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Projection methods
Convex projection methods in signal recovery

m Mathematical setting: real Hilbert (e.g., Euclidean) space
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Projection methods
Convex projection methods in signal recovery

m Mathematical setting: real Hilbert (e.g., Euclidean) space
(H, (1)
m Signal recovery: restoration, denoising, reconstruction
m Projection onto a closed convex subset S of H:
X
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Projection methods

Example 1: Algebraic reconstruction techniques (ART)

in computer-aided tomography (Herman et al, 1970)

Goal: Reconstruct an image X from m scalar measurements
i = (Y ‘ Ui>. Define S; = {X eH ‘ <X ‘ Ui> = T]i}.

S3

X1

Sz

Sy

This algorithm goes back to Kaczmarz (1937).
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Projection methods

Example 2: Band-limited extrapolation (1974-1975)

m The original signal X is band-limited (its Fourier transform
has compact support B around 0) and it is observed over
some region A.

m Gerchberg-Papoulis algorithm:

Forcex =z on A

Force X = 0 outside of B
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Projection methods

Example 2: Band-limited extrapolation (1974-1975)

m The set of signals with Fourier support B is the closed
vector subspace

S; = {x €L? | X|gg =0}

m Projecting x onto S; amounts to forcing X to 0 outside of B:
Pix = X1g.

m The set of signals which coincide with z on A is the closed
affine subspace

S;={xel?|x[p=2}.

m Projecting x onto S, amounts to forcing x =z on A :
Pox =2z15 + XlCA'

m Gerchberg-Papoulis is an alternating projection algorithm:
Xn+1 = P1P2xn (Youla,1978).
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Projection methods

Projection methods in affine feasibility problems

m Given affine subspaces (S;j)1<j<m Of H,

m
Find x €S =(S:.
i=1

Theorem (von Neumann (1933, m = 2) - Halperin (1962))

Suppose that S # @ and let xo € ‘H. Then

Xn = (P1 -+ Pm)"Xo — PsXo.
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Projection methods

Projection methods in feasibility problems

m Given closed convex subsets (S;)1<i<m Of H,

m
Find x€S=(S:.
i=1

m Several hundred papers on applications of this convex set
theoretic framework in inverse problems.!

Theorem (Bregman, 1965)

Suppose that S # @ and let xo € H. Then (POCS algorithm)

1p L. Combettes, The foundations of set theoretic estimation, Proc. IEEE
8, 182-208 (1993).
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Projection methods

Projection methods in convex feasibility problems

Xo

Nw

m Various variants have been proposed in the form
block-iterative parallel algorithms.

m In these convex projection methods the limit is an
undetermined feasible point.
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Projection methods

Projection methods in convex feasibility problems

The alternating projection algorithm fails to provide the closest
pointto X in S = S N S,.
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Projection methods

Projection methods in convex best feasible

approximation problems

m Problem: compute PgXxo, i.e.,

min  |x — xo
xeS=NL; S

m Examples:

m Minimum energy feasible solution (xo = 0)

m Least feasible deviation from a nominal function xq

m Constrained signal/image denoising: xog = X +w
m Projection algorithms:

m Anchor point method

m Haugazeau's method

m Boyle-Dykstra’s method
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Projection methods

Projection methods in convex best feasible

approximation problems

Theorem (Boyle-Dykstra, 1986)

Suppose that S # @ and let xg € H. Algorithm:

Xg' = Xo
fori=1,....,m
[ by =0
forn=1,2,...
X =Xy
fori=1,...,m
yr|1 :Xri1_l+binfl
Xp = Piyq
by = Yn — Piyn
Xn = X

Then x, — PsXg. (Corollary: von-Neumann-Halperin.)
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Projection methods

Convex variational formulations in signal recovery

m [o(H): lower semicontinuous convex functions
f: H — ]—o00,400] such that
domf = {x € H | f(X) < +oo} # /emp.

m General problem:

m

)';2',;_1‘ it 1:i (X) ) 1)

i.e., we select a point in the feasibility set S = ", domf;.
m Example: fi: X — ||X —Xo||, fi = ¢s, (2 <i < m) where
ts,(X) =0if X € Sj; 15 (X) =+o0if X ¢S;.
We recover the best feasible approximation problem
min _ [|X — Xol|. 2)

i=2 >l
m Projections are suitable to solve (2), but not to solve (1).
m Linear/affine projections — convex projections = ?27?
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Proximity operators

J.-J. Moreau’s

m Let S be a nonempty closed convex subset of H. Then
ts € I'o(H) and the projector is defined by

1
Ps: X — argmin —||x —y|I? = argmin ¢s(y) + =|x — y|2.
y€eSs yeEH 2
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Proximity operators

J.-J. Moreau’s

m Let S be a nonempty closed convex subset of H. Then
ts € I'o(H) and the projector is defined by

1
Ps: X — argmin —||x —y|I? = argmin ¢s(y) + =|x — y|2.
y€eSs yeEH 2

m More generally, for any function f € I'o(H), the proximity
operator of f is defined by

prox; : X — argmin f(y) + l||x -yl
yeH 2

m Basic properties:
m Fix prox; = Argminf.
W [[prox;x — proxy || <|[[x —yl|
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Proximity operators

J.-J. Moreau’s

m Let S be a nonempty closed convex subset of H. Then
ts € I'o(H) and the projector is defined by

1
Ps: X — argmin —||x —y|I? = argmin ¢s(y) + =|x — y|2.
y€eSs yeEH 2

m More generally, for any function f € I'o(H), the proximity
operator of f is defined by

prox; : X — argmin f(y) + l||x -yl
yeH 2

m Basic properties:
m Fix prox; = Argminf.
m [[prox;x — proxy [|* < [Ix —y|?
—[I(1d — prox;)x — (Id — proxq )y 2.
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Proximity operators

More properties of proximity operators...

[ property

D)

o
N o — )€ H T T oo — 7)
scaling @(/p).p € R {o} poor s / o 6/ P)
reflection o(—x)

oo (=)

quadratic perturbation

PO+ ellxll*/2+ B | o) +

0/ () (G = Bu/(a+1)

conjugation

uE Ha>o(B,v) ER
P (x)

X — proxgox

squared distance

(/2

(c+px)/2

Moreau envelope

P0) = m e e0) + Il —lI°/2

(x + pouipx) /2
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Proximity operators

Examples of proximity operators

| () [ g€
wl i € <o E—wi £ <w
lat® = o LE5 T o
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Proximity operators

Formal problem statement for m = 2

m [o(H): proper lower semicontinuous convex functions from
H t0 ]—o0, +0o0].
m f1, f in Mo(H) such that

0 € sri(domf; — domf).

m Problem:

minimize f1(x) + f2(x)
XeH
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Forward-backward

Forward-backward splitting (m = 2)

m f; finite, differentiable, Vf, 1/3-Lipschitz-continuous.

m Examples:
m Noisy linear observations: z; = TiX +w;, 1 <i <p.
m Closed convex a priori constraint sets: (Sj)1<j<q-
m Functional: f2: x — 37, il Tix — 2|2 + L, pid (x).
m Characterization of solutions: x minimizes f; + f, <
X = prox.¢ (x —yVfz(x)), v > 0.
m Algorithm:

Xn1 = prox, ¢, (xo — v (Via(xa) ) :

where
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Forward-backward

Forward-backward splitting (m = 2)

m f; finite, differentiable, Vf, 1/3-Lipschitz-continuous.

m Examples:
m Noisy linear observations: z; = TiX +w;, 1 <i <p.
m Closed convex a priori constraint sets: (Sj)1<j<q-
m Functional: f2: x — 37, il Tix — 2|2 + L, pid (x).
m Characterization of solutions: x minimizes f; + f, <
X = prox.¢ (x —yVfz(x)), v > 0.
m Algorithm:

Xni1 = Prox, 1, (X —m(Vi2(xn) ) ,

where
m 0 <infhenyn < SUPLeny T < 28.
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Forward-backward

Forward-backward splitting (m = 2)

m f; finite, differentiable, Vf, 1/3-Lipschitz-continuous.
m Examples:

m Noisy linear observations: z; = TiX +w;, 1 <i <p.

m Closed convex a priori constraint sets: (Sj)1<j<q-

m Functional: f2: x — 320, [ Tix — zi|* + Y511, pydd ().
m Characterization of solutions: x minimizes f; + f, <

X = prox.¢ (x —yVfz(x)), v > 0.

m Algorithm:

Xnp1 = prox. ¢, (Xn — 1 (Vfa(Xn) + bn)) + an )

where
m 0 <infhenyn < SUPLeny T < 28.
u ZneN lan] < +oo, EnEN [lbn|| < +o0.
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Forward-backward

Forward-backward splitting (m = 2)

m f; finite, differentiable, Vf, 1/3-Lipschitz-continuous.

m Examples:
m Noisy linear observations: z; = TiX +w;, 1 <i <p.
m Closed convex a priori constraint sets: (Sj)1<j<q-
m Functional: f2: x — 37, il Tix — 2|2 + L, pid (x).
m Characterization of solutions: x minimizes f; + f, <
X = prox.¢ (x —yVfz(x)), v > 0.
m Algorithm:

Xnt1 = Xn + An (Prox,, ¢, (Xn — ¥n(VF2(Xn) + b)) + a@n — Xn),

where
m 0 <infhenyn < SUPLeny T < 28.
u ZneN ”an” < —Q—o.o, EnEN [lbn|| < +o0.
B (An)nen in]0,1], infoey An > 0.
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Forward-backward

Forward-backward splitting (m = 2)

Theorem

Suppose that Argminf; + f, # @. Then any sequence (Xn)nen
generated by the forward-backward algorithm converges
weakly to a point in Argminf; + fo.

This result covers and extends:
m Alternating projection method, parallel projection method;

m Parallel projection methods for hard constrained
inconsistent feasibility problems;

m Projected Landweber method, split feasibility methods;
m lterative soft-thresholding method,;
m Variational geometry/texture decomposition methods; etc.
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Forward-backward

Douglas-Rachford splitting (m = 2)

m f, is no longer assumed to be smooth.
m For instance, f; and f, are any of the following:

m :c, C C H closed and convex.

dc, C C H closed and convex.

| |lsin H = RN,

X = Z:“:luiHTiX — Zi||1 in H = RN,

X = 30 ]| Tix — zil|in H = L3(Q), Q ¢ RN open,

bounded.

m Total variation.

B X [o@(x(t), Vx(t))dt in H = H'(Q), @ c RN open,
bounded, and ¢ € o(R™ ) nonsmooth.

B MaXi<i<m Pj» i € I'o(’H)

m etc...
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Forward-backward

Douglas-Rachford splitting (m = 2)

Characterization of solutions: Let x € ‘H and v € |0, +oc|.
Then the following are equivalent.

m X € Argminfy + f,.

B X = prox.; Yy, wherey satisfies

~f2

Prox.;,y = prox.g (2prox. oy —y).
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Douglas-Rachford

Douglas-Rachford splitting (m = 2)

Algorithm:
m Lety € |0, +o0], let (An)nen be a sequence in |0, 2[, and
let (an)nen @and (bp)nen be sequences in ‘H.
[ | ZHGN )\n(z — )\n) = —I—OO
B > nen An(llan]| + [[bn]]) < +oo.
m lterations: Take xg € ‘H and set, for every n € N,

X_ 1 = ProX. s Xn + bn

n+2
Xnt1 = Xn + An (proxvfl (an+% —Xn) +an — xn+%).

gi7]
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Douglas-Rachford

Douglas-Rachford splitting (m = 2)

Theorem

Suppose that Argminf; + f, # @ and let (x,)nen be an arbitrary
sequence generated by the Douglas-Rachford algorithm. Then
(Xn)nen converges weakly to some pointy € ‘H and

X = prox.y € Argminfy + f,.

Corollary

Suppose that Argminf; + f, # @, that H is finite-dimensional,

and that by, — 0. Let (Xn)nen be an arbitrary sequence

generated by the Douglas-Rachford algorithm. Then (X, 1 )nen
2

converges to a point in Argminfy + f5.
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Splitting

Proximal splitting in the general case

m The functions (fi)1<j<m are in Mo(H).
B CQ:0eEsn{(X—Xy,...,Xx —Xm) | X €H, X; € domf;}.
m Problem:

min Y fi(x)

XeH “
i=1
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Splitting

Proximal splitting in the general case

m The functions (fi)1<j<m are in Mo(H).
B CQ:0eEsn{(X—Xy,...,Xx —Xm) | X €H, X; € domf;}.
m Problem:

m

D Lo mn, S it
1=
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Splitting

Proximal splitting in the general case

m The functions (fi)1<j<m are in Mo(H).
B CQ:0eEsn{(X—Xy,...,Xx —Xm) | X €H, X; € domf;}.
m Problem:

m

min, fi(x), i.e. lelgxm Zf

i=1

m Equivalent problem in the product space H™:

, D= { | x € H}
it o) TG, with {f.x—(x.)1<.<m~>z._1 fi(x).
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Splitting

Proximal splitting in the general case

m The functions (fi)1<j<m are in Mo(H).
B CQ:0eEsn{(X—Xy,...,Xx —Xm) | X €H, X; € domf;}.
m Problem:

m

D Lo mn, S it
1=

m Equivalent problem in the product space H™:

, D= { | x € H}
it o) TG, with {f.x—(x.)1<.<m~>z._1 fi(x).

m Apply Douglas-Rachford to ¢p and f in the product space!
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Splitting

Parallel proximal algorithm (PPXA)

Initialization
7 € 10, +oo]
(wi)1<i<m €]0,1]™ satisfy 3" wi =1
(Vi0)i<i<m € H™
Xo = Zim:l wiYi,0
Forn=0,1,...
Fori=1,....m
| Pin =Prox, ,,Yin+ain
Pn = Z.mzl wiPin
A €]0,2[
Fori=1,...,m
| Yini1 =Yin+ An (2P0 — Xa — Pin)
| Xn+1 = Xn + )\n(pn - Xn)'
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Parallel proximal algorithm (PPXA)

Theorem

Suppose that Argminf; + - - - + f, # @ and let (Xp)nen be an
arbitrary sequence generated by the PPXA algorithm. Then
(Xn)nen converges weakly to some point in Argminfy + - - - 4+ fi.
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Splitting

Dykstra-like parallel proximal algorithm

m (fi)1<i<m functions in [o(H) such that (no CQ)
domf,Nn---Nndomf, # @.

m w >0, Zimzlwi =1.
m Problem (extending the best feasible approximation
problem):

m
1
min f ~1Ix — Xoll?.
min iZ;wu(X)JFZHX Xol|
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Splitting

Dykstra-like parallel proximal algorithm

Initialization
[ 21,0 = X0,---,Zm,0 = X0
Forn=0,1,...

Fori=1,.... m
| Pin = Prox;zin

m
Xnt1 = Zwipi,n
=1
Fori=1,...,m
[ Zin+1 = Xn4+1 + Zjn — Pin-

Xn — argmin wify + - - - + wmfm + || - —Xol|2/2.
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Splitting

Alternating-direction method of multipliers (ADMM)

mfely(H),gerlo(g9) L: H — G linear and bounded,
L* o L invertible, O € sri(L(domf) — domg).

m Problem:

m|n|m|ze f(x) +g(Lx), i.e., m|n|m|ze f(x) +a(y)-

H,yeG
Lx =y

m Augmented Lagrangian:
Ly:HXxGxG— ]-00,+00]

1 1
(x,y,2) = 1) +90y) + Z((Lx = y) | 2) + 5L — vyl

P. L. Combettes Proximal Splitting Methods in Signal Recovery



Splitting

Alternating-direction method of multipliers (ADMM)

Denote by proxfL the operator which mapsy € G to the unique
minimizer of x — f(x) + [|Lx — y||?/2.

Initialization
v>0
Yo€G
| Zo € g
Forn=0,1,...
Xn = proxl:/f (Yn — Zn)
Snh = LXp
Yn+1 = Prox.g(sn + zn)
| Zn41 = Zn +Sn — Ynt+1
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Splitting

Alternating-direction method of multipliers (ADMM)

Denote by proxfL the operator which mapsy € G to the unique
minimizer of x — f(x) + [|Lx — y||?/2.

Initialization
v>0
Yo€G
| Zo € g
Forn=0,1,...
Xn = proxbf (Yn — zn)
Snh = LXp
Yn+1 = Prox.g(sn + zn)
| Zn41 = Zn +Sn — Ynt+1

I : i orit
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Splitting

Simultaneous-direction method of multipliers (SDMM)

[ | giero(gi),lfifm

m Li: H — G linear and bounded, Q = Zi”;l L o Lj invertible
m 0 esri{(Lix —y1,...,LmX —Ym) | X € H,y; € domg;}.

m Problem:

minimize g1(L1X) + - - + gm(LmX).
xeH
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Splitting

Simultaneous-direction method of multipliers (SDMM)

Initialization
v>0
Y10€G1,-..,Ymo € m
| Z10 € gl,...,Zm’o €Gm
Forn=0,1,...

m
Xp = Q_lzl-i*(Yi,n —Zin)
i=1

Fori=1,...,m
Si.n = LiXn
Yint1 = ProX,q (Sin +Zin)
Zin+1 = Zin + Sin — Yin+1
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Splitting
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