational principle, 19

Ekeland-Lebourg theorem, 263

enlargement of a monotone opera-
tor, 309

entropy of a random variable, 139

epi-sum, 167

epigraph, 5, 6, 12, 15, 113, 119,
133, 168

equality constraint, 283



462

Euclidean space, 28

even function, 186

eventually in a set, 4

evolution equation, 313

exact infimal convolution, 167,
170, 171, 207, 209, 210

exact infimal postcomposition, 178

exact modulus of convexity, 144—
146

existence of minimizers, 157, 159

expected value, 29

extended real line, 4

extension, 297

F, set, 24

Farkas’s lemma, 99, 106

farthest-point operator, 249, 296

Fejér monotone, 75, 83, 86, 160,
400

Fenchel conjugate, 181

Fenchel duality, 211

Fenchel-Moreau theorem, 190

Fenchel-Rockafellar duality, 213,

275, 282, 408
Fenchel-Young inequality, 185,
226

Fermat’s rule, 223, 235, 381

firmly nonexpansive operator, 59,
61-63, 68, 69, 73, 80, 81, 176,
270, 294, 298, 335, 337, 436

first countable space, 23

Fitzpatrick function, 304, 311, 351

Fitzpatrick function of order n,
330

fixed point, 62, 79-81

fixed point iterations, 75

fixed point set, 20, 62-64, 436

forward—backward algorithm, 370,
377, 405, 438, 439

forward-backward—forward algo-
rithm, 375

Fréchet derivative, 38, 39, 257

Fréchet differentiability, 38, 176,
177, 243, 253, 254, 268-270,
320

INDEX

Fréchet gradient, 38

Fréchet topological space, 23
frequently in a set, 4
function, 5

Gy set, 19, 263, 320

Gateaux derivative, 37

Gateaux differentiability, 37-39,
243, 244, 246, 251, 252, 254,
257, 267

gauge, 120, 124, 202

generalized inverse, 50, 251, 360,
361, 395, 418

generalized sequence, 4

global minimizer, 223

gradient, 38, 176, 243, 244, 266,
267, 382

gradient operator, 38

graph, 5

graph of a set-valued operator, 2

Holder continuous gradient, 269
half-space, 32, 33, 43, 419, 420
Hamel basis, 32

hard thresholder, 61
Haugazeau’s algorithm, 436, 439
Hausdorff distance, 25
Hausdorff space, 7, 16, 33
hemicontinous operator, 298, 325
Hessian, 38, 243, 245, 246
Hilbert direct sum, 28, 226
Hilbert space, 27

Huber’s function, 124
hyperplane, 32, 34, 48, 123

increasing function, 5

increasing sequence of convex sets,
416

indicator function, 12, 113, 173,
227

inequality constraint, 285, 389

infimal convolution, 167, 187, 207,
210, 237, 266, 359

infimal postcomposition, 178, 187,
199, 218, 237

infimum, 5, 157, 159, 184, 188



INDEX

infimum of a function, 6

infinite sum, 27

initial condition, 295

integral function, 118, 138, 193,
238

interior of a set, 7, 22, 90, 123

inverse of a monotone operator,
295

inverse of a set-valued operator, 2,
231

inverse strongly monotone opera-
tor, 60

Jensen’s inequality, 135

Karush—Kuhn—Tucker conditions,
393

Kenderov theorem, 320

kernel of a linear operator, 32

Kirszbraun—Valentine  theorem,
337

Krasnosel’skii-Mann  algorithm,
78, 79

Lagrange multiplier, 284, 287, 291,
386-388, 391

Lagrangian, 280, 282

Lax—Milgram theorem, 385

least element, 3

least-squares solution, 50

Lebesgue measure, 29

Legendre function, 273

Legendre transform, 181

Legendre—Fenchel transform, 181

level set, 5, 6, 12, 15, 132, 158, 203,
383

limit inferior, 5

limit superior, 5

line segment, 1, 43, 54, 132

linear convergence, 20, 78, 372,
377, 406, 407

linear equations, 50

linear functional, 32

linear monotone operator, 296—
298, 355

463

Lipschitz continuous, 20, 31, 59,
123, 176, 229, 339

Lipschitz continuous gradient,
269-271, 405-407, 439

local minimizer, 156

locally bounded operator, 316,
319, 344

locally Lipschitz continuous, 20,
122

lower bound, 3

lower level set, 5, 6, 148, 427

lower semicontinuity, 10, 129

lower semicontinuous, 10, 12

lower semicontinuous convex enve-
lope, 130, 185, 192, 193, 207

lower semicontinuous convex func-
tion, 122, 129, 132, 185

lower semicontinuous envelope, 14,
23

lower semicontinuous function,
129

lower semicontinuous infimal con-
volution, 170, 210

marginal function, 13, 120, 152

max formula, 248

maximal element, 3

maximal monotone operator, 297

maximal monotonicity and conti-
nuity, 298

maximal monotonicity of a sum,
351

maximally cyclically monotone op-
erator, 326

maximally monotone extension,
316, 337

maximally monotone operator,
297, 298, 311, 335, 336, 338,
339, 438

maximum of a function, 6

measure space, 28, 295

metric space, 16

metric topology, 16, 33, 34

metrizable topology, 16, 23, 34

midpoint convex function, 141



464

midpoint convex set, 57

minimax, 218

minimization in a product space,
403

minimization problem, 13, 156,
381, 393, 401, 402, 404-406

minimizer, 156, 157, 159, 163, 243,
384

minimizing sequence, 6, 13, 160,
399

minimum of a function, 6, 243

Minkowski gauge, 120, 124, 202

Minty’s parametrization, 340

Minty’s theorem, 311

modulus of convexity, 144

monotone extension, 297

monotone linear operator, 296

monotone operator, 244, 293, 311,
351, 363

monotone set, 293

Moore—Penrose inverse, 50

Moreau envelope, 173, 175, 176,
183, 185, 187, 197, 198, 270,
271, 276, 277, 334, 339, 342

Moreau’s conical decomposition,
98

Moreau’s decomposition, 198

Moreau—Rockafellar theorem, 204

negative orthant, 5

negative real number, 4

neighborhood, 7

net, 4, 5, 22, 27, 53, 314

nonexpansive operator, 59, 60, 62,
63, 79, 159, 270, 294, 298,
336, 348, 439

nonlinear equation, 325

norm, 27, 35, 40, 115, 118, 144,
147, 150, 151, 183, 199, 231,
252

norm topology, 33

normal cone, 101, 227, 230, 238,
272, 304, 334, 354, 383, 389

normal equation, 50

normal vector, 107
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obtuse cone, 105

odd operator, 79, 379

open ball, 16

open set, 7

operator splitting algorithm, 366

Opial’s condition, 41

optimal value, 214

order, 3

orthogonal complement, 27

orthonormal basis, 27, 37, 161,
301, 313, 344

orthonormal sequence, 34

outer normal, 32

parallel linear subspace, 1

parallel projection algorithm, 82

parallel splitting algorithm, 369,
404

parallel sum of monotone opera-
tors, 359

parallelogram identity, 29

parametric duality, 279

paramonotone operator, 323, 385

partial derivative, 259

partially ordered set, 3

Pasch—Hausdorff envelope, 172,
179

periodicity condition, 295

perspective function, 119, 184

POCS algorithm, 84

pointed cone, 88, 105

pointwise bounded operator fam-
ily, 31

polar cone, 96, 110

polar set, 110, 202, 206, 428

polarization identity, 29

polyhedral cone, 388, 389

polyhedral function, 216-218, 381,
383, 388, 389

polyhedral set, 216, 383

polyhedron, 419

positive operator, 60

positive orthant, 5, 426

positive real number, 4

positive semidefinite matrix, 426
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positively homogeneous function,
143, 201, 229, 278

positively homogeneous operator,
3

power set, 2

primal optimal value, 214

primal problem, 212, 214, 275, 279,
408

primal solution, 275, 279

primal-dual algorithm, 408

probability simplex, 426

probability space, 29, 139

product topology, 7

projection algorithm, 431, 439

projection onto a ball, 47

projection onto a convex cone, 97,
98, 425

projection onto a half-space, 419

projection onto a hyperplane, 48,
419

projection onto a hyperslab, 419

projection onto a linear subspace,
49

projection onto a lower level set,
427

projection onto a polar set, 428

projection onto a ray, 426

projection onto a set, 44

projection onto an affine subspace,
48, 77, 417

projection onto an epigraph, 133,
427

projection operator, 44, 61, 62,
175, 177, 334, 360, 361, 415

projection theorem, 46, 238

projection-gradient algorithm, 406

projector, 44, 61

proper function, 6, 132

proximal average, 199, 205, 271,
307

proximal mapping, 175

proximal minimization, 399

proximal-gradient algorithm, 405,
439

465

proximal-point algorithm, 345,
399, 438

proximinal set, 44-46

proximity operator, 175, 198, 199,
233, 243, 244, 271, 334, 339,
342-344, 375, 381, 382, 401,
402, 404, 405, 415, 428

pseudocontractive operator, 294

pseudononexpansive operator, 294

quadratic function, 251

quasiconvex function, 148, 157,
160, 165

quasinonexpansive operator, 59,
62, 71, 75

quasirelative interior, 91

random variable, 29, 135, 139, 194

range of a set-valued operator, 2

range of a sum of operators, 357,
358

recession cone, 103

recession function, 152

recovery of primal solutions, 275,
408

reflected resolvent, 336, 363, 366

regularization, 393

regularized minimization problem,
393

relative interior, 90, 96, 123, 210,
216, 234

resolvent, 333, 335, 336, 366, 370,
373

reversal of a function, 186, 236,
342

reversal of an operator, 3, 340

Riesz—Fréchet representation, 31

right-shift operator, 330, 356

Radstrom’s cancellation, 58

saddle point, 280282

scalar product, 27

second Fréchet derivative, 38
second Gateaux derivative, 38
second-order derivative, 245, 246
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selection of a set-valued operator,
2

self-conjugacy, 183, 185

self-dual cone, 96, 186

self-polar cone, 186

separable Hilbert space, 27, 194

separated sets, 55

separation, 55

sequential cluster point, 7, 15, 33

sequential topological space, 16, 23

sequentially closed, 15, 16, 53, 231,
300, 301

sequentially compact, 15, 16, 36

sequentially continuous, 15, 16

sequentially lower semicontinuous,
15, 129

set-valued operator, 2

shadow sequence, 76

sigma-finite measure space, 194

Slater condition, 391

slope, 168

soft thresholder, 61, 199

solid cone, 88, 105

span of a set, 1

splitting algorithm, 375, 401, 402,
404, 405

Stampacchia’s theorem, 384, 395

standard unit vectors, 28, 89, 92

steepest descent direction, 249

strict contraction, 64

strict epigraph, 180

strictly convex function, 114, 144,
161, 267, 324

strictly convex on a set, 114

strictly convex set, 157

strictly decreasing function, 5

strictly increasing function, 5

strictly monotone operator, 323,
344

strictly negative real number, 4

strictly nonexpansive operator,
325

strictly positive operator, 246

strictly positive orthant, 5

strictly positive real number, 4

INDEX

strictly quasiconvex function, 149,

157

strictly quasinonexpansive opera-
tor, 59, 71

string-averaged relaxed projec-
tions, 82

strong convergence, 33, 37

strong relative interior, 90, 95, 96,
209, 210, 212, 215, 217, 234,
236, 381

strong separation, 55

strong topology, 33

strongly convex function, 144, 159,
188, 197, 270, 276, 324, 406

strongly monotone operator, 323,
325, 336, 344, 372

subadditive function, 143

subdifferentiable function, 223,
247

subdifferential, 223, 294, 304, 312,
324, 326, 354, 359, 381, 383

subdifferential of a maximum, 264

subgradient, 223

sublinear function, 143, 153, 156,
241

subnet, 4, 8, 22

sum of linear subspaces, 33

sum of monotone operators, 351

sum rule for subdifferentials, 234

summable family, 27

supercoercive function, 158, 159,
172, 203, 210, 229

support function, 109, 156, 183,
195, 201, 229, 240

support point, 107, 109, 164

supporting hyperplane, 107, 109

supremum, 5, 129, 188

supremum of a function, 6

surjective monotone operator, 318,
320, 325, 358

tangent cone, 100

time-derivative operator, 295, 312,
334

Toland—Singer duality, 205
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topological space, 7

topology, 7

totally ordered set, 3

trace of a matrix, 28

translation of an operator, 3

Tseng’s splitting algorithm, 373,
378, 407

Tykhonov regularization, 393

unbounded net, 314

uniform boundedness principle, 31

uniformly convex function, 144,
147, 324, 394, 399

uniformly convex on a set, 144,
147, 324, 407

uniformly convex set, 164, 165

uniformly monotone on a set, 324

uniformly monotone on bounded
sets, 346, 367, 373, 376, 378,
408

uniformly monotone operator,
323, 325, 344, 354, 358, 367,
373, 376, 378, 408

uniformly quasiconvex function,
149, 163

upper bound, 3

upper semicontinuous function,
11, 124, 281

value function, 279, 289

variational inequality, 375378,
383

Volterra integration operator, 308

von Neumann’s minimax theorem,
218

von Neumann—Halperin theorem,
85

weak closure, 53

weak convergence, 33, 36, 79-81

weak sequential closure, 53

weak topology, 33

weakly closed, 33-35, 45, 53

weakly compact, 33-35

weakly continuous operator, 33,
35, 62, 418

467

weakly lower semicontinuous, 35,
129

weakly lower semicontinuous func-
tion, 33

weakly open, 33

weakly sequentially closed, 33-35,
53

weakly sequentially compact, 33,
35

weakly sequentially continuous op-
erator, 343, 426

weakly sequentially lower semicon-
tinuous, 129

Weierstrass theorem, 13

Yosida approximation, 333, 334,
336, 339, 345, 347, 348

zero of a monotone operator, 344,
345, 347, 381, 438

zero of a set-valued operator, 2

zero of a sum of operators, 363,
366, 369, 375





