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Abstract We investigate the modeling and the numerical solution of machine learn-

ing problems with prediction functions which are linear combinations of elements

of a possibly infinite dictionary of functions. We propose a novel flexible composite

regularization model, which makes it possible to incorporate various priors on the

coefficients of the prediction function, including sparsity and hard constraints. We

show that the estimators obtained by minimizing the regularized empirical risk are

consistent in a statistical sense, and we design an error-tolerant composite proximal

thresholding algorithm for computing such estimators. New results on the asymp-

totic behavior of the proximal forward-backward splitting method are derived and

exploited to establish the convergence properties of the proposed algorithm. In par-

ticular, our method features a o(1/m) convergence rate in objective values.
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1 Introduction

A central task in data science is to extract information from collected observations.

Optimization procedures play a central role in the modeling and the numerical solu-

tion of data-driven information extraction problems. In the present paper, we consider

the problem of learning from examples within the framework of linear models [5,21,

23]. The goal is to estimate a functional relation f from an input set X into an output

set Y ⊂ R. The data set consists of the observation of a finite number of realizations

zn = (xi,yi)16i6n in X ×Y of independent input/output random pairs with an un-

known common distribution P. We adopt a linear model, i.e., we assume that the

target function f can be approximated by estimators of the form

fu : X →R : x 7→ ∑
k∈K

µkφk(x), (1.1)

where K is at most countable, u = (µk)k∈K ∈ ℓ2(K), and (φk)k∈K is a family of

bounded measurable functions from X to R; such a family is called a dictionary,

and its elements are called features. Ideally, one could measure the performance of

an estimator fu by the quadratic risk

R( fu) =

∫

X ×Y

| fu(x)− y|2dP(x,y), (1.2)

but this risk is not accessible as P is unknown. Thus, based on the available data, R is

replaced by the empirical risk Rn( fu) = (1/n)∑n
i=1 | fu(xi)− yi|2. However, the direct

minimization of Rn( fu) with respect to u ∈ ℓ2(K) leads in general to estimators that

may not be consistent, that is they do not approach the minimizer of the true risk (1.2)

as the sample size n becomes arbitrarily large. Therefore, regularization is needed to

restore consistency [19,21]. In our approach, the estimator fûn,λ
is computed via the

approximate minimization of the convex regularized empirical risk

ûn,λ ∈ Argmin
εn

u∈ℓ2(K)

(
1

n

n

∑
i=1

| fu(xi)− yi|2 +λ ∑
k∈K

gk(µk)

)
, (1.3)

where εn ∈R++ accounts for the precision with which the minimization is performed,

λ ∈ R++ is the regularization parameter, and the convex functions (gk)k∈K enforce

or promote prior knowledge on the coefficients (µk)k∈K of the decomposition of the

target function f with respect to the dictionary. Our objective is to select a family of

regularizers (gk)k∈K that model a broad range of prior knowledge and, at the same

time, lead to implementable solution algorithms that produce consistent estimators.

To satisfy this dual objective, we shall focus our attention on the following flexible

composite model: each function gk : R→ ]−∞,+∞] is of the form

gk = ιCk
+σDk

+ hk, hk −η |·|r ∈ Γ +
0 (R), r ∈ ]1,2] , η ∈R++, (1.4)
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where ιCk
is the indicator function of a closed interval Ck ⊂ R, σDk

is the support

function of a closed bounded interval Dk ⊂ R, η ∈R++, and hk : R→ R+ is convex

and such that hk(0) = 0. In (1.4), the role of Ck is to explicitly enforce hard con-

straints on the coefficients and the role of Dk = [ωk,ωk] is to select the thresholding

interval in which the coefficients are set to zero. Note that we have no restriction on

the end points ωk and ωk, and thus sparsity can for instance be activated only for

positive coefficients by setting ωk = 0 and ωk > 0 (see Figure 2 and Remark 6(v)).

Finally, hk provides stability and will be seen to be instrumental in guaranteeing con-

sistency. This function plays a role similar to that of the square function in elastic net

formulations [38,16]. In particular it can assume the form of an ℓr (1 < r < 2) term

in the regularizer, which provides stability [16, Remark 1], has proved to be effective

in sparsity-based regularization [25], and reduces the shrinkage of the nonzero coef-

ficients with respect to ℓ2 [38] (see Figure 1). Note that model (1.3)–(1.4) refines that

considered in [9], where the Ck’s are not explicitly considered, the Dk’s are assumed

to satisfy the condition ∩k∈KDk ⊃ [−ω ,ω ], with ω > 0, and the hk’s are assumed dif-

ferentiable. This flexible model unifies several statistical estimation techniques, such

as ridge regression [23,24], elastic net [16,38], bridge regression [22], and general-

ized Gaussian models [1]. Applications that may benefit from the special composite

structure of (1.3)–(1.4) are those based on feature selection, for instance in genomic

data analysis, see [17,30,38].

The main objective of our paper is to investigate statistical and algorithmic aspects

of the estimators based on (1.3)–(1.4). Our main contributions are the following:

– For suitable sequences of vanishing regularization parameters (λn)n∈N, we prove

the consistency of the estimators ( fûn,λn
)n∈N as n → +∞, as well as the conver-

gence of the coefficients (ûn,λn
)n∈N in ℓr(K), meaning that they converge to the

corresponding minimizers of the true integral risk over the constraint set. This

generalizes in particular the results pertaining to the elastic net framework [16],

possibly obtaining, by a suitable choice of the hk’s, a sparser pattern of features

and a reduced shrinkage effect on the nonzero coefficients. Moreover, our statis-

tical model has the following additional new features: (a) it allows for hard con-

straints on the coefficients; and (b) the thresholding operation can be performed

over any bounded interval.

– We establish new minimizing properties for an error-tolerant forward-backward

splitting algorithm in Hilbert spaces. In particular, we establish a o(1/m) rate of

convergence for the objective function values in the presence of variable proxi-

mal parameters, relaxations, and computational errors. These results improve on

the state of the art, which, when dealing with convergence in objective function

values, considers the non-relaxed version and covers either the error free-case [4,

15], or convergence only in an ergodic sense [32].

– We provide a procedure for the inexact computation of the proximity operators

of regularizers of the form given in (1.3)–(1.4), which generates approximations

amenable by the proposed error-tolerant forward-backward algorithm. This leads

to a fully implementable proximal thresholding gradient algorithm for the compu-

tation of the estimators fûn,λ
that features a worst-case o(1/m) rate of convergence

of the objective values.
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The paper is organized as follows. In Section 2, we set the problem formally and

present the main results concerning the statistical and algorithmic issues pertaining

to the proposed estimators. Section 3 is devoted to proving the consistency of the

estimators, which is stated in Theorem 2. In Section 4, we prove Theorem 3, which

concerns the asymptotic behavior of an error-tolerant proximal forward-backward

splitting algorithm, and Theorem 5, which specifically deals with the structure con-

sidered in (1.3)–(1.4). Additional properties of the regularizers defined in (1.3) are

studied in Appendices A and B.

Notation. N∗ = Nr {0}, R+ = [0,+∞[, and R++ = ]0,+∞[. Throughout, K is an at

most countably infinite index set. We denote by (ek)k∈K the canonical orthonormal

basis of ℓ2(K). The canonical norm of ℓr(K) is denoted by ‖·‖r. Moreover, if u and

v denote sequences in ℓr(K), their kth components are respectively denoted by the

Greek letters µk and νk. Let H be a real Hilbert space. We denote by 〈· | ·〉 and ‖·‖
the scalar product and the associated norm of H . The set of proper lower semicontin-

uous convex functions from H to ]−∞,+∞] is denoted by Γ0(H ), and the subset of

Γ0(H ) of functions valued in [0,+∞] by Γ +
0 (H ). Let ϕ ∈ Γ0(H ). The subdifferen-

tial of ϕ at u∈H is ∂ϕ(u)=
{

u∗ ∈ H
∣∣ (∀v ∈ H ) ϕ(u)+ 〈v− u | u∗〉6 ϕ(v)

}
and,

for every ε ∈ R++, Argminε
H

ϕ =
{

u ∈ H
∣∣ ϕ(u)6 infϕ(H )+ ε

}
. Let δ ∈ R++.

The δ−subdifferential of ϕ at u ∈ H is

∂δ ϕ(u) =
{

u∗ ∈ H
∣∣ (∀v ∈ H ) ϕ(u)+ 〈v− u | u∗〉6 ϕ(v)+ δ

}
. (1.5)

Let D be a nonempty subset of H . The indicator function of D is denoted by ιD
and the support function of D is σD : H → ]−∞,+∞] : u 7→ supv∈D 〈v | u〉. Let

u ∈ H . Then proxϕ u = argminv∈H (ϕ(v) + (1/2)‖u− v‖2) [27]. Suppose that D

is a nonempty, closed, and convex subset of H . Then proxιD
= projD is the projec-

tion operator onto D , and proxσD
= Id −projD = softD is the soft-thresholder with

respect to D . For background on convex analysis and optimization, see [3].

2 Problem setting and main results

The following assumption will be made in our main results.

Assumption 1 (X ,AX ) is a measurable space, Y ⊂ R is a nonempty bounded in-

terval, and b = supy∈Y |y|. Moreover, P is a probability measure on X ×Y with

marginal PX on X . The risk is

R : L2(PX )→R+ : f 7→
∫

X ×Y

| f (x)− y|2 dP(x,y) (2.1)

and (φk)k∈K is a family of measurable functions from X to R such that, for some

κ ∈ R++,

(∀x ∈ X ) ∑
k∈K

|φk(x)|2 6 κ2. (2.2)

The feature map is

Φ : X → ℓ2(K) : x 7→ (φk(x))k∈K (2.3)
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and

A : ℓ2(K)→ L2(PX ) : u = (µk)k∈K 7→ fu = ∑
k∈K

µkφk (pointwise). (2.4)

In addition,

(a) (Ck)k∈K is a family of closed intervals in R such that 0 ∈⋂k∈KCk.

(b) (hk)k∈K is a family in Γ +
0 (R) such that (∀k∈K) hk(0)= 0 and hk−η |·|r ∈Γ +

0 (R)
for some r ∈ ]1,2] and η ∈R++.

(c) (Dk)k∈K is a family of nonempty closed bounded intervals in R such that

∑k∈K |(infDk)+|r
∗
<+∞ and ∑k∈K |(infDk)−|r

∗
<+∞.

We define





(∀k ∈K) gk = ιCk
+σDk

+ hk

F = R◦A : ℓ2(K)→ R

G : ℓ2(K)→ ]−∞,+∞] : u 7→ ∑k∈K gk(µk)

C = A
(
ℓ2(K)∩×k∈KCk

)
(closure is taken in L2(PX )).

(2.5)

(Xi,Yi)i∈N is a sequence of i.i.d. random variables, on an underlying probability space

(Ω ,A,P), taking values in X ×Y and distributed according to P. For every n ∈N
∗,

Zn =(Xi,Yi)16i6n. The sequence (εn)n∈N is in [0,1] and εn → 0 as n→+∞. Moreover,

for every n∈N
∗, every λ ∈R++, and every training set zn =(xi,yi)16i6n ∈ (X ×Y )n

ûn,λ (zn) ∈ Argmin
εn

u∈ℓ2(K)

(
1

n

n

∑
i=1

| fu(xi)− yi|2 +λ G(u)

)
. (2.6)

Remark 1

(i) The conditions on the sequences ((infDk)+)k∈K and ((maxDk)−)k∈K given in

Assumption 1(c) ensure that G ∈ Γ0(ℓ
2(K)). Moreover, domG ⊂ ℓr(K) and G is

bounded from below and coercive (see Lemma 7).

(ii) It follows from (2.2) that A is a bounded linear operator such that ‖A‖ 6 κ and

ranA ⊂ L∞(PX ). Moreover, when viewed as an operator from ℓ2(K) to R
X , A

is continuous with respect to the topology of the pointwise convergence on R
X .

The feature map Φ and A are connected via the identities

(∀k ∈K)(∀x ∈ X ) 〈Φ(x) | ek〉= (Aek)(x). (2.7)

In [16, Proposition 3] it is shown that ranA can be endowed with a reproducing

kernel Hilbert space structure for which A becomes a partial isometry, and the

corresponding reproducing kernel is

K : X ×X → R : (x,x′) 7→ ∑
k∈K

φk(x)φk(x
′). (2.8)
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In the above setting, the goal is to minimize the risk R of (2.1) on the closed

convex subset C of L2(PX ) using the n i.i.d. observations Zn = (Xi,Yi)16i6n. In this

respect, recall that the regression function f † is the minimizer of the risk on L2(PX )
[23] and that

(∀ f ∈ L2(PX )) R( f )− inf R(L2(PX )) = ‖ f − f †‖2

L2 . (2.9)

This means that minimizing R on L2(PX ) is equivalent to approximating the regres-

sion function f †. In our constrained setting, the solution to the regression problem on

C results in a target function fC with the following properties.

Proposition 1 Suppose that Assumption 1 is in force. Then there exists a unique fC ∈
C such that R( fC ) = infR(C ). Moreover, the following hold:

(i) fC is the projection of f † onto C in L2(PX ).

(ii) (∀ f ∈ C ) ‖ f − fC ‖2
L2 6 R( f )− infR(C ).

(iii) (∀ f ∈ C ) R( f )− infR(C )62
[(
‖ f − fC ‖L2 +

√
infR(C )− infR(L2(PX ))

)2

+ infR(L2(PX ))
]1/2‖ f − fC ‖L2 .

Proposition 1 states that, as in the unconstrained case, minimizing the risk over

C is still equivalent to approaching fC in L2(PX ). It is worth noting that we do not

assume that fC = fu for some u ∈ domG, since the infimum of R on A(domG) may

not be attained. A consistent learning scheme generates a random variable ûn,λn
(Zn),

taking values in ℓ2(K), from n i.i.d. observations Zn = (Xi,Yi)16i6n, so that the result-

ing sequence of random functions ( f̂n)n∈N = (Aûn,λn
(Zn))n∈N is weakly consistent in

the sense that

R( f̂n)→ infR(C ) in probability, i.e., ‖ f̂n − fC ‖L2 → 0 in probability, (2.10)

or strongly consistent in the sense that

R( f̂n)→ infR(C ) P-a.s., i.e., ‖ f̂n − fC ‖L2 → 0 P-a.s.. (2.11)

Next, we provide sufficient conditions on the regularization parameters (λn)n∈N
and on the errors (εn)n∈N, that guarantee consistency and then present an algorithm

to compute the proposed estimators.

Theorem 2 Suppose that Assumption 1 is in force and let fC be defined as in Propo-

sition 1. Let (λn)n∈N be a sequence in ]0,+∞[ converging to 0 and, for every n ∈ N,

let f̂n = Aûn,λn
(Zn). Then the following hold:

(i) Suppose that εn/λ
4/r
n → 0 and that 1/(λ

2/r
n n1/2) → 0. Then ( f̂n)n∈N is weakly

consistent, i.e., ‖ f̂n − fC ‖L2 → 0 in probability.

(ii) Suppose that εn = O(1/n) and that (logn)/(λ
2/r
n n1/2) → 0. Then ( f̂n)n∈N is

strongly consistent, i.e., ‖ f̂n − fC ‖L2 → 0 P-a.s.

(iii) Suppose that fC ∈ A(domG) and set S = ArgmindomG F. Then there exists a

unique u† ∈ S which minimizes G over S and Au† = fC . Moreover, the follow-

ing hold:
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(a) Suppose that εn/λ 2
n → 0 and that 1/(λnn1/2)→ 0. Then

‖ûn,λn
(Zn)− u†‖

r
→ 0 in probability. (2.12)

(b) Suppose that εn = O(1/n) and that (logn)/(λnn1/2)→ 0. Then

‖ûn,λn
(Zn)− u†‖

r
→ 0 P-a.s. (2.13)

Remark 2

(i) In Theorem 2(i)-(ii) the weakest conditions on the regularization parameters

(λn)n∈N occur when r = 2, whereas, in Theorem 2(iii), the consistency condi-

tions do not depend on the exponent r.

(ii) Under the hypotheses of Theorem 2(iii), consistency extends to the sequence of

coefficients (ûn,λn
(Zn))n∈N. This is relevant when one requires the sparsity pattern

of the estimators to approximate that of u†. We note that, under further hypotheses

on the Dk’s, both ûn,λn
(Zn) and u† have finite support. See Remark 6(v).

Remark 3

(i) In the special case when, in (1.4), for every k ∈ K, hk = η |·|2, Ck = R, Dk =
[−ωk,ωk], for some ωk ∈R+, we recover the elastic net framework of [16] and the

same consistency conditions as in [16, Theorem 2 and Theorem 3]. This special

case yields a strongly convex problem. In our general setting, the exponent r

may take any value in ]1,2] and the objective function is only totally convex on

bounded sets (see Lemma 1).

(ii) Consistency results have been obtained in [20] for a regularizer composed of the

sum of the indicator function of an ℓ1 ball and the squared ℓ2 norm. However, such

a regularizer is not separable and hence it is not included in the present study.

(iii) When K is finite and, for every k ∈ K, gk = |·|r, [25] provides an excess risk

bound depending on the cardinality of K and the level of sparsity of u† (see also

[22]). The case r = 1 has been considered in [14].

(iv) Similar consistency results can also be derived using [11, Corollary 4.6], where

a general loss function, a more general penalty function, and an arbitrary Banach

space are considered. However, due to the generality of the analysis in [11], the

conditions imposed on the sequence of parameters (λn)n∈N in [11] are more re-

strictive, and imply a slower worst-case convergence rate. Here, exploiting the

structure of the square loss and the regularizer, we obtain a sharper result and a

simpler statement.

We now address the algorithmic aspects. The objective function in (2.6) consists

of a smooth (quadratic) data fitting term and a separable nondifferentiable convex

term, penalizing each dictionary coefficient individually. Thus a natural choice is

to consider the forward-backward splitting algorithm [12]. We stress that, since ε-

minimizers are employed in (2.6), algorithms that provide minimizing sequences are

necessary. Moreover, due to the term hk in the regularizer, the proximity operator of

G may not be computable explicitly. Consequently, convergence results in objective

function values for an error-tolerant forward-backward algorithm are in order. Note

that, to the best of our knowledge, the only work addressing the above issue is [32].
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However, only ergodic convergence is established, which is a result weaker than that

obtained in the error-free case [4,15] and certainly not satisfactory when sparsity is

concerned, since averaging blurs the structural properties of the iterates. Nesterov-

like [28] variants of the inexact forward-backward splitting algorithm may also be

suitable for computing the estimators (2.6) to the extent that they also generate mini-

mizing sequences [32,34]. However, in practice, they sometimes may be slower than

the standard version since they are more sensitive to errors [34].

In the Theorem 3 below, we advance the convergence theory on the standard

forward-backward splitting algorithm by establishing an o(1/m) rate of convergence

in objective values with relaxation, variable proximal parameters, and in the presence

of the following type of errors in the numerical evaluation of the proximity operator

[31,32,34].

Definition 1 Let H be a real Hilbert space, let J ∈ Γ0(H ), let (u,w) ∈ H 2, and let

δ ∈R+. The notation u ≃δ proxJ w means that

J(u)+
1

2
‖u−w‖2

6 min
v∈H

(
J(v)+

1

2
‖v−w‖2

)
+

δ 2

2
. (2.14)

Remark 4 Note that u ∈ domJ and, since J+(1/2)‖·−w‖2
is 1-strongly convex, we

have u = proxJ w+ a with ‖a‖ 6 δ [31]. Thus the errors considered in Definition 1

are additive and generate perturbations of the proximal point that are feasible. This

feature is critical when convergence of the objective function values is under consid-

eration.

Theorem 3 Let H be a real Hilbert space, let J1 : H →R be a convex differentiable

function with a β -Lipschitz continuous gradient for some β ∈R++. Let J2 ∈ Γ0(H ),
set J = J1 + J2, and suppose that ArgminJ 6= ∅. Let (γm)m∈N be a sequence in R++

such that 0 < infm∈N γm 6 supm∈N γm < 2/β , let (τm)m∈N be a sequence in ]0,1], such

that infm∈N τm > 0. Let (δm)m∈N be a summable sequence in R+ and let (bm)m∈N be

a summable sequence in H . Fix u0 ∈ H and set

for m = 0,1, . . .⌊
vm ≃δm

proxγmJ2

(
um − γm(∇J1(um)+ bm)

)

um+1 = um + τm(vm − um).
(2.15)

Then the following hold:

(i) (um)m∈N converges weakly to a point in ArgminJ.

(ii) For every u ∈ ArgminJ, ∑m∈N
∥∥∇J1(um)−∇J1(u)‖2 <+∞.

(iii) ∑m∈N
∥∥vm − um

∥∥2
<+∞.

(iv) J(um)→ infJ(H ) and ∑m∈N |J(vm)− infJ(H )|2 <+∞.

(v) Suppose that ∑m∈N(1− τm)<+∞. Then

∑
m∈N

(
J(vm)− infJ(H )

)
<+∞ and ∑

m∈N

(
J(um)− infJ(H )

)
<+∞.

(vi) Suppose that ∑m∈N(1− τm) < +∞, ∑m∈N mδm < +∞, and ∑m∈N m‖bm‖ < +∞.

Then J(um)− infJ(H ) = o(1/m).
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Remark 5

(i) In [4], the rate O(1/m) for objective values is proved in the error-free case and no

relaxations (δm ≡ 0 and τm ≡ 1), assuming that J1 + J2 is coercive. On the other

hand, an o(1/m) rate on the objective values was derived in [15] in the special

case of a fixed proximal parameter γ ∈ ]0,2/β [, no relaxation, and no errors.

(ii) In [32] no relaxation is considered and the proximal parameters (γm)m∈N are fixed

to a constant value and limited to 1/β . Moreover, only ergodic convergence is

proved.

In general the criterion considered in Definition 1 is not explicitly verifiable since

the minimum is not known. This is the reason why another type of errors is consid-

ered in [34]. However, the following result shows that when computing proximity

operators of separable functions of the type considered in (1.3)–(1.4), errors of type

of Definition 1 arise, and they can be explicitly checked and implemented in practice.

Proposition 2 Let H be a separable real Hilbert space and let (ek)k∈K be an or-

thonormal basis of H , where K is an at most countable set. Let (hk)k∈K be a family of

convex functions from R to R such that, for every k ∈K, hk > hk(0) = 0. Let (Ck)k∈K
be a family of closed intervals in R such that 0 ∈ ⋂k∈KCk, let (Dk)k∈K be a family

of nonempty closed bounded intervals in R. Suppose that (h∗k(−(minDk)+))k∈K and

(h∗k((maxDk)−))k∈K are summable, and set

G : H → ]−∞,+∞] : u 7→ ∑
k∈K

(ιCk
+σDk

+ hk)(〈u | ek〉). (2.16)

Let γ ∈ R++, let w ∈ H , let (αk)k∈K ∈R
K, let (ξk)k∈K ∈ ℓ1(K), set δ =

√
∑k∈K ξk,

and let
for every k ∈K

χk = 〈w | ek〉
|αk|6

ξk

4γ max{hk(|χk|+ 2),hk(−|χk|− 2))}+ 2|χk|+ 1

πk = proxγhk

(
softγDk

χk

)
+αk

νk = projCk

(
sign(χk)max

{
0,sign(χk)πk

})
.

(2.17)

Then v = (νk)k∈K ∈ ℓ2(K) and v ≃δ proxγG w.

Remark 6

(i) The soft-thresholding operator with respect to a bounded interval Dk = [ωk,ωk]⊂
R is

(∀µ ∈ Dk) softDk
µ =





µ −ωk if µ > ωk

0 if µ ∈ Dk

µ −ωk if µ < ωk.

(2.18)

(ii) The function G in (2.16) is well-defined and lies in Γ0(H ) as it is the composition

of the continuous linear operator H → ℓ2(K) : u 7→ (〈u | ek〉)k∈N and the function

ℓ2(K)→ ]−∞,+∞] : (µk)k∈K 7→ ∑
k∈K

gk(µk), with gk = ιCk
+σDk

+ hk,

(2.19)

which is a well-defined function in Γ0(ℓ
2(K)) by Lemma 7.
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(iii) The conditions on (minDk)k∈N and (maxDk)k∈N appearing in Proposition 2 are

weaker than those considered in Assumption 1(c). See Lemma 7.

(iv) In algorithm (2.17), the computation of proxγhk
tolerates an error αk. This is nec-

essary since, in general, the proximity operator may not be computable explicitly.

In such instances, proxγhk
must be computed iteratively (e.g., by bisection) and

the bound on |αk| in (2.17) gives an explicit stopping rule for the iterations. In

Appendix B, the case hk = ηk|·|r, with r > 1, is further analyzed.

(v) In algorithm (2.17), for every k ∈K, we have signνk = sign χk.

(vi) As in [16, Corollary 3] one proves that if supk∈K minDk < 0< infk∈K maxDk, then

{k ∈ K |νk 6= 0} is finite. Similarly, if supk∈K minDk 6 0 < infk∈K maxDk, then

{k ∈K |νk > 0} is finite, so sparsity is enforced only on the positive coefficients.

We now present an inexact forward-backward algorithm to solve problem (1.3)

which combines algorithms (2.15) and (2.17).

Algorithm 4 Let (γm)m∈N be a sequence in R++ such that 0 < infm∈N γm 6

supm∈N γm < λ/κ2, let (τm)m∈N be a sequence in ]0,1] such that infm∈N τm > 0. Let

(bm)m∈N = ((βm,k)k∈K)m∈N ∈ (ℓ2(K))N be such that ∑m∈N ‖bm‖<+∞, let ζ ∈R++,

let p ∈ ]1,+∞[, and let (ξk)k∈K ∈ ℓ1(K). Fix (µ0,k)k∈K ∈ ℓ2(K) and iterate

for m = 0,1, . . .

for every k ∈K

χm,k = µm,k −
γm

λ

(
2

n

n

∑
i=1

(
∑
j∈K

µm, jφ j(xi)− yi

)
φk(xi)+βm,k

)

|αm,k|6
ζm−2pξk

4γm max{hk(|χm,k|+ 2),hk(−|χm,k|− 2))}+ 2|χm,k|+ 1

πm,k = proxγmhk

(
softγmDk

χm,k

)
+αm,k

νm,k = projCk

(
sign(χm,k)max

{
0,sign(χm,k)πm,k

})

µm+1,k = µm,k + τm(νm,k − µm,k).

(2.20)

Remark 7

(i) An attractive feature of Algorithm 4 is that, at each iteration, each component of

the functions in (2.5) is activated componentwise and individually.

(ii) The freedom in the choice of the intervals (Dk)k∈K, (Ck)k∈K, and of the exponent r

provides flexibility in setting the type of thresholding operation. It is in particular

possible to promote selective sparsity. Figures 1 and 2 show a few examples.

Theorem 5 Suppose that Assumption 1 is in force. Call

J : ℓ2(K)→ ]−∞,+∞] : u = (µk)k∈K 7→ 1

n

n

∑
i=1

| fu(xi)− yi|2 +λ ∑
k∈K

gk(µk) (2.21)

the objective function in (2.6), and let (um)m∈N = ((µm,k)k∈K)m∈N and (vm)m∈N =
((νm,k)k∈K)m∈N be the sequences generated by Algorithm 4. Then the following hold:
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ξ

proxg ξ

1

|| | |

− 1

−1 −

−2

2

−1

Fig. 1 Soft thresholding (green) and proxg for g = |·|+0.2|·|r , with r = 2 (red), r = 3/2 (orange), r = 4/3

(blue).

(i) J has a unique minimizer û, and û ∈ ℓr(K).
(ii) ∑m∈N |J(vm)− infJ(ℓ2(K))|2 < +∞, J(um) → infJ(ℓ2(K)), ‖vm − û‖r → 0, and

‖um − û‖r → 0 as m →+∞. Moreover

‖vm − û‖r = O
(√

J(vm)− infJ(ℓ2(K))
)

(2.22)

and

‖um − û‖r = O
(√

J(um)− infJ(ℓ2(K))
)
. (2.23)

(iii) Suppose that ∑m∈N(1− τm)<+∞. Then

∑
m∈N

(
J(vm)− infJ(ℓ2(K))

)
<+∞ and ∑

m∈N

(
J(um)− infJ(ℓ2(K))

)
<+∞.

(iv) Suppose that p > 2, that ∑m∈N(1− τm)<+∞ and ∑m∈N m‖bm‖<+∞. Then

J(um)− infJ(ℓ2(K)) = o(1/m) and ‖um − û‖r = o
(
1/

√
m
)
. (2.24)

3 Statistical analysis

Throughout the section Assumption 1 is made. Our main objective is to prove Theo-

rem 2. To this end, we first observe that, setting ( f̂n)n∈N = (Aûn,λn
(Zn))n∈N and using

Proposition 1(ii), we have

(∀n ∈N) ‖ f̂n − fC ‖L2 6 ‖Aûn,λn
(Zn)−Auλn

‖
L2 + ‖Auλn

− fC ‖L2

6 ‖A‖‖ûn,λn
(Zn)− uλn

‖
r
+
√

F(uλn
)− infR(C ). (3.1)
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ξ

proxg ξ

| ||

− 6/5

−1 −

−2

2 4

Fig. 2 proxg for g = ι]−∞,6/5]+σ[0,2]+0.9|·|4/3.

This suggests to study separately the convergence of the two terms on the right-hand

side of (3.1).

Proof (of Proposition 1) (i): For every f ∈ C , R( f ) = ‖ f − f †‖2

L2 + infR(L2(PX )).
Therefore, minimizing R over C turns to find the element of C which is nearest to f †

in L2(PX ).

(ii): It follows from (i), that infR(C ) = ‖ fC − f †‖2

L2 + infR(L2(PX )). There-

fore, since for every f ∈ C , 〈 f − fC | f † − fC 〉 6 0, we have R( f )− infR(C ) =

‖ f − f †‖2

L2 −‖ fC − f †‖2

L2 = ‖ f − fC ‖2
L2 + 2〈 f − fC | fC − f †〉> ‖ f − fC ‖2

L2 .

(iii): Let f ∈ C . Using the fact that, for every (a,b,c) ∈R
3
+ with a > b,

√
a+ c−√

b+ c 6
√

a−
√

b, we derive that

√
R( f )−

√
infR(C )6 ‖ f − f †‖L2 −‖ fC − f †‖L2 6 ‖ f − fC ‖L2 . (3.2)

Therefore, using the inequality a2 − b2 6 2a(a− b), we obtain

R( f )− infR(C )6 2
√

R( f )‖ f − fC ‖L2

= 2

√(
‖ f − f †‖2

L2 + infR(L2(X ))
)
‖ f − fC ‖L2

6 2
((

‖ f − fC ‖L2 + ‖ fC − f †‖L2

)2
+ infR(L2(X ))

)1/2

‖ f − fC ‖L2

= 2
((

‖ f − fC ‖L2 +
√

infC R− infL2(PX ) R
)2

+ infR(L2(X ))
)1/2

‖ f − fC ‖L2

(3.3)

The following result establishes that G is totally convex [6] on bounded subsets

of ℓr(K) and gives an explicit lower bound for the relative modulus of total convexity.
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Lemma 1 Suppose that Assumption 1 is in force. Let ρ ∈ R++, let u0 ∈ ℓr(K) be

such that ‖u0‖r 6 ρ , let u∗0 ∈ ∂G(u0), and set M = (7/32)r(r − 1)(1− (2/3)r−1).
Then

(∀u ∈ ℓr(K)) G(u)−G(u0)> 〈u− u0 | u∗0〉+
ηM‖u− u0‖2

r

(ρ + ‖u− u0‖r)
2−r

. (3.4)

Proof Let G| be the restriction of G to ℓr(K), endowed with the norm ‖·‖r. Since

u0 ∈ ℓr(K) and u∗0 ∈ ℓr∗(K), we have that u∗0 ∈ ∂G|(u0). Let ψ be the modulus of total

convexity of G| and let ϕ be the modulus of total convexity of ‖·‖r
r in ℓr(K). Then,

for every u∈ ℓr(K), G(u)−G(u0)>
〈
u− u0,u

∗
0

〉
+ψ(u0;‖u− u0‖r). Moreover, since

G| =H+η‖·‖r
r, with H ∈Γ0(ℓ

r(K)) (see Lemma 7), we have ψ > ηϕ . The statement

follows from [11, Proposition A.9-Remark A.10].

The next proposition concerns the second term in the right-hand side of (3.1).

It revisits some results of [2] about Tikhonov-like regularization specialized to our

setting.

Proposition 3 Suppose that Assumption 1 is in force. For every (λ ,ε) ∈ R++×R+,

let uλ ,ε be an ε-minimizer of F +λ G and let uG be the minimizer of G. Let M ∈R++

be defined as in Lemma 1. Then the following hold:

(i) infR(C ) = infF(domG).

(ii) (∀(λ ,ε)∈R++×R+) ‖uλ ,ε − uG‖r
6max

{
‖uG‖r,

(
2(F(uG)+ε)/(ηMλ )

)1/r}
.

(iii) F(uλ ,ε)→ infF(domG) as (λ ,ε)→ (0+,0+).

(iv) Suppose that S = ArgmindomG F 6= ∅. Then there exists u† ∈ ℓr(K) such that

ArgminS G = {u†} and uλ ,0 → u† as λ → 0+.

Proof We first note that it follows from Remark 1(i) that G has a minimizer.

(i): We prove that C = A(domG) and then the statement will follow. Let u =
(µk)k∈K ∈ ℓ2(K)∩×k∈KCk and take δ ∈R++. Then there exists a finite set K1 ⊂ K

such that ∑k∈KrK1
|µk|2 < δ 2. Now let v = (νk)k∈K be such that, for every k ∈ K1,

νk = µk and, for every k ∈ KrK1, νk = 0. We have v ∈ domG and ‖Au−Av‖L2 <
‖A‖δ .

(ii): Let (λ ,ε) ∈ R
2
++. We derive from the definition of uλ ,ε , that F(uλ ,ε) +

λ G(uλ ,ε)6 F(uG)+λ G(uG)+ε hence, since 0 ∈ ∂G(uG), it follows from Lemma 1

and the fact that F(uλ ,ε)> 0, that

ηM‖uλ ,ε − uG‖2

r(
‖uG‖r + ‖uλ ,ε − uG‖r

)2−r
6 G(uλ ,ε)−G(uG)6

F(uG)+ ε

λ
. (3.5)

If ‖uλ ,ε − uG‖r
> ‖uG‖r, then

ηM‖uλ ,ε − uG‖2

r(
‖uG‖r + ‖uλ ,ε − uG‖r

)2−r
>

ηM‖uλ ,ε − uG‖2

r(
2‖uλ ,ε − uG‖r

)2−r
>

ηM

2
‖uλ ,ε − uG‖r

r
(3.6)

and hence ‖uλ ,ε − uG‖r

r
6 2(F(uG)+ ε)/(ηMλ ).
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(iii): Let u ∈ domG. Then

infF(domG)6 lim
(λ ,ε)→(0,0)

F(uλ ,ε)

6 lim
(λ ,ε)→(0,0)

F(uλ ,ε)

6 lim
(λ ,ε)→(0,0)

(
F(u)+λ

(
G(u)−G(uG)

)
+ ε
)

6 F(u). (3.7)

Since u is arbitrary, the statement follows.

(iv): Since S is convex and G ∈ Γ0(ℓ
2(K)) is strictly convex, coercive, and

domG ⊂ ℓr(K), it follows from [3, Corollary 11.16(ii)] that there exists a unique

minimizer u† ∈ ℓr(K) of G over S. Moreover, for every λ ∈ R++,

G(uλ ,0)6
(
F(u†)−F(uλ ,0)

)
/λ +G(u†)6 G(u†)<+∞, (3.8)

which implies that (G(uλ ,0))λ∈R++
is bounded. Since G is coercive, the family

(uλ ,0)λ∈R++
is bounded as well, and it therefore has weak sequential cluster points.

Next, we show that any such cluster point is necessarily equal to u†, which implies

that uλ ⇀ u†. Indeed let (λn)n∈N be a vanishing sequence in R++ and suppose that

uλn
⇀ v, for some v ∈ ℓ2(K). Then it follows from (iii) and (3.8) that

F(v)6 limF(uλn,0) = infF(domG) and G(v)6 limG(uλn,0)6 G(u†), (3.9)

which implies that v ∈ S and v ∈ ArgminS G = {u†}. However, thanks to Lemma 1,

G is totally convex on bounded sets in ℓr(K). Therefore, by [37, Proposition 3.6.5],

G is uniformly convex on bounded sets too. So, since (uλ ,0)λ∈R++
is bounded, there

exists an increasing function φ : R+ →R+ such that





φ(0) = 0

(∀t ∈ R++) φ(t)> 0

(∀λ ∈ R++) φ

(‖uλ ,0− u†‖
2

)
6

G(u†)+G(uλ ,0)

2
−G

(uλ ,0 + u†

2

)
.

(3.10)

In turn, we obtain

lim
λ→0+

φ

(‖uλ ,0− u†‖
2

)
6 lim

λ→0+

G(u†)+G(uλ ,0)

2
+ lim

λ→0+
(−G)

(uλ ,0 + u†

2

)
(3.11)

and, arguing as in [8, Proof of Proposition 3.1(vi)], we get uλ ,0 → u† as λ → 0+.

We now address the convergence of the term ‖ûn,λn
(Zn)− uλn

‖
r

in (3.1) and hence

the proof of Theorem 2. We first give a representer and stability theorem which gen-

eralizes existing results [18,33] to our class of regularization functions.

Theorem 6 Suppose that Assumption 1 is in force. Set M = (7/32)r(r − 1)(1 −
(2/3)r−1), let λ ∈ R++, and let uλ ∈ ℓr(K) be the minimizer of F + λ G. Then the

following hold:
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(i) The function

Ψλ : X ×Y → ℓ2(K) : (x,y) 7→ 2( fuλ
(x)− y)Φ(x) (3.12)

is bounded and ‖Ψλ‖∞ 6 2κ(κ‖uλ‖2 + b). Moreover ‖Ψλ‖2 6 2κ
√

R( fuλ
) and

−EP(Ψλ ) ∈ λ ∂G(uλ ).
(ii) Let n ∈ N

∗. Then there exists v̂ ∈ ℓr(K) such that ‖v̂− ûn,λ (zn)‖r 6
√

εn

ηM‖v̂− uλ‖r

(‖uλ‖r + ‖v̂− uλ‖r)
2−r

6
1

λ

(∥∥∥1

n

n

∑
i=1

Ψλ (xi,yi)−EP(Ψλ )
∥∥∥

2
+
√

εn

)
. (3.13)

Proof (i): First note that, by [3, Corollary 11.16(ii)] and Remark 1(i), uλ is well

defined since G is proper, lower semicontinuous, strictly convex, and coercive. Fur-

thermore [3, Corollary 27.3(vi)] implies that −∇F(uλ ) ∈ λ ∂G(uλ ). We derive from

(2.3) that A∗ : L2(PX )→ ℓ2(K) : f 7→ EPX
( f Φ), and hence, since F = R◦A,

(∀u ∈ ℓ2(K)) ∇F(u) = A∗∇R( fu) = EP(ϕ), (3.14)

where ϕ : (x,y) 7→ 2( fu(x)− y)Φ(x). Let (x,y) ∈ X ×Y . Then

| fuλ
(x)− y|6 | fuλ

(x)|+ |y|6 ∑
k∈K

|〈uλ | ek〉||φk(x)|+ b 6 κ‖uλ‖2 + b (3.15)

and hence ‖Ψλ (x,y)‖2 6 2| fuλ
(x)− y|‖Φ(x)‖2 6 2(κ‖uλ‖2 + b)κ . Moreover,

∫

X ×Y

‖Ψλ (x,y)‖2
2dP(x,y)6

∫

X ×Y

(
2κ | fuλ

(x)− y|
)2

dP(x,y)

= 4κ2R( fuλ
). (3.16)

(ii): Let F̂n : ℓ2(K)→R+ : u 7→ (1/n)∑n
i=1 | fu(xi)− yi|2. Since the restriction of G to

ℓr(K) is in Γ0(ℓ
r(K)) by Lemma 7, equation (2.6) and Ekeland’s variational principle

[26, Corollary 4.2.12] imply that there exists v̂ ∈ ℓr(K) and ê∗ ∈ ∂ (F̂n +λ G)(v̂) such

that ‖ûn,λ (zn)− v̂‖r 6
√

εn and ‖ê∗‖r∗ 6
√

εn. Using the inequality a2 − b2 > 2(a−
b)b, we derive from definitions (3.12) and (2.4) that, for every i ∈ {1, . . . ,n},

∑
k∈K

〈v̂− uλ | ek〉〈Ψλ (xi,yi) | ek〉= ∑
k∈K

〈v̂− uλ | ek〉2( fuλ
(xi)− yi)φk(xi)

= 2( fv̂(xi)− fuλ
(xi))( fuλ

(xi)− yi)

6 (yi − fv̂(xi))
2 − (yi − fuλ

(xi))
2 (3.17)

and, summing over i and dividing by n, we obtain

F̂n(v̂)− F̂n(uλ )> ∑
k∈K

〈v̂− uλ | ek〉
〈1

n

n

∑
i=1

Ψλ (xi,yi)
∣∣∣ek

〉
. (3.18)

Lemma 1 and (i) yield

λ G(v̂)−λ G(uλ )> 〈v̂− uλ | −EP(Ψλ )〉+λ ηM
‖v̂− uλ‖2

r

(‖uλ‖r + ‖v̂− uλ‖r)
2−r

. (3.19)
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Next, since ê∗ ∈ ∂ (F̂n + λ G)(v̂), we have 〈uλ − v̂ | ê∗〉 6 (F̂n + λ G)(uλ )− (F̂n +
λ G)(v̂). Summing inequalities (3.18) and (3.19), we have

√
εn‖v̂− uλ‖r > (F̂n +λ G)(v̂)− (F̂n +λ G)(uλ )

> ∑
k∈K

〈v̂− uλ | ek〉
〈1

n

n

∑
i=1

Ψλ (xi,yi)−EP(Ψλ )
∣∣∣ek

〉

+
λ ηM‖v̂− uλ‖2

r

(‖uλ‖r + ‖v̂− uλ‖r)
2−r

. (3.20)

Hence, using Hölder’s inequality,

λ ηM‖v̂− uλ‖2
r

(‖uλ‖r + ‖v̂− uλ‖r)
2−r

6 ‖v̂− uλ‖r

(∥∥∥1

n
∑

n

i=1
Ψλ (xi,yi)−EP(Ψλ )

∥∥∥
r∗
+
√

εn

)

(3.21)

and the statement follows from the fact that ‖·‖r∗ 6 ‖·‖2.

We recall the following concentration inequality in Hilbert spaces [36] and give

the proof of the main result of this section.

Lemma 2 (Bernstein’s inequality) Let (Ui)16i6n be a finite sequence of i.i.d. ran-

dom variables on a probability space (Ω ,A,P) and taking values in a real separable

Hilbert space H. Let β > 0, let σ > 0 and suppose that max16i6n‖Ui‖6 β and that

EP‖Ui‖2
6 σ2. Then for every τ > 0 and every integer n > 1

P

[∥∥∥∥
1

n

n

∑
i=1

(Ui −EPUi)

∥∥∥∥>
2σ√

n
+ 4σ

√
τ

n
+

4β τ

3n

]
6 e−τ . (3.22)

Proof (of Theorem 2) (i): Let n ∈ N
∗, let zn = (xi,yi)16i6n ∈ (X ×Y )n and let

F̂n : u ∈ ℓ2(K) → R+ : u 7→ (1/n)∑n
i=1 | fu(xi)− yi|2. Let uG ∈ ArgminG, let λ ∈

R++, and let ρλ = max
{

1,‖uG‖r,(2(b+κ‖uG‖+ 1)2/(ηMλ ))
1/r}

. Since F(uG)6

(b+ κ‖uG‖)2 and F̂n(uG) 6 (b+ κ‖uG‖)2, from the definition of ρλ and Proposi-

tion 3(ii) we derive that ‖uλ − uG‖r 6 ρλ and ‖ûn,λ (zn)− uG‖r
6 ρλ . It follows

from Theorem 6 that there exist Ψλ : X ×Y → ℓ2(K) and v̂ ∈ ℓr(K) such that

‖v̂− ûn,λ (zn)‖6
√

εn and

Mη‖v̂− uλ‖r

(‖uλ‖r + ‖v̂− uλ‖r)
2−r

6
1

λ

(∥∥∥1

n

n

∑
i=1

Ψλ (xi,yi)−EP(Ψλ )
∥∥∥

2
+
√

εn

)
. (3.23)

Therefore, since ‖uλ‖r 6 2ρλ and ‖v̂− uλ‖r 6 ‖v̂− ûn,λ (zn)‖r
+‖ûn,λ (zn)− uλ‖r

6√
εn + 2ρλ 6 3ρλ , we have

‖v̂− uλ‖r 6
(5ρλ )

2−r

Mηλ

(
∥∥EP(Ψλ )−

1

n

n

∑
i=1

Ψλ (xi,yi)
∥∥

2
+
√

εn

)
. (3.24)
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Thus,

‖ûn,λ (zn)− uλ‖r
6
√

εn +
(5ρλ )

2−r

Mηλ

(∥∥EP(Ψλ )−
1

n

n

∑
i=1

Ψλ (xi,yi)
∥∥

2
+
√

εn

)
. (3.25)

Now, consider the i.i.d. random vectors Ψλ (Xi,Yi) : Ω → ℓ2(K), for 1 6 i 6 n.

It follows from Theorem 6(i) that max16i6n ‖Ψλ (Xi,Yi)‖ 6 2κ(κρλ + b) and that

max16i6nEP‖Ψλ (Xi,Yi)‖2
6 4κ2R( fuλ

). Now set βλ = 2κ(κρλ + b) and σ2
λ =

κ2R( fuλ
). Then Bernstein’s inequality in Hilbert spaces (Lemma 2) gives

(∀τ ∈R++) P

[∥∥∥E(Ψλ (X ,Y ))− 1

n

n

∑
i=1

Ψλ (Xi,Yi)
∥∥∥

2
6 δ (n,λ ,τ)

]
> 1−e−τ , (3.26)

where δ (n,λ ,τ) = 2σλ/
√

n + 4σλ

√
τ/n + 4βλ τ/(3n). Thus, recalling (3.25) we

have

P

[
‖ûn,λ (Zn)− uλ‖r

>
√

εn +
(5ρλ )

2−r

Mηλ

(
δ (n,λ ,τ)+

√
εn

)]
6 e−τ . (3.27)

Set γ0 = 2(b+κ‖uG‖+ 1)2 and γ1 = 52−rγ
2/r−1

0 /(ηM)2/r. We note that, since σλ is

bounded, say by γ2, for λ < 1 sufficiently small, we have

(5ρλ )
2−r

Mηλ

(
δ (n,λ ,τ)+

√
εn

)

=
52−r

Mη

(
γ0

ηM

) 2
r −1

1

λ 2/r

(
2σλ√

n
+ 4σλ

√
τ

n
+

4βλ τ

3n
+
√

εn

)

6 γ1

(
2γ2

λ 2/rn1/2
+ 4γ2

√
τ

λ 2/rn1/2
+

8τκ2γ0/(ηM)1/r

3nλ 3/r
+

8τκb

3nλ 2/r
+

√
εn

λ 2/r

)
. (3.28)

Therefore, since 1/(λ
2/r
n n1/2)→ 0 and

√
εn/λ

2/r
n → 0 it follows that

(5ρλn
)2−r

λn

(
δ (n,λn,τ)+

√
εn

)
→ 0 (3.29)

and hence, in view of (3.27), we get ‖ûn,λn
(Zn)− uλn

‖
r
→ 0 in probability.

Now recalling (3.1), since F(uλn
)− infF(domG) → 0 by Proposition 3(iii), and

‖ûn,λ (Zn)− uλn
‖

r
→ 0 in probability, we derive that ‖ f̂n − fC ‖L2 → 0 in probabil-

ity.

(ii): Let n ∈ N
∗, let η ∈R++, and set

Ωn,η =
{
‖ f̂n − fC ‖L2 > ‖A‖η +

√
F(uλn

)− infF(domG)
}
. (3.30)

Since εn = O(1/n), it follows from (3.28) that there exists γ3 ∈ R++ such that, for

every τ ∈ ]1,+∞[, and every n ∈N
∗,

(5ρλn
)2−r

ηMλn

(
δ (n,λn,τ)+

√
εn

)
6

γ3τ

λ
2/r
n n1/2

. (3.31)
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Let ξ ∈ ]1,+∞[. There exists n ∈ N
∗, such that, for every integer n > n,

γ3

λ
2/r
n n1/2

6
γ3ξ logn

λ
2/r
n n1/2

6 η . (3.32)

Therefore, it follows from (3.27), (3.1), (3.31), and (3.32) that, for n large enough,

PΩn,η 6 exp

(
−ηλ

2/r
n n1/2

γ3

)
6 exp(−ξ logn) = n−ξ . (3.33)

Thus, ∑+∞
n=n̄PΩn,η < +∞ and we derive from the Borel-Cantelli lemma that

P
(⋂

k>n̄

⋃
n>k Ωn,η

)
= 0. Recalling Proposition 3(iii), we conclude that the sequence

‖ f̂n − fC ‖L2 → 0 P-a.s.

(iii): First note that Proposition 3(iii) implies that u† is well defined and that ρ =
supλ∈R++

‖uλ‖<+∞. Now, let λ ∈R++ and let n ∈N
∗. Since ‖uλ‖6 ρ , arguing as

in the proof of (i), we obtain

(∀τ ∈R++) P
[
‖ûn,λ (Zn)− uλ‖r

>
√

εn +
(5ρ)2−r

Mλ

(
δ (n,τ)+

√
εn

)]
6 e−τ , (3.34)

where σ = 2κ(κρ + b) and δ (n,τ) = 4σ/
√

n+ 4σ
√

τ/n+ 4στ/(3n).

(iii)(a): Since 1/(λnn1/2) → 0, we have (1/λn)δ (n,τ) → 0 and hence in view

of (3.34), ‖ûn,λn
(Zn)− uλn

‖
r
→ 0 in probability. Moreover, since ‖un,λn

(Zn)− u†‖ 6
‖un,λn

(Zn)− uλn
‖+ ‖uλn

− u†‖, the statement follows by Proposition 3(iv).

(iii)(b): The proof follows the same line as that of (ii).

4 Algorithmic analysis

The goal of this section is to prove Theorem 3 and Theorem 5. The proof of Theo-

rem 3 is based on the following fact.

Lemma 3 [34, Lemma 4.1] Let H be a real Hilbert space, let β ∈ R++, and let

δ ∈ R+. Let J1 : H → R be a convex differentiable function with a β -Lipschitz

continuous gradient, and let J2 ∈ Γ0(H ). Then, for every (u,v,w) ∈ H 3 and every

v∗ ∈ ∂δ J2(v),

(J1 + J2)(v)6 (J1 + J2)(u)+ 〈v− u | ∇J1(w)+ v∗〉+ β

2
‖v−w‖2 + δ . (4.1)

Proof (of Theorem 3) Let m ∈ N and set

ṽm = proxγmJ2
(um − γm(∇J1(um)+ bm)). (4.2)

Since

vm ∈ Argmin
δ 2

m/(2γm)
w∈H

{
J2(w)+

1

2γm

‖w− (um− γm(∇J1(um)+ bm))‖2

}
, (4.3)
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using the strong convexity of the objective function in (4.3), we get

‖vm − ṽm‖6 δm. (4.4)

Therefore, setting am = vm − ṽm, we have

um+1 = um + τm

(
proxγmJ2

(um − γm(∇J1(um)+ bm))+ am− um

)
. (4.5)

Hence (2.15) is an instance of the inexact forward-backward algorithm studied in [12]

and we can therefore use the results of [12, Theorem 3.4].

(i)–(ii): The statements follow from [12, Theorem 3.4(i)-(ii)].

(iii): We have

‖um − vm‖2
6 2‖um− ṽm‖2 + 2‖am‖2

6 4‖um− proxγmJ2
(um − γm∇J1(um))‖2 + 4‖bm‖2 + 2‖am‖2. (4.6)

Therefore, the statement follows from [12, Theorem 3.4(iii)].

(iv): By (4.3) and [31, Lemma 1], there exist δ1,m ∈ [0,+∞[, δ2,m ∈ [0,+∞[, and

em ∈ H with δ 2
1,m + δ 2

2,m 6 δ 2
m and ‖em‖6 δ2,m such that

v∗m =
um − vm

γm

− (∇J1(um)+ bm)+
em

γm

∈ ∂δ 2
1,m/(2γm)

J2(vm). (4.7)

Since J = J1 + J2, it follows from Lemma 3 that, for every u ∈ H ,

J(vm)− J(u)

6 〈vm − u | ∇F(um)+ v∗m〉+
L

2
‖vm − um‖2 +

δ 2
1,m

2γm

=
1

γm

〈vm − u | um − vm〉+
L

2
‖vm − um‖2 +

1

γm

〈vm − u | em − γmbm〉+
δ 2

1,m

2γm

=
1

2γm

(
‖um − u‖2 −‖vm− u‖2

)
+

1

2

(
β − 1

γm

)
‖vm − um‖2

+
1

γm

〈vm − u | em − γmbm〉+
δ 2

1,m

2γm

. (4.8)

We derive from (i) and (iii) that (〈vm − u | um − vm〉)m∈N is square summable. There-

fore, if we let u ∈ ArgminJ, it follows from (4.8) that (J(vm)− infJ(H ))m∈N is

square summable. Now, if we let u = um in (4.8) we have

J(vm)− J(um)6

(
β

2
− 1

γm

)
‖um − vm‖2 +

1

γm

(
‖um − vm‖‖em − γmbm‖+

δ 2
1,m

2

)

6
1

γm

(
‖um − vm‖‖em − γmbm‖+

δ 2
1,m

2

)
. (4.9)
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Set γ = infm∈N γm. Since um+1 = um+τm(vm−um), using the convexity of J and (4.9),

we get

J(um+1)− infJ(H )6 J(um)− infJ(H )+ τm(J(vm)− J(um))

6 J(um)− infJ(H )+ γ−1
(
‖um − vm‖‖em − γmbm‖+ δ 2

1,m/2
)
.

(4.10)

Thus, since
(
‖um − vm‖‖em − γmbm‖+ δ 2

1,m/2
)

m∈N is summable, [29, Lemma 2.2.2],

ensures that (J(um)− infJ(H ))m∈N converges and, in view of the inequalities in

(4.10), its limit must be 0.

(v): Let u ∈ ArgminJ. Since, um − u = (1− τm−1)(um−1 − u)+ τm−1(vm−1 − u),

it follows from the convexity of ‖·‖2
that

‖um − u‖−‖vm − u‖2
6 (1−τm−1)‖um−1 − u‖2 +‖vm−1 − u‖2 −‖vm − u‖2. (4.11)

Therefore, it follows from (4.8) that

0 6 J(vm)− J(u)

6
1− τm−1

2γ
‖um−1 − u‖2 +

1

2γ

(
‖vm−1 − u‖2 −‖vm− u‖2

)

+
1

2

(
β − 1

γm

)
‖vm − um‖2 +

1

γ

(
‖vm − u‖‖em − γmbm‖+

δ 2
1,m

2

)
. (4.12)

Hence, (J(vm)− infJ(H ))m∈N is summable, for each term on the right hand side of

(4.12) is summable. Since um+1 = (1− τm)um + τmvm, convexity of J yields

0 6 J(um+1)− infJ(H )6 (1− τm)
(
J(um)− infJ(H )

)
+ τm

(
J(vm)− infJ(H )

)
.

(4.13)

The summability of (1 − τm)m∈N and
(
J(vm)− infJ(H )

)
m∈N implies that of(

J(um)− infJ(H )
)

m∈N.

(vi): Since
(
J(um)− infJ(H )

)
m∈N is summable, it follows from (4.10) and [15,

Lemma 3] that
(
J(um)− infJ(H )

)
= o(1/m).

The purpose of the rest of the section is to prove Proposition 2 and Theorem 5.

Lemma 4 Let h : R→R be convex and such that 0∈ ArgminR h, let (s,µ)∈R
2, and

let α ∈ [−1,1]. Let β ∈ R+ be the Lipschitz constant of h in [−1− |µ |,1+ |µ |] and

set

δ =
√
(2β + 2|µ |+ 1)|α| and s = proxh µ +α. (4.14)

Then s ≃δ proxh µ . Moreover, ŝ = sign(µ)max{0,sign(µ)s} satisfies ŝ ≃δ proxh µ
and µ ŝ > 0.
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Proof Let t = proxh µ . Since 0 ∈ Argminh, proxh 0 = 0. Hence, since proxh is non-

expansive and increasing [12, Lemma 2.4], |t|6 |µ | and sign(t) = sign(µ). We note

that |s|6 |s− t|+ |t|6 1+ |µ |. Thus,

h(s)+
1

2
|s− µ|2 − h(t)− 1

2
|t − µ|2 6 β |s− t|+ 1

2
|s− t||s− µ + t − µ|

6
1

2
(2β + 1+ 2|µ |)|α|. (4.15)

To conclude, it is enough to note that |ŝ− proxh(µ)|6 |α|.

Lemma 5 Let h ∈Γ0(R), let σ ∈Γ0(R) be a support function, and set φ = h+σ . Let

(s,x) ∈ R
2 be such that sproxσ (x)> 0, and let δ ∈ R+. Then

s ≃δ proxh(proxσ x) ⇒ s ≃δ proxφ x. (4.16)

Proof Let µ = proxσ x and s ≃δ proxh(proxσ x). By [31, Lemma 2.4] there exist

(δ1,δ2) ∈ R
2
+ and e ∈ R, such that

µ − s+ e ∈ ∂δ 2
1 /2h(s), |e|6 δ2, and δ 2

1 + δ 2
2 6 δ 2. (4.17)

Hence

x− s+ e= x− µ + µ − s+ e ∈ ∂σ(µ)+ ∂δ 2
1 /2h(s). (4.18)

Since sµ > 0, there exists t ∈ R+ such that µ = ts. Moreover, since σ is positively

homogeneous, ∂σ(ts)⊂ ∂σ(s). Therefore x−s+e∈ ∂σ(s)+∂δ 2
1 /2h(s)⊂ ∂δ 2

1 /2φ(s),

which implies that s ≃δ proxφ x by [31, Lemma 2.4].

Remark 8 Let h ∈ Γ0(R), let (s,µ) ∈ R
2, and let δ ∈ R++. Suppose that 0 ∈

ArgminR h and that s ≃δ proxh µ with δ 6 |s|. Then sµ > 0. Indeed, since h(0) =
infh(R), we have

h(s)+
1

2
|s− µ |2 6 h(0)+

1

2
µ2 +

1

2
δ 2

6 h(s)+
1

2
µ2 +

1

2
δ 2 (4.19)

and hence 0 6 (1/2)(s2 − δ 2) 6 sµ . This shows that Lemma 5, when δ = 0, gives

proxφ = proxh ◦proxσ and consequently generalizes [9, Proposition 3.6], relaxing

also the condition on the differentiability of h at 0. With the help of this result one

can compute general thresholding operators as the proximity operator of |·|+η |·|r.
Figure 1 depicts some instances of these thresholders (see also [9]).

The following lemma is an error-tolerant version of [10, Proposition 12].

Lemma 6 Let φ ∈Γ0(R), let (s,x, p) ∈R
3, let δ ∈R+, and let C ⊂R be a nonempty

closed interval. Then

s ≃δ proxφ x, and p = projC s ⇒ p ≃δ proxφ+ιC
x. (4.20)
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Proof Let g= φ +(1/2)| ·−x|2 and let ε = (δ 2/2). Since g is convex and s̄ = proxφ x

is its minimum, g is decreasing on ]−∞, s̄] and increasing on [s̄,+∞[. By definition s is

an ε-minimizer of g. The statement is equivalent to the fact that p is an ε-minimizer

of g+ ιC. If s ∈C, then p is a fortiori an ε-minimizer of g+ ιC. We now consider two

cases. First suppose that s < infC. If s < infC 6 s̄, then infC is still an ε-minimizer

of g and infC ∈C. Thus p = infC is an ε-minimizer of g+ ιC. If either s 6 s̄ 6 infC

or s̄ 6 s < infC, we have p = projC s̄ = infC, which is the minimum of g+ ιC, since

g is increasing on [s̄,+∞[. The second case supC < s is treated likewise.

Proof (of Proposition 2) Set

(∀k ∈K)





µk = softγDk
χk

sk = sign(µk)max
{

0,sign(µk)(proxγhk
µk +αk)

}

νk = projCk
sk.

(4.21)

Let k ∈K. Since softγDk
is nonexpansive and 2γ max{hk(|χk|+2),hk(−|χk|−2)} is

a Lipschitz constant for γhk on the interval [−|χk|−1, |χk|+1], it follows from (4.21)

and Lemma 4 that





δ 2
k =

(
4γ max{hk(|χk|+ 2),hk(−|χk|− 2)}+ 2|χk|+ 1

)
|αk|

sk ≃δk
proxγhk

(proxγσDk
χk)

sk proxγσDk
χk > 0.

(4.22)

Thus, Lemma 5 yields

sk ≃δk
proxγ(hk+σDk

) χk, (4.23)

and, using Lemma 6, we obtain νk ≃δk
proxγgk

χk. Hence, by Definition 1,

γgk(νk)+
1

2
|νk − χk|2 6 γgk

(
proxγgk

χk

)
+

1

2
|proxγgk

χk − χk|2 +
δ 2

k

2
. (4.24)

On the other hand, we derive from [12, Example 2.19] and [9, Proposition 3.6] that

〈proxγG w | ek〉= proxγgk
χk. (4.25)

Thus, summing the inequalities (4.24) over k, we obtain

γ ∑
k∈K

gk(νk)+
1

2
∑

k∈K
|νk − χk|2

6 γ ∑
k∈K

(
gk

(
〈proxγg w | ek〉

)
+

1

2

∣∣〈proxγG w | ek〉− 〈w | ek〉
∣∣2
)
+

1

2
∑

k∈K
δ 2

k

6 γG
(

proxγG w
)
+

1

2
‖proxγG w−w‖2 +

1

2
∑

k∈K
ξk

<+∞. (4.26)
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Thus, since, by Lemma 7, ∑k∈K gk(νk) is either convergent or divergent to +∞, (4.26)

yields (νk)k∈N ∈ ℓ2(K) and one can find v ∈ H such that, for every k ∈K, 〈v | ek〉=
νk. Hence,

γG(v)+
1

2
‖v−w‖2

6 γG(proxγG w)+
1

2
‖proxγG w−w‖2 +

1

2
∑
k∈K

ξk (4.27)

and finally v ≃δ proxγG w, where δ =
√

∑k∈K ξk.

Proof (of Theorem 5) (i): Lemma 7 guarantees that G ∈ Γ0(ℓ
2(K)), that G is co-

ercive, and that domG ⊂ ℓr(K). The statement therefore follows from [3, Corol-

lary 11.16(ii)].

(ii)–(iv): Let F̂n : ℓ2(K)→R : u → (1/n)∑n
i=1(〈u | Φ(xi)〉− yi)

2. Then, for every

u ∈ ℓ2(K), ∇F̂n(u) = (2/n)∑n
i=1(〈u | Φ(xi)〉− yi)Φ(xi). Hence, since ‖Φ(xi)‖2 6 κ ,

∇(1/λ )F̂n is Lipschitz continuous with constant 2κ2/λ . Therefore, the statement

follows from Theorem 3, with J1 = (1/λ )F̂n and J2 = G, by noting that, in view of

Proposition 2, for every m ∈ N, vm = (νm,k)k∈K ∈ ℓ2(K) and vm ≃δm
proxγmG wm,

where δm 6 ζ
√

∑k∈K ξk/mp. It remains to show the convergence properties of

(‖um − û‖r)m∈N and (‖vm − û‖r)m∈N. We focus on the sequence (‖um − û‖r)m∈N,

since (‖vm − û‖r)m∈N can be treated analogously. It follows from Lemma 1 and the

convexity of F̂n that

(∀m ∈N)
(
(1/λ )F̂n +G

)
(um)−

(
(1/λ )F̂n +G

)
(û)>

ηM‖um − û‖2
r(

‖û‖r + ‖um− û‖r

)2−r
.

(4.28)

Therefore, since ((1/λ )F̂n + G)(um)− ((1/λ )F̂n + λ G)(û) → 0 as m → +∞ and

ψ : R+ → R : t 7→ t2/(‖û‖+ t)2−r is strictly increasing with ψ(0) = 0, we obtain

‖um − û‖r → 0. Moreover, taking ρ ∈R++ such that supm∈N
(
‖û‖r+‖um− û‖r

)2−r
6

ρ , (2.22) follows from (4.28).
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A An auxiliary result

The following result is a generalization of [12, Proposition 5.14].

Lemma 7 Let K be an at most countable set. For every k ∈K, let Ck be a closed interval in R such that

0 ∈Ck , let Dk be a nonempty closed bounded interval in R, and let hk ∈Γ +
0 (R) be such that hk(0) = 0. Set

G : ℓ2(K)→ ]−∞,+∞] : (ξk)k∈K 7→ ∑
k∈K

gk(ξk), where gk = ιCk
+σDk

+hk. (A.1)

Let r ∈ ]1,2] and consider the following statements:

(a) ∑k∈K |(minDk)+|2 <+∞ and ∑k∈K |(maxDk)−|2 <+∞.

(b) ∑k∈K h∗k
(
− (minDk)+)<+∞ and ∑k∈K h∗k((maxDk)−)<+∞.

(c) ∑k∈K |(minDk)+|r
∗
<+∞ and ∑k∈K |(maxDk)−|r

∗
<+∞.

Then the following hold:

(i) Suppose that (a) or (b) is satisfied. Then G ∈ Γ0(ℓ
2(K)).

(ii) Suppose that (b) is satisfied. Then inf G(ℓ2(K))>−∞.

(iii) Suppose that, for every k ∈K, hk > η |·|r for some η ∈ R++. Then (a)⇒(c)⇒(b).

(iv) Suppose that, for every k ∈ K, hk −η |·|r ∈ Γ +
0 (R) for some η ∈ R++ and that (c) holds. Then, for

every η ′ ∈ ]0,η [, there exists H ∈Γ0(ℓ
2(K)) such that G : u 7→ H(u)+η ′ ∑k∈K |µk|r , domG ⊂ ℓr(K),

and G is coercive in ℓ2(K).

Proof We first observe that, if there exist (χk)k∈K ∈ ℓ1
+(K) and b ∈ R+ such that

(∀k ∈K) −gk 6 χk +b|·|2, (A.2)

then G ∈ Γ0(ℓ
2(K)).

(i): Let k ∈K. Since

(∀µ ∈ R) σDk
(µ) =

{
µ maxDk if µ > 0

µ minDk if µ < 0,
(A.3)

we have

(∀µ ∈ R) −gk(µ)6−σDk
(µ)−hk(µ)

6 max{µ−(minDk)+,µ+(maxDk)−}−hk(µ). (A.4)

Hence, in order to guarantee condition (A.2) for some (χk)k∈K ∈ ℓ1
+(K) and b ∈ R++, it is sufficient to

require condition (a) or (b) (note that h∗k > 0, since hk(0) = 0). Therefore in this case G ∈ Γ0(ℓ
2(K)).

(ii): It follows from (A.4) that

(∀k ∈K) −gk 6 max
{

h∗k
(
− (minDk)+

)
,h∗k
(
(maxDk)−

)}
. (A.5)

Hence, for every u ∈ ℓ2(K), −G(u)6 ∑k∈K max
{

h∗k
(
− (minDk)+

)
,h∗k
(
(maxDk)−

)}
<+∞.

(iii): For every k ∈ K, h∗k 6 (rη)1−r∗(r∗)−1|·|r∗ . The statement therefore follows by observing that,

since 2 6 r∗, ℓ2(K)⊂ ℓr∗ (K).

(iv): Setting, for every k ∈K, h̃k = hk −η ′|·|r , we have gk = ιCk
+σDk

+ h̃k+η ′|·|r , with (η−η ′)|·|r 6
h̃k ∈Γ +

0 (R). It follows from (i) and (iii) that, for every u= (µk)k∈K ∈ ℓ2(K), G(u) =H(u)+η ′∑k∈K |µk|r ,

for some H ∈ Γ0(ℓ
2(K)).
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B Proximity operators of power functions

It follows from [7, Example 4.4] that, for every γ ∈ R++ and every r ∈ [1,2],

(∀µ ∈ R) proxγ|·|r µ = ξ sign(µ), where ξ > 0 and ξ + rγξ r−1 = |µ |. (B.1)

Equation (B.1) can be solved explicitly for r ∈ {3/2,4/3,5/4} [7,35]. However, in general, it must be

solved iteratively.

Proposition 4 Let µ ∈ R, let γ ∈ R++, let r ∈ [1,2], and let (r1,r2) ∈ [1,2]2 , be such that r1 < r2. Then

the following hold:

(i) proxγ|·|r : R → R is strictly increasing, nonexpansive, odd, and differentiable, and proxγ|·|r +ιR+ is

convex.
(ii) We have

min

{ |µ |
1+ rγ

,
( |µ |

1+ rγ

) 1
r−1

}
6 |proxγ|·|r µ |6 max

{ |µ |
1+ rγ

,
( |µ |

1+ rγ

) 1
r−1

}
. (B.2)

(iii) Suppose that |µ |> 1+ r2γ . Then |proxγ|·|r2 µ |< |proxγ|·|r1 µ |.

(iv) Suppose that r > 1 and that |µ |> 1+ rγ . Then
|µ |

1+ rγ
6 |proxγ|·|r µ|< |µ |− γ .

Proof (i): It follows from [9, Lemma 2.2(iv) and Proposition 2.4] that proxτ|·| is nonexpansive, increasing,

and odd. Now set ψ : R+ →R+ : ξ 7→ ξ + rτξ r−1. Clearly ψ is strictly increasing and concave. Moreover

it is differentiable on R++ and, for every ξ ∈ R++, ψ ′(ξ ) = 1+ r(r− 1)/ξ 2−r . Hence, from (B.1), for

every µ ∈ R+, proxτ|·|r µ = ψ−1(µ). This shows that proxτ|·|r is strictly increasing, convex, differentiable

on R++ with, for every µ ∈ R++, (proxτ|·|r )
′µ = 1/ψ ′(ψ−1(µ)), that is

(proxγ|·|r )
′µ =

(
1+

r(r−1)γ

(proxγ|·|r µ)2−r

)−1

. (B.3)

(ii): According to (B.1), there exists ξ ∈ R+ such that proxτ|·|r µ = sign(µ)ξ and ξ + rτξ r−1 = |µ |.
If ξ > 1, then |µ |= ξ + rτξ r−1 6 (1+ rτ)ξ , hence |µ |/(1+ rτ)6 ξ = |proxτ|·|r µ|. If ξ < 1, then |µ | =
ξ + rτξ r−1 6 (1+ rτ)ξ r−1, hence

(
|µ |/(1+ rτ)

)1/(r−1)
6 ξ = |proxτ|·|r µ|. The first inequality in (B.2)

follows and the second is proved analogously.

(iii): In view of (B.1) there exist ξ1 ∈ R+ and ξ2 ∈ R+ such that
{

proxτ|·|r1 µ = sign(µ)ξ1 and ξ1 + r1τξ
r1−1
1 = |µ |

proxτ|·|r2 µ = sign(µ)ξ2 and ξ2 + r2τξ
r2−1
2 = |µ |.

(B.4)

If |µ |> 1+ τr2 > 1+ τr1, it follows from (B.2) that

1 <
|µ |

1+ r1τ
6 |ξ1| and 1 <

|µ |
1+ r2τ

6 |ξ2|. (B.5)

Therefore, since r1 < r2 and ξ1 > 1,

ξ2 + r2τξ r2−1
2 = |µ |= ξ1 + r1τξ r1−1

1 < ξ1 + r2τξ r2−1
1 . (B.6)

Hence, since ξ 7→ ξ + r2τξ r2−1 is strictly increasing on R+, we conclude that ξ2 < ξ1.

(iv): Since (B.1) implies that proxτ|·| µ = sign(µ)(|µ |− τ), we derive from (iii) that

|µ |> 1+ rτ ⇒ |proxτ|·|r µ|< |µ |− τ , (B.7)

The first inequality in (iv) follows directly from (B.2).

Remark 9

(i) The bounds given in (B.2) can be useful to initialize the bisection method to solve (B.1).
(ii) (proxγ|·|r )

′0 = 0, (proxγ|·|r )
′µ 6 1 and (proxγ|·|r )

′µ → 1 as µ →+∞.

(iii) proxγ|·|r has no asymptote as µ →+∞, since (B.1) yields proxγ|·|r µ −µ =−rγ(proxγ|·|r µ)r−1 →−∞
as µ →+∞.


