Noname manuscript No.
(will be inserted by the editor)

Moreau’s Decomposition in Banach Spaces

Patrick L. Combettes - Noli N. Reyes

Received: date / Accepted: date

Abstract Moreau’s decomposition is a powerful nonlinear hilbert@ralysis tool

that has been used in various areas of optimization andegbpiathematics. In this
paper, it is extended to reflexive Banach spaces and in theextoof generalized
proximity measures. This extension unifies and signifigantproves upon existing
results.
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1 Introduction

Throughout this papef.2,] - ||) is a reflexive real Banach space with topological
dual (27, || - ||+), and the canonical bilinear form off” x 2™ is denoted by, ).
The distance function to a s€tC 2" is dc: x — infyec [ X — ||, the metric projec-
tor ontoC is Re: x+— {y € C | |[x—y||=dc(x)}, and the polar cone & is C =

{x € 2| (v¥xeC) (x,x*) < 0}. (&) is the class of lower semicontinuous con-
vex functionsp : 2" — ]—w, +] such that donp = {x€ 2" | p(x) < +w} # @.
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A classical tool in linear hilbertian analysis is the follow orthogonal decom-
position principle.

Proposition 1 Suppose tha®” is a Hilbert space, letV be a closed vector subspace
of 2" with orthogonal complement, and let x¢ .2". Then the following hold.

() 1IX|I? =G (9 +dZ. (%)
(i) x=R/x+R,Lx.
(i) (R/x,R,1x) =0.

In 1962, Moreau proposed a nonlinear extension of this deosition.

Proposition 2 [22] Suppose that?” is a Hilbert space, let K be a nonempty closed
convex cone ir?’, and let xe 2. Then the following hold.

(i) [XI[? = d& (%) +dZ- (%).
(i) x=PXx+ Pax.
(iii) (Pkx,Pcex) =0.

Motivated by problems in unilateral mechanics, MoreaurHertextended this re-
sult in [23] (see also 25]). To state Moreau’s decomposition principle, we require
some basic notions from convex analysis33]. Let ¢ and f be two functions in
[o(Z"). The conjugate o is the functionp™ in H(2™*) defined by

0% 2 — ]—c0, 40| X l—>XSEl:l§_)(<X,X*> —¢(x). (1.2)

Moreover, the infimal convolution af andf is the function

pof: 2 — [—oo,+oo]:xeyien;(¢(y)+f(x—y)). (1.2)

Now suppose that?” is a Hilbert space and set= (1/2)| - ||. Then, for every
x e ', there exists a unique poipte 2" such that ¢ 0q)(x) = ¢(p) + q(x— p);
this point is denoted by = prox;x. The operator prox: 2° — 2 thus defined is
called the proximity operator affi.

Proposition 3 [23,25) Suppose that?” is a Hilbert space, leth € I5(.2"), set g=
| -112/2, and let xc 2". Then the following hold.

(i) 9(x) = (¢009)(x) + (¢*00a)(x).
(i) X= proxsX-+ prox-:Xx.
(i) (prox,x,proxy:X) = @ (prox,x) + ¢*(prox,:x).

Note that, if in Propositior8 ¢ is the indicator function of a nonempty closed
convex con&K C 2, i.e.,¢ = ix where

0, if xeK;

1.3
+oo, if x¢ K, (1.3)

(xe Z) IK(X){

we recover Propositiof.
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The above hilbertian nonlinear decomposition principla@sehfound many appli-
cations in optimization and in various other areas of appi@athematics (see for
instance 9,12,13,14,15,16,17,18,21,28] and the references therein) and attempts
have been made to extend them to more general Banach spdwemain result
in this direction is the following generalization of Proftam 2(ii)& (i) in uni-
formly convex and uniformly smooth Banach spaces (see &l4®,29,30] for al-
ternate proofs and applications), wheéie denotes the generalized projector onto a
nonempty closed convex subsebf 2" [1], i.e., if J denotes the duality mapping of
Z,

(VXx€ 2) Mex= argrgir(Htz —2(y,3% +|ly|I?). (1.4)
ye

Proposition 4 [2] Suppose that?™ is uniformly convex and uniformly smooth, let
J: & — Z* denote its duality mapping, which is characterized by

(vxe 27) [IXI? = (x,3% = 132, (1.5)

let K be a nonempty closed convex coneZin and let xe .2". Then the following
hold.

(i) x=PRx+JI"(Me (3%).
(ii) (Pcx, Mye(IX) =0.

The objective of the present paper is to unify and extend bwwaresults. To
this end, we first discuss in Secti@rsuitable notions of proximity in Banach spaces.
Based on these, we propose our extension of Moreau’s desitiopan Sectior. A
feature of our analysis is to rely heavily on convex anagjtiools, which allows us
to derive our main result with simpler proofs than thosdzed in the above special
case.

2 Proximity in Banach spaces

Letg € [p(Z"). As seen in the Introduction, i#” is a Hilbert space, Moreau’s prox-
imity operator is defined by

. 1 5
(e Z) prox¢x7a}r/gg;u(tp(y)wLEfoyH ) (2.2)
In this section we discuss two extensions of this operatoBamach spaces.
We recall that¢ is coercive if limy ., ®(y) = +o and supercoercive if

lim iy 5+ @ (Y)/|lYl| = +. As usual, the subdifferential operator ¢fis denoted
by d¢. Finally, the strong relative interior of a convex §etC 2" is

sriC = {xe C

U)\(Cx)sp—ar(Cx)}. (2.2)

A>0

We shall also require the following facts.
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Lemma 1l ([24,26]) Let f € Io(2") and let X € 27*. Then f—x* is coercive if and
only if X € intdom f*.

Lemma 2 (5, Theorem 3.4]) et f € [(H(Z") be supercoercive. Thatomf* = 27*.

Lemma 3 (4]) Let f and¢ be functions ifp(2") such thaO € sri(domf —dom¢).
Then the following hold.

() (¢ + )" =¢*Of* and the infimal convolution is exact everywhere:
(We27)@y eZ2™) (0+1)(x)=¢"(y)+ (X —y).
(i) d(¢+f)=0¢+0af.

2.1 Legendre functions

We review the notion of a Legendre function, which was introetl in Euclidean
spaces in27] and extended to Banach spacesip(gee also §] for further develop-
ments in the nonreflexive case).

Definition 1 [5, Definition 5.2] Letf € Io(.27). Thenf is:

(i) essentially smooth, i f is both locally bounded and single-valued on its do-
main;

(i) essentially strictly convex, ifd f)~! is locally bounded on its domain arfds
strictly convex on every convex subset of déif

(iif) a Legendre function, if it is both essentially smootideessentially strictly con-
Vex.

Some key properties of Legendre functions are listed below.

Lemma 4 Let f € [H(2") be a Legendre function. Then the following hold.

(i) f*is alLegendre functiofb, Corollary 5.5]

(i) domadf =intdomf £ @ and f is Gateaux differentiable omtdomf [5, The-
orem 5.6]

(i) Of: intdomf — intdomf* is bijective with inversedf*: intdomf* —
intdomf [5, Theorem 5.1Q]

2.2 D-proximity operators

In this subsection we discuss a notion of proximity based mygBan distances in-
vestigated in§] and which goes back td.p,31].

The first extension of4.1) was investigated inf]. Let f € I'o(.2") be a Legendre
function. The Bregman distance associated \fith

Di: 2 x 2 — [0,+0]

« fly)— f(x) — (y—x0f(x)), if x€intdomf; (2.3)
)= +00, otherwise
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For everyg € p(2"), we define the functiop & f: 2" — [—oo,+o0] by
(Wxe2) (6 1)(x) :yie”};- (¢(y) +Ds(y,x))- (2.4)

The following proposition refines and complements somelieaif [6, Sec-
tion 3.4].

Proposition 5 Let f € Ih(2") be a Legendre function, Igt € [5(.2") be such that
0 € sri(domf —dom¢), (2.5)

and let xe intdom f. Suppose that one of the following holds.
(i) Of(x) € int(domf* +domg*).
(i) intdom f* C int(domf* + domg*).
(iii) f is supercoercive.
(iv) inf¢(Z") > —oco.
Then there exists a unique pointgpZ” such that(¢ < f)(x) = ¢(p) + D+ (p, X);
moreover, p lies illomd¢ Nintdomf and it is characterized by the inclusion

Of(x) — Of(p) € 9¢(p)- (2.6)

Proof Setfy: 2" — |—o0, 4] : y— f(y) — (y,0f(x)). Then the minimizers of +
D¢ (-,x) coincide with those o§ + fx and our assumptions imply that

o+ fxel(Z). (2.7
Now letp € 2. It follows from (2.5, Lemma3(ii), and Lemmai(ii) that

(9O f)(X)=d(p)+Di(p,X) < p minimizes + fy
& 0e€d(9+f)(p)
& 0e€dp(p)+af(p)—0Of(x)
& 0e€dp(p)+0Of(p)—Of(x)
< Of(x)—Of(p) € 99 (p) (2.8)
= p € domd¢ Nintdomf. (2.9

Hence, the minimizers o + fx are in intdomf. However, sincef is essentially
strictly convex, it is strictly convex on intdofnand so is therefore + fy. This
shows thatp + fx admits at most one minimizer. It remains to establish eniste

(i): It follows from (2.7) that, to show existence, it is enough to show that fy
is coercive B3, Theorem 2.5.1(ii)]. In view of Lemma, this is equivalent to showing
thatOf (x) € intdom(f + ¢)*. However, it follows from 2.5) and Lemma3(i) that

intdom(f 4+ ¢)* = intdom(f*0¢*) = int(domf* +domg¢™). (2.10)

(ii)=(i): Lemmad(iii).

(i) =(i)): By Lemma2, domf* = 2™ and, since dom* # &, intdomf* C
int(domf* 4 dome¢™*).

(iv)=-(ii): We have infp(2Z") > —o = ¢*(0) = —inf¢(Z) < 0 = 0 €
dom¢*. Hence, intdont* C int(domf* 4+ dom¢™).
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In view of Propositiorb and Lemmad(iii), the following is well defined.

Definition 2 Let f € Ih(.2") be a Legendre function and lé¢te o(.2") be such that
0 € sri(domf —domg). Set

E = (intdomf) N (Of*(int(domf* + dom¢™))). (2.11)
The D-proximity (or Bregman proximity) operator @f relative tof is

bprox; : E —intdomf: x— argrp_ir(tp(y) + Dt (y,X)). (2.12)
yeZ

Remark 1In connection with Definitior®, let us make a couple of observations.

(i) Itfollows from Propositiorbthat, ifintdomf* C int(dom¢* +domf*) (in par-
ticular if f is supercoercive or if inf(2") > —oo), then bprofﬁ: intdomf —
intdomf.

(il) Suppose that?” is hilbertian and thaf = | -||?/2, and let € Io(.2"). Then

pOf=¢ofand bprofﬁ = Proxg.

2.3 Anisotropic proximity operators
An alternative extension of the notion of proximity can béaded by replacing the
function || - ||2/2 in (2.1) by a Legendre functiori. This type of construction goes
back to Q.
Proposition 6 Let f € Ih(2") be a Legendre function, Igt € [5(.2") be such that

0 € sri(domf* —dom¢™), (2.13)

and let xe sri(domf + dom¢). Then there exists a unique pointep2” such that
(pOf)(x) = ¢(p)+ f(x— p); moreover, p is characterized by the inclusion

Of(x—p) €9¢(p). (2.14)
Proof Using 2.13 and Lemma3(i), we obtain

and the fact that the infimum in the infimal convolution is et¢a everywhere. On
the other hand, sincec sri(domf +dom¢), we have

0 € sri(dom¢ — (x—domf)) = sri(dom¢ — domf (x—)). (2.16)
Consequently, by Lemmiii),

0(9+f(x—-)) =0 +0f(x—). (2.17)
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Now letp e 2. It follows from (2.17) and Lemmad(ii) that

p minimizes$ + f(x—-) < 0€ (¢ + f(x—-))(p)
< 0€0d9(p)—df(x—p)
< 0€d¢(p)—Uf(x—p)
< Of(x—p) € dd(p) (2.18)
= X— p € intdomf. (2.19)

To show uniqueness, suppose thaindq are two distinct minimizers af + f (x—-).
Then(¢0f)(x) = ¢(p) + f(x— p) = ¢(a) + f(x—q) and, by @.19, x— pandx—q
lie inintdomf. Now letr = (1/2)(p+q) and suppose that£ q. Lemmad(ii) asserts
that f is strictly convex on the convex set intddm= domd f. Therefore, invoking
the convexity ofp,

(pOf)(x) < ¢(r)+ f(x—r)
<5 (6(p)+9(@) +5(1x—p) + f(x-)
=(¢0f)(x), (2.20)

which is impossible.

Using Propositiors, we can now introduce the anisotropic proximity operator of

®.

Definition 3 Let f € H(.2") be a Legendre function and léte 'o(.2") be such that
0 € sri(domf* —dom¢*). Set

E = sri(domf +dom¢). (2.21)

The anisotropic proximity operator gf relative tof is

apro>{,: E— 2 x—argmin¢(y) + f(x—Y)). (2.22)
yeZ
Remark 2Suppose that?” is hilbertian and thaf = | - ||?/2, and letd € Io(2).

Then aprofﬁ = Prox.

3 Main result

In the previous section we have described two extensionseo€hassical proximity
operator. Our main result is a generalization of Moreautodgposition (Proposi-
tion 3) in Banach spaces which involves a mix of these two extession

Theorem 1 Let f € o(2") be a Legendre function, Igt € [H(.2") be such that
0 € sri(domf* —dom¢™), (3.1)

and let xe (intdomf) Nnint(domf +domg). Then the following hold.



8 Patrick L. Combettes, Noli N. Reyes

M) F()=($0H)(x) + (4" ) (DF(x).
(i) x= apr0>éx+ Of*(bpro )g; (Of(x))).
(iii) ( apro>éx bproxj, (Of(x )> (apro>é7 )+ ¢ ( bpro>§J Of(x ))
(iv) (aproXyx,0f (x—apro¥x)) = ¢ (aproxx) + ¢* (O f (x— apr0>{;J

Proof Sincex € int(domf 4+ dom¢), Lemmadi(iii) yields

x € sti(domf +dom¢) and Of*(0f(x)) € int(domf** +domg*). (3.2)

Hence, it follows from Propositioré that aprofﬁx is well defined and, from

Lemmad4(i) and Propositiors(i) (applied tof* and¢*), thath*(bpro%i(Df(x)))
is well defined. In addition,

(of)(x) eR and (¢* <) (0f(x) € R. (3.3)

(i): It follows from (2.3), Lemmad4(iii), and the Fenchel-Young identit$3, The-
orem 2.4.2(iii)] that

(VX' € 27%) D= (X, 0F(x)) = £5(x*) — F*(0F (X)) — (X" — OF (%), %)
= 170¢) + 10— (¢ %).. (34)
This, (2.4), (3.1), and Lemma3(i) imply that
(970 1) (DF () = inf (#"(x) + (<) +F(x) — ("))
=f(x)— sup ((X",x).—¢*(x*) — £(x))

xXre Z*
=) —(¢"+ )" (x)
=f(xX)—(¢Of)(x). (3.5)

In view of (3.3), we obtain the announced identity.
(ii): Let p e 2. Using Propositiors, Lemmad(iii), and Propositiors(i), we
obtain

p:apro%X@ Of(x—p)edo(p) (3.6)
& pedp(Of(x—p))
& 0f*(0f(x) — Of*(Of (x—p)) € 9¢* (O (x—p))

& Of(x—p) = bpro{* (Of(x)) (3.7)
SX—p= Df*(bpro{l (Of(x))). (3.8)

(i) : Setp= apro%,x. As seen in3.7) and (3.6),

bproxy. (0 (x)) = Of (x— p) € 99 (p). (3.9)
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Hence, the Fenchel-Young identity yields

(p.bprox,. (0 (x))) = (p.Of (x— p))
=0(p)+¢"(0f(x—p)
= ¢(p)+¢* (bprox;. (0f(x))). (3.10)
(iv): This follows at once fronfiii) and 3.9).

Remark 3An instance of Theorert(iv) in which f and f* are real-valued appears
in [32, Proposition 1].

Theoreml provides a range of new decomposition schemes, even in gee ca
when.Z" is a Hilbert space. Thus, in the following result, we obtaimesv hilbertian
frame decomposition principle (for background on framesstheir applications, see
[11]).

Corollary 1 Suppose tha?” is a separable Hilbert space, let | be a countable set,
and let(g)ic| be aframeinZ’, i.e.,

(3a €10, +))(3B €]0,+e)(vxe 27) ax|®< Z |(x.@)|* < Blx|% (3.11)
le
LetS 2 — Z": X Jic (X, &)6e be the associated frame operator and(let)ic| =

(S~%g)icl be the associated canonical dual frame. Furthermoreglet [o(2), let
xe %, and set

_ arami 1 el
a(x)a;ggjm<¢(y)+ Z;KX y.e)l ) (3.12)
and
b(x) = argm_in<¢*<x*> X+ > |<x*,e*>|2> . (3.13)
XeZ 1€

Then x= a(x) + Sic (b(X), & )&

Proof Setf: 2" — R: x— (1/2) i |(x,&)|?. It is easily seen thaf is Fréchet
differentiable onZ” with Of = S. It therefore follows from%, Theorem 5.6] that is
essentially smooth. Now fix* € 2". Since the frame operator 6& )i/ is S [11,
Lemma5.1.6], we have

(S, x) = <Z<X*7Q*>Q*7X*> = Z (", &) 1? = 2f(S7X). (3.14)

le
Now setg: 2" — R: x+— f(x) — (x,x*). Theng is a differentiable convex function
andg: x — Sx— x* vanishes ax = S 1x*. Hence, using3.14, we obtain
. 1
f*(x') = —ming(x) = (S %", x") — f(S7x") = f(Sx") = 3 Z (" &) 2.
XeZ 2 £
(3.15)



10 Patrick L. Combettes, Noli N. Reyes

Hence, as abovd* is Fréchet differentiable o™ with Of* = S~1 and, in turn,
essentially smooth, which makésessentially strictly convexs| Theorem 5.4]. Al-
together,f is a Legendre function with

domf =2, domf*=2, Of=S and Of*=S1 (3.16)

Moreover, it follows from 2.12), (2.22, (3.1, Lemmad(iii), (3.12, (3.13, and
(3.19 that

bpro%*(Df(x)) =b(x) and aprofﬁ (x) = a(x). (3.17)
The result is therefore an application of Theor#fii).

Remark 4Corollary 1 can be regarded as an extension of Moreau’s decomposition
principle in separable Hilbert spaces. Indeed, in the sheaise wherie )i is an
orthonormal basis in Corollary, we recover Propositio(ii).

The next application is set in uniformly convex and unifoyraimooth Banach
spaces.

Corollary 2 Suppose tha?” is uniformly convex and uniformly smooth, let J be its
duality mapping, set & || - ||2/2, and let¢ € Ih(2"). Then d = || - ||2/2 and the
following hold for every x 2.

() a(x) = (¢0A)(X) + (¢ q")(IX).
(i) x =aprox+J~*(bprox;. (3x)).
(iii) <apro>§x,bpro>@i (IX)) = ¢ (aproX}x) + ¢*(bpro>§i (3%).
(iv) (aproX}x,J(x—apro§}x)) = ¢ (aprox}x) + ¢*(J(x— aprox}x)).
Proof This is an application of Theoretrwith f = q. Indeed, donf = 2", domf* =
Z*, andOf =J.

In particular, if 2" is a Hilbert space in Corollarg, if follows from RemarkL(ii)
and RemarlR that we recover Moreau’s decomposition principle (PropmsB) and
a fortiori Propositiond and2. Another noteworthy instance of Corolla®yjis when
¢ = i1k, whereK is a nonempty closed convex conefi. In this casegp* = ike,
apro>§ = P, and we derive from1(.4) and (L.5) that bpro>§, = [k. Hence, Corol-
lary 2(ii) & (iii) yields Propositior.

Remark 5Consider the setting of Theoreband sefA = d¢. Then, by Rockafellar’s
theorem,A is a maximally monotone operata83, Theorem 3.1.11]. Moreover, it
follows from (2.14, Lemmad4(iii), and @.6) that we can rewrite Theorefi{ii) as

x=(1d +0f* 0 A) I+ Of o (OF + A1) ', (3.18)

where Id is the identity operator a#". The results of), Section 3.3] suggest that this
decomposition holds for more general maximally monotoreraiprsA: 2" — 27 .

If 2 is a Hilbert space and = | - ||?/2, (3.18 yields the well-known resolvent
identity 1d = (Id +-A)~1+ (Id +A~1)~1, which is true for any maximally monotone
operatorA [7, Proposition 23.18].
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