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We propose a novel approach to monotone operator splitting based on the notion of a saddle operator. Under investi-
gation is a highly structured multivariate monotone inclusion problem involving a mix of set-valued, cocoercive, and
Lipschitzian monotone operators, as well as various monotonicity-preserving operations among them. This model
encompasses most formulations found in the literature. A limitation of existing primal-dual algorithms is that they
operate in a product space that is too small to achieve full splitting of our problem in the sense that each operator is
used individually. To circumvent this difficulty, we recast the problem as that of finding a zero of a saddle operator
that acts on a bigger space. This leads to an algorithm of unprecedented flexibility, which achieves full splitting,
exploits the specific attributes of each operator, is asynchronous, and requires to activate only blocks of operators at
each iteration, as opposed to activating all of them. The latter feature is of critical importance in large-scale problems.
The weak convergence of the main algorithm is established, as well as the strong convergence of a variant. Various
applications are discussed, and instantiations of the proposed framework in the context of variational inequalities
and minimization problems are presented.
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1. Introduction In 1979, several methods appeared to solve the basic problem of finding a zero
of the sum of two maximally monotone operators in a real Hilbert space [37, 38, 43]. Over the past
forty years, increasingly complex inclusion problems and solution techniques have been considered
[10, 14, 17, 19, 23, 25, 29, 34, 53] to address concrete problems in fields as diverse as game theory
[2, 15, 56], evolution inclusions [3], traffic equilibrium [3, 31], domain decomposition [4], machine
learning [6, 12], image recovery [7, 11, 16, 33], mean field games [18], convex programming [24, 36],
statistics [26, 55], neural networks [27], signal processing [28], partial differential equations [32], tensor
completion [39], and optimal transport [42]. In our view, two challenging issues in the field of monotone
operator splitting algorithms are the following:
• A number of independent monotone inclusion models coexist with various assumptions on the

operators and different types of operation among these operators. At the same time, as will be seen
in Section 4, they are not sufficiently general to cover important applications.

• Most algorithms do not allow asynchrony and impose that all the operators be activated at each
iteration. They can therefore not handle efficiently modern large-scale problems. The only methods
that are asynchronous and block-iterative are limited to specific scenarios [25, 29, 34] and they do
not cover inclusion models such as that of [23].

In an attempt to bring together and extend the application scope of the wide variety of unrelated
models that coexist in the literature, we propose the following multivariate formulation which involves
a mix of set-valued, cocoercive, and Lipschitzian monotone operators, as well as various monotonicity-
preserving operations among them.

1

mailto:mnbui@ncsu.edu
mailto:plc@math.ncsu.edu


Bùi and Combettes: Multivariate Monotone Inclusions in Saddle Form
2 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Problem 1. Let (H8)8∈� and (G:):∈ be finite families of real Hilbert spaces with Hilbert direct sums
H=

⊕
8∈� H8 and G =

⊕
:∈ G: . Denote by x = (G8)8∈� a generic element in H. For every 8 ∈ � and every

: ∈  , let B∗8 ∈H8 , let A: ∈ G: , and suppose that the following are satisfied:
[a] �8 : H8 → 2H8 is maximally monotone, �8 : H8 → H8 is cocoercive with constant c

8 ∈ ]0,+∞[,
&8 : H8 →H8 is monotone and Lipschitzian with constant l

8 ∈ [0,+∞[, and '8 : H→H8 .
[b] �m

:
: G: → 2G: is maximally monotone, �c

:
: G: → G: is cocoercive with constant �c

:
∈ ]0,+∞[, and

�l

:
: G: → G: is monotone and Lipschitzian with constant �l

:
∈ [0,+∞[.

[c] �m

:
: G: → 2G: is maximally monotone, �c

:
: G: → G: is cocoercive with constant �c

:
∈ ]0,+∞[, and

�l

:
: G: → G: is monotone and Lipschitzian with constant �l

:
∈ [0,+∞[.

[d] !:8 : H8 → G: is linear and bounded.
In addition, it is assumed that
[e] X : H→H : x ↦→ ('8x)8∈� is monotone and Lipschitzian with constant " ∈ [0,+∞[.
The objective is to solve the primal problem

find x ∈H such that (∀8 ∈ �) B∗8 ∈ �8G 8 +�8G 8 +&8G 8 +'8x

+
∑

:∈ 
!∗:8

(( (
�m

: + �c

: + �
l

:

)
�

(
�m

: +�c

: +�
l

:

) )
(
∑

9∈�
!: 9G 9 − A:

))
(1)

and the associated dual problem

find v∗ ∈ G such that (∃ x ∈H)(∀8 ∈ �)(∀: ∈  )



B∗8 −
∑

9∈ 
!∗98E

∗
9 ∈ �8G8 +�8G8 +&8G8 +'8x

E∗: ∈
((
�m

:
+ �c

:
+ �l

:

)
�

(
�m

:
+�c

:
+�l

:

) )
(
∑

9∈�
!: 9G 9 − A:

)
.

(2)

Our highly structured model involves three basic monotonicity preserving operations, namely addi-
tion, composition with linear operators, and parallel sum. It extends the state-of-the-art model of [23],
where the simpler form

(∀8 ∈ �) B∗8 ∈ �8G 8 +&8G 8 +
∑

:∈ 
!∗:8

(
(
�m

: ��m

:

)
(
∑

9∈�
!: 9G 9 − A:

))
(3)

of the system in (1) was investigated; see also [3, 25] for special cases. In an increasing number of
applications, the sets � and  can be sizable. To handle such large-scale problems, it is critical to
implement block-iterative solution algorithms, in which only subgroups of the operators involved in
the problem need to be activated at each iteration. In addition, it is desirable that the algorithm be
asynchronous in the sense that, at any iteration, it has the ability to incorporate the result of calculations
initiated at earlier iterations. Such methods have been proposed for special cases of Problem 1: first in
[25] for the system

find x ∈H such that (∀8 ∈ �) B∗8 ∈ �8G 8 +
∑

:∈ 
!∗:8

(
�m

:

(
∑

9∈�
!: 9G 9 − A:

))
, (4)

then in [29] for the inclusion (we omit the subscript ‘1’)

find G ∈H such that 0 ∈
∑

:∈ 
!∗:

(
�m

: (!:G)
)
, (5)
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and more recently in [34] for the inclusion

find G ∈H such that 0 ∈ �G +&G +
∑

:∈ 
!∗:

(
(�m

: + �l

:)(!:G)
)
. (6)

It is clear that the formulations (4) and (6) are not interdependent. Furthermore, as we shall see in
Section 4, many applications of interest are not covered by either of them. From both a theoretical and a
practical viewpoint, it is therefore important to unify and extend these approaches. To achieve this goal,
we propose to design an algorithm for solving the general Problem 1 which possesses simultaneously
the following features:
➀ It has the ability to process all the operators individually and exploit their specific attributes, e.g.,

set-valuedness, cocoercivity, Lipschitz continuity, and linearity.
➁ It is block-iterative in the sense that it does not need to activate all the operators at each iteration,

but only a subgroup of them.
➂ It is asynchronous.
➃ Each set-valued monotone operator is scaled by its own, iteration-dependent, parameter.
➄ It does not require any knowledge of the norms of the linear operators involved in the model.
Let us observe that the method of [25] has features ➀–➄, but it is restricted to (4). Likewise, the method
of [34] has features ➀–➄, but it is restricted to (6).

Solving the intricate Problem 1 with the requirement ➀ does not seem possible with existing tools. The
presence of requirements ➁–➄ further complicates this task. In particular, the Kuhn–Tucker approach
initiated in [14] — and further developed in [1, 10, 23, 25, 34, 35] — relies on finding a zero of an operator
acting on the primal-dual space H ⊕ G. However, in the context of Problem 1, this primal-dual space
is too small to achieve full splitting in the sense that each operator is used individually. To circumvent
this difficulty, we propose a novel splitting strategy that consists of recasting the problem as that of
finding a zero of a saddle operator acting on the bigger space H⊕G ⊕G ⊕G. This is done in Section 2,
where we define the saddle form of Problem 1, study its properties, and propose outer approximation
principles to solve it. In Section 3, the main asynchronous block-iterative algorithm is presented and
we establish its weak convergence under mild conditions on the frequency at which the operators are
selected. We also present a strongly convergent variant. The specializations to variational inequalities
and multivariate minimization are discussed in Section 4, along with several applications. The appendix
contains auxiliary results.
Notation. The notation used in this paper is standard and follows [9], to which one can refer for
background and complements on monotone operators and convex analysis. Let K be a real Hilbert
space. The symbols 〈· | ·〉 and ‖ · ‖ denote the scalar product of K and the associated norm, respectively.
The expressions G= ⇀ G and G= → G denote, respectively, the weak and the strong convergence of a
sequence (G=)=∈ℕ to G in K, and 2K denotes the family of all subsets of K. Let � : K→ 2K. The graph
of � is gra� =

{
(G, G∗) ∈K×K | G∗ ∈ �G

}
, the set of zeros of � is zer� =

{
G ∈K | 0 ∈ �G

}
, the inverse

of � is �−1 : K→ 2K : G∗ ↦→
{
G ∈K | G∗ ∈ �G

}
, and the resolvent of � is �� = (Id+�)−1, where Id is the

identity operator on K. Further, � is monotone if
(
∀(G, G∗) ∈ gra�

) (
∀(H, H∗) ∈ gra�

)
〈G − H | G∗ − H∗〉 > 0, (7)

and it is maximally monotone if, for every (G, G∗) ∈K×K,

(G, G∗) ∈ gra� ⇔
(
∀(H, H∗) ∈ gra�

)
〈G − H | G∗ − H∗〉 > 0. (8)

If � is maximally monotone, then �� is a single-valued operator defined on K. The parallel sum
of � : K → 2K and � : K → 2K is ��� = (�−1 + �−1)−1. An operator � : K → K is cocoercive
with constant  ∈ ]0,+∞[ if (∀G ∈ K)(∀H ∈ K) 〈G − H | �G−�H〉 > ‖�G − �H‖2. We denote by
Γ0(K) the class of lower semicontinuous convex functions 5 : K → ]−∞,+∞] such that dom 5 =
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{
G ∈K | 5 (G) < +∞

}
≠ ∅. Let 5 ∈ Γ0(K). The conjugate of 5 is the function Γ0(K) ∋ 5 ∗ : G∗ ↦→

supG∈K(〈G | G∗〉 − 5 (G)) and the subdifferential of 5 is the maximally monotone operator % 5 : K →
2K : G ↦→

{
G∗ ∈K | (∀H ∈K) 〈H − G | G∗〉 + 5 (G)6 5 (H)

}
. In addition, epi 5 is the epigraph of 5 . For every

G ∈ K, the unique minimizer of 5 + (1/2)‖ · − G‖2 is denoted by prox 5 G. We have prox 5 = �% 5 . Given
ℎ ∈ Γ0(K), the infimal convolution of 5 and ℎ is 5 � ℎ : K→[−∞,+∞] : G ↦→ infH∈K( 5 (H) + ℎ(G − H));
the infimal convolution 5 � ℎ is exact if the infimum is achieved everywhere, in which case we write
5 ⊡ ℎ. Now let (K8)8∈� be a finite family of real Hilbert spaces and, for every 8 ∈ �, let 58 : K8 →]−∞,+∞].
Then ⊕

8∈�
58 : K=

⊕

8∈�
K8 →]−∞,+∞] : x ↦→

∑

8∈�
58(G8). (9)

The partial derivative of a differentiable function Θ : K→ℝ relative to K8 is denoted by ∇8Θ. Finally,
let � be a nonempty convex subset of K. A point G ∈ � belongs to the strong relative interior of �, in
symbols G ∈ sri�, if

⋃
�∈]0,+∞[�(� − G) is a closed vector subspace of K. If � is closed, the projection

operator onto it is denoted by proj� and the normal cone operator of � is the maximally monotone
operator

#� : K→ 2K : G ↦→
{{
G∗ ∈K | sup 〈� − G | G∗〉 6 0

}
, if G ∈ �;

∅, otherwise.
(10)

2. The saddle form of Problem 1 A classical Lagrangian setting for convex minimization is the
following. Given real Hilbert spaces H and G, 5 ∈ Γ0(H), 6 ∈ Γ0(G), and a bounded linear operator
! : H→ G, consider the primal problem

minimize
G∈H

5 (G) + 6(!G) (11)

together with its Fenchel–Rockafellar dual [47]

minimize
E∗∈G

5 ∗
(
−!∗E∗

)
+ 6∗(E∗). (12)

The primal-dual pair (11)–(12) can be analyzed through the lens of Rockafellar’s saddle formalism
[49, 50] as follows. Set ℎ : H⊕G→]−∞,+∞] : (G, H) ↦→ 5 (G)+ 6(H)and* : H⊕G→ G : (G, H) ↦→ !G−H,
and note that *∗ : G →H ⊕ G : E∗ ↦→ (!∗E∗,−E∗). Then, upon defining K =H ⊕ G and introducing the
variable I = (G, H) ∈K, (11) is equivalent to

minimize
I∈K,*I=0

ℎ(I) (13)

and (12) to
minimize

E∗∈G
ℎ∗

(
−*∗E∗

)
. (14)

The Lagrangian associated with (13) is (see [51, Example 4’] or [9, Proposition 19.21])

L : K ⊕ G →]−∞,+∞]

(I, E∗) ↦→
{
ℎ(I) + 〈*I | E∗〉, if I ∈ dom ℎ;

+∞, otherwise,
(15)

and the associated saddle operator [49, 50] is the maximally monotone operator

S : K ⊕ G → 2K⊕G : (I, E∗) ↦→ %L(·, E∗)(I) × %
(
−L(I, ·)

)
(E∗)=

(
%ℎ(I) +*∗E∗

)
× {−*I}. (16)

As shown in [49], a zero (I, E∗) of S is a saddle point of L, and it has the property that I solves (13)
and E∗ solves (14). Thus, going back to the original Fenchel–Rockafellar pair (11)–(12), we learn that, if
(G, H, E∗) is a zero of the saddle operator

S : H ⊕ G ⊕ G → 2H⊕G⊕G : (G, H, E∗) ↦→
(
% 5 (G) + !∗E∗

)
×

(
%6(H) − E∗

)
× {−!G + H}, (17)
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then G solves (11) and E∗ solves (12). As shown in [24, Section 4.5], a suitable splitting of S leads to an
implementable algorithm to solve (11)–(12).

A generalization of Fenchel–Rockafellar duality to monotone inclusions was proposed in [44, 46]
and further extended in [23]. Given maximally monotone operators � : H→ 2H and � : G → 2G , and a
bounded linear operator ! : H→ G, the primal problem

find G ∈H such that 0 ∈ �G + !∗
(
�(!G)

)
(18)

is paired with the dual problem

find E∗ ∈ G such that 0 ∈ −!
(
�−1(−!∗E∗)

)
+ �−1E∗. (19)

Following the same pattern as that described above, let us consider the saddle operator

S : H ⊕ G ⊕ G → 2H⊕G⊕G : (G, H, E∗) ↦→ (�G + !∗E∗) × (�H − E∗) × {−!G + H}. (20)

It is readily shown that, if (G, H, E∗) is a zero of S, then G solves (18) and E∗ solves (19). We call the
problem of finding a zero of S the saddle form of (18)–(19). We now introduce a saddle operator for the
general Problem 1.

Definition 1. In the setting of Problem 1, let X =H⊕G ⊕G ⊕G. The saddle operator associated with
Problem 1 is

S : X → 2X : (x , y, z, v∗) ↦→(
�

8∈�

(
−B∗8 +�8G8 +�8G8 +&8G8 +'8x +

∑

:∈ 
!∗:8E

∗
:

)
,
�

:∈ 

(
�m

: H: + �
c

: H: + �
l

: H: − E
∗
:

)
,

�

:∈ 

(
�m

: I: +�
c

: I: +�
l

: I: − E
∗
:

)
,
�

:∈ 

{
A: + H: + I: −

∑

8∈�
!:8G8

} )
, (21)

and the saddle form of Problem 1 is to

find x ∈ X such that 0 ∈ Sx. (22)

Next, we establish some properties of the saddle operator as well as connections with Problem 1.

Proposition 1. Consider the setting of Problem 1 and Definition 1. Let P be the set of solutions to (1), let

D be the set of solutions to (2), and let

Z =

{
(x , v∗) ∈H ⊕G

���� (∀8 ∈ �)(∀: ∈  ) B∗8 −
∑

9∈ 
!∗98E

∗
9 ∈ �8G 8 +�8G 8 +&8G 8 +'8x and

∑

9∈�
!: 9G 9 − A: ∈

(
�m

: + �c

: + �
l

:

)−1
E∗: +

(
�m

: +�c

: +�
l

:

)−1
E∗:

}
(23)

be the associated Kuhn–Tucker set. Then the following hold:
(i) S is maximally monotone.

(ii) zerS is closed and convex.
(iii) Suppose that x = (x , y, z, v∗) ∈ zerS. Then (x , v∗) ∈ Z ⊂ P ×D .
(iv) D ≠∅⇔ zerS≠∅⇔ Z ≠∅⇒ P ≠∅.
(v) Suppose that one of the following holds:

[a] � is a singleton.
[b] For every : ∈  , (�m

:
+ �c

:
+ �l

:
)� (�m

:
+�c

:
+�l

:
) is at most single-valued.

[c] For every : ∈  , (�m

:
+�c

:
+�l

:
)−1 is strictly monotone.
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[d] � ⊂  , the operators ((�m

:
+ �c

:
+ �l

:
)� (�m

:
+�c

:
+�l

:
)):∈ r� are at most single-valued, and (∀8 ∈

�)(∀: ∈ �) : ≠ 8 ⇒ !:8 = 0.
Then P ≠∅⇒ Z ≠∅.

Proof. Define



G : H→ 2H : x ↦→ Xx +�

8∈�
(
�8G8 +�8G8 +&8G8

)

H : G → 2G : y ↦→ �

:∈ 
(
�m

:
H: + �c

:
H: + �l

:
H:

)

J : G → 2G : z ↦→ �

:∈ 
(
�m

:
I: +�c

:
I: +�l

:
I:

)

R : H→G : x ↦→
(∑

8∈� !:8G8
)
:∈ 

s∗ = (B∗8 )8∈� and r = (A:):∈ .

(24)

Then the adjoint of R is

R∗ : G →H : v∗ ↦→
(
∑

:∈ 
!∗:8E

∗
:

)

8∈�
. (25)

Hence, in view of (21) and (24),

S : X → 2X : (x , y, z, v∗) ↦→
(
−s∗ +Gx + R∗v∗) ×

(
Hy− v∗) ×

(
Jz− v∗) ×

{
r − Rx + y+ z

}
. (26)

(i): Let us introduce the operators
{

P : X → 2X : (x , y, z, v∗) ↦→ (−s∗ +Gx) ×Hy×Jz × {r}
W : X → X : (x , y, z, v∗) ↦→ (R∗v∗ ,−v∗ ,−v∗ ,−Rx + y+ z). (27)

Using Problem 1[a]–[c], we derive from [9, Example 20.31, Corollaries 20.28 and 25.5(i)] that, for every
8 ∈ � and every : ∈  , the operators �8 + �8 +&8 , �m

:
+ �c

:
+ �l

:
, and �m

:
+�c

:
+�l

:
are maximally

monotone. At the same time, Problem 1[e] and [9, Corollary 20.28] entail that X is maximally monotone.
Therefore, it results from (24), [9, Proposition 20.23 and Corollary 25.5(i)], and (27) that P is maximally
monotone. However, since Problem 1[d] and (27) imply that W is linear and bounded with W∗ = −W,
[9, Example 20.35] asserts that W is maximally monotone. Hence, in view of [9, Corollary 25.5(i)], we
infer from (26)–(27) that S= P+W is maximally monotone.

(ii): This follows from (i) and [9, Proposition 23.39].
(iii): Using (24) and (25), we deduce from (23) that

Z =
{
(x , v∗) ∈H ⊕G | s∗ − R∗v∗ ∈ Gx and Rx − r ∈ H−1v∗ +J−1v∗} (28)

and from (2) that
D =

{
v∗ ∈ G | −r ∈ −R

(
G−1(s∗ − R∗v∗)

)
+H−1v∗ +J−1v∗}. (29)

Suppose that (x , v∗) ∈ Z. Then it follows from (28) that x ∈ G−1(s∗ − R∗v∗) and, in turn, that −r ∈
−Rx + H−1v∗ + J−1v∗ ⊂ −R(G−1(s∗ − R∗v∗)) + H−1v∗ +J−1v∗. Thus v∗ ∈ D by (29). In addition, (23)
implies that

(∀: ∈  ) E∗: ∈
(
(�m

: + �c

: + �
l

:)� (�m

: +�c

: +�
l

: )
)
(
∑

9∈�
!: 9G 9 − A:

)
(30)

and, therefore, that

(∀8 ∈ �) B∗8 ∈ �8G8 +�8G8 +&8G8 +'8x +
∑

:∈ 
!∗:8E

∗
:

⊂ �8G8 +�8G8 +&8G8 +'8x

+
∑

:∈ 
!∗:8

(((
�m

: + �c

: + �
l

:

)
�

(
�m

: +�c

: +�
l

:

) )
(
∑

9∈�
!: 9G 9 − A:

))
. (31)
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Hence, x ∈P . To summarize, we have shown that Z ⊂ P ×D . It remains to show that (x , v∗) ∈ Z. Since
0 ∈ Sx, we deduce from (26) that s∗−R∗v∗ ∈ Gx, Rx− r = y+ z, 0 ∈ Hy−v∗, and 0 ∈ Jz−v∗. Therefore,
Rx − r ∈ H−1v∗ +J−1v∗ and (28) thus yields (x , v∗) ∈ Z.

(iv): The implication zerS≠∅⇒ P ≠∅ follows from (iii). Next, we derive from (29) and (28) that

D ≠∅⇔(∃v∗ ∈ G) −r ∈ −R
(
G−1(s∗ − R∗v∗)

)
+H−1v∗ +J−1v∗

⇔
(
∃ (v∗ , x) ∈ G ⊕H

)
−r ∈ −Rx +H−1v∗ +J−1v∗ and x ∈ G−1(s∗ − R∗v∗)

⇔
(
∃ (x , v∗) ∈H ⊕G

)
s∗ − R∗v∗ ∈ Gx and Rx − r ∈ H−1v∗ +J−1v∗

⇔ Z ≠∅. (32)

However, (iii) asserts that zerS ≠ ∅ ⇒ Z ≠ ∅. Therefore, it remains to show that Z ≠ ∅ ⇒ zerS ≠ ∅.
Towards this end, suppose that (x , v∗) ∈ Z. Then, by (28), s∗ − R∗v∗ ∈ Gx and Rx − r ∈ H−1v∗ +J−1v∗.
Hence, 0 ∈ −s∗ + Gx + R∗v∗ and there exists (y, z) ∈ G ⊕ G such that y ∈ H−1v∗, z ∈ J−1v∗, and
Rx− r = y+ z. We thus deduce that 0 ∈ Hy−v∗, 0 ∈ Jz−v∗, and r −Rx+ y+ z = 0. Consequently, (26)
implies that (x , y, z, v∗) ∈ zerS.

(v): In view of (iv), it suffices to establish that P ≠∅⇒ D ≠∅. Suppose that x ∈ P .
[a]: Suppose that � = {1}. We then infer from (1) that there exists v∗ ∈ G such that




B∗
1
∈ �1G1 +�1G1 +&1G1 +'1x +

∑

:∈ 
!∗:1E

∗
:

(∀: ∈  ) E∗: ∈
(
(�m

:
+ �c

:
+ �l

:
)� (�m

:
+�c

:
+�l

:
)
)
(!:1G1 − A:).

(33)

Therefore, by (2), v∗ ∈D .
[b]: Set (∀: ∈  ) E∗: = ((�m

:
+ �c

:
+ �l

:
)� (�m

:
+�c

:
+�l

:
))(∑ 9∈� !: 9G 9 − A:). Then v∗ solves (2).

[c]⇒[b]: See [23, Section 4].
[d]: Let 8 ∈ �. It results from our assumption that

B∗8 ∈ �8G 8 +�8G 8 +&8G 8 +'8x + !∗88
( (
(�m

8 + �c

8 + �l

8 )� (�m

8 +�c

8 +�l

8 )
)
(!88G 8 − A8)

)

+
∑

:∈ r�
!∗:8

(( (
�m

: + �c

: + �
l

:

)
�

(
�m

: +�c

: +�
l

:

))
(
∑

9∈�
!: 9G 9 − A:

))
. (34)

Thus, there exists E∗8 ∈ G8 such that E∗8 ∈ ((�m

8 + �c

8 + �l

8 )� (�m

8 +�c

8 +�l

8 ))(!88G 8 − A8) and that

B∗8 ∈ �8G 8 +�8G 8 +&8G 8 +'8x + !∗88E
∗
8

+
∑

:∈ r�
!∗:8

(( (
�m

: + �c

: + �
l

:

)
�

(
�m

: +�c

: +�
l

:

))
(
∑

9∈�
!: 9G 9 − A:

))
. (35)

As a result, upon setting

(∀: ∈  r �) E∗: =
(
(�m

: + �c

: + �
l

:)� (�m

: +�c

: +�
l

: )
)
(
∑

9∈�
!: 9G 9 − A:

)
, (36)

we conclude that v∗ ∈ D . �

Remark 1. Some noteworthy observations about Proposition 1 are the following.
(i) The Kuhn–Tucker set (23) extends to Problem 1 the corresponding notion introduced for some

special cases in [1, 14, 25].
(ii) In connection with Proposition 1(v), we note that the implication P ≠∅⇒ Z ≠∅ is implicitly used

in [25, Theorems 13 and 15], where one requires Z ≠ ∅ but merely assumes P ≠∅. However, this
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implication is not true in general (a similar oversight is found in [1, 45, 52]). Indeed, consider as a
special case of (1), the problem of solving the system

{
0 ∈ �1(G1 + G2) + �2(G1 − G2)
0 ∈ �1(G1 + G2) − �2(G1 − G2)

(37)

in the Euclidean plane ℝ
2. Then, by choosing �1 = {0}−1 and �2 = 1, we obtain P ={

(G1 ,−G1) | G1 ∈ℝ
}
, whereas Z =∅.

(iii) As stated in Proposition 1(iii), any Kuhn–Tucker point is a solution to (1)–(2). In the simpler setting
considered in [25], a splitting algorithm was devised for finding such a point. However, in the more
general context of Problem 1, there does not seem to exist a path from the Kuhn–Tucker formalism in
H⊕G to an algorithm that is fully split in the sense of ➀. This motivates our approach, which seeks
a zero of the saddle operator S defined on the bigger space X and, thereby, offers more flexibility.

(iv) Special cases of Problem 1 can be found in [1, 25, 34, 35], where they were solved by algorithms
that proceed by outer approximation of the Kuhn–Tucker set in H ⊕ G. In those special cases,
Algorithm 1 below does not reduce to those of [1, 25, 34, 35] since it operates by outer approximation
of the set of zeros of the saddle operator S in the bigger space X.

The following operators will induce a decomposition of the saddle operator that will lead to a splitting
algorithm which complies with our requirements ➀–➄.

Definition 2. In the setting of Definition 1, set

M : X → 2X : (x , y, z, v∗) ↦→(
�

8∈�

(
−B∗8 +�8G8 +&8G8 +'8x +

∑

:∈ 
!∗:8E

∗
:

)
,
�

:∈ 

(
�m

: H: + �
l

:H: − E
∗
:

)
,

�

:∈ 

(
�m

: I: +�
l

: I: − E
∗
:

)
,
�

:∈ 

{
A: + H: + I: −

∑

8∈�
!:8G8

} )
(38)

and
C : X → X : (x , y, z, v∗) ↦→

( (
�8G8

)
8∈� ,

(
�c

: H:
)
:∈ ,

(
�c

: I:
)
:∈ , 0

)
. (39)

Proposition 2. In the setting of Problem 1 and of Definitions 1 and 2, the following hold:

(i) S= M+C.
(ii) M is maximally monotone.

(iii) Set  =min{c

8 , �
c

:
, �c

:
}8∈� ,:∈ . Then the following hold:

(a) C is -cocoercive.
(b) Let (p, p∗) ∈ gra M and q ∈ X. Then zerS ⊂

{
x ∈ X | 〈x−p | p∗ +Cq〉 6 (4)−1‖p−q‖2

}
.

Proof. (i): Clear from (21), (38), and (39).
(ii): This is a special case of Proposition 1(i), where, for every 8 ∈ � and every : ∈  , �8 = 0 and

�c

:
=�c

:
= 0.

(iii)(a): Take x = (x , y, z, v∗) and y = (a , b, c,w∗) in X. By (39) and Problem 1[a]–[c],

〈x− y | Cx−Cy〉
=

∑

8∈�
〈G8 − 08 | �8G8 −�808〉 +

∑

:∈ 

(
〈H: − 1: | �c

: H: − �
c

: 1:〉 + 〈I: − 2: | �c

: I: −�
c

: 2:〉
)

>
∑

8∈�
c

8 ‖�8G8 −�808 ‖2 +
∑

:∈ 

(
�c: ‖�

c

: H: − �
c

: 1: ‖
2 + �c: ‖�

c

: I: −�
c

: 2: ‖
2
)

> 
∑

8∈�
‖�8G8 −�808 ‖2 + 

∑

:∈ 

(
‖�c

: H: − �
c

: 1: ‖
2 + ‖�c

: I: −�
c

: 2: ‖
2
)

= ‖Cx−Cy‖2. (40)
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(iii)(b): Suppose that z ∈ zerS. We deduce from (i) that −Cz ∈ Mz and from our assumption that p∗ ∈
Mp. Hence, (ii) implies that 〈z−p | p∗ +Cz〉 6 0. Thus, we infer from (iii)(a) and the Cauchy–Schwarz
inequality that

〈z−p | p∗ +Cq〉 = 〈z−p | p∗ +Cz〉 − 〈z−q | Cz−Cq〉 + 〈p−q | Cz−Cq〉
6−‖Cz−Cq‖2 + ‖p−q‖ ‖Cz−Cq‖
= (4)−1‖p−q‖2 −

���
(
2
√

)−1‖p−q‖ −

√
‖Cz−Cq‖

���
2

6 (4)−1‖p−q‖2, (41)

which establishes the claim. �

Next, we solve the saddle form (22) of Problem 1 via successive projections onto the outer approxi-
mations constructed in Proposition 2(iii)(b).

Proposition 3. Consider the setting of Problem 1 and of Definitions 1 and 2, and suppose that zerS ≠ ∅.

Set  =min{c

8 , �
c

:
, �c

:
}8∈� ,:∈ , let x0 ∈ X, let � ∈ ]0, 1[, and iterate

for = = 0, 1, . . .


(p= , p∗
=) ∈ gra M; q= ∈ X;

t∗= = p∗
= +Cq= ;

Δ= = 〈x= −p= | t∗=〉 − (4)−1‖p= −q= ‖2;
if Δ= > 0⌊
�= ∈ [�, 2− �] ;
x=+1 = x= − (�=Δ=/‖t∗= ‖2) t∗= ;

else⌊
x=+1 = x= .

(42)

Then the following hold:

(i) (∀z ∈ zerS)(∀= ∈ℕ) ‖x=+1 − z‖ 6 ‖x= − z‖.

(ii)
∑
=∈ℕ ‖x=+1 − x= ‖2 < +∞.

(iii) Suppose that (t∗=)=∈ℕ is bounded. Then limΔ= 6 0.

(iv) Suppose that x= −p= ⇀ 0, p= −q= → 0, and t∗= → 0. Then (x=)=∈ℕ converges weakly to a point in zerS.

Proof. (i)&(ii): Proposition 1(ii) and our assumption ensure that zerS is a nonempty closed convex
subset of X. Now, for every = ∈ℕ, set �= = (4)−1‖p= −q= ‖2 + 〈p= | t∗=〉 and H= =

{
x ∈ X | 〈x | t∗=〉 6 �=

}
.

On the one hand, according to Proposition 2(iii)(b), (∀= ∈ℕ) zerS ⊂ H= . On the other hand, (42) gives
(∀= ∈ ℕ) Δ= = 〈x= | t∗=〉 − �= . Altogether, (42) is an instantiation of (142). The claims thus follow from
Lemma 4(i)&(ii).

(iii): Set � = sup=∈ℕ ‖t∗= ‖. For every = ∈ ℕ, if Δ= > 0, then (42) yields Δ= = �−1
= ‖t∗= ‖ ‖x=+1 − x= ‖ 6

�−1�‖x=+1 − x= ‖; otherwise, Δ= 6 0 = �−1�‖x=+1 − x= ‖. We therefore invoke (ii) to get limΔ= 6

lim �−1�‖x=+1 − x= ‖ = 0.
(iv): Let x ∈ X, let (:=)=∈ℕ be a strictly increasing sequence in ℕ, and suppose that x:= ⇀ x. Then

p:= = (p:= − x:= ) + x:= ⇀ x. In addition, (42) and Proposition 2(i) imply that (p:= , p∗
:=
+Cp:= )=∈ℕ lies in

gra(M +C) = graS. We also note that, since C is (1/)-Lipschitzian by Proposition 2(iii)(a), (42) yields
‖p∗

= +Cp= ‖ = ‖t∗= −Cq= +Cp= ‖ 6 ‖t∗= ‖ + ‖Cp= −Cq= ‖ 6 ‖t∗= ‖ + ‖p= −q= ‖/→ 0. Altogether, since S is
maximally monotone by Proposition 1(i), [9, Proposition 20.38(ii)] yields x ∈ zerS. In turn, Lemma 4(iii)
guarantees that (x=)=∈ℕ converges weakly to a point in zerS. �

The next outer approximation scheme is a variant of the previous one that guarantees strong conver-
gence to a specific zero of the saddle operator.
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Proposition 4. Consider the setting of Problem 1 and of Definitions 1 and 2, and suppose that zerS ≠ ∅.
Define

Ξ : ]0,+∞[× ]0,+∞[×ℝ×ℝ→ℝ
2

(Δ, �, �, ") ↦→




(1,Δ/�), if � = 0;(
0, (Δ+ ")/�

)
, if � ≠ 0 and "Δ> �;(

1− "Δ/�, �Δ/�
)
, if � ≠ 0 and "Δ < �,

where � = �� − "2 , (43)

set  = min{c

8 , �
c

:
, �c

:
}8∈� ,:∈ , and let x0 ∈ X. Iterate

for = = 0, 1, . . .


(p= , p∗
=) ∈ gra M; q= ∈ X;

t∗= = p∗
= +Cq= ;

Δ= = 〈x= −p= | t∗=〉 − (4)−1‖p= −q= ‖2;
if Δ= > 0


�= = ‖t∗= ‖2; �= = ‖x0 − x= ‖2; "= = 〈x0 − x= | t∗=〉;
(�= ,�=)=Ξ(Δ= , �= , �= , "=);
x=+1 = (1−�=)x0 +�=x= −�=t∗= ;

else⌊
x=+1 = x= .

(44)

Then the following hold:
(i) (∀= ∈ℕ) ‖x= − x0‖ 6 ‖x=+1 − x0‖ 6 ‖projzerSx0 − x0‖.

(ii)
∑
=∈ℕ ‖x=+1 − x= ‖2 < +∞.

(iii) Suppose that (t∗=)=∈ℕ is bounded. Then limΔ= 6 0.
(iv) Suppose that x= −p= ⇀ 0, p= −q= → 0, and t∗= → 0. Then x= → projzerSx0.

Proof. Set (∀= ∈ℕ) �= = (4)−1‖p= − q= ‖2 + 〈p= | t∗=〉 and H= =
{
x ∈ X | 〈x | t∗=〉 6 �=

}
. As seen in the

proof of Proposition 3, zerS is a nonempty closed convex subset of X and, for every = ∈ ℕ, zerS ⊂ H=
and Δ= = 〈x= | t∗=〉 −�= . This and (43) make (44) an instance of (143).

(i)&(ii): Apply Lemma 5(i)&(ii).
(iii): Set � = sup=∈ℕ ‖t∗= ‖. Take = ∈ ℕ. Suppose that Δ= > 0. Then, by construction of H= , projH=x= =

x= − (Δ=/‖t∗= ‖2) t∗= . This implies that Δ= = ‖t∗= ‖ ‖projH=x= − x= ‖ 6 �‖projH=x= − x= ‖. Next, suppose that
Δ= 6 0. Then x= ∈ H= and therefore Δ= 6 0 = �‖projH=x= −x= ‖. Altogether, (∀= ∈ℕ)Δ= 6 �‖projH=x=−
x= ‖. Consequently, Lemma 5(ii) yields limΔ= 6 0.

(iv): Follow the same procedure as in the proof of Proposition 3(iv), invoking Lemma 5(iii) instead of
Lemma 4(iii). �

3. Asynchronous block-iterative outer approximation methods We exploit the saddle form of
Problem 1 described in Definition 1 to obtain splitting algorithms with features ➀–➄. Let us comment
on the impact of requirements ➀–➃.
➀ For every 8 ∈ � and every : ∈  , each single-valued operator �8 , &8 , '8 , �c

:
, �l

:
, �c

:
, �l

:
, and !:8

must be activated individually via a forward step, whereas each of the set-valued operators �8 , �m

:
,

and �m

:
must be activated individually via a backward resolvent step.

➁ At iteration =, only operators indexed by subgroups �= ⊂ � and  = ⊂  of indices need to be involved
in the sense that the results of their evaluations are incorporated. This considerably reduces the
computational load compared to standard methods, which require the use of all the operators at
every iteration. Assumption 2 below regulates the frequency at which the indices should be chosen
over time.
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➂ When an operator is involved at iteration =, its evaluation can be made at a point based on data
available at an earlier iteration. This makes it possible to initiate a computation at a given iteration
and incorporate its result at a later time. Assumption 3 below controls the lag allowed in the process
of using past data.

➃ Assumption 1 below describes the range allowed for the various scaling parameters in terms of the
cocoercivity and Lipschitz constants of the operators.

Assumption 1. In the setting of Problem 1, set  = min{c

8 , �
c

:
, �c

:
}8∈� ,:∈ , let � ∈ ]0,+∞[ and � ∈ ]0, 1[

be such that
� > 1/(4) and 1/� > max

{
l

8 + "+ �, �l: + �, �l: + �
}
8∈� ,:∈ , (45)

and suppose that the following are satisfied:
[a] For every 8 ∈ � and every = ∈ℕ, �8,= ∈

[
�, 1/(l

8 + "+ �)
]
.

[b] For every : ∈  and every = ∈ℕ, �:,= ∈
[
�, 1/(�l

:
+ �)

]
, �:,= ∈

[
�, 1/(�l

:
+ �)

]
, and �:,= ∈ [�, 1/�].

[c] For every 8 ∈ �, G8,0 ∈H8 ; for every : ∈  , {H:,0 , I:,0, E∗:,0} ⊂ G: .

Assumption 2. � and  are finite sets, % ∈ℕ, (�=)=∈ℕ are nonempty subsets of �, and ( =)=∈ℕ are nonempty
subsets of  such that

�0 = � ,  0 =  , and (∀= ∈ℕ)
=+%⋃

9==

� 9 = � and
=+%⋃

9==

 9 =  . (46)

Assumption 3. � and  are finite sets, ) ∈ ℕ, and, for every 8 ∈ � and every : ∈  , (�8(=))=∈ℕ and
($:(=))=∈ℕ are sequences in ℕ such that (∀= ∈ℕ) = −) 6�8(=)6 = and = −) 6 $:(=)6 =.

Our first algorithm is patterned after the abstract geometric outer approximation principle described
in Proposition 3. As before, bold letters denote product space elements, e.g., x= = (G8,=)8∈� ∈H.

Algorithm 1. Consider the setting of Problem 1 and suppose that Assumptions 1–3 are in force. Let
(�=)=∈ℕ be a sequence in [�, 2− �] and iterate

for = = 0, 1, . . .�������������������������������������������

for every 8 ∈ �=


;∗8,= =&8G8,�8 (=) +'8x�8 (=) +
∑
:∈ !∗:8E

∗
:,�8 (=);

08,= = ��8 ,�8(=)�8
(
G8,�8 (=) + �8,�8 (=)(B∗8 − ;∗8,= −�8G8,�8 (=))

)
;

0∗8,= = �−1
8,�8 (=)(G8,�8 (=) − 08,=) − ;

∗
8,= +&808,= ;

�8,= = ‖08,= − G8,�8 (=)‖2;
for every 8 ∈ �r �=⌊
08,= = 08,=−1; 0∗8,= = 0

∗
8,=−1; �8,= = �8,=−1;

for every : ∈  =


D∗
:,=

= E∗
:,$:(=) − �

l

:
H:,$:(=);

F∗
:,=

= E∗
:,$:(=) −�

l

:
I:,$:(=);

1:,= = ��:,$:(=)�
m

:

(
H:,$:(=) +�:,$:(=)(D∗:,= − �

c

:
H:,$:(=))

)
;

3:,= = ��:,$: (=)�
m

:

(
I:,$:(=) + �:,$:(=)(F∗

:,=
−�c

:
I:,$:(=))

)
;

4∗
:,=

= �:,$:(=)
(∑

8∈� !:8G8,$:(=) − H:,$:(=) − I:,$:(=) − A:
)
+ E∗

:,$:(=)
;

@∗
:,=

= �−1
:,$:(=)(H:,$:(=) − 1:,=) + D∗:,= + �

l

:
1:,= − 4∗:,= ;

C∗
:,=

= �−1
:,$:(=)(I:,$:(=) − 3:,=) +F∗

:,=
+�l

:
3:,= − 4∗:,= ;

�:,= = ‖1:,= − H:,$:(=)‖2 + ‖3:,= − I:,$:(=)‖2;
4:,= = A: + 1:,= + 3:,= −

∑
8∈� !:808,= ;

for every : ∈  r =⌊
1:,= = 1:,=−1; 3:,= = 3:,=−1; 4∗

:,=
= 4∗

:,=−1; @∗
:,=

= @∗
:,=−1; C∗

:,=
= C∗

:,=−1;
�:,= = �:,=−1; 4:,= = A: + 1:,= + 3:,= −

∑
8∈� !:808,= ;

(47)
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for every 8 ∈ �⌊
?∗8,= = 0

∗
8,= +'8a= +

∑
:∈ !∗:84

∗
:,=

;
Δ= =−(4)−1

(∑
8∈� �8,= +

∑
:∈ �:,=

)
+∑

8∈� 〈G8,= − 08,= | ?∗8,=〉
+∑

:∈ 
(
〈H:,= − 1:,= | @∗:,=〉 + 〈I:,= − 3:,= | C∗:,=〉 + 〈4:,= | E∗:,= − 4

∗
:,=

〉
)
;

ifΔ= > 0


�= =�=Δ=/
(∑

8∈� ‖?∗8,= ‖2 +∑
:∈ 

(
‖@∗

:,=
‖2 + ‖C∗

:,=
‖2 + ‖4:,= ‖2

) )
;

for every 8 ∈ �⌊
G8,=+1 = G8,= −�=?

∗
8,= ;

for every : ∈  ⌊
H:,=+1 = H:,= −�=@∗:,= ; I:,=+1 = I:,= −�=C∗:,= ; E∗

:,=+1 = E
∗
:,=

−�=4:,= ;

else


for every 8 ∈ �⌊
G8,=+1 = G8,= ;

for every : ∈  ⌊
H:,=+1 = H:,= ; I:,=+1 = I:,= ; E∗

:,=+1 = E
∗
:,=
.

The convergence properties of Algorithm 1 are laid out in the following theorem.

Theorem 1. Consider the setting of Algorithm 1 and suppose that the dual problem (2) has a solution. Then

the following hold:

(i) Let 8 ∈ �. Then
∑
=∈ℕ ‖G8,=+1 − G8,= ‖2 < +∞.

(ii) Let : ∈  . Then
∑
=∈ℕ ‖H:,=+1 − H:,= ‖2 < +∞,

∑
=∈ℕ ‖I:,=+1 − I:,= ‖2 < +∞, and

∑
=∈ℕ ‖E∗

:,=+1 −
E∗
:,=

‖2 < +∞.

(iii) Let 8 ∈ � and : ∈  . Then G8,= − 08,= → 0, H:,= − 1:,= → 0, I:,= − 3:,= → 0, and E∗
:,=

− 4∗
:,=

→ 0.

(iv) There exist a solution x to (1) and a solution v∗ to (2) such that, for every 8 ∈ � and every : ∈  , G8,= ⇀ G 8 ,

08,= ⇀ G 8 , and E∗
:,=

⇀ E∗: . In addition, (x , v∗) is a Kuhn–Tucker point of Problem 1 in the sense of (23).

Proof. We use the notation of Definitions 1 and 2. We first observe that zerS ≠ ∅ by virtue of
Proposition 1(iv). Next, let us verify that (47) is a special case of (42). For every 8 ∈ �, denote by '8(=) the
most recent iteration preceding an iteration = at which the results of the evaluations of the operators �8 ,
�8 , &8 , and '8 were incorporated, and by '8(=) the iteration at which the corresponding calculations
were initiated, i.e.,

'8(=)= max
{
9 ∈ℕ | 9 6 = and 8 ∈ � 9

}
and '8(=)= �8

(
'8(=)

)
. (48)

Similarly, we define

(∀: ∈  )(∀= ∈ℕ) * :(=)= max
{
9 ∈ℕ | 9 6 = and : ∈  9

}
and * :(=)= $:

(
* :(=)

)
. (49)

By virtue of (47),

(∀8 ∈ �)(∀= ∈ℕ) 08,= = 08,'8(=) , 0∗8,= = 0
∗
8,'8(=)

, �8,= = �8,'8(=) , (50)

and likewise

(∀: ∈  )(∀= ∈ℕ)
{
1:,= = 1:,* :(=) , 3:,= = 3:,* :(=) , �:,= = �:,* :(=)
4∗
:,=

= 4∗
:,* :(=)

, @∗
:,=

= @∗
:,* :(=)

, C∗
:,=

= C∗
:,* :(=)

.
(51)
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To proceed further, set

(∀= ∈ℕ)




x= = (x= , y= , z= , v∗
=)

p= = (a= , b= , d= , e∗=)
p∗
= =

(
p∗
= − (�8G8,'8 (=))8∈� , q∗= − (�c

:
H:,* :(=)):∈ , t∗= − (�c

:
I:,* :(=)):∈ , e=

)

q= =
(
(G8,'8 (=))8∈� , (H:,* :(=)):∈ , (I:,* :(=)):∈ , (4∗:,=):∈ 

)

t∗= = (p∗= , q∗= , t∗= , e=).

(52)

For every 8 ∈ � and every = ∈ℕ, it follows from (50), (48), (47), and [9, Proposition 23.2(ii)] that

0∗8,= −�8G8,'8 (=) = 0∗8,'8(=) −�8G8,�8 ('8(=))
= �−1

8,�8 ('8 (=))
(
G8,�8 ('8 (=)) − 08,'8(=)

)
− ;∗

8,'8(=)
−�8G8,�8 ('8(=)) +&808,'8(=)

∈ −B∗8 +�808,'8(=) +&808,'8(=)
=−B∗8 +�808,= +&808,= (53)

and, therefore, that

?∗8,= −�8G8,'8 (=) = 0∗8,= −�8G8,'8 (=) +'8a= +
∑

:∈ 
!∗:84

∗
:,=

∈ −B∗8 +�808,= +&808,= +'8a= +
∑

:∈ 
!∗:84

∗
:,= . (54)

Analogously, we invoke (51), (49), and (47) to obtain

(∀: ∈  )(∀= ∈ℕ) @∗:,= − �
c

: H:,* :(=) ∈ �
m

: 1:,= + �
l

:1:,= − 4
∗
:,= (55)

and
(∀: ∈  )(∀= ∈ℕ) C∗:,= −�

c

: I:,* :(=) ∈�
m

: 3:,= +�
l

: 3:,= − 4
∗
:,= . (56)

In addition, (47) states that

(∀: ∈  )(∀= ∈ℕ) 4:,= = A: + 1:,= + 3:,= −
∑

8∈�
!:808,= . (57)

Hence, using (52) and (38), we deduce that (p= , p∗
=)=∈ℕ lies in gra M. Next, it results from (52) and (39)

that (∀= ∈ℕ) t∗= = p∗
= +Cq= . Moreover, for every = ∈ℕ, (47)–(52) entail that

∑

8∈�
�8,= +

∑

:∈ 
�:,=

=
∑

8∈�
�8,'8(=) +

∑

:∈ 
�:,* :(=)

=
∑

8∈�

08,'8(=) − G8,�8 ('8(=))
2 +

∑

:∈ 

(1:,* :(=) − H:,$:(* :(=))
2 +

3:,* :(=) − I:,$:(* :(=))
2

)

=
∑

8∈�

08,= − G8,'8 (=)
2 +

∑

:∈ 

(1:,= − H:,* :(=)
2 +

3:,= − I:,* :(=)
2

)

= ‖p= −q= ‖2 (58)

and, in turn, that
Δ= = 〈x= −p= | t∗=〉 − (4)−1‖p= −q= ‖2. (59)

To sum up, (47) is an instantiation of (42). Therefore, Proposition 3(ii) asserts that
∑

=∈ℕ
‖x=+1 − x= ‖2 < +∞. (60)
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(i)&(ii): These follow from (60) and (52).
(iii)&(iv): Proposition 3(i) implies that (x=)=∈ℕ is bounded. It therefore results from (52) that

(x=)=∈ℕ , (y=)=∈ℕ , (z=)=∈ℕ , and (v∗
=)=∈ℕ are bounded. (61)

Hence, (51), (47), (49), and Assumption 1[b] ensure that

(∀: ∈  ) (4∗:,=)=∈ℕ =

(
�:,* :(=)

(∑

8∈�
!:8G8,* :(=)− H:,* :(=)− I:,* :(=)− A:

)
+ E∗

:,* :(=)

)

=∈ℕ
is bounded. (62)

Next, we deduce from (61) and Problem 1[e] that

(∀8 ∈ �)
(
'8x'8(=)

)
=∈ℕ is bounded. (63)

In turn, it follows from (47), (61), the fact that (&8)8∈� and (�8)8∈� are Lipschitzian, and Assumption 1[a]
that

(∀8 ∈ �)
(
G8,'8 (=) + �8,'8 (=)

(
B∗8 − ;∗8,'8(=) −�8G8,'8 (=)

) )
=∈ℕ

is bounded. (64)

An inspection of (50), (47), (48), and Lemma 1 reveals that

(∀8 ∈ �) (08,=)=∈ℕ =

(
��8 ,'8(=)�8

(
G8,'8 (=) + �8,'8 (=)

(
B∗8 − ;∗8,'8(=) −�8G8,'8 (=)

) ) )
=∈ℕ

is bounded. (65)

Hence, we infer from (50), (47), (61), and Assumption 1[a] that

(∀8 ∈ �) (0∗8,=)=∈ℕ is bounded. (66)

Accordingly, by (47), (61), and Assumption 1[b],

(∀: ∈  )
(
H:,* :(=) +�:,* :(=)

(
D∗
:,* :(=)

− �c

: H:,* :(=)
) )
=∈ℕ

is bounded. (67)

Therefore, (51), (47), (49), and Lemma 1 imply that

(∀: ∈  ) (1:,=)=∈ℕ =

(
��:,*:(=)�

m

:

(
H:,* :(=) +�:,* :(=)

(
D∗
:,* :(=)

− �c

: H:,* :(=)
) ) )

=∈ℕ
is bounded. (68)

Thus, (51), (47), (61), (62), and Assumption 1[b] yield

(q∗
=)=∈ℕ is bounded. (69)

Likewise,
(d=)=∈ℕ and (t∗=)=∈ℕ are bounded. (70)

We deduce from (57), (68), (70), and (65) that

(e=)=∈ℕ is bounded. (71)

On the other hand, (47), (66), (65), Problem 1[e], and (62) imply that

(p∗
=)=∈ℕ is bounded. (72)

Hence, we infer from (52) and (69)–(71) that (t∗=)=∈ℕ is bounded. Consequently, (59) and Proposition 3(iii)
yield

lim
(
〈x= −p= | t∗=〉 − (4)−1‖p= −q= ‖2) = limΔ= 6 0. (73)
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Let R and W be as in (24) and (27). For every = ∈ℕ, set




(∀8 ∈ �) �8,= = �−1
8,'8 (=)Id−&8

(∀: ∈  ) �:,= = �−1
:,* :(=)Id− �l

:
, �:,= = �−1

:,* :(=)Id−�l

:

E= : X → X : (x , y, z, v∗) ↦→
(
(�8,=G8)8∈� , (�:,=H:):∈ , (�:,=I:):∈ , (�−1

:,* :(=)E
∗
:
):∈ 

) (74)

and



x̃= =
(
(G8,'8 (=))8∈� , (H:,* :(=)):∈ , (I:,* :(=)):∈ , (E∗:,* :(=)):∈ 

)

v∗= = E=x= −E=p= , w∗
= = Wp= −Wx=

r∗= =
(
('8a= −'8x=)8∈� , 0, 0, 0

)
, r̃

∗
= =

(
('8a= −'8x'8(=))8∈� , 0, 0, 0

)

l∗= =
( (
−∑

:∈ !∗:8E
∗
:,'8 (=)

)
8∈� ,

(
E∗
:,* :(=)

)
:∈ ,

(
E∗
:,* :(=)

)
:∈ ,(∑

8∈� !:8G8,* :(=) − H:,* :(=) − I:,* :(=)
)
:∈ 

)
.

(75)

In view of Problem 1[a]–[c] and Assumption 1[a]&[b], we deduce from Lemma 2 that

(∀= ∈ℕ)
{

the operators (�8,=)8∈� are ("+ �)-strongly monotone

the operators (�:,=):∈ and (�:,=):∈ are �-strongly monotone,
(76)

and from (74) that there exists � ∈ ]0,+∞[ such that

the operators (E=)=∈ℕ are �-Lipschitzian. (77)

It results from (50), (47), (48), and (74) that

(∀8 ∈ �)(∀= ∈ℕ) 0∗8,= = 0
∗
8,'8 (=)

=

(
�−1
8,�8 ('8(=))

G8,�8 ('8(=)) −&8G8,�8 ('8 (=))

)
−

(
�−1
8,�8 ('8(=))

08,'8 (=) −&808,'8 (=)

)

−'8x�8('8(=)) −
∑

:∈ 
!∗:8E

∗
:,�8 ('8(=))

= �8,=G8,'8 (=) −�8,=08,= −'8x'8(=) −
∑

:∈ 
!∗:8E

∗
:,'8 (=) (78)

and, therefore, that

(∀8 ∈ �)(∀= ∈ℕ) ?∗8,= = 0
∗
8,= +'8a= +

∑

:∈ 
!∗:84

∗
:,=

= �8,=G8,'8 (=) −�8,= 08,= +'8a= −'8x'8(=) −
∑

:∈ 
!∗:8E

∗
:,'8 (=) +

∑

:∈ 
!∗:84

∗
:,= . (79)

At the same time, (51), (47), (49), and (74) entail that

(∀: ∈  )(∀= ∈ℕ) @∗:,= = @
∗
:,* :(=)

=

(
�−1
:,$:(* :(=))

H:,$:(* :(=)) − �
l

: H:,$:(* :(=))
)

−
(
�−1
:,$:(* :(=))

1:,* :(=) − �
l

:1:,* :(=)
)
+ E∗

:,$:(* :(=))
− 4∗

:,* :(=)
= �:,=H:,* :(=) − �:,=1:,= + E∗:,* :(=) − 4

∗
:,= (80)

and that
(∀: ∈  )(∀= ∈ℕ) C∗:,= =�:,=I:,* :(=) −�:,=3:,= + E∗:,* :(=) − 4

∗
:,= . (81)
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Further, we derive from (51), (47), and (49) that

(∀: ∈  )(∀= ∈ℕ) A: = �−1
:,* :(=)E

∗
:,* :(=) − �−1

:,* :(=)4
∗
:,= − H:,* :(=) − I:,* :(=) +

∑

8∈�
!:8G8,* :(=) (82)

and, in turn, from (57) that

(∀: ∈  )(∀= ∈ℕ) 4:,= = �−1
:,* :(=)E

∗
:,* :(=) − �−1

:,* :(=)4
∗
:,= − H:,* :(=) − I:,* :(=)

+
∑

8∈�
!:8G8,* :(=) + 1:,= + 3:,= −

∑

8∈�
!:808,= . (83)

Altogether, it follows from (52), (79)–(81), (83), (74), (75), (27), and (25) that

(∀= ∈ℕ) t∗= = E= x̃= −E=p= + r̃
∗
= + l∗= +Wp= . (84)

Next, in view of (60), (48), (49), and Assumption 2–3, we learn from Lemma 3 that

(∀8 ∈ �)(∀: ∈  )
{
x'8(=) − x= → 0, x* :(=) − x= → 0, and v∗

'8(=) − v∗
= → 0

y* :(=) − y= → 0, z* :(=) − z= → 0, and v∗
* :(=) − v∗

= → 0.
(85)

Thus, (75), (27), (25), and (24) yield
l∗= +Wx= → 0, (86)

while Problem 1[e] gives

(∀8 ∈ �) ‖'8x'8(=) −'8x= ‖ 6 "‖x'8(=) − x= ‖ → 0. (87)

On the other hand, we infer from (77), (75), and (85) that

‖E= x̃= −E=x= ‖ 6 �‖x̃= − x= ‖ → 0. (88)

Combining (84), (75), and (86)–(88), we obtain

t∗= −
(
v∗= + r∗= +w∗

=

)
= l∗= +Wx= +E= x̃= −E=x= + r̃

∗
= − r∗= → 0. (89)

Now set
(∀= ∈ℕ) q̃= = (x= , y= , z= , e∗=). (90)

Then (̃q=)=∈ℕ is bounded by virtue of (61) and (62). On the one hand, (52), (62), (65), (68), and (70) imply
that (p=)=∈ℕ is bounded. On the other hand, (52) and (85) give

q̃= −q= → 0. (91)

Therefore, appealing to the Cauchy–Schwarz inequality, we obtain

��〈p= − q̃= | q̃= −q=〉
��6

(
sup
<∈ℕ

‖p< ‖ + sup
<∈ℕ

‖q̃< ‖
)
‖q̃= −q= ‖ → 0 (92)

and, by (89),

��〈x= −p= | t∗= − (v∗= + r∗= +w∗
=)〉

��6
(

sup
<∈ℕ

‖x< ‖ + sup
<∈ℕ

‖p< ‖
)
‖t∗= − (v∗= + r∗= +w∗

=)‖ → 0. (93)

However, since W∗ =−W by (27), it results from (75) that (∀= ∈ℕ) 〈x= −p= | w∗
=〉 = 0. Thus, by (73) and

(91)–(93),

0> lim
(
〈x= −p= | t∗=〉 − (4)−1‖p= −q= ‖2)
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= lim
(
〈x= −p= | v∗= + r∗= +w∗

=〉 + 〈x= −p= | t∗= − (v∗= + r∗= +w∗
=)〉 − (4)−1‖p= −q= ‖2)

= lim
(
〈x= −p= | v∗= + r∗=〉 − (4)−1 (‖p= − q̃= ‖2 + 2〈p= − q̃= | q̃= −q=〉 + ‖q̃= −q= ‖2) )

= lim
(
〈x= −p= | v∗= + r∗=〉 − (4)−1‖p= − q̃= ‖2) . (94)

On the other hand, we deduce from (75), (52), (74), (76), Assumption 1[b], the Cauchy–Schwarz inequal-
ity, Problem 1[e], and (90) that, for every = ∈ℕ,

〈x= −p= | v∗= + r∗=〉 − (4)−1‖p= − q̃= ‖2

= 〈x= −p= | E=x= −E=p=〉 + 〈x= −p= | r∗=〉 − (4)−1‖p= − q̃= ‖2

=
∑

8∈�
〈G8,= − 08,= | �8,=G8,= −�8,= 08,=〉 +

∑

:∈ 
〈H:,= − 1:,= | �:,=H:,= − �:,=1:,=〉

+
∑

:∈ 
〈I:,= − 3:,= | �:,=I:,= −�:,=3:,=〉 +

∑

:∈ 
�−1
:,* :(=)‖E

∗
:,= − 4

∗
:,= ‖

2

+ 〈x= − a= | Xa= −Xx=〉 − (4)−1‖p= − q̃= ‖2

> (" + �)‖x= − a= ‖2 + �‖y= − b= ‖2 + �‖z= − d= ‖2

+ �‖v∗
= − e∗= ‖2 − ‖x= − a= ‖ ‖Xa= −Xx= ‖ − (4)−1‖p= − q̃= ‖2

> (" + �)‖x= − a= ‖2 + �‖y= − b= ‖2 + �‖z= − d= ‖2

+ �‖v∗
= − e∗= ‖2 − "‖x= − a= ‖2 − (4)−1‖p= − q̃= ‖2

=
(
�− (4)−1) (‖x= − a= ‖2 + ‖y= − b= ‖2 + ‖z= − d= ‖2) + �‖v∗

= − e∗= ‖2. (95)

Hence, since � > 1/(4) by (45), taking the limit superior in (95) and invoking (94) yields

x= − a= → 0, y= − b= → 0, z= − d= → 0, and v∗
= − e∗= → 0, (96)

which establishes (iii). In turn, (52) and (77) force

x= −p= → 0 and ‖E=x= −E=p= ‖ 6 �‖x= −p= ‖ → 0 (97)

and (85) thus yields p= −q= → 0. Further, we infer from (75), (96), and Problem 1[e] that

‖r∗= ‖2
= ‖Xa= −Xx= ‖2

6 "2‖a= − x= ‖2 → 0. (98)

Altogether, it follows from (75), (89), (97), and (98) that

t∗= =
(
t∗= −

(
v∗= + r∗= +w∗

=

) )
+

(
E=x= −E=p=

)
+W(p= − x=) + r∗= → 0. (99)

Hence, Proposition 3(iv) guarantees that there exists x = (x , y, z, v∗) ∈ zerS such that x= ⇀ x. This
and (96) imply that, for every 8 ∈ � and every : ∈  , G8,= ⇀ G 8 , 08,= ⇀ G 8 , and E∗

:,=
⇀ E∗: . Finally,

Proposition 1(iii) asserts that (x , v∗) lies in the set of Kuhn–Tucker points (23), that x solves (1), and that
v∗ solves (2). �

Some infinite-dimensional applications require strong convergence of the iterates; see, e.g., [3, 4].
This will be guaranteed by the following variant of Algorithm 1, which hinges on the principle outlined
in Proposition 4.

Algorithm 2. Consider the setting of Problem 1, defineΞ as in (43), and suppose that Assumption 1–
3 is in force. Iterate
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for = = 0, 1, . . .


for every 8 ∈ �=


;∗8,= =&8G8,�8 (=) +'8x�8 (=) +
∑
:∈ !∗:8E

∗
:,�8(=);

08,= = ��8 ,�8(=)�8
(
G8,�8 (=) + �8,�8 (=)(B∗8 − ;∗8,= −�8G8,�8(=))

)
;

0∗8,= = �−1
8,�8 (=)(G8,�8 (=) − 08,=) − ;

∗
8,= +&808,= ;

�8,= = ‖08,= − G8,�8 (=)‖2;
for every 8 ∈ �r �=⌊
08,= = 08,=−1; 0∗8,= = 0

∗
8,=−1; �8,= = �8,=−1;

for every : ∈  =


D∗
:,=

= E∗
:,$:(=) − �

l

:
H:,$:(=);

F∗
:,=

= E∗
:,$:(=)

−�l

:
I:,$:(=);

1:,= = ��:,$:(=)�
m

:

(
H:,$:(=) +�:,$:(=)(D∗:,= − �

c

:
H:,$:(=))

)
;

3:,= = ��:,$: (=)�
m

:

(
I:,$:(=) + �:,$:(=)(F∗

:,=
−�c

:
I:,$:(=))

)
;

4∗
:,=

= �:,$:(=)
(∑

8∈� !:8G8,$:(=) − H:,$:(=) − I:,$:(=) − A:
)
+ E∗

:,$:(=);

@∗
:,=

= �−1
:,$:(=)(H:,$:(=) − 1:,=) + D∗:,= + �

l

:
1:,= − 4∗:,= ;

C∗
:,=

= �−1
:,$:(=)(I:,$:(=) − 3:,=) +F∗

:,=
+�l

:
3:,= − 4∗:,= ;

�:,= = ‖1:,= − H:,$:(=)‖2 + ‖3:,= − I:,$:(=)‖2;
4:,= = A: + 1:,= + 3:,= −

∑
8∈� !:808,= ;

for every : ∈  r =⌊
1:,= = 1:,=−1; 3:,= = 3:,=−1; 4∗

:,=
= 4∗

:,=−1; @∗
:,=

= @∗
:,=−1; C∗

:,=
= C∗

:,=−1;
�:,= = �:,=−1; 4:,= = A: + 1:,= + 3:,= −

∑
8∈� !:808,= ;

for every 8 ∈ �⌊
?∗8,= = 0

∗
8,= +'8a= +

∑
:∈ !∗:84

∗
:,=

;
Δ= =−(4)−1

(∑
8∈� �8,= +

∑
:∈ �:,=

)
+∑

8∈� 〈G8,= − 08,= | ?∗8,=〉
+∑

:∈ 
(
〈H:,= − 1:,= | @∗:,=〉 + 〈I:,= − 3:,= | C∗:,=〉 + 〈4:,= | E∗:,= − 4

∗
:,=

〉
)
;

ifΔ= > 0


�= =
∑
8∈� ‖?∗8,= ‖2 +∑

:∈ 
(
‖@∗

:,=
‖2 + ‖C∗

:,=
‖2 + ‖4:,= ‖2

)
;

�= =
∑
8∈� ‖G8,0 − G8,= ‖2

+∑
:∈ 

(
‖H:,0 − H:,= ‖2 + ‖I:,0 − I:,= ‖2 + ‖E∗

:,0 − E
∗
:,=

‖2
)
;

"= =
∑
8∈� 〈G8,0 − G8,= | ?∗8,=〉

+∑
:∈ 

(
〈H:,0 − H:,= | @∗:,=〉 + 〈I:,0 − I:,= | C∗:,=〉 + 〈4:,= | E∗:,0 − E

∗
:,=

〉
)
;

(�= ,�=)=Ξ(Δ= , �= , �= , "=);
for every 8 ∈ �⌊
G8,=+1 = (1−�=)G8,0 +�=G8,= −�=?∗8,= ;

for every : ∈  


H:,=+1 = (1−�=)H:,0 +�=H:,= −�=@
∗
:,=

;
I:,=+1 = (1−�=)I:,0 +�=I:,= −�=C

∗
:,=

;
E∗
:,=+1 = (1−�=)E∗:,0 +�=E

∗
:,=

−�= 4:,= ;

else


for every 8 ∈ �⌊
G8,=+1 = G8,= ;

for every : ∈  ⌊
H:,=+1 = H:,= ; I:,=+1 = I:,= ; E∗

:,=+1 = E
∗
:,=
.

(100)
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Theorem 2. Consider the setting of Algorithm 2 and suppose that the dual problem (2) has a solution. Then
the following hold:
(i) Let 8 ∈ �. Then

∑
=∈ℕ ‖G8,=+1 − G8,= ‖2 < +∞.

(ii) Let : ∈  . Then
∑
=∈ℕ ‖H:,=+1 − H:,= ‖2 < +∞,

∑
=∈ℕ ‖I:,=+1 − I:,= ‖2 < +∞, and

∑
=∈ℕ ‖E∗

:,=+1 −
E∗
:,=

‖2 < +∞.

(iii) Let 8 ∈ � and : ∈  . Then G8,= − 08,= → 0, H:,= − 1:,= → 0, I:,= − 3:,= → 0, and E∗
:,=

− 4∗
:,=

→ 0.

(iv) There exist a solution x to (1) and a solution v∗ to (2) such that, for every 8 ∈ � and every : ∈  , G8,= → G 8 ,
08,= → G 8 , and E∗

:,=
→ E∗: . In addition, (x , v∗) is a Kuhn–Tucker point of Problem 1 in the sense of (23).

Proof. Proceed as in the proof of Theorem 1 and use Proposition 4 instead of Proposition 3. �

4. Applications In nonlinear analysis and optimization, problems with multiple variables occur
in areas such as game theory [2, 15, 56], evolution inclusions [3], traffic equilibrium [3, 31], domain
decomposition [4], machine learning [6, 12], image recovery [13, 16], infimal-convolution regularization
[23], statistics [26, 55], neural networks [27], and variational inequalities [31]. The numerical methods
used in the above papers are limited to special cases of Problem 1 and they do not perform block
iterations and they operate in synchronous mode. The methods presented in Theorems 1 and 2 pro-
vide a unified treatment of these problems as well as extensions, within a considerably more flexible
algorithmic framework. In this section, we illustrate this in the context of variational inequalities and
multivariate minimization. Below we present only the applications of Theorem 1 as similar applications
of Theorem 2 follow using similar arguments.

4.1. Application to variational inequalities The standard variational inequality problem associ-
ated with a closed convex subset � of a real Hilbert space G and a maximally monotone operator
� : G → G is to

find H ∈ � such that (∀H ∈ �) 〈H − H | �H〉 6 0. (101)

Classical methods require the ability to project onto � and specific assumptions on � such as cocoer-
civity, Lipschitz continuity, or the ability to compute the resolvent [9, 30, 53]. Let us consider a refined
version of (101) in which � and� are decomposed into basic components, and for which these classical
methods are not applicable.

Problem 2. Let � be a nonempty finite set and let (H8)8∈� and G be real Hilbert spaces. For every
8 ∈ �, let �8 and �8 be closed convex subsets of H8 such that �8 ∩ �8 ≠ ∅ and let !8 : H8 → G be linear
and bounded. In addition, let �m : G → 2G be at most single-valued and maximally monotone, let
�c : G → G be cocoercive with constant �c ∈ ]0,+∞[, and let �l : G → G be Lipschitzian with constant
�l ∈ [0,+∞[. The objective is to

find H ∈
∑

8∈�
!8(�8 ∩ �8) such that

(
∀H ∈

∑

8∈�
!8(�8 ∩ �8)

) 〈
H − H | �mH + �cH + �lH

〉
6 0. (102)

To motivate our analysis, let us consider an illustration of (102).
Example 1. Let � be a nonempty finite set and let (Z8)8∈� and K be real Hilbert spaces. For every 8 ∈ �,

let (8 ⊂ Z8 be closed and convex, and let "8 : Z8 →K be linear and bounded. In addition, let 5 ∈ Γ0(K)
be Gâteaux differentiable on dom % 5 , let ! : K→ℝ be convex and differentiable with a Lipschitzian
gradient, let V be a real Hilbert space, let 6 ∈ Γ0(V) be such that 6∗ is Gâteaux differentiable on dom%6∗,
let � be a closed convex subset of V such that

0 ∈ sri(� −dom 6∗), (103)

let ℎ ∈ Γ0(V) be strongly convex, and let ! : K → V be linear and bounded. Note that, by [9, Theo-
rem 18.15], ℎ∗ is differentiable on V and ∇ℎ∗ is cocoercive. The objective is to solve the Kuhn–Tucker
problem
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find (G, E∗) ∈K ⊕ V such that[
0
0

]
∈

[
∇ 5 0
0 ∇6∗

]

︸      ︷︷      ︸
monotone

[
G
E∗

]
+

[
∇! 0
0 ∇ℎ∗

]

︸      ︷︷      ︸
cocoercive

[
G
E∗

]
+

[
0 !∗

−! 0

]

︸   ︷︷   ︸
Lipschitzian

[
G
E∗

]
+

[
#� 0
0 #�

]

︸     ︷︷     ︸
normal cone

[
G
E∗

]
, (104)

where it is assumed that

� =
∑

8∈�
"8((8) is closed and 0 ∈ sri(� −dom 5 ). (105)

Since dom ℎ∗ = V , we deduce from (103) and [9, Proposition 15.7(i)] that 6� ℎ� �� ∈ Γ0(V). It follows
from standard convex calculus [9] that a solution (G, E∗) to (104) provides a solution G to

minimize
G∈�

5 (G) +
(
6� ℎ� ��

)
(!G) +!(G), (106)

as well as a solution E∗ to the associated Fenchel–Rockafellar dual

minimize
E∗∈�

(
( 5 +!)∗���

)
(−!∗E∗) + 6∗(E∗) + ℎ∗(E∗). (107)

To see that (104)–(105) is a special case of Problem 2, set G =K ⊕ V and

(∀8 ∈ �) !8 : H8 =Z8 ⊕ V → G : (I8 , E∗) ↦→ ("8I8 , E
∗/card �), �8 = (8 ×�, and �8 =Z8 ×V . (108)

Note that
� ×� =

∑

8∈�
!8(�8 ∩ �8). (109)

Further, in view of [9, Proposition 17.31(i)], let us define




�m : G → 2G : (G, E∗) ↦→ %( 5 ⊕ 6∗)(G, E∗) =
{(

∇ 5 (G),∇6∗(E∗)
)
, if (G, E∗) ∈ dom % 5 ×dom %6∗;

∅, otherwise

�c : G → G : (G, E∗) ↦→
(
∇!(G),∇ℎ∗(E∗)

)

�l : G → G : (G, E∗) ↦→ (!∗E∗ ,−!G).
(110)

Then �m is maximally monotone [9, Theorem 20.25], �c is cocoercive [9, Corollary 18.17], and �l is a
skew bounded linear operator, hence monotone and Lipschitzian [9, Example 20.35]. In turn, combining
(108) and (110), we conclude that (104) can be written as

find (G, E∗) ∈K ⊕ V such that (0, 0) ∈ �m(G, E∗) + �c(G, E∗) + �l(G, E∗) +#�×�(G, E∗) (111)

which, in the light of (109), fits the format of (102). Special cases of (106) involving minimization over
Minkowski sum of sets are found in areas such as signal and image processing [5, 28, 41], location and
network problems [40], as well as robotics and computational mechanics [54].

We are going to reformulate Problem 2 as a realization of Problem 1 and solve it via a block-
iterative method derived from Algorithm 1. In addition, our approach employs the individual projection
operators onto the sets (�8)8∈� and (�8)8∈� , and the resolvents of the operator �m. We are not aware
of any method which features such flexibility. For instance, consider the special case discussed in
[31, Section 4], where G = ℝ

# , �c = �l = 0, ) : ℝ# → ℝ
" is a linear operator, and, for every 8 ∈ �,

H8 =ℝ
# , !8 = Id, �8 =)−1({38}) for some 38 ∈ℝ" , and �8 = [0,+∞[# . There, the evaluations of all the

projectors (proj�8∩�8 )8∈� are required at every iteration. Note that there are no closed-form expressions
for (proj�8∩�8 )8∈� in general.



Bùi and Combettes: Multivariate Monotone Inclusions in Saddle Form
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 21

Corollary 1. Consider the setting of Problem 2. Let � ∈
]
1/(4�c),+∞

[
, � ∈

]
0,min{1, 1/(�l+ �)}

[
,

and  = � ∪ {:}, where : ∉ �. Suppose that Assumption 2 is in force, together with the following:

[a] For every 8 ∈ � and every = ∈ℕ, {�8,= ,�8,= , �8,=} ⊂ [�, 1/�] and �8,= ∈ [�, 1/�].
[b] For every = ∈ℕ, �= ∈ [�, 2− �], �

:,=
∈

[
�, 1/(�l+ �)

]
, �

:,=
∈ [�, 1/�], and �

:,=
∈ [�, 1/�].

[c] For every 8 ∈ �, {G8,0 , H8,0, I8,0, E∗8,0} ⊂H8 ; {H:,0 , I:,0 , E∗:,0} ⊂ G.

Iterate

for = = 0, 1, . . .�������������������������������������������������������������������������������

for every 8 ∈ �=


;∗8,= = E
∗
8,= + !∗8E∗:,= ;

08,= = proj�8
(
G8,= − �8,= ;∗8,=

)
;

0∗8,= = �−1
8,=(G8,= − 08,=) − ;∗8,= ;

�8,= = ‖08,= − G8,= ‖2;
for every 8 ∈ �r �=⌊
08,= = 08,=−1; 0∗8,= = 0

∗
8,=−1; �8,= = �8,=−1;

for every : ∈  =


if : ∈ �


1:,= = proj�:
(
H:,= +�:,=E

∗
:,=

)
;

4∗
:,=

= �:,=(G:,= − H:,= − I:,=) + E∗:,= ;
@∗
:,=

= �−1
:,=

(H:,= − 1:,=) + E∗:,= − 4
∗
:,=

;
4:,= = 1:,= − 0:,= ;

if : = :


D∗
:,=

= E∗
:,=

− �lH:,= ;
1:,= = ��:,=�m

(
H:,= +�:,=(D∗:,= − �

cH:,=)
)
;

4∗
:,=

= �:,=
(∑

8∈� !8G8,= − H:,= − I:,=
)
+ E∗

:,=
;

@∗
:,=

= �−1
:,=

(H:,= − 1:,=) + D∗:,= + �
l1:,= − 4∗:,= ;

4:,= = 1:,= −
∑
8∈� !808,= ;

C∗
:,=

= �−1
:,=
I:,= + E∗:,= − 4

∗
:,=

;
�:,= = ‖1:,= − H:,= ‖2 + ‖I:,= ‖2;

for every : ∈  r =


1:,= = 1:,=−1; 4∗
:,=

= 4∗
:,=−1; @∗

:,=
= @∗

:,=−1; C∗
:,=

= C∗
:,=−1; �:,= = �:,=−1;

if : ∈ �⌊
4:,= = 1:,= − 0:,= ;

if : = :⌊
4:,= = 1:,= −

∑
8∈� !808,= ;

for every 8 ∈ �⌊
?∗8,= = 0

∗
8,= + 4∗8,= + !∗8 4∗:,= ;

Δ= =−(4�c)−1
(∑

8∈� �8,= +
∑
:∈ �:,=

)
+∑

8∈� 〈G8,= − 08,= | ?∗8,=〉
+∑

:∈ 
(
〈H:,= − 1:,= | @∗:,=〉 + 〈I:,= | C∗:,=〉 + 〈4:,= | E∗:,= − 4

∗
:,=

〉
)
;

if Δ= > 0


�= = �=Δ=/
(∑

8∈� ‖?∗8,= ‖2 +∑
:∈ 

(
‖@∗

:,=
‖2 + ‖C∗

:,=
‖2 + ‖4:,= ‖2

) )
;

for every 8 ∈ �⌊
G8,=+1 = G8,= −�=?∗8,= ;

for every : ∈  ⌊
H:,=+1 = H:,= −�=@

∗
:,=

; I:,=+1 = I:,= −�=C
∗
:,=

; E∗
:,=+1 = E

∗
:,=

−�=4:,= ;

(112)
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else


for every 8 ∈ �⌊
G8,=+1 = G8,= ;

for every : ∈  ⌊
H:,=+1 = H:,= ; I:,=+1 = I:,= ; E∗

:,=+1 = E
∗
:,=
.

Furthermore, suppose that (102) has a solution and that

(∀8 ∈ �) #�8∩�8 =#�8 +#�8 . (113)

Then there exists (G 8)8∈� ∈
⊕

8∈� H8 such that
∑
8∈� !8G 8 solves (102) and, for every 8 ∈ �, G8,= ⇀ G 8 and 08,= ⇀ G 8 .

Proof. Set H =
⊕

8∈� H8 . Let us consider the problem

find x ∈H such that (∀8 ∈ �) 0 ∈ #�8G 8 +#�8 G 8 + !∗8 (�m+ �c+ �l)
(
∑

9∈�
! 9G 9

)
(114)

together with the associated dual problem

find
(
x∗ , E∗

)
∈H⊕ G such that

(
∃ x ∈H

)
{
(∀8 ∈ �) −G∗8 − !∗8E

∗ ∈ #�8G8 and G∗8 ∈ #�8G8

E∗ = (�m+ �c+ �l)
(∑

9∈� ! 9G 9
)
.

(115)

Denote by P and D the sets of solutions to (114) and (115), respectively. We observe that the primal-dual
problem (114)–(115) is a special case of Problem 1 with

(∀8 ∈ �) �8 =#�8 , �8 =&8 = 0, '8 = 0, and B∗8 = 0, (116)

and

(∀: ∈  )




G: =H: , �
m

:
=#�: , �

c

:
= �l

:
= 0 if : ∈ �;

G
:
= G , �m

:
= �m, �c

:
= �c, �l

:
= �l

�m

:
= {0}−1 , �c

:
=�l

:
= 0, A: = 0

(∀9 ∈ �) !: 9 =



Id, if : = 9;

0, if : ∈ � and : ≠ 9;

! 9 , if : = :.

(117)

Further, we have




(∀8 ∈ �)(∀= ∈ℕ) ��8 ,=�8 = proj�8

(∀: ∈  )(∀= ∈ℕ) ��:,=�m

:
= 0 and ��:,=�m

:
=

{
proj�: , if : ∈ �;
��:,=�m , if : = :.

(118)

Therefore, (112) is a realization of Algorithm 1 in the context of (114)–(115). Now defineJ =
�

8∈� (�8∩�8)
and R : H→ G : x ↦→∑

8∈� !8G8 . Then R∗ : G →H : H∗ ↦→ (!∗8H∗)8∈� . Hence, by (102), [9, Proposition 16.9],
and (113),

(∀H ∈ G) H solves (102)

⇔(∃ x ∈J)
{
H = Rx

(∀x ∈ J)
〈
Rx − Rx | (�m+ �c+ �l)(Rx)

〉
6 0

⇔(∃ x ∈J)
{
H = Rx

(∀x ∈ J)
〈
x − x | R∗ ((�m+ �c+ �l)(Rx)

)〉
6 0
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⇔(∃ x ∈H)
{
H = Rx

0 ∈ #Jx + R∗ ((�m+ �c+ �l)(Rx)
)

⇔(∃ x ∈H)
{
H = Rx

(∀8 ∈ �) 0 ∈ #�8∩�8 G 8 + !∗8(�m+ �c+ �l)
(∑

9∈� ! 9G 9
)

⇔(∃ x ∈H)
{
H = Rx

(∀8 ∈ �) 0 ∈ #�8G 8 +#�8G 8 + !∗8(�m+ �c+ �l)
(∑

9∈� ! 9G 9
)

⇔(∃ x ∈P) H = Rx. (119)

In turn, P ≠∅ since (102) has a solution. Therefore, in view of (117), Proposition 1(v)[d] yields D ≠∅.
As a result, Theorem 1(iv) asserts that there exists (G 8)8∈� ∈ P such that, for every 8 ∈ �, G8,= ⇀ G 8 and
08,= ⇀ G 8 . Finally, using (119), we conclude that

∑
8∈� !8G 8 solves (102). �

Remark 2. Theorem 1 allows us to tackle other types of variational inequalities. For instance, let
(H8)8∈� be a finite family of real Hilbert spaces and set H=

⊕
8∈� H8 . For every 8 ∈ �, let !8 ∈ Γ0(H8) and

let '8 : H→H8 be such that Problem 1[e] holds. The objective is to

find x ∈H such that (∀8 ∈ �) 0 ∈ %!8(G 8) +'8x. (120)

This simple instantiation of Problem 1 shows up in neural networks [27] and in game theory [2, 15].
Thanks to Theorem 1, it can be solved using an asynchronous block-iterative strategy, which is not
possible with current splitting techniques such as those of [25, 34].

4.2. Application to multivariate minimization We consider a composite multivariate minimiza-
tion problem involving various types of convex functions and combinations between them.

Problem 3. Let (H8)8∈� and (G:):∈ be finite families of real Hilbert spaces, and set H=
⊕

8∈� H8 and
G =

⊕
:∈ G: . For every 8 ∈ � and every : ∈  , let 58 ∈ Γ0(H8), let 8 ∈ ]0,+∞[, let !8 : H8 →ℝ be convex

and differentiable with a (1/8)-Lipschitzian gradient, let 6: ∈ Γ0(G:), let ℎ: ∈ Γ0(G:), let �: ∈ ]0,+∞[,
let #: : G: → ℝ be convex and differentiable with a (1/�:)-Lipschitzian gradient, and suppose that
!:8 : H8 → G: is linear and bounded. In addition, let " ∈ [0,+∞[ and let Θ : H→ ℝ be convex and
differentiable with a "-Lipschitzian gradient. The objective is to

minimize
x∈H

Θ(x) +
∑

8∈�

(
58(G8) +!8(G8)

)
+

∑

:∈ 

(
(6: +#:)� ℎ:

)
(
∑

9∈�
!: 9G 9

)
. (121)

Special cases of Problem 3 are found in various contexts, e.g., [13, 16, 23, 25, 33, 34]. Formulation (121)
brings together these disparate problems and the following algorithm makes it possible to solve them
in an asynchronous block-iterative fashion in full generality.
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Algorithm 3. Consider the setting of Problem 3 and suppose that Assumption 2–3 is in force. Set
 = min{8 , �:}8∈� ,:∈ , let � ∈ ]1/(4),+∞[, and let � ∈ ]0,min{1, 1/(" + �)}[. For every 8 ∈ �, every
: ∈  , and every = ∈ ℕ, let �8,= ∈ [�, 1/("+ �)], let {�:,= , �:,=} ⊂ [�, 1/�], let �:,= ∈ [�, 1/�], and let
�= ∈ [�, 2− �]. In addition, let x0 ∈H and {y0, z0 , v

∗
0} ⊂ G. Iterate

for = = 0, 1, . . .


for every 8 ∈ �=


;∗8,= =∇8 Θ(x�8(=)) +
∑
:∈ !∗:8E

∗
:,�8 (=);

08,= = prox�8 ,�8(=) 58
(
G8,�8 (=) − �8,�8 (=)

(
;∗8,= +∇!8(G8,�8 (=))

) )
;

0∗8,= = �−1
8,�8 (=)(G8,�8 (=) − 08,=) − ;

∗
8,= ;

�8,= = ‖08,= − G8,�8 (=)‖2;
for every 8 ∈ �r �=⌊
08,= = 08,=−1; 0∗8,= = 0

∗
8,=−1; �8,= = �8,=−1;

for every : ∈  =


1:,= = prox�:,$:(=)6:
(
H:,$:(=) +�:,$:(=)

(
E∗
:,$:(=) −∇#:(H:,$:(=))

) )
;

3:,= = prox�:,$: (=)ℎ:
(
I:,$:(=) + �:,$:(=)E

∗
:,$:(=)

)
;

4∗
:,=

= �:,$:(=)
(∑

8∈� !:8G8,$:(=) − H:,$:(=) − I:,$:(=)
)
+ E∗

:,$:(=);

@∗
:,=

= �−1
:,$:(=)(H:,$:(=) − 1:,=) + E∗:,$:(=) − 4

∗
:,=

;

C∗
:,=

= �−1
:,$:(=)(I:,$:(=) − 3:,=) + E∗:,$:(=) − 4

∗
:,=

;

�:,= = ‖1:,= − H:,$:(=)‖2 + ‖3:,= − I:,$:(=)‖2;
4:,= = 1:,= + 3:,= −

∑
8∈� !:808,= ;

for every : ∈  r =⌊
1:,= = 1:,=−1; 3:,= = 3:,=−1; 4∗

:,=
= 4∗

:,=−1; @∗
:,=

= @∗
:,=−1; C∗

:,=
= C∗

:,=−1;
�:,= = �:,=−1; 4:,= = 1:,= + 3:,= −

∑
8∈� !:808,= ;

for every 8 ∈ �⌊
?∗8,= = 0

∗
8,= +∇8 Θ(a=) +

∑
:∈ !∗:84

∗
:,=

;
Δ= =−(4)−1

(∑
8∈� �8,= +

∑
:∈ �:,=

)
+∑

8∈� 〈G8,= − 08,= | ?∗8,=〉
+∑

:∈ 
(
〈H:,= − 1:,= | @∗:,=〉 + 〈I:,= − 3:,= | C∗:,=〉 + 〈4:,= | E∗:,= − 4

∗
:,=

〉
)
;

ifΔ= > 0


�= =�=Δ=/
(∑

8∈� ‖?∗8,= ‖2 +∑
:∈ 

(
‖@∗

:,=
‖2 + ‖C∗

:,=
‖2 + ‖4:,= ‖2

) )
;

for every 8 ∈ �⌊
G8,=+1 = G8,= −�=?∗8,= ;

for every : ∈  ⌊
H:,=+1 = H:,= −�=@

∗
:,=

; I:,=+1 = I:,= −�=C
∗
:,=

; E∗
:,=+1 = E

∗
:,=

−�=4:,= ;

else


for every 8 ∈ �⌊
G8,=+1 = G8,= ;

for every : ∈  ⌊
H:,=+1 = H:,= ; I:,=+1 = I:,= ; E∗

:,=+1 = E
∗
:,=
.

(122)

Corollary 2. Consider the setting of Algorithm 3. Suppose that

(∀: ∈  ) epi(6: +#:) + epi ℎ: is closed (123)

and that Problem 3 admits a Kuhn–Tucker point, that is, there exist x̃ ∈H and ṽ∗ ∈ G such that

(∀8 ∈ �)(∀: ∈  )
{
−∑

9∈ !∗98 Ẽ
∗
9 ∈ % 58(G̃8) +∇!8(G̃8) +∇8 Θ(̃x)

∑
9∈� !: 9 G̃ 9 ∈ %

(
6∗
:
�#∗

:

)
(̃E∗
:
) + %ℎ∗

:
(̃E∗
:
).

(124)
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Then there exists a solution x to (121) such that, for every 8 ∈ �, G8,= ⇀ G 8 and 08,= ⇀ G 8 .

Proof. Set {
(∀8 ∈ �) �8 = % 58 , �8 =∇!8 , and '8 =∇8 Θ
(∀: ∈  ) �m

:
= %6: , �

c

:
=∇#: , and �m

:
= %ℎ: .

(125)

First, [9, Theorem 20.25] asserts that the operators (�8)8∈� , (�m

:
):∈ , and (�m

:
):∈ are maximally

monotone. Second, it follows from [9, Corollary 18.17] that, for every 8 ∈ �, �8 is 8-cocoercive and, for
every : ∈  , �c

:
is �:-cocoercive. Third, in view of (125) and [9, Proposition 17.7], X = ∇Θ is monotone

and "-Lipschitzian. Now consider the problem

find x ∈H such that

(∀8 ∈ �) 0 ∈ �8G 8 +�8G 8 +'8x +
∑

:∈ 
!∗:8

(((
�m

: + �c

:

)
��m

:

) (∑

9∈�
!: 9G 9

))
(126)

together with its dual

find v∗ ∈ G such that

(
∃ x ∈H

)
(∀8 ∈ �)(∀: ∈  )




−
∑

9∈ 
!∗98E

∗
9 ∈ �8G8 +�8G8 +'8x

E∗: ∈
( (
�m

:
+ �c

:

)
��m

:

) (∑

9∈�
!: 9G 9

)
.

(127)

Denote by P and D the sets of solutions to (126) and (127), respectively. We observe that, by (125) and
[9, Example 23.3], Algorithm 3 is an application of Algorithm 1 to the primal-dual problem (126)–(127).
Furthermore, it results from (124) and Proposition 1(iv) that D ≠∅. According to Theorem 1(iv), there
exist x ∈ P and v∗ ∈ D such that, for every 8 ∈ � and every : ∈  ,

G8,= ⇀ G 8 , 08,= ⇀ G 8 , and




−
∑

9∈ 
!∗98E

∗
9 ∈ �8G 8 +�8G 8 +'8x

E∗: ∈
( (
�m

:
+ �c

:

)
��m

:

) (∑

9∈�
!: 9G 9

)
.

(128)

It remains to show that x solves (121). Define
{
f =

⊕
8∈� 58 , > =

⊕
8∈� !8 , g =

⊕
:∈ 6: , h =

⊕
:∈ ℎ: , and 7 =

⊕
:∈ #:

R : H→G : x ↦→
(∑

8∈� !:8G8
)
:∈ .

(129)

We deduce from [9, Theorem 15.3] that (∀: ∈  ) (6: +#:)∗ = 6∗: ⊡#∗
:
. In turn, (124) implies that

(∀: ∈  ) ∅ ≠ dom
(
6∗: ⊡#∗

:

)
∩dom ℎ∗: = dom(6: +#:)∗ ∩dom ℎ∗: . (130)

On the other hand, since the sets (epi(6: + #:) + epi ℎ:):∈ are convex, it follows from (123) and [9,
Theorem 3.34] that they are weakly closed. Therefore, [20, Theorem 1] and the Fenchel–Moreau theorem
[9, Theorem 13.37] imply that

(∀: ∈  )
(
(6: +#:)∗ + ℎ∗:

) ∗
= (6: +#:)∗∗⊡ ℎ∗∗: = (6: +#:)⊡ ℎ: . (131)

Hence, we derive from (125), [9, Corollaries 16.48(iii) and 16.30], (131), and [9, Proposition 16.42] that

(∀: ∈  )
(
�m

: + �c

:

)
��m

: =
(
%6: +∇#:

)
� (%ℎ:)
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=

( (
%(6: +#:)

)−1 + (%ℎ:)−1
)−1

=
(
%(6: +#:)∗ + %ℎ∗:

)−1

=

(
%
(
(6: +#:)∗ + ℎ∗:

) )−1

= %
(
(6: +#:)∗ + ℎ∗:

)∗
= %

(
(6: +#:)⊡ ℎ:

)
. (132)

Since it results from (129) and (131) that

(g +7)� h = (g +7)⊡ h =
⊕

:∈ 

(
(6: +#:)⊡ ℎ:

)
, (133)

we deduce from [9, Proposition 16.9] and (132) that

%
(
(g +7)⊡h

)
=

�

:∈ 
%
(
(6: +#:)⊡ ℎ:

)
=

�

:∈ 

(
(�m

: + �c

: )��
m

:

)
. (134)

It thus follows from (128) and (129) that v∗ ∈ %((g +7)⊡ h)(Rx). On the other hand, since R∗ : G →
H : v∗ ↦→ (∑:∈ !∗:8E

∗
:
)8∈� , we infer from (128), (125), (129), and [9, Proposition 16.9] that −R∗v∗ ∈

(�8G 8)8∈� + Xx + �

8∈� �8G 8 = ∇>(x) + ∇Θ(x) + % f (x). Hence, we invoke [9, Proposition 16.6(ii)] to
obtain

0 ∈ % f (x) +∇>(x) +∇Θ(x) + R∗v∗

⊂ % f (x) +∇>(x) +∇Θ(x) + R∗
(
%
(
(g +7)⊡h

)
(Rx)

)

⊂ %
(
f +>+Θ+

(
(g +7)⊡ h

)
◦ R

)
(x). (135)

However, thanks to (129) and (133), (121) is equivalent to

minimize
x∈H

f (x) +>(x) +Θ(x) +
(
(g +7)⊡ h

)
(Rx). (136)

Consequently, in view of Fermat’s rule [9, Theorem 16.3], (135) implies that x solves (121). �

Remark 3. In [16], multicomponent image recovery problems were approached by applying the
forward-backward and the Douglas–Rachford algorithms in a product space. Using Corollary 2, we
can now solve these problems with asynchronous block-iterative algorithms and more sophisticated
formulations. For instance, the standard total variation loss used in [16] can be replaced by the ?th
order Huber total variation penalty of [33], which turns out to involve an infimal convolution.

To conclude, we provide some scenarios in which condition (123) is satisfied.

Proposition 5. Consider the setting of Problem 3. Suppose that there exist x̃ ∈H and ṽ∗ ∈ G such that

(∀8 ∈ �)(∀: ∈  )
{
−∑

9∈ !∗98 Ẽ
∗
9 ∈ % 58(G̃8) +∇!8(G̃8) +∇8 Θ(̃x)

∑
9∈� !: 9 G̃ 9 ∈ %

(
6∗
:
�#∗

:

)
(̃E∗
:
) + %ℎ∗

:
(̃E∗
:
)

(137)

and that, for every : ∈  , one of the following is satisfied:

[a] 0 ∈ sri(dom 6∗
:
+dom#∗

:
−dom ℎ∗

:
).

[b] G: is finite-dimensional, ℎ: is polyhedral, and dom ℎ∗
:
∩ ri dom(6: +#:)∗ ≠∅.

[c] G: is finite-dimensional, 6: and ℎ: are polyhedral, and #: = 0.

Then, for every : ∈  , epi(6: +#:) + epi ℎ: is closed.
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Proof. Let : ∈  . Since dom#: = G: , [9, Theorem 15.3] yields

(6: +#:)∗ = 6∗: ⊡#∗
: . (138)

Therefore, (137) implies that

∅≠ dom
(
6∗: ⊡#∗

:

)
∩dom ℎ∗: = dom(6: +#:)∗ ∩dom ℎ∗: . (139)

In view of (139), [20, Theorem 1], and [9, Theorem 3.34], it suffices to show that ((6: + #:)∗ + ℎ∗:)∗ =
(6: +#:)∗∗⊡ ℎ∗∗: .

[a]: We deduce from [9, Proposition 12.6(ii)] and (138) that 0 ∈ sri(dom(6∗
:
⊡#∗

:
) − dom ℎ∗

:
) =

sri(dom(6: +#:)∗ −dom ℎ∗
:
). In turn, [9, Theorem 15.3] gives ((6: +#:)∗ + ℎ∗:)

∗ = (6: +#:)∗∗⊡ ℎ∗∗: .
[b]: Since [48, Theorem 19.2] asserts that ℎ∗

:
is polyhedral, we infer from [48, Theorem 20.1] that

((6: +#:)∗ + ℎ∗:)
∗ = (6: +#:)∗∗⊡ ℎ∗∗: .

[c]: Since 6∗
:

and ℎ∗
:

are polyhedral by [48, Theorem 19.2], it follows from (139) and [48, Theorem 20.1]
that (6∗

:
+ ℎ∗

:
)∗ = 6∗∗

:
⊡ ℎ∗∗

:
. �

Appendix

In this section, K is a real Hilbert space.

Lemma 1. Let� : K→ 2K be maximally monotone, let (G=)=∈ℕ be a bounded sequence inK, and let (�=)=∈ℕ
be a bounded sequence in ]0,+∞[. Then (��=�G=)=∈ℕ is bounded.

Proof. Fix G ∈ K. Using the triangle inequality, the nonexpansiveness of (��=�)=∈ℕ , and [9, Proposi-
tion 23.31(iii)], we obtain (∀= ∈ ℕ) ‖��=�G= − ��G‖ 6 ‖��=�G= − ��=�G‖ + ‖��=�G − ��G‖ 6 ‖G= − G‖ +
|1− �= | ‖��G − G‖ 6 ‖G‖ + sup<∈ℕ ‖G< ‖ + (1+ sup<∈ℕ �<)‖��G − G‖. �

Lemma 2. Let  ∈ [0,+∞[, let � : K→K be -Lipschitzian, let � ∈ ]0,+∞[, and let � ∈ ]0, 1/(+ �)].
Then �−1Id−� is �-strongly monotone.

Proof. By Cauchy–Schwarz,

(∀G ∈K)(∀H ∈K)
〈
G − H |

(
�−1Id−�

)
G −

(
�−1Id−�

)
H
〉

= �−1‖G − H‖2 − 〈G − H | �G −�H〉
> (+ �)‖G − H‖2 − ‖G − H‖ ‖�G−�H‖
> (+ �)‖G − H‖2 − ‖G − H‖2

= �‖G − H‖2, (140)

which proves the assertion. �

Lemma 3. Let � be a nonempty finite set, let (�=)=∈ℕ be nonempty subsets of �, let % ∈ℕ, and let (G=)=∈ℕ be
a sequence in K. Suppose that

∑
=∈ℕ ‖G=+1 − G= ‖2 < +∞, �0 = �, and (∀= ∈ ℕ) ⋃=+%

9== � 9 = �. Furthermore, let

) ∈ℕ, let 8 ∈ �, and let (�8(=))=∈ℕ be a sequence in ℕ such that (∀= ∈ℕ) =−) 6�8(=)6 =. For every = ∈ℕ,

set '8(=)=max
{
9 ∈ℕ | 9 6 = and 8 ∈ � 9

}
and '8(=)=�8('8(=)). Then G'8(=) − G= → 0.

Proof. For every integer = > %, since 8 ∈ ⋃=
9==−% � 9 , we have = 6 '8(=) + % 6 �8('8(=)) + % + ) =

'8(=) + % +). Hence '8(=)→+∞ and therefore
∑'8 (=)+%+)
9='8 (=) ‖G 9+1 − G 9 ‖2 → 0. However, it results from

our assumption that (∀= ∈ ℕ) '8(=) = �8('8(=)) 6 '8(=) 6 =. We thus deduce from the triangle and
Cauchy–Schwarz inequalities that

‖G= − G'8 (=)‖2
6

�����
'8 (=)+%+)∑

9='8 (=)
‖G 9+1 − G 9 ‖

�����

2

6 (% +) + 1)
'8 (=)+%+)∑

9='8 (=)
‖G 9+1 − G 9 ‖2 → 0. (141)

Consequently, G'8(=) − G= → 0. �
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Lemma 4 ([22]). Let / be a nonempty closed convex subset of K, G0 ∈K, and � ∈ ]0, 1[. Suppose that

for = = 0, 1, . . .


C∗= ∈K and �= ∈ℝ satisfy / ⊂ �= =
{
G ∈K | 〈G | C∗=〉 6 �=

}
;

Δ= = 〈G= | C∗=〉 −�= ;
if Δ= > 0⌊
�= ∈ [�, 2− �] ;
G=+1 = G= − (�=Δ=/‖C∗= ‖2) C∗= ;

else⌊
G=+1 = G= .

(142)

Then the following hold:

(i) (∀I ∈ /)(∀= ∈ℕ) ‖G=+1 − I‖ 6 ‖G= − I‖.
(ii)

∑
=∈ℕ ‖G=+1 − G= ‖2 < +∞.

(iii) Suppose that, for every G ∈K and every strictly increasing sequence (:=)=∈ℕ in ℕ, G:= ⇀ G⇒ G ∈ /. Then
(G=)=∈ℕ converges weakly to a point in /.

We now revisit ideas found in [8, 21] in a format that is more suited for our purposes.

Lemma 5. Let / be a nonempty closed convex subset of K and let G0 ∈K. Suppose that

for = = 0, 1, . . .


C∗= ∈K and �= ∈ℝ satisfy / ⊂ �= =
{
G ∈K | 〈G | C∗=〉 6 �=

}
;

Δ= = 〈G= | C∗=〉 −�= ;
ifΔ= > 0


�= = ‖C∗= ‖2; �= = ‖G0 − G= ‖2; "= = 〈G0 − G= | C∗=〉; �= = �=�= − "2
= ;

if �= = 0⌊
�= = 1; �= =Δ=/�= ;

else


if "=Δ= > �=⌊
�= = 0; �= =

(
Δ= + "=

)
/�= ;

else⌊
�= = 1− "=Δ=/�= ; �= = �=Δ=/�= ;

G=+1 = (1−�=)G0 +�=G= −�=C∗= ;
else⌊
G=+1 = G= .

(143)

Then the following hold:

(i) (∀= ∈ℕ) ‖G= − G0‖ 6 ‖G=+1 − G0‖ 6 ‖proj/G0 − G0‖.
(ii)

∑
=∈ℕ ‖G=+1 − G= ‖2 < +∞ and

∑
=∈ℕ ‖proj�= G= − G= ‖

2 < +∞.
(iii) Suppose that, for every G ∈K and every strictly increasing sequence (:=)=∈ℕ in ℕ, G:= ⇀ G⇒ G ∈ /. Then

G= → proj/G0.

Proof. Define (∀= ∈ℕ) �= =
{
G ∈K | 〈G − G= | G0 − G=〉 6 0

}
. Then, by virtue of (143),

(∀= ∈ℕ) G= = proj�= G0 and
[
Δ= > 0 ⇒ proj�= G= = G= −

(
Δ=/‖C∗= ‖2) C∗=

]
. (144)

Let us establish that
(∀= ∈ℕ) / ⊂ �= ∩�= and G=+1 = proj�=∩�= G0. (145)

Since �0 = K, (143) yields / ⊂ �0 = �0 ∩ �0. Hence, we derive from (144) and (143) that Δ0 > 0 ⇒
[proj�0

G0 = G0 − (Δ0/�0) C∗0 and �0 = 0 ] ⇒ [proj�0
G0 = G0 − (Δ0/�0) C∗0, �0 = 1, and �0 = Δ0/�0 ] ⇒
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G1 = G0 − (Δ0/�0) C∗0 = proj�0
G0 = proj�0∩�0

G0. On the other hand, Δ0 6 0 ⇒ G1 = G0 ∈ �0 =�0 ∩�0 ⇒
G1 = proj�0∩�0

G0. Now assume that, for some integer = > 1, / ⊂ �=−1 ∩�=−1 and G= = proj�=−1∩�=−1
G0.

Then, according to [9, Theorem 3.16], / ⊂ �=−1 ∩�=−1 ⊂
{
G ∈K | 〈G − G= | G0 − G=〉 6 0

}
=�= . In turn,

(143) entails that / ⊂ �= ∩�= . Next, it follows from (143), (144), and [9, Proposition 29.5] that Δ= 6 0
⇒ [ G=+1 = G= and proj�= G0 = G= ∈ �= ] ⇒ G=+1 = proj�= G0 = proj�=∩�= G0. To complete the induction
argument, it remains to verify that Δ= > 0 ⇒ G=+1 = proj�=∩�= G0. Assume that Δ= > 0 and set

H= = proj�= G= , "̃= = 〈G0 − G= | G= − H=〉, �̃= = ‖G= − H= ‖2, and �̃= = �= �̃= − "̃2
= . (146)

Since Δ= > 0, we have �= =
{
G ∈K | 〈G − H= | G= − H=〉 6 0

}
and H= = G= −�=C∗= , where �= =Δ=/�= > 0.

In turn, we infer from (146) and (143) that

"̃= = �="= , �̃= = �2
=�= = �=Δ= , and �̃= = �2

=�= . (147)

Furthermore, (143) and the Cauchy–Schwarz inequality ensure that �= > 0, which leads to two cases.
• �= = 0: On the one hand, (143) asserts that G=+1 = G= − (Δ=/�=) C∗= = H= . On the other hand, (147)

yields �̃= = 0 and, therefore, since �= ∩ �= ≠ ∅, [9, Corollary 29.25(ii)] yields proj�=∩�= G0 = H= .
Altogether, G=+1 = proj�=∩�= G0.

• �= > 0: By (147), �̃= > 0. First, suppose that "=Δ= > �= . It follows from (143) that G=+1 = G0 − ((Δ= +
"=)/�=) C∗= and from (147) that "̃= �̃= = �2

="=Δ= > �2
=�= = �̃= . Thus [9, Corollary 29.25(ii)] and (147)

imply that

proj�=∩�= G0 = G0 +
(
1+ "̃=

�̃=

)
(H= − G=)

= G0 −
(
1+ "=

�=�=

)
�=C

∗
=

= G0 −
�=�= + "=

�=
C∗=

= G0 −
Δ= + "=

�=
C∗=

= G=+1. (148)

Now suppose that "=Δ= < �= . Then "̃= �̃= < �̃= and hence it results from [9, Corollary 29.25(ii)],
(147), and (143) that

proj�=∩�= G0 = G= +
�̃=
�̃=

(
"̃=(G0 − G=) + �=(H= − G=)

)

=
"̃= �̃=
�̃=

G0 +
(
1− "̃= �̃=

�̃=

)
G= +

�̃=�=
�̃=

(H= − G=)

=
"=Δ=
�=

G0 +
(
1− "=Δ=

�=

)
G= −

�=�=
�=

Δ=

�=
C∗=

= G=+1. (149)

(i): Let = ∈ ℕ. We derive from (145) that ‖G=+1 − G0‖ = ‖proj�=∩�= G0 − G0‖ 6 ‖proj/G0 − G0‖. On the
other hand, since G=+1 ∈ �= by virtue of (145), we have

‖G= − G0‖2 + ‖G=+1 − G= ‖2 6 ‖G= − G0‖2 + ‖G=+1 − G= ‖2 + 2〈G=+1 − G= | G= − G0〉
= ‖G=+1 − G0‖2. (150)

(ii): Let # ∈ ℕ. In view of (150) and (i),
∑#
==0 ‖G=+1 − G= ‖2 6

∑#
==0(‖G=+1 − G0‖2 − ‖G= − G0‖2) =

‖G#+1 − G0‖2 6 ‖proj/G0 − G0‖2. Therefore,
∑
=∈ℕ ‖G=+1 − G= ‖2 < +∞. However, for every = ∈ ℕ, since

(145) asserts that G=+1 ∈ �= , we have ‖proj�= G= − G= ‖ 6 ‖G=+1 − G= ‖. Thus
∑
=∈ℕ ‖proj�= G= − G= ‖

2 <
+∞.
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(iii): It results from (i) that (G=)=∈ℕ is bounded. Now let G ∈ K, let (:=)=∈ℕ be a strictly increasing
sequence in ℕ, and suppose that G:= ⇀ G. Using [9, Lemma 2.42] and (i), we deduce that ‖G − G0‖ 6
lim ‖G:= − G0‖ 6 ‖proj/G0 − G0‖. Thus, since it results from our assumption that G ∈ /, we have G =
proj/G0, which implies that G= ⇀ proj/G0 [9, Lemma 2.46]. In turn, since lim ‖G=− G0‖ 6 ‖proj/G0− G0‖
by (i), [9, Lemma 2.51(i)] forces G= → proj/G0. �
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