Proximal Splitting Methods in Signal Recovery

P. L. Combettes

Laboratoire Jacques-Louis Lions Faculté de Mathématiques Université Pierre et Marie Curie – Paris 6 75005 Paris, France

Mathematics and Image Analysis, Paris, December 15, 2009

Convex projection methods in signal recovery

■ Mathematical setting: real Hilbert (e.g., Euclidean) space $(\mathcal{H}, \langle \cdot | \cdot \rangle)$

Convex projection methods in signal recovery

- Mathematical setting: real Hilbert (e.g., Euclidean) space $(\mathcal{H}, \langle \cdot | \cdot \rangle)$
- Signal recovery: restoration, denoising, reconstruction

Convex projection methods in signal recovery

- Mathematical setting: real Hilbert (e.g., Euclidean) space $(\mathcal{H}, \langle \cdot | \cdot \rangle)$
- Signal recovery: restoration, denoising, reconstruction
- Projection onto a closed convex subset S of H:

Projection methods

Example 1: Algebraic reconstruction techniques (ART) in computer-aided tomography (Herman et al, 1970)

Goal: Reconstruct an image \overline{x} from m scalar measurements $\eta_i = \langle \overline{x} \mid u_i \rangle. \text{ Define } S_i = \{ x \in \mathcal{H} \mid \langle x \mid u_i \rangle = \eta_i \}.$

This algorithm goes back to Kaczmarz (1937)

Example 2: Band-limited extrapolation (1974-1975)

- The original signal \overline{x} is band-limited (its Fourier transform has compact support B around 0) and it is observed over some region A.
- Gerchberg-Papoulis algorithm:

Example 2: Band-limited extrapolation (1974-1975)

The set of signals with Fourier support B is the closed vector subspace

$$S_1 = \left\{ x \in L^2 \mid \widehat{x}|_{\complement B} = 0 \right\}$$

- Projecting x onto S_1 amounts to forcing \hat{x} to 0 outside of B: $\widehat{P_1x} = \widehat{x}1_B$.
- The set of signals which coincide with z on A is the closed affine subspace

$$S_2 = \{x \in L^2 \mid x|_A = z\}.$$

- Projecting x onto S_2 amounts to forcing x = z on A: $P_2x = z1_A + x1_{CA}$.
- Gerchberg-Papoulis is an alternating projection algorithm: $x_{n+1} = P_1 P_2 x_n$ (Youla,1978).

Splitting

Projection methods in affine feasibility problems

■ Given affine subspaces $(S_i)_{1 \le i \le m}$ of \mathcal{H} ,

Find
$$x \in S = \bigcap_{i=1}^{m} S_i$$
.

Theorem (von Neumann (1933, m = 2) - Halperin (1962))

Suppose that $S \neq \emptyset$ and let $x_0 \in \mathcal{H}$. Then

$$x_n = (P_1 \cdots P_m)^n x_0 \rightarrow P_S x_0.$$

Projection methods in convex feasibility problems

■ Given closed convex subsets $(S_i)_{1 \le i \le m}$ of \mathcal{H} ,

Find
$$x \in S = \bigcap_{i=1}^{m} S_i$$
.

Several hundred papers on applications of this convex set theoretic framework in inverse problems.¹

Theorem (Bregman, 1965)

Suppose that $S \neq \emptyset$ and let $x_0 \in \mathcal{H}$. Then (POCS algorithm)

$$x_n = (P_1 \cdots P_m)^n x_0 \longrightarrow x \in S.$$

¹P. L. Combettes, The foundations of set theoretic estimation, *Proc. IEEE* **8**, 182–208 (1993).

Projection methods Proximity operators Forward-backward Douglas-Rachford Splitting

Projection methods in convex feasibility problems

- Various variants have been proposed in the form block-iterative parallel algorithms.
- In these convex projection methods the limit is an undetermined feasible point.

Projection methods in convex feasibility problems

The alternating projection algorithm fails to provide the closest point to x_0 in $S = S_1 \cap S_2$.

Projection methods in convex best feasible approximation problems

■ Problem: compute $P_S x_0$, i.e.,

$$\min_{\mathbf{x}\in\mathcal{S}=\bigcap_{i=1}^m S_i} \|\mathbf{x}-\mathbf{x}_0\|$$

- Examples:
 - Minimum energy feasible solution ($x_0 = 0$)
 - Least feasible deviation from a nominal function x_0
 - Constrained signal/image denoising: $x_0 = \overline{x} + w$
- Projection algorithms:
 - Anchor point method
 - Haugazeau's method
 - Boyle-Dykstra's method

Projection methods in convex best feasible approximation problems

Theorem (Boyle-Dykstra, 1986)

Suppose that $S \neq \emptyset$ and let $x_0 \in \mathcal{H}$. Algorithm:

$$\begin{aligned} x_{0}^{m} &= x_{0} \\ & \text{for } i = 1, \dots, m \\ & \Big\lfloor \begin{array}{l} b_{0}^{i} &= 0 \\ & \text{for } n = 1, 2, \dots \\ & \\ x_{n}^{0} &= x_{n-1}^{m} \\ & \text{for } i = 1, \dots, m \\ & \Big\lfloor \begin{array}{l} y_{n}^{i} &= x_{n}^{i-1} + b_{n-1}^{i} \\ x_{n}^{i} &= P_{i} y_{n}^{i} \\ b_{n}^{i} &= y_{n}^{i} - P_{i} y_{n}^{i} \\ x_{n} &= x_{n}^{m} \end{aligned} \end{aligned}$$

Then $x_n \to P_S x_0$. (Corollary: von-Neumann-Halperin.)

Convex variational formulations in signal recovery

- $\Gamma_0(\mathcal{H})$: lower semicontinuous convex functions $f: \mathcal{H} \to [-\infty, +\infty]$ such that $dom f = \{x \in \mathcal{H} \mid f(x) < +\infty\} \neq /emp.$
- General problem:

$$\min_{\mathbf{x}\in\mathcal{H}}\sum_{i=1}^{m}f_{i}(\mathbf{x}),\tag{1}$$

i.e., we select a point in the feasibility set $S = \bigcap_{i=1}^{m} \text{dom } f_i$.

Example: $f_1: x \mapsto ||x-x_0||, f_i = \iota_{S_i} (2 \le i \le m)$ where $\iota_{S_i}(x) = 0 \text{ if } x \in S_i; \ \iota_{S_i}(x) = +\infty \text{ if } x \notin S_i.$

We recover the best feasible approximation problem

$$\min_{\mathbf{x} \in \bigcap_{i=2}^m S_i} \|\mathbf{x} - \mathbf{x}_0\|. \tag{2}$$

- Projections are suitable to solve (2), but not to solve (1).
- Linear/affine projections → convex projections → ???

■ Let S be a nonempty closed convex subset of \mathcal{H} . Then $\iota_S \in \Gamma_0(\mathcal{H})$ and the projector is defined by

$$P_{S} \colon x \mapsto \underset{y \in S}{\operatorname{argmin}} \frac{1}{2} \|x - y\|^{2} = \underset{y \in \mathcal{H}}{\operatorname{argmin}} \iota_{S}(y) + \frac{1}{2} \|x - y\|^{2}.$$

Splitting

■ Let S be a nonempty closed convex subset of \mathcal{H} . Then $\iota_S \in \Gamma_0(\mathcal{H})$ and the projector is defined by

$$P_{\mathcal{S}} \colon x \mapsto \underset{y \in \mathcal{S}}{\operatorname{argmin}} \frac{1}{2} \|x - y\|^2 = \underset{y \in \mathcal{H}}{\operatorname{argmin}} \iota_{\mathcal{S}}(y) + \frac{1}{2} \|x - y\|^2.$$

■ More generally, for any function $f \in \Gamma_0(\mathcal{H})$, the proximity operator of f is defined by

$$\operatorname{prox}_f \colon x \mapsto \underset{y \in \mathcal{H}}{\operatorname{argmin}} f(y) + \frac{1}{2} ||x - y||^2.$$

Splitting

■ Let S be a nonempty closed convex subset of \mathcal{H} . Then $\iota_S \in \Gamma_0(\mathcal{H})$ and the projector is defined by

$$P_{\mathcal{S}} \colon x \mapsto \underset{y \in \mathcal{S}}{\operatorname{argmin}} \frac{1}{2} \|x - y\|^2 = \underset{y \in \mathcal{H}}{\operatorname{argmin}} \iota_{\mathcal{S}}(y) + \frac{1}{2} \|x - y\|^2.$$

■ More generally, for any function $f \in \Gamma_0(\mathcal{H})$, the proximity operator of f is defined by

$$\operatorname{prox}_f \colon x \mapsto \underset{y \in \mathcal{H}}{\operatorname{argmin}} f(y) + \frac{1}{2} ||x - y||^2.$$

- Basic properties:
 - Fix $prox_f = Argmin f$.
 - $\|\operatorname{prox}_f x \operatorname{prox}_f y\| \le \|x y\|$

■ Let S be a nonempty closed convex subset of \mathcal{H} . Then $\iota_S \in \Gamma_0(\mathcal{H})$ and the projector is defined by

$$P_S \colon x \mapsto \underset{y \in S}{\operatorname{argmin}} \frac{1}{2} \|x - y\|^2 = \underset{y \in \mathcal{H}}{\operatorname{argmin}} \iota_S(y) + \frac{1}{2} \|x - y\|^2.$$

■ More generally, for any function $f \in \Gamma_0(\mathcal{H})$, the proximity operator of f is defined by

$$\operatorname{prox}_f \colon x \mapsto \underset{y \in \mathcal{H}}{\operatorname{argmin}} f(y) + \frac{1}{2} ||x - y||^2.$$

- Basic properties:
 - Fix $prox_f = Argmin f$.
 - $\|\operatorname{prox}_{f} x \operatorname{prox}_{f} y\|^{2} \leq \|x y\|^{2} \\ \|(\operatorname{Id} \operatorname{prox}_{f})x (\operatorname{Id} \operatorname{prox}_{f})y\|^{2}.$

Splitting

More properties of proximity operators...

property	$\psi(x)$	prox ψ ^x
shift	$\varphi(x-z).z\in\mathcal{H}$	$z + \operatorname{prox}_{\varphi}(x - z)$
scaling	$\varphi(x/\rho). \rho \in \mathbb{R} \setminus \{0\}$	$\rho_{\text{prox}}_{\varphi/\rho^{\circ}}(x/\rho)$
reflection	$\varphi(-x)$	$-\operatorname{prox}_{\boldsymbol{\varphi}}(-x)$
quadratic perturbation	$\varphi(x) + \alpha x ^2/2 + \beta \langle x u \rangle + \gamma$	$prox_{\varphi/(\alpha+1)}((x-\beta_u)/(\alpha+1))$
	$u \in \mathcal{H}, \alpha > 0, (\beta, \gamma) \in \mathbb{R}^2$ $\varphi^*(x)$	
conjugation	φ* (x)	$x - \operatorname{prox} \varphi x$ $(x + P_{\varphi}x)/2$
squared distance	$d_{_{C}}^{^{2}}(x)/2$	$(x + P_{C}x)/2$
Moreau envelope	$\overline{\varphi}(x) = \inf_{y \in \mathcal{H}} \varphi(y) + \ x - y\ ^2 / 2$	$(x + prox_2\varphi x)/2$
decomposition in an	$\sum_{k=1}^{N} \phi_{k}(\langle b_{k} \mid x \rangle)$	$\sum_{k=1}^{N} \operatorname{prox} \phi_{s}(\langle b_{k} \mid x \rangle)b_{k}$
orthonormal basis	$\phi_{\scriptscriptstyle k} \in \Gamma_{\scriptscriptstyle 0}(\mathbb{R}), (\mathit{b_{\scriptscriptstyle k}})_{\scriptscriptstyle 1} <_{\scriptscriptstyle k} <_{\scriptscriptstyle N}$ orthonormal basis of ${m {\mathcal H}}$	
semi-orthogonal	$\varphi(\iota_{x})$	$x + \nu^{-1} L^* \left(\operatorname{prox}_{\nu \varphi} (Lx) - Lx \right)$
linear transform	$\iota \in \mathbb{R}^{u \times_N}, \iota \iota^* = \nu \iota, \nu > 0$	
quadratic function	$\gamma \ Lx - z \ ^2 / 2$ $L \in \mathbb{R}^{M \times N}, \gamma > 0, z \in \mathcal{G}$ $L_c(x) = \begin{cases} 0 & \text{if } x \in C \\ + \infty & \text{otherwise} \end{cases}$	$(I + \gamma L^*L)^{-1}(x + \gamma L^*z)$
indicator function	$\iota_c(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise} \end{cases}$	P _G x
distance function	$\gamma_{d_{c}}(x). \gamma > 0$	$\begin{cases} x + \frac{\gamma}{d_c(x)} (P_c x - x) & \text{if } d_c(x) > \gamma \\ P_c x & \text{otherwise} \end{cases}$
function of distance	$\phi(a_c(x))$	$\begin{cases} x + \left(1 - \frac{\operatorname{prop} d_{c}(x)}{d_{c}(x)}\right) (P_{c}x - x) & \text{if } x \notin C \\ x & \text{otherwise} \end{cases}$
	$\phi \in \Gamma_{\circ}(\mathbb{R})$ even, differentiable at 0 with $\phi'(\circ) = 0$ $\sigma_{c}(x)$	
support function	$\sigma_c(x)$	$x - P_C x$
extended thresholding	$\sigma_c(x) + \phi(\ x\)$	$\begin{cases} \frac{\operatorname{pos} \phi d_{c}(x)}{d_{c}(x)} (x - P_{c}x) & \text{if } d_{c}(x) > \operatorname{max Argmin} \phi \\ x - P_{c}x & \text{otherwise} \end{cases}$
	$\phi \in \Gamma_{_{\mathrm{o}}}(\mathbb{R})$ even and not constant	

Examples of proximity operators

$\phi(\xi)$	prox ϕ ξ
$\sigma_{[\underline{\omega},\overline{\omega}]}(\xi) = egin{cases} \underline{\omega}\xi & ext{if} & \xi < 0 \ 0 & ext{if} & \xi = 0 \ \hline \underline{\omega}\xi & ext{otherwise} \end{cases}$	$_{\text{soft}}_{[\underline{\omega},\overline{\omega}]}(\xi) = \begin{cases} \xi - \underline{\omega} & \text{if } \xi \leq \underline{\omega} \\ \xi - \underline{\omega} & \text{if } \xi \leq \underline{\omega}, \overline{\omega} \end{cases}$
$\psi(\xi) + \sigma_{[\underline{\omega}, \overline{\omega}]}(\xi)$ $\psi \in \Gamma_*(\mathbb{R})$ differentiable at 0 with $\psi'(\mathfrak{o}) = \mathfrak{o}$	$_{\mathrm{prox}}\psi\left(\mathrm{soft}_{\left[\omega,\overline{\omega} ight] }\left(arepsilon ight) ight)$
$\psi \in \Gamma_{_0}(\mathbb{R})$ differentiable at 0 with $\psi'(0) = 0$ $ au \mid \xi \mid^2$	$\xi/(2\tau+1)$
$\frac{\kappa \xi ^p}{\left(\tau \xi^2 \qquad \text{if } \xi \leq \omega/\sqrt{2\tau}\right)}$	$\operatorname{sign}(\xi)\varrho$, where $\varrho \geq 0$ and $\varrho + \rho \kappa \varrho^{\rho^{-1}} = \xi $ $(\xi/(2\tau+1))$ if $ \xi \leq \omega(2\tau+1)/\sqrt{2\tau}$
 	{
$ \omega\sqrt{2\tau} \xi -\omega^2/2$ otherwise	$(\xi-\omega\sqrt{2 au} ext{sign}(\xi))$ otherwise
$\omega \xi + \tau \xi ^2 + \kappa \xi ^p$	$ ext{sign}(\xi) ext{prox}_{\mathcal{K}\left[\cdot ight]\cdot\left/\left(2 au+1 ight)}\left(ext{max}\left\{\left \xi ight -\omega,0 ight\}/\left(2 au+1 ight) ight)$
$\omega \xi - \ln (1 + \omega \xi)$, $\omega > 0$	$(2\omega)^{-1}$ sign (ξ) $(\omega \xi -\omega^2-1+\sqrt{ \omega \xi -\omega^2-1 ^2+4\omega \xi })$
$\left\{egin{array}{ll} \omega\xi & ext{if} & \xi \geq 0 \ +\infty & ext{otherwise} \end{array} ight.$	$\begin{cases} \xi - \omega & \text{if } \xi \geq \omega \\ 0 & \text{otherwise} \end{cases}$
$\left\{egin{array}{l} -\kappa \ln(\xi) + \omega \xi & \exists & \xi > 0 \ +\infty & ext{otherwise} \end{array} ight.$	$\left(\xi - \omega + \sqrt{ \xi - \omega ^2 + 4\kappa}\right)/2$
$\begin{cases} -\kappa \ln(\xi) + \xi^2/2 & \text{if } \xi > 0 \\ +\infty, & \text{otherwise} \end{cases}$	$\left(\xi+\sqrt{\xi^2+8\kappa} ight)\!/4$
$\iota_{[\underline{\omega},\overline{\omega}]}(\xi)$	$^{ ho}[\underline{\omega},\overline{\omega}]^{\xi}$
$\begin{cases} -\ln(\xi-\underline{\omega}) + \ln(-\underline{\omega}) & \text{if } \xi \in \left]\underline{\omega}, 0 \right] \\ -\ln(\overline{\omega}-\xi) + \ln(\overline{\omega}) & \text{if } \xi \in \left]0, \overline{\omega} \right] \\ +\infty & \text{otherwise} \end{cases}$	$\begin{cases} (\xi + \underline{\omega} + \sqrt{ \xi - \underline{\omega} ^2 + 4})/2 & \text{if } \xi < 1/\underline{\omega} \\ (\xi + \overline{\omega} - \sqrt{ \xi - \underline{\omega} ^2 + 4})/2 & \text{if } \xi > 1/\overline{\omega} \\ & \text{otherwise} \end{cases}$
$\frac{\omega}{\omega} < \circ < \frac{\omega}{\omega}$	
$\dfrac{\omega}{\left\{egin{array}{c} -\kappa \ln(oldsymbol{\xi}) + \omega \xi^{ ho} & ext{if} & oldsymbol{\xi} > 0 \ +\infty & ext{otherwise} \end{array} ight.}$	$\pi >$ 0 such that $ ho\omega\pi^{\scriptscriptstyle p}+\pi^{\scriptscriptstyle 2}-\xi\pi=\kappa$
$\begin{cases} -\kappa \ln(\xi) + \omega \xi + \rho/\xi & \forall \xi > 0 \\ +\infty, & \text{otherwise} \end{cases}$	$\pi >$ 0 such that $\pi^{\scriptscriptstyle 3} + (\omega - \xi)\pi^{\scriptscriptstyle 2} - \kappa\pi = ho$
$\begin{cases} -\underline{\kappa} \ln(\xi - \underline{\omega}) - \overline{\kappa} \ln(\overline{\omega} - \xi) & \text{if } \xi \in \underline{]\omega}, \overline{\omega} \\ +\infty & \text{otherwise} \end{cases}$	$\pi\in]\underline{\omega},\overline{\omega}[$ such that
	$\pi^{3} - (\underline{\omega} + \overline{\omega} + \xi)\pi^{2} + (\underline{\omega}\overline{\omega} - \underline{\kappa} - \overline{\kappa} + (\underline{\omega} + \overline{\omega})\xi)\pi = \underline{\omega}\overline{\omega}\xi - \underline{\omega}\kappa - \overline{\omega}\underline{\kappa}$

Formal problem statement for m = 2

- $\Gamma_0(\mathcal{H})$: proper lower semicontinuous convex functions from \mathcal{H} to $]-\infty, +\infty]$.
- f_1 , f_2 in $\Gamma_0(\mathcal{H})$ such that

$$0 \in \operatorname{sri}(\operatorname{dom} f_1 - \operatorname{dom} f_2).$$

Problem:

$$\underset{x \in \mathcal{H}}{\text{minimize}} \ f_1(x) + f_2(x)$$

- **•** f_2 finite, differentiable, ∇f_2 1/ β -Lipschitz-continuous.
- Examples:
 - Noisy linear observations: $z_i = T_i \overline{x} + w_i$, $1 \le i \le p$.
 - Closed convex a priori constraint sets: $(S_j)_{1 \le j \le q}$.
 - Functional: $f_2: x \mapsto \sum_{i=1}^p \mu_i \|T_i x z_i\|^2 + \sum_{j=1}^q \rho_j d_{S_j}^2(x)$.
- Characterization of solutions: x minimizes $f_1 + f_2 \Leftrightarrow x = \text{prox}_{\gamma f_1}(x \gamma \nabla f_2(x)), \gamma > 0.$
- Algorithm:

$$\mathbf{x}_{n+1} = \operatorname{prox}_{\gamma f_1} (\mathbf{x}_n - \gamma (\nabla f_2(\mathbf{x}_n)))$$

where

- **•** f_2 finite, differentiable, ∇f_2 1/ β -Lipschitz-continuous.
- Examples:
 - Noisy linear observations: $z_i = T_i \overline{x} + w_i$, $1 \le i \le p$.
 - Closed convex a priori constraint sets: $(S_j)_{1 \le j \le q}$.
 - Functional: $f_2: x \mapsto \sum_{i=1}^p \mu_i ||T_i x z_i||^2 + \sum_{j=1}^q \rho_j d_{S_j}^2(x)$.
- Characterization of solutions: x minimizes $f_1 + f_2 \Leftrightarrow x = \text{prox}_{\gamma f_1}(x \gamma \nabla f_2(x)), \gamma > 0.$
- Algorithm:

$$x_{n+1} = \operatorname{prox}_{\gamma_n f_1} (x_n - \gamma_n (\nabla f_2(x_n)))$$

where

lacksquare $0 < \inf_{n \in \mathbb{N}} \gamma_n \le \sup_{n \in \mathbb{N}} \gamma_n < 2\beta.$

- **•** f_2 finite, differentiable, ∇f_2 1/ β -Lipschitz-continuous.
- Examples:
 - Noisy linear observations: $z_i = T_i \overline{x} + w_i$, $1 \le i \le p$.
 - Closed convex a priori constraint sets: $(S_j)_{1 \le j \le q}$.
 - Functional: $f_2: x \mapsto \sum_{i=1}^p \mu_i ||T_i x z_i||^2 + \sum_{j=1}^q \rho_j d_{S_j}^2(x)$.
- Characterization of solutions: x minimizes $f_1 + f_2 \Leftrightarrow x = \text{prox}_{\gamma f_1}(x \gamma \nabla f_2(x)), \gamma > 0.$
- Algorithm:

$$x_{n+1} = \operatorname{prox}_{\gamma_n f_1} (x_n - \gamma_n (\nabla f_2(x_n) + b_n)) + a_n$$

where

- \bullet 0 < $\inf_{n\in\mathbb{N}} \gamma_n \leq \sup_{n\in\mathbb{N}} \gamma_n < 2\beta$.

- **•** f_2 finite, differentiable, ∇f_2 1/ β -Lipschitz-continuous.
- Examples:
 - Noisy linear observations: $z_i = T_i \overline{x} + w_i$, $1 \le i \le p$.
 - Closed convex a priori constraint sets: $(S_j)_{1 \le j \le q}$.
 - Functional: $f_2: x \mapsto \sum_{i=1}^p \mu_i \|T_i x z_i\|^2 + \sum_{j=1}^q \rho_j d_{S_j}^2(x)$.
- Characterization of solutions: x minimizes $f_1 + f_2 \Leftrightarrow x = \text{prox}_{\gamma f_1}(x \gamma \nabla f_2(x)), \gamma > 0.$
- Algorithm:

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \lambda_n (\operatorname{prox}_{\gamma_n f_1} (\mathbf{x}_n - \gamma_n (\nabla f_2(\mathbf{x}_n) + b_n)) + a_n - \mathbf{x}_n),$$

where

- \bullet 0 < $\inf_{n \in \mathbb{N}} \gamma_n \le \sup_{n \in \mathbb{N}} \gamma_n < 2\beta$.
- $(\lambda_n)_{n\in\mathbb{N}}$ in]0,1], $\inf_{n\in\mathbb{N}}\lambda_n>0$.

ojection methods Proximity operators Forward-backward Douglas-Rachford Splitting

Forward-backward splitting (m = 2)

Theorem

Suppose that Argmin $f_1 + f_2 \neq \emptyset$. Then any sequence $(x_n)_{n \in \mathbb{N}}$ generated by the forward-backward algorithm converges weakly to a point in Argmin $f_1 + f_2$.

This result covers and extends:

- Alternating projection method, parallel projection method;
- Parallel projection methods for hard constrained inconsistent feasibility problems;
- Projected Landweber method, split feasibility methods;
- Iterative soft-thresholding method;
- Variational geometry/texture decomposition methods; etc.

Douglas-Rachford splitting (m=2)

- f₂ is no longer assumed to be smooth.
- For instance, f_1 and f_2 are any of the following:
 - ι_C , $C \subset \mathcal{H}$ closed and convex.
 - d_C , $C \subset \mathcal{H}$ closed and convex.
 - $\|\cdot\|_1$ in $\mathcal{H}=\mathbb{R}^N$.

 - $\begin{array}{l} \blacksquare \ x \mapsto \sum_{i=1}^m \mu_i \| T_i x z_i \|_1 \text{ in } \mathcal{H} = \mathbb{R}^N. \\ \blacksquare \ x \mapsto \sum_{i=1}^m \mu_i \| T_i x z_i \|_{L^1} \text{ in } \mathcal{H} = L^2(\Omega), \ \Omega \subset \mathbb{R}^N \text{ open,} \end{array}$ bounded.
 - Total variation.
 - $\mathbf{x} \mapsto \int_{\Omega} \phi(\mathbf{x}(t), \nabla \mathbf{x}(t)) dt$ in $\mathcal{H} = H^1(\Omega), \Omega \subset \mathbb{R}^N$ open, bounded, and $\phi \in \Gamma_0(\mathbb{R}^{m+1})$ nonsmooth.
 - \blacksquare max_{1<i<m} φ_i , $\varphi_i \in \Gamma_0(\mathcal{H})$.
 - etc...

Douglas-Rachford splitting (m = 2)

Characterization of solutions: Let $x \in \mathcal{H}$ and $\gamma \in]0, +\infty[$. Then the following are equivalent.

- $\mathbf{x} \in \operatorname{Argmin} f_1 + f_2.$
- $\mathbf{x} = \operatorname{prox}_{\gamma f_2} y$, where y satisfies

$$\operatorname{prox}_{\gamma f_2} y = \operatorname{prox}_{\gamma f_1} (2\operatorname{prox}_{\gamma f_2} y - y).$$

Douglas-Rachford splitting (m = 2)

Algorithm:

- Let $\gamma \in]0, +\infty[$, let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in]0, 2[, and let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be sequences in \mathcal{H} .

- Iterations: Take $x_0 \in \mathcal{H}$ and set, for every $n \in \mathbb{N}$,

$$\begin{cases} x_{n+\frac{1}{2}} = \operatorname{prox}_{\gamma f_{2}} x_{n} + b_{n} \\ x_{n+1} = x_{n} + \lambda_{n} \left(\operatorname{prox}_{\gamma f_{1}} \left(2x_{n+\frac{1}{2}} - x_{n} \right) + a_{n} - x_{n+\frac{1}{2}} \right). \end{cases}$$

Douglas-Rachford splitting (m = 2)

Theorem

Suppose that Argmin $f_1 + f_2 \neq \emptyset$ and let $(x_n)_{n \in \mathbb{N}}$ be an arbitrary sequence generated by the Douglas-Rachford algorithm. Then $(x_n)_{n \in \mathbb{N}}$ converges weakly to some point $y \in \mathcal{H}$ and $x = prox_{\gamma f_2}y \in \text{Argmin } f_1 + f_2$.

Corollary

Suppose that Argmin $f_1 + f_2 \neq \emptyset$, that \mathcal{H} is finite-dimensional, and that $b_n \to 0$. Let $(x_n)_{n \in \mathbb{N}}$ be an arbitrary sequence generated by the Douglas-Rachford algorithm. Then $(x_{n+\frac{1}{2}})_{n \in \mathbb{N}}$ converges to a point in Argmin $f_1 + f_2$.

- The functions $(f_i)_{1 \le i \le m}$ are in $\Gamma_0(\mathcal{H})$.
- CQ: $0 \in \text{sri}\{(x-x_1,\ldots,x-x_m) \mid x \in \mathcal{H}, x_i \in \text{dom } f_i\}.$
- Problem:

$$\min_{\mathbf{x}\in\mathcal{H}}\sum_{i=1}^m f_i(\mathbf{x})$$

- The functions $(f_i)_{1 \le i \le m}$ are in $\Gamma_0(\mathcal{H})$.
- CQ: $0 \in \text{sri}\{(x x_1, \dots, x x_m) \mid x \in \mathcal{H}, x_i \in \text{dom } f_i\}.$
- Problem:

$$\min_{\mathbf{x}\in\mathcal{H}} \sum_{i=1}^{m} f_i(\mathbf{x}), \quad i.e., \ \min_{\mathbf{x}_1=\cdots=\mathbf{x}_m} \sum_{i=1}^{m} f_i(\mathbf{x}_i).$$

Splitting

- The functions $(f_i)_{1 \le i \le m}$ are in $\Gamma_0(\mathcal{H})$.
- CQ: $0 \in sri\{(x x_1, \dots, x x_m) \mid x \in \mathcal{H}, x_i \in dom f_i\}.$
- Problem:

$$\min_{\mathbf{x}\in\mathcal{H}} \sum_{i=1}^{m} f_i(\mathbf{x}), \quad i.e., \quad \min_{\mathbf{x}_1=\cdots=\mathbf{x}_m} \sum_{i=1}^{m} f_i(\mathbf{x}_i).$$

Equivalent problem in the product space \mathcal{H}^m :

$$\min_{\boldsymbol{x} \in \mathcal{H}^m} \iota_{\boldsymbol{D}}(\boldsymbol{x}) + f(\boldsymbol{x}), \quad \text{with} \quad \begin{cases} \boldsymbol{D} = \{(x, \dots, x) \mid x \in \mathcal{H}\} \\ f \colon \boldsymbol{x} = (x_i)_{1 \le i \le m} \mapsto \sum_{i=1}^m f_i(x_i). \end{cases}$$

- The functions $(f_i)_{1 \le i \le m}$ are in $\Gamma_0(\mathcal{H})$.
- CQ: $0 \in sri\{(x x_1, \dots, x x_m) \mid x \in \mathcal{H}, x_i \in dom f_i\}.$
- Problem:

$$\min_{\mathbf{x}\in\mathcal{H}}\sum_{i=1}^m f_i(\mathbf{x}), \quad i.e., \ \min_{\mathbf{x}_1=\cdots=\mathbf{x}_m}\sum_{i=1}^m f_i(\mathbf{x}_i).$$

■ Equivalent problem in the product space H^m:

$$\min_{\mathbf{x}\in\mathcal{H}^m} \iota_{\mathbf{D}}(\mathbf{x}) + f(\mathbf{x}), \quad \text{with} \quad \begin{cases} \mathbf{D} = \{(x,\ldots,x) \mid x \in \mathcal{H}\} \\ f \colon \mathbf{x} = (x_i)_{1 \le i \le m} \mapsto \sum_{i=1}^m f_i(x_i). \end{cases}$$

■ Apply Douglas-Rachford to ι_D and f in the product space!

Parallel proximal algorithm (PPXA)

Initialization

$$\begin{cases} \gamma \in]0, +\infty[\\ (\omega_i)_{1 \le i \le m} \in]0, 1]^m \text{ satisfy } \sum_{i=1}^m \omega_i = 1 \\ (y_{i,0})_{1 \le i \le m} \in \mathcal{H}^m \\ x_0 = \sum_{i=1}^m \omega_i y_{i,0} \end{cases}$$
For $n = 0, 1, \dots$

$$\begin{cases} \text{For } i = 1, \dots, m \end{cases}$$

For
$$n = 0, 1, \dots$$

$$\begin{vmatrix}
\text{For } i = 1, \dots, m \\
p_{i,n} = \text{prox}_{\gamma f_i / \omega_i} y_{i,n} + a_{i,n}
\end{vmatrix}$$

$$p_n = \sum_{i=1}^m \omega_i p_{i,n}$$

$$\lambda_n \in]0, 2[$$
For $i = 1, \dots, m$

$$y_{i,n+1} = y_{i,n} + \lambda_n (2p_n - x_n - p_{i,n})$$

$$x_{n+1} = x_n + \lambda_n (p_n - x_n).$$

rojection methods Proximity operators Forward-backward Douglas-Rachford **Splitting**

Parallel proximal algorithm (PPXA)

Theorem

Suppose that Argmin $f_1 + \cdots + f_m \neq \emptyset$ and let $(x_n)_{n \in \mathbb{N}}$ be an arbitrary sequence generated by the PPXA algorithm. Then $(x_n)_{n \in \mathbb{N}}$ converges weakly to some point in Argmin $f_1 + \cdots + f_m$.

Dykstra-like parallel proximal algorithm

■ $(f_i)_{1 \le i \le m}$ functions in $\Gamma_0(\mathcal{H})$ such that (no CQ)

$$\operatorname{dom} f_1 \cap \cdots \cap \operatorname{dom} f_m \neq \emptyset$$
.

- \bullet $\omega_i > 0$, $\sum_{i=1}^m \omega_i = 1$.
- Problem (extending the best feasible approximation problem):

$$\min_{\mathbf{x}\in\mathcal{H}} \sum_{i=1}^m \omega_i f_i(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2.$$

ojection methods Proximity operators Forward-backward Douglas-Rachford Splitting

Dykstra-like parallel proximal algorithm

Initialization
$$\begin{bmatrix} z_{1,0} = x_0, \dots, z_{m,0} = x_0 \\ For \ n = 0, 1, \dots \end{bmatrix}$$
For $i = 1, \dots, m$

$$\begin{bmatrix} p_{i,n} = \operatorname{prox}_{f_i} z_{i,n} \\ x_{n+1} = \sum_{i=1}^m \omega_i p_{i,n} \\ For \ i = 1, \dots, m \\ z_{i,n+1} = x_{n+1} + z_{i,n} - p_{i,n}. \end{bmatrix}$$

Theorem

$$x_n \rightarrow \operatorname{argmin} \omega_1 f_1 + \cdots + \omega_m f_m + \|\cdot - x_0\|^2 / 2.$$

Alternating-direction method of multipliers (ADMM)

- $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, $L : \mathcal{H} \to \mathcal{G}$ linear and bounded, $L^* \circ L$ invertible, $0 \in \operatorname{sri}(L(\operatorname{dom} f) \operatorname{dom} g)$.
- Problem:

$$\underset{x \in \mathcal{H}}{\text{minimize}} \ f(x) + g(Lx), \ i.e., \ \underset{x \in \mathcal{H}, \ y \in \mathcal{G}}{\text{minimize}} \ f(x) + g(y).$$

Augmented Lagrangian:

$$\begin{split} \mathcal{L}_{\gamma} \colon \mathcal{H} \times \mathcal{G} \times \mathcal{G} &\to \left] - \infty, + \infty \right] \\ (x, y, z) &\mapsto f(x) + g(y) + \frac{1}{\gamma} \langle (Lx - y) \mid z \rangle + \frac{1}{2\gamma} \|Lx - y\|^2. \end{split}$$

Alternating-direction method of multipliers (ADMM)

Denote by prox_f^L the operator which maps $y \in \mathcal{G}$ to the unique minimizer of $x \mapsto f(x) + \|Lx - y\|^2/2$.

Initialization

$$\begin{vmatrix} \gamma > 0 \\ y_0 \in \mathcal{G} \\ z_0 \in \mathcal{G} \end{vmatrix}$$
For $n = 0, 1, ...$

$$\begin{vmatrix} x_n = \operatorname{prox}_{\gamma_f}^L(y_n - z_n) \\ s_n = Lx_n \\ y_{n+1} = \operatorname{prox}_{\gamma_g}(s_n + z_n) \\ z_{n+1} = z_n + s_n - y_{n+1} \end{vmatrix}$$

Alternating-direction method of multipliers (ADMM)

Denote by prox_f^L the operator which maps $y \in \mathcal{G}$ to the unique minimizer of $x \mapsto f(x) + \|Lx - y\|^2/2$.

Initialization

$$\begin{vmatrix}
\gamma > 0 \\
y_0 \in \mathcal{G} \\
z_0 \in \mathcal{G}
\end{vmatrix}$$
For $n = 0, 1, ...$

$$\begin{vmatrix}
x_n = \operatorname{prox}_{\gamma_f}^L(y_n - z_n) \\
s_n = Lx_n \\
y_{n+1} = \operatorname{prox}_{\gamma_g}(s_n + z_n) \\
z_{n+1} = z_n + s_n - y_{n+1}
\end{vmatrix}$$

-Alternating split Bregman algorithm-

Simultaneous-direction method of multipliers (SDMM)

- $\mathbf{g}_i \in \Gamma_0(\mathcal{G}_i), 1 \leq i \leq m$
- **L**_i: $\mathcal{H} \to \mathcal{G}_i$ linear and bounded, $Q = \sum_{i=1}^m L_i^* \circ L_i$ invertible
- $\bullet 0 \in \operatorname{sri} \{ (L_1 x y_1, \dots, L_m x y_m) \mid x \in \mathcal{H}, y_i \in \operatorname{dom} g_i \}.$
- Problem:

minimize
$$g_1(L_1x) + \cdots + g_m(L_mx)$$
.

Simultaneous-direction method of multipliers (SDMM)

Initialization

$$\left[\begin{array}{l} \gamma > 0 \\ y_{1,0} \in \mathcal{G}_1, \dots, y_{m,0} \in \mathcal{G}_m \\ z_{1,0} \in \mathcal{G}_1, \dots, z_{m,0} \in \mathcal{G}_m \end{array} \right]$$
 For $n = 0, 1, \dots$
$$\left[\begin{array}{l} x_n = Q^{-1} {\displaystyle \sum_{i=1}^m} L_i^*(y_{i,n} - z_{i,n}) \\ \text{For } i = 1, \dots, m \\ \left[\begin{array}{l} s_{i,n} = L_i x_n \\ y_{i,n+1} = {\displaystyle \operatorname{prox}}_{\gamma g_i}(s_{i,n} + z_{i,n}) \\ z_{i,n+1} = z_{i,n} + s_{i,n} - y_{i,n+1} \end{array} \right]$$

rojection methods Proximity operators Forward-backward Douglas-Rachford **Splitting**

References

- http://www.ann.jussieu.fr/~plc/publist.html
- arxiv

