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Abstract We propose new primal-dual decomposition algorithms for solving
systems of inclusions involving sums of linearly composed maximally mono-
tone operators. The principal innovation in these algorithms is that they are
block-iterative in the sense that, at each iteration, only a subset of the mono-
tone operators needs to be processed, as opposed to all operators as in es-
tablished methods. Flexible strategies are used to select the blocks of oper-
ators activated at each iteration. In addition, we allow lags in operator pro-
cessing, permitting asynchronous implementation. The decomposition phase
of each iteration of our methods is to generate points in the graphs of the
selected monotone operators, in order to construct a half-space containing
the Kuhn-Tucker set associated with the system. The coordination phase of
each iteration involves a projection onto this half-space. We present two re-
lated methods: the first method provides weakly convergent primal and dual
sequences under general conditions, while the second is a variant in which
strong convergence is guaranteed without additional assumptions. Neither al-
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gorithm requires prior knowledge of bounds on the linear operators involved
or the inversion of linear operators. Our algorithmic framework unifies and
significantly extends the approaches taken in earlier work on primal-dual pro-
jective splitting methods.

Keywords asynchronous algorithm - block-iterative algorithm - duality -
monotone inclusion - monotone operator - primal-dual algorithm - splitting
algorithm
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1 Introduction

This paper considers systems of monotone inclusions of the following general
form.

Problem 1 Let m and p be strictly positive integers, set I = {1,...,m} and
K={1,...,p}, and let (J&);c; and (% )rck be real Hilbert spaces. For everyi €/
and every k € K, let A;: € — 27% and By: % — 2% be maximally monotone,
let z¥ € 74, let r, € %, and let Ly;: 7 — % be linear and bounded. Consider
the coupled inclusions problem

find (%)ics € @) # such that (Viel)z e Axi+ Y L <Bk<Zij)_erk)>,

iel kekK jel
(D
its dual problem
find (% )rex € @)% such that
kek
(VkEK) —ne—Y Ly <A,.1 (Z;f - ZL}}?}‘)) +B. %, (2
icl lek
and the associated Kuhn-Tucker set
= {((xi)iel, (VZ)kEK) ‘ (Viel) x; € 7 and z; — ZLZ,»VZ € Ajx;, and
kek
(VkEK) Vi €% and Y L% —ry € Bklvz}. 3)
iel

The problem is to find a point in Z. The sets of solutions to (1) and (2) are
denoted by & and 2, respectively.

As discussed in [1], Problem 1 models a wide range of problems aris-
ing game theory, image recovery, evolution equations, machine learning, sig-
nal processing, mechanics, the cognitive sciences, and domain decomposition
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methods in partial differential equations. In [15, Section 5], it was shown that
an important special case of Problem 1 is the following optimization problem,
in which the monotone operators (A;);c; and (By)icx are taken to be subdiffer-
entials.

Problem 2 Let m and p be strictly positive integers, set I = {1,...,m} and
K={1,...,p}, and let (J%);c; and (% )rck be real Hilbert spaces. For everyi € [
and every k € K, let fi: J# — ]—co,+o0] and gy : ¥ — | —oo, 40| be proper lower
semicontinuous convex functions, let zf € J4, let r, € %, and let Ly, : 6 — %

be linear and bounded. Suppose that there exists (X;)ic; in €D,.; % such that

(Viel) 7 €adfi(x;) +ZL;;- (8gk(Zijfj - rk)). @

kekK Jjel

The goal is to solve the primal minimization problem

. ) (| 2 o 5
(xlrilel?eg,lje/ﬁ Z(f(x) (i | z >)+ng(z kX rk) (5)

iel kekK iel

along with its dual problem

minimize Zfl (z, ZLk,VZ) +Z HAGARATE (6)

(Vokex€@rek % ek ek

In recent years, several decomposition algorithms have been proposed to
solve Problem 1 (or at least the primal problem (1)) under various hypotheses
[1,2,3,9,10,11,15,16,17,25]. In such algorithms, the monotone operators
as well as the linear operators are evaluated individually. The methods we
propose in the present paper for solving Problem 1 are based on those of [1, 2],
which are themselves based on the projective primal-dual methods initiated in
[19,20] for finding a zero of the sum of monotone operators. The basic idea
underlying this class of methods is to generate at each iteration points in the
graphs of all the monotone operators in such a way as to construct a half-space
containing the Kuhn-Tucker set Z. The calculations of each of these points are
resolvent computations involving a single monotone operator A; or By, which
is what makes the methods splitting algorithms. The coordination step of the
method is to project the current iterate onto the recently constructed half-
space. The advantages of this approach are that it does not impose additional
assumptions on the operators present in the formulation, it does not require
knowledge of the norm of the linear operators (L );cs xckx Or of combinations
thereof, and it does not involve the inversion of linear operators.

The methods of [1,2] must evaluate all m + p resolvents of the operators
(Ai)ier and (By)rek at every iteration, with only limited ability to pass informa-
tion between these calculations. Essentially, the resolvents of all the operators
(Ai)ier must be evaluated independently, and then similarly for all the oper-
ators (By)rek- In this setting, the only information flow within each iteration
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is from the (A;);e; calculations to the (By)rex calculations. This property re-
sults in an algorithm in which large blocks of calculations must be performed
before any information is exchanged between subsystems. Although in prin-
ciple conducive to parallel computing, this kind of structure can still lead to
difficulties even in a parallel execution environment: it requires an essentially
synchronous implementation, so if some small subset of the subsystems repre-
sented by the operators (A;);c; or (By)rex are more computation-intensive than
others, load balancing can become problematic: most processors may have to
sit idle while the remaining few complete their tasks. This kind of structure
is common to nearly all prior splitting schemes for more than two monotone
operators, the only exception we are aware of being that of [20] for the special
case

find ¥ € # such that 0 € Y Bix @)

kek

of (1). In that case, information can flow in fairly arbitrary ways between the
p resolvent calculations comprising each iteration, as described by a set of
algorithm parameters that is quadratic in p; the selection of these parameters
is subject to a specific eigenvalue condition. However, the algorithm is still
fundamentally synchronous, and it is has never been clear how to select its
many parameters.

This paper presents a different approach to constructing more flexible and
potentially asynchronous decomposition methods for problems fitting the gen-
eral structure represented by Problem 1. The key idea is that our algorithm
has the ability to process an essentially arbitrary subset of the operators be-
tween successive coordination/projection operations. The only restriction is
one adapted from block-iterative methods for convex feasibility problems [6,
13,23]: for some possibly large positive integer M, each operator must be
processed at least once over every span of M consecutive iterations. To our
knowledge, this is the first application of this kind of versatile control scheme
to finding zeros of sums of operators. Such control schemes have been used
in convex feasibility problems [6,13]. This aspect of our algorithm gives it po-
tential flexibility absent from other splitting schemes for monotone inclusions:
first, it provides the ability to find an arbitrary balance between computational
effort expended on the subsystems and that expended on coordination. For ex-
ample, if the subsystems are relatively time-consuming to process, one could
perform as few as a single subsystem evaluation between successive projection
steps, with the projections immediately spreading the information from each
subsystem evaluation to each successive one. The second aspect of the flex-
ibility of our approach involves the balance of computational effort between
subsystems: in prior decomposition methods for monotone inclusions, every
operator must be processed exactly the same number of times, but the class
of algorithms proposed here is much more flexible. If, for example, some op-
erators are less time-consuming to process than others, one has the option of
processing them more frequently. Such features can be very useful in applica-
tions such as those described in [4].



Asynchronous Block-Iterative Primal-Dual Splitting 5

Our analysis allows each activation of an operator to use information orig-
inating from an earlier iteration than the one in which its results are incorpo-
rated into the computation. This feature makes it possible to implement the
algorithm asynchronously: the points in the graphs of the monotone operators
incorporated into the projection step during a given iteration may be the re-
sults of resolvent computations initiated during earlier iterations. Our analysis
shows that our method still converges so long as there is a fixed (but arbitrary)
upper bound on the number of iterations between initiation and incorporation
of a resolvent calculation. The potentially asynchronous nature of our method
is a significant asset in the design of efficient parallel implementations.

Prior work on projective splitting methods has used two different ap-
proaches to constructing affine half-spaces to separate the target set Z from
the current iterate. The original approach in [19,20] was developed for the
inclusion problem (7). In this special case of (1), it was possible to efficiently
confine the iterates to a specific subspace K of the primal-dual space, which
can be numerically advantageous. In the general setting of Problem 1, the
analysis of [1,2] used an alternative half-space construction in which the it-
erates are not confined to a subspace. A secondary contribution of this paper
is to develop a unifying framework for constructing separators for Z in which
both prior approaches appear as special cases.

We present two classes of algorithms based on many of the same underly-
ing building blocks and which may be viewed as asynchronous block-iterative
extensions of the algorithms of [1,2]. The first class uses a straightforward
half-space projection at each iteration and allows for conventional overrelax-
ation of the projection steps by factors upper bounded by 2. This class exhibits
weak convergence to an unspecified Kuhn-Tucker point. The second class is a
variant that involves a more complicated projection operation and does not
use overrelaxation, but induces strong convergence to the unique point in the
Kuhn-Tucker set that best approximates a given reference point. Numerical ex-
periments with these new algorithms are being conducted and we shall report
on their results elsewhere.

When applied in suitable product spaces, the block-coordinate methods of
[16,25] can be used to derive block-iterative splitting algorithms methods for
a certain class of problems. However, unlike the methods we propose here, the
resulting algorithms have been proved to converge only under random opera-
tor selection strategies, and they require either joint cocoercivity assumptions
on the operators (By )ik or the ability to block-decompose the projection onto
the graph of certain linear operators.

Notation. Our notation is standard and follows [8], which contains the
necessary background on monotone operators and convex analysis. The scalar
product of a Hilbert space is denoted by (- |-} and the associated norm by
|| -1|- The projection operator onto a nonempty closed convex subset C of /7 is
denoted by Pc. The symbols — and — denote respectively weak and strong
convergence, and Id denotes the identity operator. The Hilbert direct sum of
two Hilbert spaces 47 and ¥ is denoted by s# &%, and the power set of ¢ by
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27, Given A: s — 27, graA denotes the graph of A, A~! denotes the inverse
of A, and J, = (Id +A)~! denotes the resolvent of A.

2 Analysis of a generic primal-dual composite inclusion problem
2.1 Problem statement

Our investigation will be simplified by the analysis of the following problem,
which can be regarded as a reduction of Problem 1 to the case whenm=p=1,
zj=0,and r; =0.

Problem 3 Let .# and ¢ be real Hilbert spaces. Let A: . —2” and B: ¥ —
2% be maximally monotone operators, and let L: .7 — ¢ be a bounded linear
operator. Consider the inclusion problem

find x € 5 such that 0 € Ax+ L*BLx, (8
its dual problem
find ¥* € ¢ such that 0 € —LA~!(—L*v*) + B~ 1%, )
and the associated Kuhn-Tucker set
Z={(xy)e X &g |-LV €Axand Lxe BV} (10)

The problem is to find a point in Z. The sets of solutions to (8) and (9) are
denoted by & and 2, respectively.

Proposition 1 Consider the setting of Problem 3 and let K be a closed vector
subspace of 7 &% such that Z C K. Then the following hold:

(i) Zis a closed convex subset of & x 9.
(i) P400l+t0e D40
(iii) For every point a = (a,a*) € graA and every point b = (b,b*) € graB, define
Sap = (a* 4+ L*b*,b— La), tip = PkSaps Map = (a]a*y+(b|b*), and

Hap = {x €K | (X[ tsp) < Map}- an

Then the following hold:
(a) Let a € graA and b € graB. Then Hop =K < si, =0 = [(a,b") €
Zand a5 =0].
(b) Z= ﬂaegraA ﬂbegraB Hap-
(iv) Let (an,a’)qen be a sequence in graA, let (b,,b}),cn be a sequence in graB,
let x € 57, and let v* € 4. Suppose that a, — x, b}, — v*, a};+L*b}; — 0, and
La, — b, — 0. Then (x,v*) € Z.
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Proof (i): [12, Proposition 2.8(1)].
(i1): [12, Proposition 2.8(iii)-(v)]; see also [24].
(iii): For every a = (a,a*) € graA and every b = (b,b*) € graB, set

Gan={x €A DY | (x|sLp) < Mas}, (12)
and observe that

Hap = {x €K ’ (x| thp) < NMap}
= {x € K| (x| Pcsyp) + (x| P1Sap) < Map)
= {x €K | (x]s;p) < Map}
=KNGap. (13)

(iii) (a): By [1, Proposition 2.2(1)], Gap = Y & s;b =0 = (a,b") €
Z and N, = 0. The claim therefore follows from (13).
(iii) (b): By [1, Proposition 2.2(iii)] Z = ﬂaegraA ﬂbegraB Gap . Hence, (13)

yields Z=KnNZ= ﬂaegmA ﬂbegraB Hap -
(iv): [1, Proposition 2.4].

Remark 1 As will be seen in Remark 5, the subspace K in Proposition 1 adds
flexibility to the implementation of our proposed algorithms when certain
structures are present in the problem formulation.

Proposition 2 Problem 1 is a special case of Problem 3.

Proof Let us set

H = @ieﬂ%ﬂi

9 = @kel(gk

L: A =G (xi)ier — (Ziell‘kixi)kel(
A: =27 (x)ier = Yooy (=2 +AX)
B: 9 —27: (Vi)kek — XuexBrOk — 1)

(14

Then
LG — A (V)ek — <ZL;;,.yk> : (15)

kekK iel

With these settings, (8), (9), and (10) are respectively equivalent to (1), (2),
and (3).

2.2 A Fejér monotone algorithm

We first recall some basic results concerning Fejér monotone sequences.
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Proposition 3 [14] Let K be a real Hilbert space, let C be a nonempty closed
convex subset of K, and let xy € K. Suppose that

forn=0,1,...
tr € Kand n, € R are such that CC H, = {x e K | (x| t;) <My}
Ay €10,2]
Xn+1 :Xn+)~n(PH,an_Xn)-

(16)

Then the following hold:

(i) (xn)nen is Fejér monotone with respect to C: (Vz € C)(Vn € N) [|xp11 — 2| <
ez 2
(D) D ey An(2 = A)[[ P, Xn — Xa||” < oo
(ili) Suppose that, for every x € K and every strictly increasing sequence (qn)neN
in N, x4, = x=x € C. Then (x,),en converges weakly to a point in C.

Algorithm 1 Consider the setting of Problem 3 and let K be a closed vector
subspace of J# ®% such that Z C K. Let € € ]0,1], let (xp,v§) € K, and let
(An)nen € [€,2 — €]V, Tterate

forn=0,1,...

(an,a};) € graA

(bn,b}) € graB

(tF,ty) = Px(a}, + L*b}, b, — Lay)

T = (|6 11> + 1l

ifr,>0 a7

|60 = 2 max{0, o5+ 0 7)o | — 0 5}

else 6, =0
Xp+1 = Xn — Gnt;:
| = Vi — Oty

Vot
Proposition 4 Consider the setting of Problem 3 and Algorithm 1, and suppose
that & # @. Then the following hold:

() (xn,v})nen is a sequence in K which is Fejér monotone with respect to Z.

(ii) ZnGN llxn-+1 *anZ < +ooand ZnGN HVZJrl - V;||2 < oo
(iii) Suppose that the sequences (an)nen, (bn)nen, (af)nen, and (b)),en are
bounded. Then

Tim (%0 — an | @l + L) + (L — by | b — V7)) < 0. (18)

(iv) Suppose that, for every (x,v*) € K and for every strictly increasing sequence
(Qn)nEN in N,

(x4, ~xand v, —=v'] = (xv)eZ (19)

Then (x,)nen converges weakly to a pointx € &, (vi),en converges weakly to
a point v* € 9, and (x,v*) € Z.
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Proof Parts (i) and (ii) of Proposition 1 assert that Z is a nonempty, closed,
and convex subset of K. Now set

(VR EN) 3= (xn,vy), S, = (85,80) = (a, +Lby, by — Lay), t, = (t,,tn),
Mo =(an | a;)+ (bu | b)), and H,={xe K| (x|t;) <m}. (20)

Then it follows from (17) and Proposition 1(iii) (b) that (Vn € N) Z C H,,. Set
(Vn e N) A, = 1/7,6,/A,. Using [8, Example 28.16(iii)], we get

M — ([ t)

Xp+ —————=—"tF 0 if th £ 0and (x, |t > Ny
(VneN) Puxa=S el "7 Do [ ) >z 1)
Xn, otherwise.
Hence,
(VneN) A, =||Pu,xn—%a|l and  Xu11 =Xy + Ay (Pr,Xn — Xn)- (22)
Therefore, we derive from Proposition 3(ii) that
D AT < oo, (23)
neN

(i): This follows from (22) and Proposition 3(i).
(ii): We derive from (17) that

(¥ €N) [t —xall® + Vips —vall® = 677, = 4,47 <447 (24)

Hence, the claim follows from (23).
(iii): Since ||Pk|| < 1, (17) and (20) yield

(VneN) 7=t

<ls;l?
= llay + L3 1? + || Lan — bu]®
< 2(|lanll? + LY 16311 + LI lanl* + 1Ball?). - (25)

Hence, (7,),cn is bounded. Therefore, since (23) implies that A, — 0 and since
(%n)nen lies in K, we obtain

(Vn € N)  max{0, ((xu | ;) + (sn [ v;) — (an | a3) — (bu | B})) }

=max{0, ({xu | s;) = {an | ay) — (bu | b)) }

=max{0, ((xu | Pks;) — (an | ay) — (bu | b)) }

=max{0, ((xn | ;) + (tu | Vi) — {an | az) — (bu | 7)) }

= VTl

— 0. (26)

Consequently,
i (o, — an | @y +Lvy) + (L — by | by = v},))
=T (o | 57) + {5 | Vi) — (an [ a3) — (b | B})) < 0. 27)
(iv): This follows from (22) and Proposition 3(iii).
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2.3 An Haugazeau-like algorithm

Algorithm 1 produces sequences that converge weakly to some undetermined
point in Z. We now describe an algorithm that provides strong convergence to
the point in Z closest to some reference point (xo,v) € 7 ©%. This approach
relies on a geometric construction dating back to [21] and used in the context
of Problem 1 in [2].

Let (x,y,z) € K3 be an ordered triplet from a real Hilbert space K. We define

H(xy)={heK| (h—y[x—y) <0} (28)

and, if the set H(x,y) NH(y,z) is nonempty, we denote by Q(x,y,z) the projec-
tion of x onto it. The principle of the algorithm to project a point xo € K onto a
nonempty closed convex set C C K is to use at iteration n the current iterate x,
to construct an outer approximation to C of the form H (xo,%u) N H (Xu,Xy41/2);
the update is then computed as the projection of xy onto this intersection,
Le., Xpt1 = Q(X0,Xn; Xn41/2)- As the following lemma from [21] shows, this last
computation is straightforward; an alternative derivation may be found in [8,
Corollary 28.21].

Lemma 1 ([21, Théoreme 3-1]) Let K be a real Hilbert space, let (x,y,z) € K3,
and set R = H(x,y) NH(y,z). Further, set y = (x—y|y—2), 4 =|x—y|* v=
lly —z||%, and p = uv — % Then exactly one of the following holds:

(i) p=0and y <0, in which case R = .
(i) [p=0and x >0] or p >0, in which case R # & and

z, ifp=0andx > 0;
0(x,y,z) = x+(1+x/v)(z—y), ifp>0and yv=p; (29)
y+(v/p)(x(x—y)+u(z—y)), ifp>0andyv<p.

Proposition 5 ([2, Proposition 2.1]) Let K be a real Hilbert space, let C be a
nonempty closed convex subset of K, and let xy € K. Iterate

forn=0,1,...
{take X112 € Ksuch that C C H(xn, %, 41/2) (30)
Xn4+1 :Q(XOaXH7Xn+1/2)'

Then the sequence (x,)nen is well defined and the following hold:

() (Vn € N) [lxn —xoll < [Ixn+1 —xol| < [[Pexo —xoll-
(i) (VneN) CC H(x0,%n) NVH (X0, Xp41/2)-
i) D pen X1 — Xul|? < oo,
(V) > en erz+l/2 *Xn||2 < oo
(v) Suppose that, for every x € K and every strictly increasing sequence (qn)nen
in N, xg, = x=x¢€ C. Then x, = Pcxo.
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Algorithm 2 Consider the setting of Problem 3 and let K be a closed vector
subspace of /' ®% such that Z C K. Let € € ]0,1], let (xp,v§) € K, and let

(A)nen € [, 1]". Tterate

forn=0,1,...

(an,a};) € graA

(bn,b}) € graB

(tF,ty) = Px(a}, + L*b}, b, — Lay)
R

ift, >0
6, =~ max{0, (x, | 1;) + ta | Vi) = (an | @3) = (b | 5}) |
Tn
else 8, =0
Xn1/2 =Xn — Ot
V;H/z =V — Oty

L (er»lavZJr]) = Q((XOavé)a (xnav;:)a (xn+1/25v:l+1/2)) .

Remark 2 Using Lemma 1, the computation of the update (x,1,v;, ) in (31)
can be explicitly broken into the following steps:

Xn = (X0 — Xn | Xn 7xn+l/2> +(vo—vilva 7V:+]/2>
M = [|x0 =%l [* + [[vg = viI?

Vi = [Jxn =012l + Vi = vy ol

P = taVa — Xn

ifp,=0and y, >0

Xnt+1 = Xp41/2

Vi1 = Vag1)2 (32)
if p, > 0and x,v, = px

Xnp1 =0+ (1 +xn/vn)(xn+1/2 — Xn)

[ Vat1 = Vot (1 +%n/vn)(vf,+1/z —V,)

if p, > 0and x,v, < pn

Xn1 = Xn+ (Va/Pn) (%n(xo —Xn) +I'Ln(xn+l/2 *xn))

*

_v;+l =, + (Va/Pn) (ln(vg —vp)+ u”(v;;+1/2 - V;:))

Proposition 6 Consider the setting of Problem 3 and Algorithm 2. Suppose that
P # @ and set (X,v*) = Pz(xo,v;). Then the following hold:

(1) (xn)nen and (vi)nen are bounded.
(i) ZneN Hxn+1 —x,,||2 < +oo and ZnGN HV;;H - V;Hz < oo,
(D) D pen [1Xnr1/2 — x> < Heeand 37, o HVZH/Q — > < oo
(iv) Suppose that the sequences (an)nen, (bn)nen, (@))nen, and (b)),en are
bounded. Then

lim ((x, — an | @) + L V) + (Lxy — by | by — ;) <O0. (33)
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(v) Suppose that, for every (x,v*) € K and every strictly increasing sequence
(Qn)nEN in N:

(x4, = xand v, —=Vv'] = (xy)eZ (34

Then (x,)nen converges strongly to x € &2 and (v}),en converges strongly to
Ve g.

Proof We first show that we recover the setting of Proposition 5 applied in K to
the set Z of (10), which is nonempty, closed, and convex by Proposition 1 (i)—
(ii). Set

(Vn € N) Xn = (xmvfz)v Xn+1/2 = (xn+1/2av:l+1/2)’ t;: = (t;:atn)a
and n,=(ay|a,)+ (bu|b;). (35)

If, for some n € N, we have x|/, = x,, then trivially Z C H(xy,%,41/2) = K;
otherwise, (31) imposes that (x, | t}) > 1, and therefore that

M < O | t0) = A (G [ 1) — 1)
= (X | 1)) — OuTy
Xp— Opty | )
Xat1/2 | th)s (36)

o~ o~~~

from which we deduce using Proposition 1(iii) that

Zc {xeK| (x|t <m}
C{xeK | xlt) < (2|t}
= {xe K| (x| % =Xup1/2) < (K12 | %0 —Xup1/2) }
:H(xn,xnﬂ/z). (37)

Altogether, (31) is an instance of (30) with C = Z, and we can apply Propo-
sition 5. In particular, Proposition 5(ii) asserts that (x,,v}),en is well defined.
We can now establish the claims of the proposition as follows.

(i): This is a consequence of Proposition 5(i).

(iD): It follows from (35) and Proposition 5(iii) that >,y [[%ur1 — x> +
e Vit = illP = Een Xnst =l < oo

(ii): In view of (35) and Proposition 5(iv), »_ y|lXut1/2 — xn|? +
Snen Vs = vall? = Een Xus1/2 = xul|? < oo

(iv): Set (Vn € N) A, = /746, /A,. We derive from (31) and (iii) that

2 2 2
) 7,0, Zrnen _Z [1%0-+1/2 = %all
neN neN "7 neN neN

The claim is then obtained by arguing as in the proof of Proposition 4(iii).
(v): This follows directly from Proposition 5(v).
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Remark 3 Proposition 6 guarantees strong convergence to the projection of
the initial point (xo,v;) onto the Kuhn-Tucker set under the same conditions
that provide weak convergence to an unspecified Kuhn-Tucker point in Propo-
sition 4. This phenomenon is akin to the weak-to-strong convergence principle
investigated in a fixed-point setting in [7], whereby a geometric modification
of the algorithm renders it strongly convergent.

3 Solving Problem 1
3.1 Block iterations and asynchronicity

In existing monotone operator splitting methods, each iteration n must use
every operator in the inclusion problem in a resolvent calculation based on the
most recent information available. For instance, every iteration of the methods
of [1,2] must compute new points points (a;.,a;,) € graA; and (b, b5 ,) €
graBy, for every i € I and every k € K, and these points must be computed using
the current values of the primal variables (x;,)ic; and of the dual variables
(v;;n)kE x. The earlier work in [19,20] in the context of (7) is similar. The two
main novelties we present in this paper are to depart from this approach by
allowing asynchronous block iterations. Specifically, we allow:

Block iterations: At iteration n, we require calculation of new points in the
graphs of only some of the operators, say (A;)ici,cr and (By)kek, k- The control
sequences (I,),en and (K, ),en dictate how frequently the various operators are
used.

Asynchronicity: A new point (a;,a;,) € graA; being incorporated into the
calculations at iteration n may be based on data x; ,(,) and (Vz,c,-(n))kGK avail-
able at some possibly earlier iteration c¢;(n) < n. Therefore, the calculation of
(@in,aj,) could have been initiated at iteration c;(n), with its results becom-
ing available only at iteration n. Likewise, for every k € K,, the computation
of (bk,n,b,t,n) € graB; can be initiated at some iteration d(n) < n, based on
(xi,dk(n))iGI and V;’dk(”).

To establish convergence, there need to be some limits on the asynchronic-
ity lag of the algorithm and the spacing between successive calculations in-
volving each operator, as described in the following assumption.

Assumption 3

(i) M is a strictly positive integer, (I,),en Is a sequence of nonempty subsets of I,
and (K, )uen is a sequence of nonempty subsets of K such that

n+M—1 n+M—1
Iy=1, Ko =K, and (Vn € N) U I;=1and U Ki=K|. (39

Jj=n Jj=n
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(ii) D is a positive integer and, for every i € I and every k € K, (ci(n)),en and
(di(n))nen are sequences in N such that

(Vn € N) ((Viel)nngci(n) <n and (Vk € K) n— D < dy(n) gn). (40)

(iii) € €]0,1[ and, for every i € I and every k € K, (Yin)nen and (Ui n)nen are
sequences in [g,1/€].

Condition (39) ensures that over any span of M consecutive iterations,
each operator is incorporated into our algorithms at least once. The standard
case corresponds to using all the operators at each iteration, i.e., (Vn e N) [, =1
and K, = K. Toward the other extreme, it is possible to use just one of the
operators from (A;);c; and (By)rek at iteration n. For example, such a control
regime could be achieved by setting M = max{m, p} and sweeping through the
operators in a periodic manner. Condition (40) guarantees that the points in
the graphs incorporated into the algorithm are based on information at most
D iterations out of date. If the algorithm is being implemented synchronously,
then one can simply set D =0, in which case (Vn € N)(Vi € I)(Vk € K) ci(n) =n
and dy(n) = n. Finally, the positive scalars (;,),en and (e, )nen in (iii) are
the proximal parameters used in the resolvent calculations. The assumption
requires that they be bounded above and also away from 0.

The following result is the key asymptotic principle on which our two main
theorems will rest. The key idea of our algorithm is to simply recycle an old
point in the graph of each operator for which new information is not available.

Proposition 7 Consider the setting of Problem 1 and suppose that the following
are satisfied:
(a) For every i € I, (xin)nen is a bounded sequence in 74 and, for every k € K,
(Vi )nen is a bounded sequence in %.
(b) Assumption 3 is in force.
(c) ForeveryneN, set
foreveryiel,
l;in = Zkek thivz,ci(n)
Ain = ‘]V,',Ci(,,)Ai (xi,ci(n) + Yiciln) (Z,* - I;F,n))
a;f,n = ,)/;11(”) (xl'-,ci(") o aiv”) - ll*l’l
foreveryie I,
{(aia”’a;n) = (aiyn*ha;'k,n*l) (41)
for every k € K,
len = 2 et LiiXi ay(n)
bin = 1+ Ty g B (e + Bicde(n) Vi gy () — 75)
* * —1
bin = Vidyn) T By Uk = bion)
for every k € K\ K,
L (bk,nv b;n) = (bk,nfl bl b;nf])v
and define

(VneN) ay = (ain)ict, a, = (a; ,)ict; bn = (b n)kek, and by, = (by , )rek- (42)
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Then the following hold:

(i) Define A and B asin (14). Then (Vn €N) (ay,a}) € graA and (b,,b};) € graB.
(D) (an)nen, (@)nens (b)nen, and (b;,)nen are bounded.
(iii) Suppose that the following are satisfied:
(@ (VieD) Y |xips1 —xinl|* < +ooand (Vk€K) 3 Vet fv;nﬂz < oo,
neN neN

() Tim (3 (xin—ain | @G+ 5 Livi, b+ X (5 Lastin—bin | b, —i,)) <O
iel kek kekK i€l
() (gn)nen is a strictly increasing sequence in N, for every i € I, x; € 5 and
Xig, — Xi, and, for every k € K, v € 9 and Vi, P Vi
Then

Xn—an—0, a;+Lv,—0, Lx,—b,—0, v,—b;—0, (43)
and ((xi)ier, (Vi )kek) € Z.

Proof Define 7, %, and L as in (14) and set
(VneN) x,=(xin)ier and v, = (v, )rek- (44)

(i): This follows from (41) and basic resolvent calculus rules [8, Proposi-
tions 23.15, 23.16, and 23.21].

(ii): Let i € I. We derive from hypothesis (a) and Assumption 3(iii) that the
sequence (X c,(n) — Yiei(n) ZkeKLZiVZ,C,-(n))n . is bounded. Since the operators
(J%,c,-<n> A;)neN are nonexpansive [8, Corollary 23.8], it follows from (41) that
(@in)nen is bounded, and hence that (a;,),cn is also bounded. Likewise, for
every k € K, (3 c; LkiXi dy(n) + Mi dy(m) Vi (”j )nen is bounded and we deduce from
(41) that (bxp)seny and (b,’;,n),,eN are bounded. In view of (42), this establishes
the claim.

(iii): Our goal is to use Proposition 1(iv) to establish the claim. For every
every i € I and every n € N, define /;(n) as the most recent iteration at which a
new point in the graph of A; was incorporated into the algorithm, that is,

(Viel)(VneN)Zi(n)=max{j€S;| j<n}, whereSi={jeN|icl}. (45)
Note that (41) implies that

(VieD(VneN) (ainaiy) = (7,45 7,0m)- (46)

For every i € 1, (39) yields sup,cy(n—Zi(n)) < M and hence lim,_, + £;(n) = +oo.

Next,wedefine ;e 1yyneN) ti(n) = ci(Gi(n)). 47)

Thus, ¢;(n) is the iteration from which the computation of the most recent
point in the graph of A; was initiated. It follows from (40) that

(Vie)(VvneN) n—{i(n)=n—"Lli(n)+li(n)—4i(n) <M+D. (48)
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Hence, (Vi € I) lim,_, 1« ¢;(n) = +o0. Since max;es ZjeN llxi, 1 — i j||* < 40 by
(iii) (d), we deduce that

Li(n)+M+D—1 2
Viel) |xin—Xigml* < > i —xijl
j=ti(n)

Li(n)+M+D—1

<SM+D) > xije—xil?
Jj=Li(n)
~+oo

<SM+D) > lxijr —xi I

Jj=Li(n)
—0. (49)

Likewise, since (iii) (d) asserts that maxeex D _ jen Iy ;11 — Vi j||2 < +o0, we have

—+oo
(i €DER) vip—ViglP < M+D) S i —vi P 0. (50)
J=ti(n)

We now perform a similar analysis for the_operators (Bi)kek- Much as in (45),
for every k € K and every n € N, define ¥ (n) as the most recent iteration at
which a new point in the graph of B, was incorporated into the algorithm, that
is,

(Vk € K)(Vn € N) % (n) =max{j € Ty | j <n},
where T, ={jeN|keK;}, (51)

and observe that
(Vk € K)(Vn €N)  (bin:bin) = (Brs () Ok 5, () - (52)
Next, we define
(Vk € K)(VneN)  O(n) =di(Di(n)). (53)
Then, we derive from (39) and (40) that
(Vke K)(Vn €N) n—(n) =n— %(n)+ (n) — %(n) <M+D (54)

and, therefore, that (Vk € K) limg_, . Ox(n) = +oo. Using the fact that
maXies Y i X1 — i j] 2 < 400 by (iii) (d), we then deduce that

~+oo
(HEK) in—xinlP < M+D) 3 e —xis2 0. (55)
j=0%(n)
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Similarly, since maxiex _ jeny [|Vk 41— v,’;j||2 < +o0, we have
o0
(K)o il < M4D) 3 i —vigl? 0. (56)

j=0%(n)

Next, let us set

Oin = <x,,, Ain azn+szszn>

(Vi e I)(Vn € N) kek (57)
¢1n<z£ (n) — 4 7i(n) +Zl‘ktvki(n>
kek
and

Yin = <ZLkixi,n —bin | by, — VZ,,,>

(Vk € K)(Vn € N) e (58)
n= <2Lkixivl9k(") ~ b5, ) bZ,@km) - V/t,lsk(n)>-
icl

First, we show that ¢;, — <’1;l-7,, — 0 for every i € I and ., — Y, — O for every
k € K. The first assertion is obtained by invoking (46), (a), (ii), (49), and (50),
which imply that

Viel) ¢in— (Ei,n = <xz n—@qin az nT ZLkzvkn>
kek
<x1 n = X ¢;(n)
kek

keK
- <xi,£ (n) — Gin al n + Zthvk Li(n >
= <xi,n —djn Zthi(vlt,n - vlt.[,-(n))>
kekK
al n + ZLklvk 4i( >
<Z Il sup (11 + ||au|)) 1V = Vi
kek j€

(sup|al]||+2||Lk,|supnvk,n)m o

kek JeN
— 0. (59)
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Similarly, it follows from (52), (a), (ii), (55), and (56) that

* *
bk,n - Vk,n>

(VkeK) Win— Vin = <ZLkixi,n — by

iel

- <ZLkixi,19k(n) - bk,n blt,n - vz,ﬂk(n)>
el
<ZLkl Xin = Xi 9 ( )) bz,nvlt,n>
iel
+ <2Lkixi,ﬂk(n) = bk [ Vioyn) ~ VZ,n>
el
(Z Ieadlsup (15,1 + |vk]|)) i —
iel JjeN
tsup (S 1l 5l + 1011 ) =
JEN \'igg
—0. (60)

We next perform some analysis of (<'f>vi7,,)i€17,,€N and (¢;,)icrnen. We derive from
(57), (46), and (41) that

(Viel)(VneN) ai,n = <xi,[ (n) — in

azn+sz1vk€ >
kekK

~1
=Yitn)

Xity(n) — Ginll?

az n + ZLklvk li(n

kek

2
; (61)

which yields

(VieI)(Vn € N) ‘51'.,” = 'Yijgll.(,,) ||xi,£,-(n —ai rzH > €l|x;, Li(n) — ai,nHz (62)

and
2
(Viel)(VneN) ¢tn*’}’i al,,JrZLklvk“n
kek
2
al n + Zthvk 4i( (63)
kekK
It follows from (62) that
(Vi € 1)(Yn € N) [lxin — ainll* < 2 (10 — X0 1> + 151.0,0) — @inll)
<2 <|Xi,n — X 0:(n) 1>+ i Oin— bin @> (64)
€ €
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and from (63) that

2
* * %
ai,n =+ E Lkivk,n

(Viel)(VneN)

kekK
2
atn+sz1vk€ Zth Vk@ )
kekK keK
2
2 2
( aint S Lol + Sl 1V — Vil )
keK keK
(Bt O S L I i) 69
kek

We now perform a similar analysis of (Wi )keknen and (Wi, )kek nen. From
(52) and (41) we obtain

(Vke K)(VneN) Yy, = <ZLkixi,19k(n) —bin

bz,n - vz,ﬁk(n) >

iel
2
=W Zth X0y (n) — P
icl
= i 9 (n) Hblt,n - Vz,ﬁk(n) Hz- (66)
Consequently,
2
(VkeK)(YneN) Vg, =u, ﬁk ZLk, Xi 0 (n) — Do (n)
icl .
€| Liix; 9,(n) — brog(n) 67)

icl
and
(k€ K)(In €N) Y= Moy 1Bin — Vi oo = €1BEn — Vg P (68)

It follows from (67) that

2
(Vk € K)(Vn€N) || Y Liiin — bin
icl
2
ZLki(xi,n Xi 3 (n +ZLk1 X 9 (n) — Dk
icl icl
2
Z(ZHLH ? X oyl + || Y Liii o (n) — Picn )
icl icl

2(2 1L

icl

: _xi,ﬁk(n)|2+8l(‘T’k,n_Wk,n)+81Wk,n); (69)
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and from (68) that
(Vk € K)(Vn €N) [|bf, — vl
<2(11B% 0 = Vi oy I” + 1Ven = Vi o, [I°)
<26 (Fon — Vion) + € Wion + V50— gy IP)- (70)
On the one hand, we derive from (44), (64), and (70) that
(Vn€N) b —an|* + 165 = v,I>

=l —aial®+ D165, — vial®

il kekK
<2 i =X 1>+ 2D Vi = Vi gy I
iel keK
+ 2871 Z(ai,n - q)i,rz) + 287] Z(V,;k,n - Wk,n)
iel kekK
+2¢7! (Z«m,n +> wk,n) : (71)
icl kek

On the other hand, we derive from (44), (65), and (69) that

(Vn € N) lay+L vyl + || Loa — ba*

2 2

= Z At ZLZin,n + Z ZLkiXi,n —bicn

i€l kekK keK "' i€l
<267 (Gin— i) +2 D Ll (Ve gy = Vil

iel iel kekK
A2 O Ll xin — X sy 1> 426> (Wiew — W)
keK iel keK
+2e7! <Z Oint D wk,n> . (72)
iel keK

We deduce from (57), (58), (42), (44), and (iii) (e) that

lim (Z@,ﬁzw,{m) = Tim ((t0 — an | @+ L) + (Lxy — by | b —VE))

icl keK
<0. (73)

Altogether, taking the limit superior in (71) and (72), and using (49), (56),
(59), (60), (50), (55), and (73), we obtain (43). Now set x = (x;)ic; and v* =
(vi)kek- Then (iii) (f) and (43) yield

ag, = x, by —Vv', a, +L'b;, —0, and Lay, —by, — 0. 74

In turn, (i) and Proposition 1(iv) imply that (x,v*) € Z.
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Remark 4 In (41), the resolvents are assumed to be computed exactly to sim-
plify the presentation. However, it is possible to allow for relative errors in
these computations in the spirit of [20, Algorithm 3]. More precisely, we can
replace the calculation

(ai,nva;n) = (‘]Vi.c,-(n) ( Xici(n) +% «ci(n) (Z;F - lt*n)) ) ’yljc,](n) (xi,c,-(n) - ai,n) - lt*n) (75)
by any choice of (a;,af,) € #;* such that
(ai,"’Z;F + azn) € grad; and Qip+ ’Yi,c,-(n)a:in Xici(n) — Yiei (n) in int €in, (76)

where the error ¢;, satisfies

leinll < B
<xi,c,-(n) —din | ei,") > _Gllxi,ci(n) - ai,"llz 77
<el'~,” | at*n + lt*n> < G’Yi,ci(n) Ha;in + lz*nHZ

for some constants 8 € ]0,+e<[ and o € ]0, 1] that are independent of i and n.
It follows from [8, Proposition 23.21] that (76) can also be written as

(78)

* —1 *

ai’n = JYi‘ci(n) ( Xi Ct(”) + y’ Cz(”) (Z;k - ll*,n) + eian
in = ’yi,c,-(n) (xiaci(”) —Qint eia”) - li,n'

It may easily be seen that the calculations (75) satisfy (76) with e;,, = 0, triv-
ially fulfilling (77). In the setting of (77), (62) becomes

(5 € (9 €N) din = Y7k (o — aiall> + () — i | €3)

(1= 0)1%;.4,n) — @inll® (79
and (63) becomes
_ 2
(Viel)(VneN) Din = Ve a,nﬁLZLk,ng(n <@zn aszFZLszki(n >
keK kek
2
al n + Z Lklvk Li(n (80)
kekK
Likewise, we can replace the calculation
{bk,n =rt Jﬂk‘dk(n)Bk(lkv" + "‘kydk(n)vz,dk(n) - rk) (81)
Bin = Vidgm * Hidn) Uen = bicn)

by any choice of (b, b;,,) € 42 such that

(bk,n — Tk bzn) € graBy and bk,rz + “k,dk(n)bz n lk n T My, dk(n)vk di(n +fk ns (82)



22 Patrick L. Combettes, Jonathan Eckstein

where the error f; , satisfies

[ fenll < 8

<lk,rz - bk,n | fk,n> = _CHlk,n - bk,rzH2 (83)

<fk,n | bz‘n - v;dk(n)> < C”k‘d]\ (n) Hbz‘n - v;dk(n) H2
for some constants 6 € ]0,+o[ and { € ]0,1] that are independent of k and n.
Altogether, the effect of such approximate resolvent evaluations is to replace
e 'bye '(1-0)ore'(1-¢)~!in (71)-(72), with the remainder of the
proof of Proposition 7 remaining unchanged.

3.2 A weakly convergent algorithm for finding a Kuhn-Tucker point

We propose a Fejér monotone primal-dual algorithm based on the results of
Section 2.2 to find a point in the Kuhn-Tucker set (3).

Algorithm 4 Consider the setting of Problem 1, let K be a closed vector sub-
space of @;; 7 ® Pk % such that Z C K, and suppose that Assumption 3

is in force. Let (An)nen € [6,2 —€]", let ((xi0)ier, (v o)iek) € K, and iterate

forn=0,1,...
for everyiel,
l;in = Zkek thivlt,c,-(n)
ain =Ty ot Kicytn) T Yocitn) (@ = 1))
az*n = %;l(n) (xi,ci(n) - ai,”) - lt*n
foreveryie I\,
| (@insaj,) = (@in-1,4;,_)
for every k € K,
len = 3 i1 LiiXi dy(n)
b = 1k +Juk,dk(n)3k (lka" + l"hdk(")vz,dk(n) - rk)
b;n = V;dk(n) + l-‘/;(;}k(,,) (len — bicn)
for every k € K\ K,
| (brnsbi ) = (brn-1,b7, 1)
(0 )iers (tenkex) = Pe((af, + ex Lisbk it (b — Yier Liittinkek )
T = D ier 1l + Xk 1l

ift, >0
kn * * * *
{en = Lm0, 3 (o ) o ) + 3 (| i = (17,
" il kek
else 6, =0

for everyiel
in,n+l = Xin — ent;jn
foreveryke K
* Lk
L ka7n+1 =Vin— Oty .

(84)
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Remark 5 When Problem 3 has no special structure, on can take K=, ., 74 ®
D1k % in Algorithm 4. In other instances, it may be advantageous compu-
tationally to use a suitable proper subspace K. For instance, if I = {1}, zj =0,
and A, : 54 — J4 is linear, then (3) reduces to

X € %, Axy +ZLZIVZ =0, and
kek

Z= { (x1, (Vikek)

(Vk € K) VZ €%, and Lyx1 —ry GBleZ}, (85)
and we can use

K= {(x,,@;;)keK) e s D%

kek

A+ Y Livi = o}. (86)

kek

In effect, this approach was adopted in [20] in the further special case in which
A;j=0and (Vk€K) % =4, Ly =1d, and r; = 0.

Theorem 5 Consider the setting of Problem 1 and Algorithm 4, suppose that
P + @, and let

(VneN) an = (ain)icr, Xn = (Xin)ict, by = (b n)kek, and v, = (vi , ke~ (87)

Then (ay)nen and (x,)nen converge weakly to a pointx € P, (b)) nen and (Vi) nen
converge weakly to a point v € 9, and (x,v*) € Z.

Proof Define 57, ¢, L, A, and B as in (14), and (a}),eny and (bp)uen as in
(42). Further, define (Vn € N) #, = (tx4)kex and 1, = (t;,)ies- It follows from
(84), (87), (15), and Proposition 7(i) that Algorithm 4 is a special case of Al-
gorithm 1. Hence, upon invoking Proposition 2, we can apply the results of
Proposition 4 in this setting. First, Proposition 4(i) implies that the bounded-
ness assumption (a) in Proposition 7 is satisfied. Second, in view of (84), the
sequences (a,,a; ) nen and (b, b)) en are constructed according to assumption
(c) in Proposition 7. We thus derive from Proposition 7(ii) that

(an)nens (ay)nen, (bn)nen, and (by)uen are bounded. (88)

Furthermore, the summability assumption (iii) (d) in Proposition 7 is secured
by Proposition 4(ii), while the limit superior assumption (iii)(e) in Proposi-
tion 7 holds by Proposition 4(iii). We therefore use Proposition 7(iii) to con-
clude by applying Proposition 4(iv). To this end, take (x,v*) € K and a strictly
increasing sequence (gx)uen in N such that x;, — x and v; — v*. Then Propo-
sition 7(iii) asserts that x, —a, — 0, v —b: — 0, and (x,v*) € Z. Thus, (19) is
satisfied and the proof is complete.

Remark 6 Theorem 5 subsumes [1, Theorem 4.3], which required the follow-
ing additional assumptions: the implementation is synchronous, i.e.,

(VneN)(Viel)(VkeK) ci(n)=di(n)=n, (89)
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no proper subspace is used, i.e.,

K= e P%. (90)

iel keK
the control is fully parallel, i.e.,
(VneN) I,=1 and K,=K, (91)

and common proximal parameters are used in the sense that

(VneN)(Viel)(VkeK) Yo=Y and U, = . (92)
Therefore, the proposed method also subsumes [18] and [19, Proposition 3]
(see also [5]), which are special cases of [1, Theorem 4.3]; see [1, Exam-
ples 3.7 and 3.8] for details.
Remark 7 Theorem 5 is closely related to [20, Proposition 4.2] (see also [5]),

which considers the special case of Problem 1 in which 7 = {1}, zj =0, 4, =0,
and (Vk € K) %, = 54 and Ly, = Id. If in this case one sets

K= {(xh (Vlt)kel() S %FH

Svi= o} (93)

kek

in our algorithm, we recover the special case of the method of [20, Section 4]
in which the parameter a{‘j of [20, Proposition 4.2] is 1 if i = j, and 0 otherwise.
Other settings of a{‘j in [20] produce algorithms that are not special cases of
our scheme, but must process the resolvent of every operator at every iteration
and remain fully synchronous as in (89) and (91).

Remark 8 Recall that the resolvent of the subdifferential of a proper lower
semicontinuous convex function f: 7 — ]—co, 40| is Moreau’s proximity op-
erator (Id +0f)~" = prox,: x — argmin,c »(f(y) + [lx —y[?/2) [8,22]. Now
consider the setting of Problem 2 and execute Algorithm 4 with (Vi) A; =df;
and (Vk € K) By = dgi. Then, using the same arguments as in [15, Proposi-
tion 5.4], it follows from Theorem 5 that (x,),cn converges weakly to a solu-
tion to (5) and that (v}),cn converges weakly to a solution to (6).

Remark 9 The framework of [20, Algorithm 3] for solving (7) allows for rel-
ative errors in the computation of the resolvents. Similar errors may be in-
corporated in Algorithm 4 by adopting the approximate evaluation scheme of
Remark 4 to select points in the graphs of the monotone operators in (84).
Since Proposition 7 remains valid with such approximate resolvent computa-
tions, so does Theorem 5.



Asynchronous Block-Iterative Primal-Dual Splitting 25

3.3 A best approximation result

In this section we use the abstract Haugazeau-like algorithm of Section 2.3 to
devise a strongly convergent asynchronous block-iterative method to construct
the best approximation to a reference point from the Kuhn-Tucker set (3).

Algorithm 6 Consider the setting of Problem 1, let K be a closed vector sub-
space of @;.; 7 ® Pk % such that Z C K, and suppose that Assumption 3

is in force. Let (An)nen € [€,1]", let ((xi0)ier, (Vi o)rex) € K, and iterate

forn=0,1,...
foreveryicl,
lin = Zkek Lk ci(n)
in =Ty, ot Kiin) T Yican) (& — L))
al*n = ’yt,ci(n) (xi,c,-(n) o aiﬁ”) - l;in
foreveryie I\ 1,
L (ai,nva;f,n) = (ai,rzfl 7a;'in71)
for every k € K,
len = D ier LiiXi dy (n)
bin =1k Jr‘]ﬂk‘dk(n)Bk (lk,n + ”kvdk(n)vz,dk(n) — ’"k)
blt,n = vlt,dk(n) + “’:ﬁ}k(”) (lk,rz - bk,n)
foreveryk € K\ K,
| (Brnsbf,,) = (brn—1,bf, 1)
(@t )iers (enkex) = Pe((af, + Xrer Libi p)iets (brn — e Liddin)kex )

T = ier 1t 2+ Y ek lall?
ift, >0
A’ * * * *
6, = T—” max{O,Z((xi,n |150) — (ain | @} ) + Z(<tk,n [ Vi) = bk | bk,n))}
n iel kek
else 8, =0

foreveryicl
in,rH»l/Z =Xin— ent;jn
foreveryk e K
{Vz,nﬂ /2= Vin — Onlin
Xn =D ier (Xi0 = Xin | Xin _xi,n+1/2> + 2 kek <VZ,0 - v/’i,n | v/’i,n - Vz,n+1/2>
=iy 1xi0 —xinll* + ZZ:keK Vo — VZ,nHZ )
Vn = Ziel Hxi.,n _xi,n+1/2|| + ZkeK HVZ,n - V/t,n+1/2||
Pn = HnVn — Xr%
ifp,=0and y, >0
for everyiel
in,n+1 = Xint1/2
for everyk € K

* ok
{Vk,nﬂ = Vin+1/2
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if p, > 0and x,v, > px

for everyiel

in,n+l =Xj0+ (1 + Xn/vn)(xi,n+l/2 7xi,n)

foreveryk e K

{VZ,HI =viot+t(1+ %n/vn)("z,nﬂ/z —Vin)

if p, > 0and y,v, < p»

foreveryiel

in,rH»l =Xin+ (Vrz/prz) (lrz (xi,O _xi,n) + I'Ln(xi,rhtl/z _xi,n))
foreveryk e K

[ Vi1 = Vi 00/ Pn) (Vg = Vi) BV 2 = Vi)

94

Theorem 7 Consider the setting of Problem 1 and Algorithm 6, and suppose
that & +# @. Define

(VneN) an = (ain)ict, Xn = (Xin)ier; by = (b )kek, and v, = (Vi n)kek, (95)

and set (X,v*) = Pz(xo,v§). Then (a)nen and (x,),en converge strongly tox € &,
and (b})nen and (v)nen converges strongly to v € 2.

Proof Define 2, ¥, L, A, and B as in (14), (a})neny and (bp)nen in (42), and
set (Vn € N) 1, = (tn)kekx and 1, = (1}, )ies. In view of (94), (95), (15), and
Proposition 7(i), Algorithm 6 is an instance of Algorithm 2. Hence, upon in-
voking Proposition 2, we can apply the results of Proposition 6 in this setting.
First, Proposition 6(i) implies that assumption (a) in Proposition 7 is satisfied.
Second, in view of (94), assumption (c) in Proposition 7 is satisfied as well.
Thus, Proposition 7(ii) asserts that the sequences (an)uen, (@))nen, (bn)nen,
and (b}),en are bounded. Third, assumption (iii)(d) in Proposition 7 is se-
cured by Proposition 6(ii). Finally, assumption (iii)(e) in Proposition 7 holds
by Proposition 6(iv). We therefore use Proposition 7(iii) to conclude by invok-
ing Proposition 6(v). Take (x,v*) € K and a strictly increasing sequence (g, ),eN
in N such that x,, — x and vy, — Vi Then it follows from Proposition 7 (iii)
that x, —a, — 0, v, — b} — 0, and (x,v*) € Z, which completes the proof.

Remark 10 As in Remark 8, consider the setting of Problem 2 and execute
Algorithm 6 with (Vi € I) A; = df; and (Vk € K) By = dgi. Then Theorem 7
asserts that (x,),en converges strongly to a solution x to (5) and that (v}),en
converges strongly to a solution v* to (6) such that (¥,v*) is the projection of
(x0,v;)) onto the corresponding Kuhn-Tucker set (3).

Remark 11 Theorem 7 improves upon [2, Proposition 4.2], which addresses
the special case in which the algorithm is synchronous and the restrictions
(89)-(92) are imposed. The latter was applied in the context of Remark 10
to domain decomposition methods in [4]; Theorem 7 provides a new range
of ways to revisit such applications using asynchronous block-iterative calcu-
lations.
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Remark 12 By an argument similar to that of Remark 9, Theorem 7 remains
valid if the resolvent computations in (94) are replaced by approximate eval-
uations meeting the conditions in Remark 4.
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