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Abstract Moreau’s decomposition is a powerful nonlinear hilbertiananalysis tool
that has been used in various areas of optimization and applied mathematics. In this
paper, it is extended to reflexive Banach spaces and in the context of generalized
proximity measures. This extension unifies and significantly improves upon existing
results.
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1 Introduction

Throughout this paper,(X ,‖ · ‖) is a reflexive real Banach space with topological
dual (X ∗,‖ · ‖∗), and the canonical bilinear form onX ×X ∗ is denoted by〈·, ·〉.
The distance function to a setC ⊂ X is dC : x 7→ infy∈C‖x− y‖, the metric projec-
tor ontoC is PC : x 7→

{

y∈C
∣

∣ ‖x− y‖= dC(x)
}

, and the polar cone ofC is C⊖ =
{

x∗ ∈ X ∗
∣

∣ (∀x∈C) 〈x,x∗〉 ≤ 0
}

. Γ0(X ) is the class of lower semicontinuous con-
vex functionsϕ : X → ]−∞,+∞] such that domϕ =

{

x∈ X
∣

∣ ϕ(x)<+∞
}

6=∅.
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A classical tool in linear hilbertian analysis is the following orthogonal decom-
position principle.

Proposition 1 Suppose thatX is a Hilbert space, let V be a closed vector subspace
of X with orthogonal complement V⊥, and let x∈ X . Then the following hold.

(i) ‖x‖2 = d2
V(x)+d2

V⊥(x).
(ii) x= PVx+PV⊥x.
(iii) 〈PVx,PV⊥x〉= 0.

In 1962, Moreau proposed a nonlinear extension of this decomposition.

Proposition 2 [22] Suppose thatX is a Hilbert space, let K be a nonempty closed
convex cone inX , and let x∈ X . Then the following hold.

(i) ‖x‖2 = d2
K(x)+d2

K⊖(x).
(ii) x= PKx+PK⊖x.
(iii) 〈PKx,PK⊖x〉= 0.

Motivated by problems in unilateral mechanics, Moreau further extended this re-
sult in [23] (see also [25]). To state Moreau’s decomposition principle, we require
some basic notions from convex analysis [7,33]. Let ϕ and f be two functions in
Γ0(X ). The conjugate ofϕ is the functionϕ∗ in Γ0(X

∗) defined by

ϕ∗ : X
∗ → ]−∞,+∞] : x∗ 7→ sup

x∈X

(

〈x,x∗〉−ϕ(x)
)

. (1.1)

Moreover, the infimal convolution ofϕ and f is the function

ϕ � f : X → [−∞,+∞] : x 7→ inf
y∈X

(

ϕ(y)+ f (x− y)
)

. (1.2)

Now suppose thatX is a Hilbert space and setq = (1/2)‖ · ‖2. Then, for every
x ∈ X , there exists a unique pointp ∈ X such that(ϕ �q)(x) = ϕ(p)+ q(x− p);
this point is denoted byp = proxϕx. The operator proxϕ : X → X thus defined is
called the proximity operator ofϕ .

Proposition 3 [23,25] Suppose thatX is a Hilbert space, letϕ ∈ Γ0(X ), set q=
‖ · ‖2/2, and let x∈ X . Then the following hold.

(i) q(x) = (ϕ �q)(x)+ (ϕ∗
�q)(x).

(ii) x= proxϕx+proxϕ∗x.
(iii) 〈proxϕ x,proxϕ∗x〉= ϕ

(

proxϕ x
)

+ϕ∗
(

proxϕ∗x
)

.

Note that, if in Proposition3 ϕ is the indicator function of a nonempty closed
convex coneK ⊂ X , i.e.,ϕ = ιK where

(∀x∈ X ) ιK(x) =

{

0, if x∈ K;

+∞, if x /∈ K,
(1.3)

we recover Proposition2.
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The above hilbertian nonlinear decomposition principles have found many appli-
cations in optimization and in various other areas of applied mathematics (see for
instance [9,12,13,14,15,16,17,18,21,28] and the references therein) and attempts
have been made to extend them to more general Banach spaces. The main result
in this direction is the following generalization of Proposition 2(ii)&(iii) in uni-
formly convex and uniformly smooth Banach spaces (see also [3,19,29,30] for al-
ternate proofs and applications), whereΠC denotes the generalized projector onto a
nonempty closed convex subsetC of X [1], i.e., if J denotes the duality mapping of
X ,

(∀x∈ X ) ΠCx= argmin
y∈C

(

‖x‖2−2〈y,Jx〉+ ‖y‖2). (1.4)

Proposition 4 [2] Suppose thatX is uniformly convex and uniformly smooth, let
J : X → X ∗ denote its duality mapping, which is characterized by

(∀x∈ X ) ‖x‖2 = 〈x,Jx〉= ‖Jx‖2
∗, (1.5)

let K be a nonempty closed convex cone inX , and let x∈ X . Then the following
hold.

(i) x= PKx+ J−1
(

ΠK⊖(Jx)
)

.
(ii) 〈PKx,ΠK⊖(Jx)〉= 0.

The objective of the present paper is to unify and extend the above results. To
this end, we first discuss in Section2 suitable notions of proximity in Banach spaces.
Based on these, we propose our extension of Moreau’s decomposition in Section3. A
feature of our analysis is to rely heavily on convex analytical tools, which allows us
to derive our main result with simpler proofs than those utilized in the above special
case.

2 Proximity in Banach spaces

Let ϕ ∈ Γ0(X ). As seen in the Introduction, ifX is a Hilbert space, Moreau’s prox-
imity operator is defined by

(∀x∈ X ) proxϕx= argmin
y∈X

(

ϕ(y)+
1
2
‖x− y‖2

)

. (2.1)

In this section we discuss two extensions of this operator inBanach spaces.
We recall that ϕ is coercive if lim‖y‖→+∞ ϕ(y) = +∞ and supercoercive if
lim‖y‖→+∞ ϕ(y)/‖y‖ = +∞. As usual, the subdifferential operator ofϕ is denoted
by ∂ϕ . Finally, the strong relative interior of a convex setC⊂ X is

sriC=

{

x∈C

∣

∣

∣

∣

⋃

λ>0

λ (C− x) = span(C− x)

}

. (2.2)

We shall also require the following facts.



4 Patrick L. Combettes, Noli N. Reyes

Lemma 1 ([24,26]) Let f ∈ Γ0(X ) and let x∗ ∈ X ∗. Then f− x∗ is coercive if and
only if x∗ ∈ intdom f ∗.

Lemma 2 ([5, Theorem 3.4])Let f ∈ Γ0(X ) be supercoercive. Thendomf ∗ = X ∗.

Lemma 3 ([4]) Let f andϕ be functions inΓ0(X ) such that0∈ sri(domf −domϕ).
Then the following hold.

(i) (ϕ + f )∗ = ϕ∗
� f ∗ and the infimal convolution is exact everywhere:

(∀x∗ ∈ X
∗)(∃y∗ ∈ X

∗) (ϕ + f )∗(x∗) = ϕ∗(y∗)+ f ∗(x∗− y∗).

(ii) ∂ (ϕ + f ) = ∂ϕ + ∂ f .

2.1 Legendre functions

We review the notion of a Legendre function, which was introduced in Euclidean
spaces in [27] and extended to Banach spaces in [5] (see also [8] for further develop-
ments in the nonreflexive case).

Definition 1 [5, Definition 5.2] Let f ∈ Γ0(X ). Then f is:

(i) essentially smooth, if∂ f is both locally bounded and single-valued on its do-
main;

(ii) essentially strictly convex, if(∂ f )−1 is locally bounded on its domain andf is
strictly convex on every convex subset of dom∂ f ;

(iii) a Legendre function, if it is both essentially smooth and essentially strictly con-
vex.

Some key properties of Legendre functions are listed below.

Lemma 4 Let f ∈ Γ0(X ) be a Legendre function. Then the following hold.

(i) f ∗ is a Legendre function[5, Corollary 5.5].
(ii) dom∂ f = intdomf 6= ∅ and f is Ĝateaux differentiable onintdomf [5, The-

orem 5.6].
(iii) ∇ f : intdomf → intdomf ∗ is bijective with inverse∇ f ∗ : intdomf ∗ →

intdomf [5, Theorem 5.10].

2.2 D-proximity operators

In this subsection we discuss a notion of proximity based on Bregman distances in-
vestigated in [6] and which goes back to [10,31].

The first extension of (2.1) was investigated in [6]. Let f ∈ Γ0(X ) be a Legendre
function. The Bregman distance associated withf is

D f : X ×X → [0,+∞]

(y,x) 7→

{

f (y)− f (x)−〈y− x,∇ f (x)〉, if x∈ intdomf ;

+∞, otherwise.

(2.3)
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For everyϕ ∈ Γ0(X ), we define the functionϕ ⋄ f : X → [−∞,+∞] by

(∀x∈ X ) (ϕ ⋄ f )(x) = inf
y∈X

(

ϕ(y)+D f (y,x)
)

. (2.4)

The following proposition refines and complements some results of [6, Sec-
tion 3.4].

Proposition 5 Let f ∈ Γ0(X ) be a Legendre function, letϕ ∈ Γ0(X ) be such that

0∈ sri(domf −domϕ), (2.5)

and let x∈ intdom f . Suppose that one of the following holds.

(i) ∇ f (x) ∈ int(domf ∗+domϕ∗).
(ii) intdom f ∗ ⊂ int(domf ∗+domϕ∗).
(iii) f is supercoercive.
(iv) inf ϕ(X )>−∞.

Then there exists a unique point p∈ X such that(ϕ ⋄ f )(x) = ϕ(p) +D f (p,x);
moreover, p lies indom∂ϕ ∩ intdomf and it is characterized by the inclusion

∇ f (x)−∇ f (p) ∈ ∂ϕ(p). (2.6)

Proof Set fx : X → ]−∞,+∞] : y 7→ f (y)−〈y,∇ f (x)〉. Then the minimizers ofϕ +
D f (·,x) coincide with those ofϕ + fx and our assumptions imply that

ϕ + fx ∈ Γ0(X ). (2.7)

Now let p∈ X . It follows from (2.5), Lemma3(ii), and Lemma4(ii) that

(ϕ ⋄ f )(x) = ϕ(p)+D f (p,x) ⇔ p minimizesϕ + fx
⇔ 0∈ ∂

(

ϕ + fx
)

(p)

⇔ 0∈ ∂ϕ(p)+ ∂ f (p)−∇ f (x)

⇔ 0∈ ∂ϕ(p)+∇ f (p)−∇ f (x)

⇔ ∇ f (x)−∇ f (p) ∈ ∂ϕ(p) (2.8)

⇒ p∈ dom∂ϕ ∩ intdomf . (2.9)

Hence, the minimizers ofϕ + fx are in intdomf . However, sincef is essentially
strictly convex, it is strictly convex on intdomf and so is thereforeϕ + fx. This
shows thatϕ + fx admits at most one minimizer. It remains to establish existence.

(i): It follows from (2.7) that, to show existence, it is enough to show thatϕ + fx
is coercive [33, Theorem 2.5.1(ii)]. In view of Lemma1, this is equivalent to showing
that∇ f (x) ∈ intdom( f +ϕ)∗. However, it follows from (2.5) and Lemma3(i) that

intdom( f +ϕ)∗ = intdom( f ∗�ϕ∗) = int(domf ∗+domϕ∗). (2.10)

(ii)⇒(i): Lemma4(iii) .
(iii)⇒(ii) : By Lemma2, domf ∗ = X ∗ and, since domϕ∗ 6= ∅, intdom f ∗ ⊂

int(domf ∗+domϕ∗).
(iv)⇒(ii) : We have infϕ(X ) > −∞ ⇒ ϕ∗(0) = − inf ϕ(X ) < +∞ ⇒ 0 ∈

domϕ∗. Hence, intdomf ∗ ⊂ int(domf ∗+domϕ∗).
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In view of Proposition5 and Lemma4(iii) , the following is well defined.

Definition 2 Let f ∈ Γ0(X ) be a Legendre function and letϕ ∈ Γ0(X ) be such that
0∈ sri(domf −domϕ). Set

E = (intdomf )∩
(

∇ f ∗
(

int(domf ∗+domϕ∗)
))

. (2.11)

TheD-proximity (or Bregman proximity) operator ofϕ relative to f is

bproxf
ϕ : E → intdomf : x 7→ argmin

y∈X

(

ϕ(y)+D f (y,x)
)

. (2.12)

Remark 1In connection with Definition2, let us make a couple of observations.

(i) It follows from Proposition5 that, if intdom f ∗ ⊂ int(domϕ∗+domf ∗) (in par-
ticular if f is supercoercive or if infϕ(X ) > −∞), then bproxfϕ : intdomf →
intdomf .

(ii) Suppose thatX is hilbertian and thatf = ‖ · ‖2/2, and letϕ ∈ Γ0(X ). Then
ϕ ⋄ f = ϕ � f and bproxfϕ = proxϕ .

2.3 Anisotropic proximity operators

An alternative extension of the notion of proximity can be obtained by replacing the
function‖ · ‖2/2 in (2.1) by a Legendre functionf . This type of construction goes
back to [20].

Proposition 6 Let f ∈ Γ0(X ) be a Legendre function, letϕ ∈ Γ0(X ) be such that

0∈ sri(domf ∗−domϕ∗), (2.13)

and let x∈ sri(domf + domϕ). Then there exists a unique point p∈ X such that
(ϕ � f )(x) = ϕ(p)+ f (x− p); moreover, p is characterized by the inclusion

∇ f (x− p) ∈ ∂ϕ(p). (2.14)

Proof Using (2.13) and Lemma3(i), we obtain

(ϕ∗+ f ∗)∗ = ϕ∗∗
� f ∗∗ = ϕ � f (2.15)

and the fact that the infimum in the infimal convolution is attained everywhere. On
the other hand, sincex∈ sri(domf +domϕ), we have

0∈ sri
(

domϕ − (x−domf )
)

= sri
(

domϕ −domf (x−·)
)

. (2.16)

Consequently, by Lemma3(ii),

∂
(

ϕ + f (x−·)
)

= ∂ϕ + ∂ f (x−·). (2.17)
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Now let p∈ X . It follows from (2.17) and Lemma4(ii) that

p minimizesϕ + f (x−·) ⇔ 0∈ ∂
(

ϕ + f (x−·)
)

(p)

⇔ 0∈ ∂ϕ(p)− ∂ f (x− p)

⇔ 0∈ ∂ϕ(p)−∇ f (x− p)

⇔ ∇ f (x− p) ∈ ∂ϕ(p) (2.18)

⇒ x− p∈ intdomf . (2.19)

To show uniqueness, suppose thatp andq are two distinct minimizers ofϕ + f (x−·).
Then(ϕ � f )(x) = ϕ(p)+ f (x− p) = ϕ(q)+ f (x−q) and, by (2.19), x− p andx−q
lie in intdomf . Now letr =(1/2)(p+q) and suppose thatp 6= q. Lemma4(ii) asserts
that f is strictly convex on the convex set intdomf = dom∂ f . Therefore, invoking
the convexity ofϕ ,

(ϕ � f )(x) ≤ ϕ(r)+ f (x− r)

<
1
2

(

ϕ(p)+ϕ(q)
)

+
1
2

(

f (x− p)+ f (x−q)
)

= (ϕ � f )(x), (2.20)

which is impossible.

Using Proposition6, we can now introduce the anisotropic proximity operator of
ϕ .

Definition 3 Let f ∈ Γ0(X ) be a Legendre function and letϕ ∈ Γ0(X ) be such that
0∈ sri(domf ∗−domϕ∗). Set

E = sri(domf +domϕ). (2.21)

The anisotropic proximity operator ofϕ relative to f is

aproxf
ϕ : E → X : x 7→ argmin

y∈X

(

ϕ(y)+ f (x− y)
)

. (2.22)

Remark 2Suppose thatX is hilbertian and thatf = ‖ · ‖2/2, and letϕ ∈ Γ0(X ).
Then aproxfϕ = proxϕ .

3 Main result

In the previous section we have described two extensions of the classical proximity
operator. Our main result is a generalization of Moreau’s decomposition (Proposi-
tion 3) in Banach spaces which involves a mix of these two extensions.

Theorem 1 Let f ∈ Γ0(X ) be a Legendre function, letϕ ∈ Γ0(X ) be such that

0∈ sri(domf ∗−domϕ∗), (3.1)

and let x∈ (intdomf )∩ int(domf +domϕ). Then the following hold.
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(i) f (x) = (ϕ � f )(x)+ (ϕ∗⋄ f ∗)
(

∇ f (x)
)

.

(ii) x= aproxf
ϕx+∇ f ∗

(

bproxf ∗

ϕ∗

(

∇ f (x)
))

.

(iii)
〈

aproxf
ϕx,bproxf ∗

ϕ∗

(

∇ f (x)
)〉

= ϕ
(

aproxf
ϕx
)

+ϕ∗
(

bproxf ∗

ϕ∗

(

∇ f (x)
))

.

(iv)
〈

aproxf
ϕx,∇ f

(

x−aproxf
ϕ x
)〉

= ϕ
(

aproxf
ϕ x
)

+ϕ∗
(

∇ f
(

x−aproxf
ϕx
))

.

Proof Sincex∈ int(domf +domϕ), Lemma4(iii) yields

x∈ sri(domf +domϕ) and ∇ f ∗
(

∇ f (x)
)

∈ int
(

domf ∗∗+domϕ∗∗
)

. (3.2)

Hence, it follows from Proposition6 that aproxfϕx is well defined and, from

Lemma4(i) and Proposition5(i) (applied to f ∗ andϕ∗), that∇ f ∗(bproxf ∗

ϕ∗(∇ f (x)))
is well defined. In addition,

(ϕ � f )(x) ∈R and (ϕ∗ ⋄ f ∗)
(

∇ f (x)
)

∈ R. (3.3)

(i): It follows from (2.3), Lemma4(iii) , and the Fenchel-Young identity [33, The-
orem 2.4.2(iii)] that

(∀x∗ ∈ X
∗) D f ∗

(

x∗,∇ f (x)
)

= f ∗(x∗)− f ∗
(

∇ f (x)
)

−〈x∗−∇ f (x),x〉∗
= f ∗(x∗)+ f (x)−〈x∗,x〉∗. (3.4)

This, (2.4), (3.1), and Lemma3(i) imply that

(ϕ∗⋄ f ∗)
(

∇ f (x)
)

= inf
x∗∈X ∗

(

ϕ∗(x∗)+ f ∗(x∗)+ f (x)−〈x∗,x〉∗
)

= f (x)− sup
x∗∈X ∗

(

〈x∗,x〉∗−ϕ∗(x∗)− f ∗(x∗)
)

= f (x)− (ϕ∗+ f ∗)∗(x)

= f (x)− (ϕ � f )(x). (3.5)

In view of (3.3), we obtain the announced identity.
(ii) : Let p ∈ X . Using Proposition6, Lemma4(iii) , and Proposition5(i), we

obtain

p= aproxf
ϕx ⇔ ∇ f (x− p) ∈ ∂ϕ(p) (3.6)

⇔ p∈ ∂ϕ∗
(

∇ f (x− p)
)

⇔ ∇ f ∗
(

∇ f (x)
)

−∇ f ∗
(

∇ f (x− p)
)

∈ ∂ϕ∗
(

∇ f (x− p)
)

⇔ ∇ f (x− p) = bproxf ∗

ϕ∗

(

∇ f (x)
)

(3.7)

⇔ x− p= ∇ f ∗
(

bproxf ∗

ϕ∗

(

∇ f (x)
))

. (3.8)

(iii) : Setp= aproxf
ϕx. As seen in (3.7) and (3.6),

bproxf ∗

ϕ∗

(

∇ f (x)
)

= ∇ f (x− p) ∈ ∂ϕ(p). (3.9)
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Hence, the Fenchel-Young identity yields

〈p,bproxf ∗

ϕ∗

(

∇ f (x)
)

〉= 〈p,∇ f (x− p)〉

= ϕ(p)+ϕ∗
(

∇ f (x− p)
)

= ϕ(p)+ϕ∗
(

bproxf ∗

ϕ∗

(

∇ f (x)
))

. (3.10)

(iv): This follows at once from(iii) and (3.9).

Remark 3An instance of Theorem1(iv) in which f and f ∗ are real-valued appears
in [32, Proposition 1].

Theorem1 provides a range of new decomposition schemes, even in the case
whenX is a Hilbert space. Thus, in the following result, we obtain anew hilbertian
frame decomposition principle (for background on frames and their applications, see
[11]).

Corollary 1 Suppose thatX is a separable Hilbert space, let I be a countable set,
and let(ei)i∈I be a frame inX , i.e.,

(∃α ∈ ]0,+∞[)(∃β ∈ ]0,+∞[)(∀x∈ X ) α‖x‖2 ≤ ∑
i∈I

|〈x,ei〉|
2 ≤ β‖x‖2. (3.11)

Let S: X →X : x 7→∑i∈I 〈x,ei〉ei be the associated frame operator and let(e∗i )i∈I =
(S−1ei)i∈I be the associated canonical dual frame. Furthermore, letϕ ∈ Γ0(X ), let
x∈ X , and set

a(x) = argmin
y∈X

(

ϕ(y)+
1
2 ∑

i∈I

|〈x− y,ei〉|
2

)

(3.12)

and

b(x) = argmin
x∗∈X

(

ϕ∗(x∗)−〈x∗,x〉+
1
2 ∑

i∈I
|〈x∗,e∗i 〉|

2

)

. (3.13)

Then x= a(x)+∑i∈I 〈b(x),e
∗
i 〉e

∗
i .

Proof Set f : X → R : x 7→ (1/2)∑i∈I |〈x,ei〉|
2. It is easily seen thatf is Fréchet

differentiable onX with ∇ f = S. It therefore follows from [5, Theorem 5.6] thatf is
essentially smooth. Now fixx∗ ∈ X . Since the frame operator of(e∗i )i∈I is S−1 [11,
Lemma 5.1.6], we have

〈S−1x∗,x∗〉=
〈

∑
i∈I

〈x∗,e∗i 〉e
∗
i ,x

∗
〉

= ∑
i∈I

|〈x∗,e∗i 〉|
2 = 2 f (S−1x∗). (3.14)

Now setg: X → R : x 7→ f (x)−〈x,x∗〉. Theng is a differentiable convex function
and∇g: x 7→ Sx− x∗ vanishes atx= S−1x∗. Hence, using (3.14), we obtain

f ∗(x∗) =−min
x∈X

g(x) = 〈S−1x∗,x∗〉− f (S−1x∗) = f (S−1x∗) =
1
2 ∑

i∈I
|〈x∗,e∗i 〉|

2.

(3.15)
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Hence, as above,f ∗ is Fréchet differentiable onX with ∇ f ∗ = S−1 and, in turn,
essentially smooth, which makesf essentially strictly convex [5, Theorem 5.4]. Al-
together,f is a Legendre function with

domf = X , domf ∗ = X , ∇ f = S, and ∇ f ∗ = S−1. (3.16)

Moreover, it follows from (2.12), (2.22), (3.16), Lemma4(iii) , (3.12), (3.13), and
(3.15) that

bproxf ∗

ϕ∗(∇ f (x)) = b(x) and aproxfϕ(x) = a(x). (3.17)

The result is therefore an application of Theorem1(ii).

Remark 4Corollary 1 can be regarded as an extension of Moreau’s decomposition
principle in separable Hilbert spaces. Indeed, in the special case when(ei)i∈I is an
orthonormal basis in Corollary1, we recover Proposition3(ii).

The next application is set in uniformly convex and uniformly smooth Banach
spaces.

Corollary 2 Suppose thatX is uniformly convex and uniformly smooth, let J be its
duality mapping, set q= ‖ · ‖2/2, and letϕ ∈ Γ0(X ). Then q∗ = ‖ · ‖2

∗/2 and the
following hold for every x∈ X .

(i) q(x) = (ϕ �q)(x)+ (ϕ∗⋄q∗)(Jx).

(ii) x= aproxqϕx+ J−1
(

bproxq
∗

ϕ∗(Jx)
)

.

(iii)
〈

aproxqϕx,bproxq
∗

ϕ∗(Jx)
〉

= ϕ
(

aproxqϕx
)

+ϕ∗
(

bproxq
∗

ϕ∗(Jx)
)

.

(iv)
〈

aproxqϕx,J
(

x−aproxqϕ x
)〉

= ϕ
(

aproxqϕ x
)

+ϕ∗
(

J
(

x−aproxqϕx
))

.

Proof This is an application of Theorem1 with f = q. Indeed, domf =X , domf ∗ =
X ∗, and∇ f = J.

In particular, ifX is a Hilbert space in Corollary2, if follows from Remark1(ii)
and Remark2 that we recover Moreau’s decomposition principle (Proposition 3) and
a fortiori Propositions1 and2. Another noteworthy instance of Corollary2 is when
ϕ = ιK , whereK is a nonempty closed convex cone inX . In this case,ϕ∗ = ιK⊖ ,
aproxqϕ = PK , and we derive from (1.4) and (1.5) that bproxqϕ = ΠK . Hence, Corol-
lary 2(ii)&(iii) yields Proposition4.

Remark 5Consider the setting of Theorem1 and setA= ∂ϕ . Then, by Rockafellar’s
theorem,A is a maximally monotone operator [33, Theorem 3.1.11]. Moreover, it
follows from (2.14), Lemma4(iii) , and (2.6) that we can rewrite Theorem1(ii) as

x= (Id +∇ f ∗ ◦A)−1x+∇ f ∗ ◦
(

∇ f ∗+A−1)−1
x, (3.18)

where Id is the identity operator onX . The results of [6, Section 3.3] suggest that this
decomposition holds for more general maximally monotone operatorsA: X → 2X

∗
.

If X is a Hilbert space andf = ‖ · ‖2/2, (3.18) yields the well-known resolvent
identity Id = (Id +A)−1+(Id +A−1)−1, which is true for any maximally monotone
operatorA [7, Proposition 23.18].
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4. H. Attouch and H. Brézis, Duality for the sum of convex functions in general Banach spaces, in:
Aspects of Mathematics and Its Applications,125–133. North-Holland, Amsterdam (1986)

5. H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Essential smoothness, essential strict convexity,
and Legendre functions in Banach spaces,Commun. Contemp. Math.3, 615–647 (2001)

6. H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Bregmanmonotone optimization algorithms,
SIAM J. Control Optim., 42, 596–636 (2003)

7. H. H. Bauschke and P. L. Combettes,Convex Analysis and Monotone Operator Theory in Hilbert
Spaces.Springer, New York (2011)

8. J. M. Borwein and J. D. Vanderwerff, Convex functions of Legendre type in general Banach spaces,
J. Convex Anal.8, 569–581 (2001)
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laires,C. R. Acad. Sci. Paris Sér. A Math.,255, 238–240 (1962)
23. J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien,C. R. Acad.

Sci. Paris Sér. A Math.,255, 2897–2899 (1962)
24. J.-J. Moreau, Sur la fonction polaire d’une fonction semi-continue supérieurement,C. R. Acad. Sci.

Paris Sér. A Math.,258, 1128–1130 (1964)
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