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Abstract. Several aspects of the interplay between monotone operator theory and convex op-

timization are presented. The crucial role played by monotone operators in the analysis and the

numerical solution of convex minimization problems is emphasized. We review the properties of

subdifferentials as maximally monotone operators and, in tandem, investigate those of proximity op-

erators as resolvents. In particular, we study new transformations which map proximity operators to

proximity operators, and establish connections with self-dual classes of firmly nonexpansive operators.

In addition, new insights and developments are proposed on the algorithmic front.
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1 Introduction and historical overview

In this paper, we examine various facets of the role of monotone operator theory in convex opti-

mization and of the interplay between the two fields. Throughout, H is a real Hilbert space with

scalar product 〈· | ·〉, associated norm ‖ · ‖, and identity operator Id. To put our discussion in proper

perspective, we first provide an historical account and highlight some key results (see Section 2 for

notation).

Monotone operator theory is a fertile area of nonlinear analysis which emerged in 1960 in in-

dependent papers by Kačurovskĭı, Minty, and Zarantonello. Let D be a nonempty subset of H, let

A : D → H, and let B : D → H. Extending the ordering of functions on the real line which results

from the comparison of their increments, Zarantonello [122] declared B is slower than A if

(∀x ∈ D)(∀y ∈ D) 〈x− y | Ax−Ay〉 > 〈x− y | Bx−By〉, (1.1)

which is denoted by A < B. He then called A (isotonically) monotone if A < 0, that is,

(∀x ∈ D)(∀y ∈ D) 〈x− y | Ax−Ay〉 > 0, (1.2)

and supra-unitary if A < Id . An instance of the latter notion can be found in [64]. In modern lan-

guage, it corresponds to that of 1-strong monotonicity. An important result of [122] is the following.

Theorem 1.1 (Zarantonello) Let A : H → H be monotone and Lipschitzian. Then ran (Id +A) = H.

Monotonicity captures two well-known concepts. First, if H = R, a function A : D → R is mono-

tone if and only if it is increasing, that is,

(∀x ∈ D)(∀y ∈ D) x < y ⇒ Ax 6 Ay. (1.3)
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The second connection is with linear functional analysis: if A : H → H is linear and bounded, then it

is monotone if and only if it is positive, that is,

(∀x ∈ H) 〈x | Ax〉 > 0. (1.4)

In particular, if a bounded linear operator A : H → H is skew, that is A∗ = −A, then it is monotone

since

(∀x ∈ H) 〈x | Ax〉 = 0. (1.5)

Regarding (1.3), a standard fact about a differentiable convex function on an open interval of R is that

its derivative is increasing. This property, which is already mentioned in Jensen’s 1906 foundational

paper [70], was extended in 1960 by Kačurovskĭı [71], who came up with the notion of monotonic-

ity (1.2), discussed strong monotonicity, and observed that the gradient of a differentiable convex

function f : H → R is monotone (see also [118]). In a paper submitted in 1960, Minty [85] also

called A : D → H monotone if it satisfies (1.2), and maximally monotone if it cannot be extended to

a strictly larger domain while preserving (1.2). Although, strictly speaking, his definitions dealt with

single-valued operators, he established results on monotone relations that naturally cover extensions

to what we now call set-valued operators. According to Browder [31], who initiated the study of

set-valued monotone operators in Banach spaces, the Hilbertian setting was developed by Minty in

unpublished notes. A set-valued operator A : H → 2H is maximally monotone if

(∀x ∈ H)(∀u ∈ H)
[

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) 〈x− y | u− v〉 > 0
]

. (1.6)

In other words, A is monotone and there exists no monotone operator B : H → 2H distinct from A
such that graA ⊂ graB. A key result of [85] is the following theorem, which can be viewed as an

extension of Theorem 1.1 since a continuous monotone operator A : H → H is maximally monotone.

Theorem 1.2 (Minty) Let A : H → 2H be a monotone operator. Then A is maximally monotone if and

only if ran (Id +A) = H.

The paper [85] also establishes an important connection between monotonicity and nonexpan-

siveness, which we state in the following form.

Theorem 1.3 [13, Prop. 4.4 and Cor. 23.9] Let T : H → H. Then the following are equivalent:

(i) T is firmly nonexpansive, i.e., [32]

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖2 + ‖(Id −T )x− (Id −T )y‖2 6 ‖x− y‖2. (1.7)

(ii) R = 2T − Id is nonexpansive, i.e., (∀x ∈ H)(∀y ∈ H) ‖Rx−Ry‖ 6 ‖x− y‖.

(iii) There exists a maximally monotone operator A : H → 2H such that T is the resolvent of A, i.e.,

T = JA, where JA = (Id +A)−1. (1.8)

From the onset, monotone operator theory impacted areas such as partial differential equations,

evolution equations and inclusions, and nonlinear equations; see for instance [25, 29, 30, 60, 72,

73, 77, 86, 109, 117, 123, 127]. In particular, in such problems, it turned out to provide efficient

tools to derive existence results. Standard references on the modern theory of monotone operators
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are [13, 25, 99, 110]. From a modeling standpoint, monotone operator theory constitutes a powerful

framework that reduces many problems in nonlinear analysis to the simple formulation

find x ∈ zerA =
{

x ∈ H
∣

∣ 0 ∈ Ax
}

= Fix JA, where A : H → 2H is maximally monotone. (1.9)

The most direct connection between monotone operator theory and optimization is obtained through

the subdifferential of a proper function f : H → ]−∞,+∞], i.e., the operator [91, 92, 101]

∂f : H → 2H : x 7→
{

u ∈ H
∣

∣ (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)
}

. (1.10)

This operator is easily seen to be monotone. In addition, from the standpoint of minimization, a

straightforward yet fundamental consequence of (1.10) is Fermat’s rule. It states that, for every proper

function f : H → ]−∞,+∞],

Argminf = zer∂f. (1.11)

The maximality of the subdifferential was first investigated by Minty [87] for certain classes of convex

functions, and then by Moreau [94] in full generality.

Theorem 1.4 (Moreau) Let f : H → ]−∞,+∞] be a proper lower semicontinuous convex function.

Then ∂f is maximally monotone.

One way to prove Moreau’s theorem is to use Theorem 1.2; see [13, Theorem 21.2] or [25, Exem-

ple 2.3.4]. Interestingly, Moreau’s proof in [94] did not rely on Theorem 1.2 but on proximal calculus.

The proximity operator of a function f ∈ Γ0(H) is [89]

proxf : H → H : x 7→ argmin
y∈H

(

f(y) +
1

2
‖x− y‖2

)

. (1.12)

This operator is intimately linked to the subdifferential operator. Indeed, let f ∈ Γ0(H). Then

(∀x ∈ H)(∀u ∈ H) u ∈ ∂f(x) ⇔ x = proxf (x+ u). (1.13)

Alternatively,

(∀x ∈ H)(∀p ∈ H) p = proxfx ⇔ x− p ∈ ∂f(p), (1.14)

which entails, using (1.10), that proxf is firmly nonexpansive. Furthermore, (1.11) and (1.14) imply

that Argminf = Fix proxf . Since fixed points of firmly nonexpansive operators can be constructed by

successive approximations [32, 97], a conceptual algorithm for finding a minimizer of f is

x0 ∈ H and (∀n ∈ N) xn+1 = proxfxn. (1.15)

This scheme was first studied by Martinet in the early 1970s [82, 83], and a special case in the

context of quadratic programming appeared in [19, Sect. 5.8]. Though of limited practical use, this so-

called proximal point algorithm occupies nonetheless a central place in convex minimization schemes

because it embraces many fundamental ideas and connections that have inspired much more efficient

and broadly applicable minimization algorithms in the form of proximal splitting methods [13, 48, 63].

The methodology underlying these algorithms is to solve structured convex minimization problems

using only the proximity operators of the individual functions present in the model.

Moreau’s motivations for introducing the proximity operator (1.12) came from nonsmooth me-

chanics [90, 93, 95]. In recent years proximity operators have become prominent in convex optimiza-

tion theory. For instance, they play a central theoretical role in [13]. On the application side, their in-

creasing presence is particularly manifest in the broad area of data processing, where they were intro-

duced in [52] and have since proven very effective in the modeling and the numerical solution of a vast
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array of problems in disciplines such as signal processing, image recovery, machine learning, and com-

putational statistics; see for instance [18, 23, 33, 36, 41, 44, 46, 48, 50, 56, 66, 69, 98, 119, 114, 128].

At first glance, it may appear that the theory of subdifferentials and proximity operators forms

a self-contained corpus of theoretical and algorithmic tools which is sufficient to deal with convex

optimization problems, and that the broader concepts of monotone operators and resolvents play

only a peripheral role in such problems. A goal of this paper is to show that monotone operator

theory occupies a central position in convex optimization, and that many advances in the latter would

not have been possible without it. Conversely, we shall see that some algorithmic developments in

monotonicity methods have directly benefited from convex minimization methodologies. We shall

also examine certain aspects of the gap that separates the two theories. Section 2 covers notation

and background. Section 3 studies subdifferentials as maximally monotone operators and proximity

operators as resolvents, discussing characterizations, new proximity-preserving transformations, and

self-dual classes. Section 4 focuses on the use of monotone operator theory in analyzing and solving

convex optimization problems, and it proposes new insights and developments.

2 Notation and background

We follow the notation of [13], where one will find a detailed account of the following notions. The

direct Hilbert sum of H and a real Hilbert space G is denoted by H ⊕ G. Let A : H → 2H be a set-

valued operator. We denote by graA =
{

(x, u) ∈ H ×H
∣

∣ u ∈ Ax
}

the graph of A, by domA =
{

x ∈ H
∣

∣ Ax 6= ∅
}

the domain of A, by ranA =
{

u ∈ H
∣

∣ (∃x ∈ H) u ∈ Ax
}

the range of A, by

zerA =
{

x ∈ H
∣

∣ 0 ∈ Ax
}

the set of zeros of A, and by A−1 the inverse of A, i.e., the set-valued

operator with graph
{

(u, x) ∈ H ×H
∣

∣ u ∈ Ax
}

. The parallel sum of A and B : H → 2H, and the

parallel composition of A by L ∈ B(H,G) are, respectively,

A�B = (A−1 +B−1)−1 and L ⊲A =
(

L ◦ A−1 ◦ L∗)−1. (2.1)

The resolvent of A is JA = (Id +A)−1 = A−1� Id . The set of fixed points of an operator T : H → H
is Fix T =

{

x ∈ H
∣

∣ Tx = x
}

. The set of global minimizers of a function f : H → ]−∞,+∞] is

denoted by Argminf and, if it is a singleton, its unique element is denoted by argmin f . We denote

by Γ0(H) the class of lower semicontinuous convex functions f : H → ]−∞,+∞] such that dom f =
{

x ∈ H
∣

∣ f(x) < +∞
}

6= ∅. Now let f ∈ Γ0(H). The conjugate of f is the function f∗ ∈ Γ0(H)
defined by f∗ : u 7→ supx∈H(〈x | u〉 − f(x)). The subdifferential of f is defined in (1.10), and its

inverse is (∂f)−1 = ∂f∗. The proximity operator proxf of f is defined in (1.12). We say that f is

ν-strongly convex for some ν ∈ ]0,+∞[ if f − ν‖ · ‖2/2 is convex. The infimal convolution of f and

g ∈ Γ0(H) is

f � g : H → [−∞,+∞] : x 7→ inf
y∈H

(

f(y) + g(x− y)
)

. (2.2)

Let C be a convex subset of H. The interior of C is denoted by intC, the boundary of C by bdryC,

the indicator function of C by ιC , the distance function to C by dC , the support function of C by σC
and, if C is nonempty and closed, the projection operator onto C by projC , i.e., projC = proxιC . A

point x ∈ C is in the strong relative interior of C, denoted by sriC, if the cone generated by C − x is

a closed vector subspace of H. We define

• B(H,G) =
{

T : H → G
∣

∣ T is linear and bounded
}

and B(H) = B(H,H).

• N(H) =
{

T : H → H
∣

∣ T is nonexpansive
}

.
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• F(H) =
{

T : H → H
∣

∣ T is firmly nonexpansive
}

.

• M(H) =
{

A : H → 2H
∣

∣ A is maximally monotone
}

.

• S(H) =
{

A : H → 2H
∣

∣ (∃ f ∈ Γ0(H)) A = ∂f
}

.

• J(H) =
{

T : H → H
∣

∣ (∃A ∈ M(H)) T = JA
}

.

• P(H) =
{

T : H → H
∣

∣ (∃ f ∈ Γ0(H)) T = proxf
}

.

• K(H) =
{

T : H → H
∣

∣ T = projK for some nonempty closed convex cone K ⊂ H
}

.

• V(H) =
{

T : H → H
∣

∣ T = projV for some closed vector space V ⊂ H
}

.

Facts mentioned in Section 1 are summarized by the inclusions

S(H) ⊂ M(H), V(H) ⊂ K(H) ⊂ P(H) ⊂ J(H) = F(H) ⊂ N(H), and F(H) ⊂ M(H). (2.3)

We have

(

∀A ∈ M(H)
)

A−1 ∈ M(H) and JA−1 + JA = A� Id +A−1
� Id = Id . (2.4)

Theorem 2.1 (Moreau’s decomposition [89, 91, 94]) Let f ∈ Γ0(H) and set q = ‖ · ‖2/2. Then

f � q + f∗� q = q and proxf = J∂f = ∇(f + q)∗ = ∇(f∗� q) = (∂f∗)� Id = Id −proxf∗ .

The next result brings together ideas from [6] and [94].

Theorem 2.2 ([12]) Let h : H → R be continuous and convex, and set f = h∗ − q, where q = ‖ · ‖2/2.

Then the following are equivalent:

(i) h is Fréchet differentiable on H and ∇h ∈ N(H).

(ii) h is Fréchet differentiable on H and ∇h ∈ F(H).

(iii) q − h is convex.

(iv) h∗ − q is convex.

(v) f ∈ Γ0(H) and h = f∗� q = q − f � q.

(vi) f ∈ Γ0(H) and proxf = ∇h = Id −proxf∗ .

Lemma 2.3 [13, Prop. 2.58] Let f : H → R be Gâteaux differentiable, let L ∈ B(H), and suppose that

∇f = L. Then L = L∗, f : x 7→ f(0) + (1/2)〈Lx | x〉, and f is twice Fréchet differentiable.

3 Subdifferentials as monotone operators

As seen in Section 1, from a convex optimization perspective, the subdifferential and the proximity

operators of a function in Γ0(H) constitute, respectively, prime examples of maximally monotone and

firmly nonexpansive operators. In this section with discuss some structural differences between S(H)
and M(H), and between P(H) and J(H).
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3.1 Characterization of subdifferentials

If H = R, then M(H) = S(H); see [103, Sect. 24] or [13, Cor. 22.23]. In general, however, this

singular situation no longer manifests itself. For instance if 0 6= A ∈ B(H) is skew (see (1.5)), then

A ∈ M(H) since A is monotone and continuous, but Lemma 2.3 asserts that it is not a gradient since

it is not self-adjoint; it can therefore not be in S(H). A complete characterization of subdifferentials

as maximally monotone operators was given by Rockafellar in [102]. An operator A : H → 2H is

cyclically monotone if, for every integer n > 2, every (x1, . . . , xn+1) ∈ Hn+1, and every (u1, . . . , un) ∈
Hn,

[

(x1, u1) ∈ graA, . . . , (xn, un) ∈ graA, xn+1 = x1
]

⇒

n
∑

i=1

〈xi+1 − xi | ui〉 6 0. (3.1)

In this case, A is called maximally cyclically monotone if there exists no cyclically monotone operator

B : H → 2H such that graB properly contains graA.

Theorem 3.1 (Rockafellar) S(H) =
{

A ∈ M(H)
∣

∣ A is maximally cyclically monotone
}

.

The question of representing a maximally monotone operator as the sum of a subdifferential and a

remainder component is a challenging one. In the case of a monotone matrix A such a decomposition

is obtained by writing A as the sum of its symmetric part (hence a gradient) and its antisymmetric

part. This observation motivated Asplund [2] to investigate the decomposition of A ∈ M(H) as

A = G+B, where G ∈ S(H) and B ∈ M(H) is acyclic. (3.2)

Here, acyclic means that if B = ∂g + C for some g ∈ Γ0(H) and some C ∈ M(H), then g is affine on

domA. A sufficient condition for Alspund’s cyclic+acyclic decomposition (3.2) to exist for A ∈ M(H)
is that int domA 6= ∅ [20]. Acyclic operators are not easy to apprehend, which shows that the notion

of a maximally monotone operator remains only partially understood. A simpler decomposition was

investigated in [21, 22] by imposing that B in (3.2) be the restriction of a skew operator in B(H).
Thus, the so-called Borwein-Wiersma decomposition of A ∈ M(H) is

A = G+B, where G ∈ S(H) and B = S|domB , with S ∈ B(H) and S∗ = −S. (3.3)

If A ∈ M(H) and graA is a vector subspace, then A admits a Borwein-Wiersma decomposition if and

only if domA ⊂ domA∗ [17, Thm. 5.1]. Another viewpoint on the distinction between a general

maximally monotone operator and a subdifferential is presented in [126].

3.2 Characterizations of proximity operators

Exploring a different facet of the discussion of Section 3.1, we focus in this section on some properties

of the class of proximity operators as a subset of that of firmly nonexpansive operators. We first review

characterization results and then study the closedness of P(H) under various transformations.

A first natural question that arises is how to characterize those firmly nonexpansive operators

which are proximity operators. As mentioned in Section 3.1, on the real line things are straightfor-

ward: since M(R) = S(R), Theorem 1.3 tells us F(R) = P(R). Alternatively, T : R → R belongs to

P(R) if and only if it is nonexpansive and increasing [46]. In general, the characterization of subd-

ifferential operators given in Theorem 3.1, together with Theorem 1.3, suggests introducing a cyclic

version of (1.7) to achieve this goal. This leads to the following characterization.

6



Proposition 3.2 [7] Let T ∈ F(H). Then T ∈ P(H) if and only if, for every integer n > 2 and every

(x1, . . . , xn+1) ∈ Hn+1 such that xn+1 = x1, we have
∑n

i=1 〈xi − Txi | Txi − Txi+1〉 > 0.

For our purposes, a more readily exploitable characterization is the following result due to Moreau

(see also Theorem 2.2).

Theorem 3.3 [94] Let T ∈ N(H) and let q = ‖ · ‖2/2. Then T ∈ P(H) if and only if there exists a

differentiable convex function h : H → R such that T = ∇h. In this case, T = proxf , where f = h∗ − q.

Corollary 3.4 [94] Let T ∈ B(H) be such that ‖T‖ 6 1. Then T ∈ P(H) if and only if T is positive and

self-adjoint.

3.3 Proximity-preserving transformations

A transformation which preserves firm nonexpansiveness may not be proximity-preserving in the sense

that it may not produce a proximity operator when applied to proximity operators. Here are two

examples.

Example 3.5 (composition-based transformations) Transformations involving compositions are

unlikely to be proximity-preserving for a simple reason: in the linear case, Corollary 3.4 imposes

that such a transformation preserve self-adjointness. However, a product of symmetric matrices may

not be symmetric. A standard example is the Douglas-Rachford splitting operator TA,B associated with

two operators A and B in M(H) [13], which will arise in (4.6). In general,

TA,B = JA ◦ (2JB − Id ) + Id −JB =
(2JA − Id ) ◦ (2JB − Id ) + Id

2
∈ J(H)r P(H). (3.4)

The fact that TA,B ∈ J(H) follows from the equivalence (i)⇔(ii) in Theorem 1.3. On the other hand,

examples when TA,B /∈ P(H) for A ∈ S(H) and B ∈ S(H) can be easily constructed when JA and JB
are 2 × 2 matrices as explained above. In fact, when A and B are linear relations in S(RN ) (N > 2),

the genericity of (3.4) is established in [16].

Example 3.6 (Spingarn’s partial inverse) Let A ∈ M(H) and let V be a closed vector subspace of

H. The partial inverse of A with respect to V is the operator AV : H → 2H with graph

graAV =
{

(projV x+ projV ⊥u,projV u+ projV ⊥x)
∣

∣ (x, u) ∈ graA
}

. (3.5)

This operator, which was introduced by Spingarn in [111], can be regarded as an intermediate object

between A and A−1. As shown in [111], A ∈ M(H) ⇔ AV ∈ M(H). Therefore, by Theorem 1.3,

A ∈ M(H) ⇔ JAV
∈ J(H). However,

A ∈ S(H) 6⇒ JAV
∈ P(H). (3.6)

To see this suppose that H = R
2, let V =

{

(ξ1, ξ2) ∈ H
∣

∣ ξ1 = ξ2
}

, and let A = ∂f , where f : (ξ1, ξ2) 7→
ξ21/2 + ξ1ξ2 + ξ22 . Then, for every (ξ1, ξ2) ∈ H, ∂f(ξ1, ξ2) = (ξ1 + ξ2, ξ1 + 2ξ2), and we obtain

AV (ξ1, ξ2) = (2ξ1 + ξ2,−ξ1 + 2ξ2) and JAV
(ξ1, ξ2) =

1

10
(3ξ1 − ξ2, ξ1 + 3ξ2). (3.7)

Thus J∗
AV

6= JAV
and Corollary 3.4 implies that JAV

/∈ P(H).

Let us start with some simple proximity-preserving transformations.
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Proposition 3.7 Let T ∈ P(H). Then the following hold:

(i) Id −T ∈ P(H).

(ii) Let z ∈ H. Then z + T (· − z) ∈ P(H).

(iii) −T ◦ (− Id ) ∈ P(H).

(iv) JT ∈ P(H).

Proof. Let f ∈ Γ0(H) be such that T = proxf , and set q = ‖ · ‖2/2.

(i): Set g = f∗. Then g ∈ Γ0(H) and Theorem 2.1 states that proxg = Id −T .

(ii): Set g = f(· − z). Then g ∈ Γ0(H) and proxg = z + T (· − z) [52].

(iii): Set g = f(−·). Then g ∈ Γ0(H) and proxg = −T ◦ (− Id ) [52].

(iv): Since P(H) ⊂ J(H) ⊂ M(H), JT is well defined. Now set g = f∗� q. Then g ∈ Γ0(H) and

g = (f + q)∗. Thus, by Theorem 2.1, JT = T−1� Id = (Id +∂f)� Id = ∂(f + q)� Id = (∂g∗)� Id =
proxg.

Proposition 3.8 Let f ∈ Γ0(H), let G be a real Hilbert space, and let M ∈ B(H,G) be such that

0 ∈ sri (ranM∗ − dom f) and MM∗ − IdG is positive. Set qH = ‖ · ‖2H/2 and qG = ‖ · ‖2G/2. Then

M ⊲ proxf ∈ P(G). More specifically, M ⊲ proxf = proxϕ, where ϕ = (f + qH) ◦M
∗ − qG.

Proof. Set ϕ = (f+q)◦M∗−q. The assumptions imply that f◦M∗ ∈ Γ0(G) and that qH◦M
∗−qG : G → R

is convex and continuous. Consequently, ϕ ∈ Γ0(G) and, using (2.1) and [13, Cor. 16.53(i)],

M ⊲ proxf =
(

M ◦ (IdH + ∂f) ◦M∗
)−1

=
(

M ◦ ∂(f + qH) ◦M
∗
)−1

=
(

∂
(

(f + qH) ◦M
∗
)

)−1

=
(

IdG + ∂
(

(f + qH) ◦M
∗ − qG

)

)−1

= proxϕ, (3.8)

as claimed.

We now describe a composite proximity-preserving transformation.

Proposition 3.9 Let I be a nonempty finite set and put q = ‖ · ‖2H/2. For every i ∈ I, let ωi ∈ ]0,+∞[,
let Gi be a real Hilbert space with identity operator Idi , put qi = ‖ · ‖2Gi

/2, let Ki be a real Hilbert space,

let Li ∈ B(H,Gi) r {0}, let Mi ∈ B(Ki,Gi) r {0}, let fi ∈ Γ0(Gi), let gi ∈ Γ0(Gi), and let hi ∈ Γ0(Ki).
Suppose that

∑

i∈I ωi‖Li‖
2 6 1 and that, for every i ∈ I,

0 ∈ sri
(

domh∗i −M∗
i (dom fi ∩ dom g∗i )

)

and 0 ∈ sri (dom fi − dom g∗i ). (3.9)

Set

T =
∑

i∈I

ωiL
∗
i ◦
(

proxfi �
(

∂gi� (Mi ⊲ ∂hi)
)

)

◦ Li. (3.10)

Then T ∈ P(H). More specifically,

T = proxf , where f =

(

∑

i∈I

ωi

(

(

fi + g∗i + h∗i ◦M
∗
i

)∗
� qi

)

◦ Li

)∗

− q. (3.11)
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Proof. The fact that f ∈ Γ0(H) follows from standard convex analysis [13]. Now let i ∈ I. We derive

from (2.1), (3.9), [13, Cor. 16.30 and Thm. 16.47(i)], and Theorem 3.3 that

proxfi �
(

∂gi� (Mi ⊲ ∂hi)
)

=
(

Idi +∂fi +
(

∂gi� (Mi ⊲ ∂hi)
)−1
)−1

=
(

Idi +∂fi + (∂gi)
−1 +Mi ◦ (∂hi)

−1 ◦M∗
i

)−1

=
(

Idi +∂fi + ∂g∗i +Mi ◦ ∂h
∗
i ◦M

∗
i

)−1

=
(

Idi +∂
(

fi + g∗i + h∗i ◦M
∗
i

)

)−1

= proxfi+g∗i +h
∗
i
◦M∗

i

= ∇
(

(

fi + g∗i + h∗i ◦M
∗
i

)∗
� qi

)

. (3.12)

Since proxfi+g∗i +h
∗
i
◦M∗

i

∈ N(H),

∇
((

(

fi + g∗i + h∗i ◦M
∗
i

)∗
� qi

)

◦ Li

)

= L∗
i ◦ proxfi+g∗i +h

∗
i
◦M∗

i

◦ Li (3.13)

has Lipschitz constant ‖Li‖
2. Altogether,

T =
∑

i∈I

ωiL
∗
i ◦
(

proxfi �
(

∂gi� (Mi ⊲ ∂hi)
)

)

◦Li = ∇

(

∑

i∈I

ωi

(

(

fi+g
∗
i +h

∗
i ◦M

∗
i

)∗
� qi

)

◦Li

)

(3.14)

has Lipschitz constant
∑

i∈I ωi‖Li‖
2 6 1. In view of Theorem 3.3, the proof is complete.

Remark 3.10 Let us highlight some special cases of Proposition 3.9. G is a real Hilbert space.

(i) Let (Ti)i∈I be a finite family in P(H) and let (ωi)i∈I be a finite family in ]0, 1] such that
∑

i∈I ωi =
1. Then

∑

i∈I ωiTi ∈ P(H). This result is due to Moreau [91]. Connections with the proximal

average are discussed in [13].

(ii) In (i), taking I = {1, 2}, T1 = T , T2 = Id , and ω1 = λ ∈ ]0, 1[ yields Id +λ(T − Id ) ∈ P(H). The

fact that the under-relaxation of a proximity operator is a proximity operator appears in [52].

More precisely, it is shown there that if T = proxh for some h ∈ Γ0(H), then Id +λ(T − Id ) =
proxf , where f = h� (λq)/(1 − λ), which can now be seen as a consequence of (3.11).

(iii) Let T1 and T2 be in P(H). Then (T1 − T2 + Id )/2 ∈ P(H). Indeed, Proposition 3.7(i) asserts that

Id −T2 ∈ P(H) and then (i) that the average of T1 and Id −T2 is also in P(H).

(iv) Let T ∈ P(G) and let L ∈ B(H,G) be such that ‖L‖ 6 1. Then L∗ ◦ T ◦ L ∈ P(H).

(v) Let T ∈ P(H) and let V be a closed vector subspace of H. Then it follows from (iv) that

projV ◦ T ◦ projV ∈ P(H).

(vi) Suppose that u ∈ H satisfies 0 < ‖u‖ 6 1 and let R ∈ P(R). Set L : H → R : x 7→ 〈x | u〉 and

T : H → H : x 7→ (R〈x | u〉)u. Then (iv) yields T ∈ P(H).

(vii) Let M ∈ B(G,H) r {0}, let f ∈ Γ0(H), let g ∈ Γ0(H), and let h ∈ Γ0(G) be such that 0 ∈
sri (dom h∗−M∗(dom f∩dom g∗)) and 0 ∈ sri (dom f−dom g∗). Then proxf � (∂g� (M ⊲ ∂h)) ∈
P(H). More specifically, proxf � (∂g� (M ⊲ ∂h)) = proxf+g∗+h∗◦M∗ .
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(viii) In (vii), suppose that, in addition, g = ϕ∗ � qH and h = ψ∗ � qG , where ϕ ∈ Γ0(H) and ψ ∈ Γ0(G).
Then ∂g = {proxϕ}, ∂h = {proxψ}, and we conclude that proxf � (proxϕ� (M ⊲ proxψ)) ∈
P(H). More specifically,

proxf �
(

proxϕ� (M ⊲ proxψ)
)

= proxf+ϕ+(ψ+qG)◦M∗+qH
= prox(f+ϕ+(ψ+qG)◦M∗)/2(·/2) (3.15)

has Lipschitz constant 1/2.

(ix) In (vii), suppose that, in addition, G = H, M = Id , g = ϕ∗ � q, and h = ι{0}, where ϕ ∈ Γ0(H).
Then ∂g = {proxϕ}, ∂h = {0}−1, and we conclude that proxf �proxϕ ∈ P(H). More specifically,

proxf �proxϕ = proxf+ϕ+q = prox(f+ϕ)/2(·/2) (3.16)

has Lipschitz constant 1/2. This result appears in [13, Cor. 25.35].

Proposition 3.9 allows us to interpret some algorithms as simple instances of the standard proximal

point algorithm (1.15) for convex minimization.

Example 3.11 Let K be a closed convex cone in H with polar cone K⊖, let V be a closed vector

subspace of H, and set

f =

(

1

2
d2K⊖ ◦ projV

)∗

−
‖ · ‖2

2
(3.17)

and T = projV ◦ projK ◦ projV . Then it follows from Proposition 3.9 (see also Remark 3.10(v)) that

T = proxf . Now let x0 ∈ V and consider the proximal point iterations (∀n ∈ N) xn+1 = proxfxn. Then

the sequence (xn)n∈N is identical to that produced by the alternating projection algorithm (∀n ∈ N)
xn+1 = (projV ◦ projK)xn. In [67], a specific choice of x0, K, and V (the latter being a closed

hyperplane) lead to a sequence (xn)n∈N that was shown to converge weakly but not strongly to the

unique point in K∩V , namely 0. In turn, (3.17) is a new example of a function for which the proximal

point algorithm converges weakly but not strongly. Alternative constructions can be found in [14, 65].

Example 3.12 Let (Ci)i∈I be a finite family of nonempty closed convex subsets of H. The convex

feasibility problem is to find a point in
⋂

i∈I Ci. When this problem has no solution, a situation

that arises frequently in signal recovery due to inaccurate prior knowledge or measurement errors

[38], one must find a surrogate minimization problem. Let us note that the standard method of

periodic projections used in consistent problems is of little value here as the limit cycles it generates

do not minimize any function [5]. Let x0 ∈ H and ε ∈ ]0, 1[. In [38], it was proposed to minimize

(1/2)
∑

i∈I ωid
2
Ci

, where (ωi)i∈I are in ]0, 1] and satisfy
∑

i∈I ωi = 1, via the parallel projection method

(∀n ∈ N) xn+1 = xn + λn

(

∑

i∈I

ωiprojCi
xn − xn

)

, where ε 6 λn 6 (2− ε). (3.18)

Now set f = (
∑

i∈I ωi(σCi
� q))∗ − q and apply Proposition 3.9 with (∀i ∈ I) Gi = Ki = H, Li =Mi =

Id , fi = ιCi
, and gi = hi = ι{0}. Then proxf =

∑

i∈I ωiprojCi
, and (3.18) therefore turns out to be just

a relaxed instance of Martinet’s proximal point algorithm (1.15).

As noted in Example 3.5, a composition of proximity operators is usually not a proximity operator.

Likewise, the sum of two proximity operators may not be in N(H) and therefore not in P(H). The

following propositions provide some exceptions. We start with the identity proxf1◦proxf2 = proxf1+f2 ,

which is also discussed in special cases in [46, 47, 52, 121].
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Proposition 3.13 Let T1 and T2 be in P(H), say T1 = proxf1 and T2 = proxf2 for some f1 and f2 in

Γ0(H). Suppose that dom f1 ∩ dom f2 6= ∅ and that one of the following holds:

(i) H = R.

(ii) (∀x ∈ dom ∂f2) ∂f2(x) ⊂ ∂f2(T1x).

(iii) (∀(x, u) ∈ gra ∂f1) ∂f2(x+ u) ⊂ ∂f2(x).

(iv) 0 ∈ sri (dom f1 − dom f2) and (∀(x, u) ∈ gra ∂f1) ∂f2(x) ⊂ ∂f2(x+ u).

Then T1 ◦ T2 ∈ P(H). More specifically, in cases (ii)–(iv), T1 ◦ T2 = proxf1+f2.

Proof. (i): A function T : R → R belongs to P(R) if and only if it is nonexpansive and increasing [46].

Since the composition of nonexpansive and increasing functions is likewise, we obtain the claim.

(ii)–(iv): [13, Prop. 24.18].

Proposition 3.14 Let C be a nonempty closed convex subset of H, let φ ∈ Γ0(R) be even, set ϕ =
φ ◦‖ · ‖+σC , T1 = proxφ◦‖·‖, and T2 = proxσC . Then T1 ◦T2 ∈ P(H). More specifically, T1 ◦T2 = proxϕ.

Proof. Let x ∈ H. If φ is constant, then T1 = Id and the result is trivially true. We therefore assume

otherwise, which allows us to derive from [27, Prop. 2.2] that

proxϕx =







proxφdC(x)

dC(x)
(x− projCx), if dC(x) > max Argminφ;

x− projCx, if dC(x) 6 max Argminφ.

(3.19)

For C = {0}, this yields

T1x =







proxφ‖x‖

‖x‖
x, if ‖x‖ > max Argminφ;

x, if ‖x‖ 6 max Argminφ.

(3.20)

Since Theorem 2.1 yields Id −projC = proxσC , using (3.19) and (3.20), we get

proxϕx =











proxφ‖proxσCx‖

‖proxσCx‖
proxσCx, if ‖proxσCx‖ > max Argminφ;

proxσCx, if ‖proxσCx‖ 6 max Argminφ

= T1(T2x). (3.21)

Remark 3.15 Proposition 3.14 has important applications.

(i) It follows from [46, Prop. 3.2(v)] that, if φ is differentiable at 0 with φ′(0) = 0, then proxϕ, which

can be implemented explicitly via (3.19), is a proximal thresholder on C: (∀x ∈ H) proxϕx = 0
⇔ x ∈ C.
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(ii) Let γ ∈ ]0,+∞[, let K be a nonempty closed convex cone in H, let C be the polar cone of K,

and let x ∈ H. Upon setting φ = γ| · | in Proposition 3.14 and using [13, Examp. 24.20], we

obtain (see [44, Lemma 2.2] for a different derivation)

proxγ‖·‖+ιKx =
(

proxγ‖·‖ ◦ projK
)

x =







‖projKx‖ − γ

‖projKx‖
projKx, if ‖projKx‖ > γ;

0, if ‖projKx‖ 6 γ.
(3.22)

On the other hand, setting φ = ι[−γ,γ] in Proposition 3.14 and using [13, Examp. 3.18], we

obtain (see [9, Sec. 7] for different derivations)

projB(0;γ)∩Kx =
(

projB(0;γ) ◦ projK
)

x =







γ

‖projKx‖
projKx, if ‖projKx‖ > γ;

projKx, if ‖projKx‖ 6 γ.
(3.23)

Proposition 3.16 Set q = ‖ · ‖2/2, and let T1 and T2 be in P(H), say T1 = proxf1 and T2 = proxf2 for

some f1 and f2 in Γ0(H). Suppose that 0 ∈ sri (dom f∗1 − dom f∗2 ) and that

(f∗1 + f∗2 )� q = f∗1 � q + f∗2 � q. (3.24)

Then T1 + T2 ∈ P(H). More specifically, T1 + T2 = proxf1 � f2
.

Proof. It follows from [13, Prop. 15.7(i)] that f1� f2 ∈ Γ0(H). In addition, we derive from Theo-

rem 2.1, (3.24), and [13, Prop. 13.24(i)] that T1+T2 = ∇
(

f∗1 � q
)

+∇
(

f∗2 � q
)

= ∇
(

f∗1 � q+f∗2 � q
)

=
∇
(

(f∗1 + f∗2 )� q
)

= ∇
(

(f1� f2)
∗� q

)

= proxf1 � f2
, as claimed.

Remark 3.17 Let C1 and C2 be nonempty closed convex subsets of H, and set f1 = ιC1
and f2 = ιC2

.

Then the conclusion of Proposition 3.16 is that projC1
+projC2

= projC1+C2
. This property is discussed

in [125] (for cones), in [13, Prop. 29.6], and in the recently posted paper [10].

3.4 Self-dual classes of firmly nonexpansive operators

Let us call a subclass T(H) of J(H) self-dual if (∀T ∈ T(H)) Id −T ∈ T(H). This property plays an

important role in our paper.

It is clear from (1.7) that J(H) is self-dual. This can also be recovered from Theorem 1.3 and (2.4).

As seen in Proposition 3.7(i), P(H) is also self-dual. Now let T ∈ K(H). Then there exists a nonempty

closed convex cone K ⊂ H such that T = projK and Moreau’s conical decomposition expresses the

projector onto the polar cone K⊖ as projK⊖ = Id −projK [88]. This shows that K(H) is self-dual.

Likewise, it follows from the standard Beppo Levi orthogonal decomposition of H [78] that the class

V(H) of projectors onto closed vector subspaces of H is self-dual. We thus obtain the nested self-dual

classes

V(H) ⊂ K(H) ⊂ P(H) ⊂ J(H). (3.25)

Self-duality properties were investigated in [15], where other classes were identified and studied in

depth. In particular, let A : H → 2H be maximally monotone. Then A is paramonotone if and only

if A−1 is [13, Prop. 22.2(i)]. As a result, it follows from (2.4) that the class Jpara(H) of resolvents of

paramonotone maximally monotone operators from H to 2H is self-dual [15] and since subdifferentials

are paramonotone, we have P(H) ⊂ Jpara(H) ⊂ J(H). Likewise, since A is 3∗ monotone if and

only if A−1 is [13, Prop. 25.19(i)], and since subdifferentials are 3∗ monotone, the class J3∗(H) of
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resolvents of 3∗ monotone maximally monotone operators from H to 2H is self-dual and satisfies

P(H) ⊂ J3∗(H) ⊂ J(H).

Although our primary objective in Section 3.3 was to investigate transformations on the class P(H),
similar questions could be asked about other self-dual classes. In this spirit, Zarantonello [125] has

studied some transformations in K(H). Let T1 and T2 be in K(H), say T1 = projK1
and T2 = projK2

.

In connection with Proposition 3.13, he has shown that {T1 ◦ T2, T2 ◦ T1} ⊂ K(H) if and only if

T2 ◦ T1 = T1 ◦ T2, in which case T1 ◦ T2 = projK1∩K2
[124]. On the other hand, in this context, the

conclusion of Proposition 3.16, which states that T1 + T2 = projK1+K2
∈ K(H), is discussed in [125].

The proximity-preserving transformations studied in Section 3.3 have natural resolvent-preserving

counterparts. For instance, mimicking the pattern of Remark 3.10(vii) and using [13, Thm. 25.3],

one shows that, if T = JA ∈ J(H), B ∈ M(H), M ∈ B(G,H) r {0}, and C ∈ M(G), then

T � (B� (M ⊲ C)) = JA+B−1+M◦C−1◦M∗ ∈ J(H) provided that the cones generated by domC−1 −
M∗(domA ∩ domB−1) and by domA− domB−1 are closed vector subspaces.

4 Monotone operators in convex optimization

In this section we present several examples of maximally monotone operators which are not subdiffer-

entials and which play fundamental and indispensable roles in the analysis and the numerical solution

of convex optimization problems. We preface these examples with a brief overview of classical splitting

methods [13] which depend less critically on monotone operator theory.

4.1 The interplay between splitting methods for convex optimization and monotone
inclusion problems

The proximal point algorithm (1.15) was first developed for convex optimization. It was extended in

[106] to solve the inclusion problem (1.9) for an operator A ∈ M(H) such that zerA 6= ∅ via the

iteration

x0 ∈ H and (∀n ∈ N) xn+1 = JγnAxn, where γn ∈ ]0,+∞[ . (4.1)

However, the algorithmic theory for the case of monotone inclusions does not subsume that for the

case of convex optimization. Thus, as shown in [26], the weak convergence of (xn)n∈N to a point in

A holds when
∑

n∈N γ
2
n = +∞, and this condition can be weakened to

∑

n∈N γn = +∞ if A ∈ S(H)
(see also [65] for finer properties in the subdifferential case). This is explained by the fact that, given

z ∈ zerA, (4.1) and Theorem 1.3 yield

(∀n ∈ N) ‖xn+1 − z‖2 6 ‖xn − z‖2 − ‖JγnAxn − xn‖
2 (4.2)

for a general A ∈ M(H) while, when A = ∂f for some f ∈ Γ0(H), it can be sharpened to

(∀n ∈ N) ‖xn+1 − z‖2 6 ‖xn − z‖2 − ‖JγnAxn − xn‖
2 − 2γn

(

f(xn+1)− inf f(H)
)

. (4.3)

Going back to the discussion of Section 3, this sheds a different light on the differences between

S(H) and M(H). Naturally, the applicability of (4.1) depends on the ease of implementation of the

resolvents (JAn
)n∈N. A more structured inclusion problem is the following.

Problem 4.1 Let A ∈ M(H) and B ∈ M(H) be such that 0 ∈ ran (A+B). Find a zero of A+B.
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Generally speaking, when replacing monotone operators by subdifferentials in certain inclusion

problems, one recovers a convex minimization problem provided some constraint qualification holds

[13]. In this regard, we shall also consider the following convex optimization problem.

Problem 4.2 Let f and g be functions in Γ0(H) such that 0 ∈ ran (∂f +∂g). Find a minimizer of f + g
over H.

There are three classical methods for solving Problem 4.1, which we present here in simple forms

(see [28, 34, 53] and the references therein for refinements). All three methods produce a sequence

(xn)n∈N which converges weakly to a zero of A+B [13, 115, 116], but they involve different assump-

tions on B. Let us stress that the importance of these three splitting methods is not only historical:

many seemingly different splitting methods are just, explicitly or implicitly, reformulations of these

basic schemes in alternate settings (e.g., product spaces, dual spaces, primal-dual spaces, renormed

spaces, or a combination thereof); see [3, 4, 28, 40, 41, 42, 49, 51, 54, 58, 59, 76, 107, 116, 120] and

the references therein for specific examples.

• Forward-backward splitting. In Problem 4.1, suppose that B : H → H and that β−1B ∈ F(H)
for some β ∈ ]0,+∞[. Let x0 ∈ H and ε ∈ ]0, 2/(β + 1)[, and iterate

for n = 0, 1, . . .








ε 6 γn 6 (2− ε)/β
yn = xn − γnBxn
xn+1 = JγnAyn.

(4.4)

In view of Theorem 2.2, the assumptions on B translate into the fact that, in Problem 4.2,

f2 : H → R is differentiable and that B = ∇f2 is β-Lipschitzian, while A = ∂f1.

• Tseng’s forward-backward-forward splitting. In Problem 4.1, suppose that B : H → H is

β-Lipschitzian for some β ∈ ]0,+∞[. Let x0 ∈ H and ε ∈ ]0, 1/(β + 1)[, and iterate

for n = 0, 1, . . .
















ε 6 γn 6 (1− ε)/β
yn = xn − γnBxn
pn = JγnAyn
qn = pn − γnBpn
xn+1 = xn − yn + qn.

(4.5)

• Douglas-Rachford splitting. Let x0 ∈ H and γ ∈ ]0,+∞[, and iterate

for n = 0, 1, . . .








xn = JγByn
zn = JγA(2xn − yn)
yn+1 = yn + zn − xn.

(4.6)

Historically, the forward-backward method grew out of the projected gradient method in convex

optimization [79], and the first version for Problem 4.1 was proposed in [84]. Another example of

a monotone operator splitting method that evolved from convex optimization is Dykstra’s method

[11], which was first devised for indicator functions in [24]. By contrast, the forward-backward-

forward [116] and Douglas-Rachford [80] methods were developed directly for Problem 4.1, and

then specialized to Problem 4.2. In principle, however, even though monotone inclusions provide a
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more synthetic and natural framework, it is possible (at least a posteriori) to derive their convergence

in the scenario of Problem 4.2 from optimization concepts only, without invoking monotone operator

theory. Nonetheless, non-subdifferential maximally monotone operators may still be at play. For

instance, note that in the Douglas-Rachford algorithm (4.6), we have

(∀n ∈ N) yn+1 = Tyn, where T =
(2JγA − Id ) ◦ (2JγB − Id ) + Id

2
. (4.7)

Upon invoking (3.4) and Theorem 1.3, we see that T ∈ J(H) and that there exists C ∈ M(H) such

that T = JC , namely C = T−1 − Id . Hence

(∀n ∈ N) yn+1 = JCyn, where C = T−1 − Id . (4.8)

In other words, (yn)n∈N is produced by an instance of the proximal point algorithm (4.1) and, in

this sense, the dynamics of the Douglas-Rachford algorithm are implicitly governed by a maximally

monotone operator (as seen in Example 3.5, this operator is typically not in S(H), even if A and B
are). This observation, which was made in [58], has actually a much more general scope. Indeed,

as shown in [39], several operator splitting algorithms are driven by successive approximations of an

averaged operator T : H → H, i.e., an operator of the form T = (1 − α) Id +αR, where R : H → H
is nonexpansive and α ∈ ]0, 1[ (further examples are found in more recent papers such as [55] and

[100]). We derive from Theorem 1.3 that there exists C ∈ M(H) (and C /∈ S(H) in general) such

that R = 2JC − Id , namely C = ((R + Id )/2)−1 − Id . Therefore, T = Id +2α(JC − Id ). In turn,

a sequence (xn)n∈N produced by the successive approximations of T is generated implicitly by the

relaxed resolvent iteration

(∀n ∈ N) xn+1 = xn+λ(JCxn−xn), where λ = 2α and C =

(

Id +
1

2α
(T−Id )

)−1

−Id . (4.9)

For example, let us consider the forward-backward algorithm (4.4) with a fixed proximal parameter

γ ∈ ]0, 2/β[. Then

(∀n ∈ N) xn+1 = Txn where T = JγA ◦ (Id −γB). (4.10)

Furthermore, T is averaged with constant α = 2/(4 − βγ) [53]. Altogether, the forward-backward

iteration (4.10) is an instance of the relaxed proximal point algorithm

(∀n ∈ N) xn+1 = xn + λ(JCxn − xn), where λ =
4

4− βγ

and C =

(

βγ

4
Id +

4− βγ

4

(

JγA ◦ (Id −γB)
)

)−1

− Id . (4.11)

4.2 Rockafellar’s saddle function operator

The following result is due to Rockafellar [103, 104] (he actually used a somewhat more general

notion of closedness, made precise in these papers, for the function L).

Theorem 4.3 (Rockafellar) Let H1 and H2 be real Hilbert spaces, let L : H1⊕H2 → [−∞,+∞] be such

that, for every x1 ∈ H1 and every x2 ∈ H2, −L(x1, ·) ∈ Γ0(H2) and L(·, x2) ∈ Γ0(H1). Set

(∀x1 ∈ H1)(∀x2 ∈ H2) A(x1, x2) = ∂L(·, x2)(x1)× ∂(−L(x1, ·))(x2). (4.12)

Then A ∈ M(H1 ⊕H2) and

zerA =
{

(x1, x2) ∈ H1 ⊕H2

∣

∣ L(x1, x2) = inf L(H1, x2) = supL(x1,H2)
}

(4.13)

is the set of saddle points of L.
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A geometrical interpretation of (4.12) is that (u1, u2) ∈ A(x1, x2) if and only if (x1, x2) is a saddle

point of the convex-concave function (x′1, x
′
2) 7→ L(x′1, x

′
2) − 〈x′1 | u1〉 + 〈x′2 | u2〉. The maximally

monotone operator A of (4.12) is deeply rooted in convex optimization due to the foundational role

it plays in Lagrangian theory and duality schemes [13, 103, 105, 107]. Yet, as the following example

shows, it is not a subdifferential.

Example 4.4 In Theorem 4.3, set H1 = H2 = R and L : (x1, x2) 7→ x21 − x1x2. Then (4.12) yields

A : (x1, x2) 7→ (2x1 − x2, x1). Thus, A ∈ B(R2) is positive and not self-adjoint. It follows from

Lemma 2.3 that A ∈ M(H)r S(H).

The idea of using the proximal point algorithm (4.1) with the operator A of (4.12) to find a saddle

point of L was proposed by Rockafellar in [106]. In [107], he applied it to the concrete problem of

minimizing a convex function subject to convex inequality constraints, using the ordinary Lagrangian

as a saddle function. The resulting algorithm is known as the proximal method of multipliers.

4.3 Spingarn’s partial inverse operator

Let A ∈ M(H), let V be a closed vector subspace of H, and let the partial inverse of A with respect to

V be the operator AV ∈ M(H) defined in (3.5). As discussed in [111], problems of the form

find x ∈ V and u ∈ V ⊥ such that u ∈ Ax (4.14)

can be solved by applying the proximal point algorithm (4.1) to AV ; this method is known as the

method of partial inverses, and it has strong connections with the Douglas-Rachford algorithm [58,

74, 81]. For instance, if A = ∂f for some f ∈ Γ0(H) such that f admits a minimizer over V and

0 ∈ sri (V − dom f), (4.14) reduces to finding a solution of the Fenchel dual pair

minimize
x∈V

f(x) and minimize
u∈V ⊥

f∗(u). (4.15)

In this case, given x0 ∈ V and u0 ∈ V ⊥, the method of partial inverses iterates

for n = 0, 1, . . .








yn = proxf (xn + un)

vn = xn + un − yn
(xn+1, un+1) = (projV yn,projV ⊥vn),

(4.16)

and the sequences (xn)n∈N and (un)n∈N converge weakly to a solution to the primal and dual problems

in (4.15) [13, Prop. 28.2]. This algorithm has many applications in convex optimization, e.g., [68, 75,

76, 111, 112, 113]. It also constitutes the basic building block of the progressive hedging algorithm

in stochastic programming [108]. Thus, despite its apparent simplicity, this partial inverse approach

is quite powerful and it can tackle the following primal-dual problem.

Problem 4.5 Let I be a nonempty finite set, and let (Hi)i∈I and G be real Hilbert spaces. Let r ∈ G,

let g ∈ Γ0(G), and, for every i ∈ I, let zi ∈ Hi, let fi ∈ Γ0(Hi), and let Li ∈ B(Hi,G). Solve the primal

problem

minimize
(∀i∈I) xi∈Hi

∑

i∈I

(

fi(xi)− 〈xi | zi〉
)

+ g

(

∑

i∈I

Lixi − r

)

, (4.17)

together with the dual problem

minimize
v∈G

∑

i∈I

f∗i
(

zi − L∗
i v
)

+ g∗(v) + 〈v | r〉. (4.18)
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It is shown in [1] that, when applied to a version of (4.14) suitably reformulated in a product

space, (4.16) yields a proximal splitting algorithm that solves Problem 4.5 and employs the operators

(proxfi)i∈I , proxg, (Li)i∈I , and (L∗
i )i∈I separately.

The backbone of all the above-mentioned applications of the method of partial inverses to convex

optimization is the partial inverse of an operator in S(H). As seen in Example 3.6, this maximally

monotone operator is not in S(H) in general.

4.4 Primal-dual algorithm for mixed composite minimization

We re-examine through the lens of the maximally monotone saddle function operator (4.12) a mixed

composite minimization problem proposed and studied in [49] with different tools.

Problem 4.6 Let f ∈ Γ0(H), let h : H → R be convex and differentiable with a µ-Lipschitzian gradient

for some µ ∈ ]0,+∞[, let G be a real Hilbert space, let g ∈ Γ0(G), and let ℓ ∈ Γ0(G) be 1/ν-strongly

convex for some ν ∈ ]0,+∞[. Suppose that 0 6= L ∈ B(H,G) and that

0 ∈ ran
(

∂f + L∗ ◦ (∂g� ∂ℓ) ◦ L+∇h
)

. (4.19)

Consider the problem

minimize
x∈H

f(x) + (g� ℓ)(Lx) + h(x), (4.20)

and the dual problem

minimize
v∈G

(

f∗�h∗
)

(−L∗v) + g∗(v) + ℓ∗(v). (4.21)

From a numerical standpoint, solving (4.20) is challenging as it involves five objects (four func-

tions, three of which are nonsmooth, and a linear operator), while traditional proximal splitting tech-

niques are limited to two objects; see (4.4)–(4.6). In [49], Problem 4.6 was analyzed and solved as

an instance of a more general primal-dual inclusion problem involving monotone operators, which

was reformulated as that of finding a zero of the sum of two operators in M(H ⊕ G). Let us stress

that, even in the special case of Problem 4.6, this inclusion problem still involves operators which

are not subdifferentials. To see this, we now propose an alternative derivation of the results of [49,

Sect. 4] using the saddle function formalism of Theorem 4.3. Following the same pattern as in [105,

Examp. 11] (with the conventions of [13, Prop. 19.20]), we define the Lagrangian of Problem 4.6 as

L : H⊕ G → [−∞,+∞]

(x, v) 7→











−∞, if x ∈ dom f and v /∈ dom g∗ ∩ dom ℓ∗;

f(x) + h(x) + 〈Lx | v〉 − g∗(v)− ℓ∗(v), if x ∈ dom f and v ∈ dom g∗ ∩ dom ℓ∗;

+∞, if x /∈ dom f,

(4.22)

and observe that it satisfies the assumptions of Theorem 4.3. In turn, using standard subdifferential

calculus [13], we deduce that the associated maximally monotone operator A of (4.12) is

A : H⊕ G → 2H⊕G : (x, v) 7→ ∂L(·, v)(x) × ∂(−L(x, ·))(v)

=
(

∂f(x) +∇h(x) + L∗v, ∂g∗(v) +∇ℓ∗(v)− Lx
)

. (4.23)
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It is noteworthy that this operator admits a Borwein-Wiersma decomposition (3.3), namely

A = ∂ϕ+S, where

{

ϕ : H⊕ G → ]−∞,+∞] : (x, v) 7→ f(x) + h(x) + g∗(v) + ℓ∗(v)

S : H⊕ G → H⊕ G : (x, v) 7→ (L∗v,−Lx).
(4.24)

Here ϕ ∈ Γ0(H ⊕ G) and S ∈ B(H ⊕ G) is nonzero and skew, which shows that A /∈ S(H ⊕ G) by

virtue of Lemma 2.3. By Theorem 4.3, a zero (x, v) of A is a saddle point of L, which implies that

(x, v) solves Problem 4.6, i.e., x solves (4.20) and v solves (4.21). However, the decomposition (4.24)

does not lend itself easily to splitting methods as they would require computing J∂ϕ = proxϕ =
proxf+h × proxg∗+ℓ∗ , which does not admit a closed form expression in general. A more judicious

decomposition of A is

A = ∂f +B, where

{

f : H⊕ G → ]−∞,+∞] : (x, v) 7→ f(x) + g∗(v)

B : H⊕ G → H⊕ G : (x, v) 7→ (∇h(x) + L∗v,∇ℓ∗(v)− Lx).
(4.25)

Note that f ∈ Γ0(H ⊕ G) and that computing J∂f = proxf = proxf × proxg∗ requires only the ability

to compute proxf and proxg∗ = Id −proxg. Furthermore [49],

B ∈ M(H⊕ G) is monotone and β-Lipschitzian with β = max{µ, ν}+ ‖L‖. (4.26)

This structure makes the task of finding a zero of A amenable to the forward-backward-forward

algorithm (4.5), which requires one evaluation of proxγf and two evaluations of B at each iteration.

As seen in Section 4.1, given ε ∈ ]0, 1/(β + 1)[, the forward-backward-forward algorithm constructs a

sequence (xn)n∈N which converges weakly to a point in zerA via the recursion

for n = 0, 1, . . .
















ε 6 γn 6 (1− ε)/β
yn = xn − γnBxn
pn = proxγnfyn
qn = pn − γnBpn
xn+1 = xn − yn + qn.

(4.27)

Now set (∀n ∈ N) xn = (xn, vn), yn = (y1,n, y2,n), pn = (p1,n, p2,n), and qn = (q1,n, q2,n). Then, in

view of (4.25), (4.27) assumes the form of the primal-dual method of [49, Sect. 4], namely

for n = 0, 1, . . .
































ε 6 γn 6 (1− ε)/β
y1,n = xn − γn

(

∇h(xn) + L∗vn
)

y2,n = vn + γn
(

Lxn −∇ℓ∗(vn)
)

p1,n = proxγnfy1,n
p2,n = proxγng∗y2,n
q1,n = p1,n − γn

(

∇h(p1,n) + L∗p2,n
)

q2,n = p2,n + γn
(

Lp1,n −∇ℓ∗(p2,n)
)

xn+1 = xn − y1,n + q1,n
vn+1 = vn − y2,n + q2,n.

(4.28)

We conclude that (xn)n∈N converges weakly to a solution x to (4.20) and that (vn)n∈N converges

weakly to a solution v to (4.21).

Remark 4.7 Let us make a few observations regarding Problem 4.6 and the iterative method (4.28).
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(i) Algorithm (4.28) achieves full splitting of the functions and of the linear operators. In addition,

all the smooth functions are activated via explicit gradient steps, while the nonsmooth ones are

activated via their proximity operator.

(ii) The special case when ℓ = ι{0} and h = 0 leads to the monotone+skew decomposition approach

of [28]. As discussed in [28, Rem. 2.9], in this case the use Douglas-Rachford algorithm (4.6)

can also be contemplated since the resolvents Jγ∂f and JγS of the operators in (4.24) have

explicit forms.

(iii) In [120], Problem 4.6 is also written as that of finding a zero of A in (4.25). However, it is then

reformulated in a new Hilbert space obtained by suitably renorming H × G. This formulation

yields an equivalent inclusion problem for an operator which can be decomposed as the sum of

two maximally monotone operators amenable to forward-backward splitting (see Problem 4.1

and (4.4)) and, in fine, an algorithm which also achieves full splitting (see [41, 54, 66] for

related work). A special case of this framework is the algorithm proposed in [35].

(iv) The construction of algorithm (4.28) revolves around the problem of finding a zero of the opera-

tor A ∈ M(H⊕G)rS(H⊕G) of (4.25). It is not clear how this, or any of the splitting algorithms

mentioned in (i)–(iii), could have been devised using only subdifferential tools.

4.5 Lagrangian formulations of composite problems

We consider a special case of Problem 4.6 which corresponds to the standard Fenchel-Rockafellar

duality framework.

Problem 4.8 Let f ∈ Γ0(H), let G be a real Hilbert space, and let g ∈ Γ0(G). Suppose that 0 6= L ∈
B(H,G) and that 0 ∈ ran (∂f + L∗ ◦ ∂g ◦ L). The objective is to solve the primal problem

minimize
x∈H

f(x) + g(Lx) (4.29)

as well as the dual problem

minimize
v∈G

f∗(−L∗v) + g∗(v). (4.30)

We have already discussed in Remark 4.7(ii) monotone operator-based algorithms to solve (4.29)–

(4.30). Alternatively, set H = H ⊕ G, f : H → ]−∞,+∞] : (x, y) 7→ f(x) + g(y), and L : H →
G : (x, y) 7→ Lx − y. Then (4.29) is equivalent to minimizing f over kerL. The Lagrangian for this

type of problem is L : H ⊕ G → ]−∞,+∞] : (x, v) 7→ f(x) + 〈Lx | v〉 [105, Examp. 4’] (see also [13,

Prop. 19.21]) and the associated maximally monotone operator A of (4.12) is defined at (x, v) ∈ H⊕G
to be A(x, v) = (∂f(x) + L∗v,−Lx). Thus, solving (4.29)–(4.30) is equivalent to finding a zero of

the operator A ∈ M(H⊕ G ⊕ G)r S(H⊕ G ⊕ G) defined by

(∀x ∈ H)(∀y ∈ G)(∀v ∈ G) A(x, y, v) =
(

∂f(x) + L∗v, ∂g(y) − v,−Lx+ y
)

. (4.31)

In [57], this problem is approached by splitting A as

(∀x ∈ H)(∀y ∈ G)(∀v ∈ G) A(x, y, v) =
(

∂f(x) + L∗v, 0,−Lx
)

+
(

0, ∂g(y) − v, y
)

. (4.32)
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Given γ ∈ ]0,+∞[, µ1 ∈ R, µ2 ∈ R, x0 ∈ H, y0 ∈ G, and v0 ∈ G, applying the Douglas-Rachford

algorithm (4.6) to this decomposition leads to the algorithm [57]

for n = 0, 1, . . .


















xn+1 ∈ Argmin
x∈H

(

f(x) + 〈Lx | vn〉+
1

2γ
‖Lx− yn‖

2 +
γµ21
2

‖x− xn‖
2

)

yn+1 = argmin
y∈G

(

g(y) − 〈y | vn〉+
1

2γ
‖Lxn+1 − y‖2 +

γµ22
2

‖y − yn‖
2

)

vn+1 = vn + γ−1
(

Lxn+1 − yn+1

)

.

(4.33)

When µ1 = µ2 = 0, this scheme corresponds to the alternating direction method of multipliers

(ADMM) [48, 61, 62, 63] and, just like it, requires a potentially complex minimization involving

f and L jointly to construct xn+1 (see [58, 59] for connections between ADMM and the Douglas-

Rachford algorithm). To circumvent this issue and obtain a method that does split f , g, and L, let us

decompose A as A = M + S, where

(∀x ∈ H)(∀y ∈ G)(∀v ∈ G)

{

M (x, y, v) =
(

∂f(x), ∂g(y), 0
)

S(x, y, v) =
(

L∗v,−v,−Lx+ y
)

.
(4.34)

Applying (4.5) to this subdifferential+skew decomposition in H ⊕ G ⊕ G, we obtain the following

algorithm, which employs proxf , proxg, L, and L∗.

Proposition 4.9 Consider the setting of Problem 4.8 and let (x0, y0, v0) ∈ H ⊕ G ⊕ G. Iterate

for n = 0, 1, . . .




























ε 6 γn 6 (1− ε)/
√

1 + ‖L‖2

rn = γn(Lxn − yn)
pn = proxγnf

(

xn − γnL
∗vn
)

qn = proxγng
(

yn + γnvn
)

xn+1 = pn − γnL
∗rn

yn+1 = qn + γnrn

vn+1 = vn + γn
(

Lpn − qn
)

.

(4.35)

Then (xn)n∈N and (vn)n∈N converge weakly to solutions to (4.29) and (4.30), respectively.

Proof. This is an application of [28, Thm. 2.5(ii)] to the maximally monotone operator M and the

monotone and Lipschitzian operator S of (4.34). Note that the Lipschitz constant of S is ‖S‖ =
√

1 + ‖L‖2 and that (∀n ∈ N) JγnM = proxγnf × proxγng × Id . Thus, using elementary algebraic

manipulations, (4.5) reduces to (4.35).

Let us note that (4.35) bears a certain resemblance with the algorithm

for n = 0, 1, . . .


















ε 6 γn 6 (1− ε)min{1, 1/‖L‖}/2
pn = vn + γn(Lxn − yn)

xn+1 = proxγnf
(

xn − γnL
∗pn
)

yn+1 = proxγng
(

yn + γnpn
)

vn+1 = vn + γn
(

Lxn+1 − yn+1

)

,

(4.36)

proposed in a finite-dimensional setting in [37].
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5 Closing remarks

The constant interactions between convex optimization and monotone operator theory have greatly

benefited both fields. On the numerical side, spectacular advances have been made in the last years

in the area of splitting algorithms to solve complex structured problems. While many methods have

been obtained by recasting classical algorithms in product spaces, often with the help of duality ar-

guments, recent proposals such as that of [43] rely on different paradigms and make asynchronous

and block-iterative implementations possible. Despite the relative maturity of the field, there remain

plenty of exciting open problems, and we can mention only a few here. For instance, on the theo-

retical side, duality for monotone inclusions is based on rather rudimentary principles, whereby dual

solutions exist if and only if primal solution exist, and it does not match the more subtle results from

Fenchel-Rockafellar duality in classical convex optimization. On the algorithmic front, splitting based

on Bregman distances is still in its infancy. This framework is motivated by the need to solve problems

in Banach spaces, where standard notions of resolvent and proximity operators are no longer appro-

priate, but also by numerical considerations in basic Euclidean spaces since some proximity operators

may be easier to implement in Bregman form or some functions may have more exploitable properties

when examined through Bregman distances [8, 45, 96]. As a final word, let us emphasize that a

monumental achievement of Browder, Kačurovskĭı, Minty, Moreau, Rockafellar, and Zarantonello was

to build, within the unchartered field of nonlinear analysis, structured and fertile areas that extended

ideas from classical linear functional analysis. It remains a huge challenge to delimit and construct

such areas in the vast world of nonconvex/nonmonotone problems, that would preserve enough struc-

ture to support a solid and meaningful theory and, at the same time, lend itself to the development of

powerful algorithms that would produce more than just local solutions.
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tones, Israel J. Math., vol. 26, pp. 137–150, 1977.

[7] S. Bartz, H. H. Bauschke, J. M. Borwein, S. Reich, and X. Wang, Fitzpatrick functions, cyclic monotonicity
and Rockafellar’s antiderivative, Nonlinear Anal., vol. 66, pp. 1198–1223, 2007.

[8] H. H. Bauschke, J. Bolte, and M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: First-
order methods revisited and applications, Math. Oper. Res., vol. 42, pp. 330–348, 2017.

[9] H. H. Bauschke, M. N. Bui, and X. Wang, Projecting onto the intersection of a cone and a sphere, 2017.
https://arxiv.org/pdf/1708.00585

[10] H. H. Bauschke, M. N. Bui, and X. Wang, On the sum of projectors onto convex sets, 2018.
https://arxiv.org/pdf/1802.02287

[11] H. H. Bauschke and P. L. Combettes, A Dykstra-like algorithm for two monotone operators, Pac. J.

Optim., vol. 4, pp. 383–391, 2008.

21

https://arxiv.org/pdf/1708.00585
https://arxiv.org/pdf/1802.02287


[12] H. H. Bauschke and P. L. Combettes, The Baillon-Haddad theorem revisited, J. Convex Anal., vol. 17, pp.
781–787, 2010.

[13] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces,

2nd ed. Springer, New York, 2017.

[14] H. H. Bauschke, E. Matoušková, and S. Reich, Projection and proximal point methods: Convergence
results and counterexamples, Nonlinear Anal., vol. 56, pp. 715–738, 2004.

[15] H. H. Bauschke, S. M. Moffat, and X. Wang, Firmly nonexpansive mappings and maximally monotone
operators: Correspondence and duality, Set-Valued Var. Anal., vol. 20, pp. 131–153, 2012.

[16] H. H. Bauschke, J. Schaad, and X. Wang, On Douglas-Rachford operators that fail to be proximal map-
pings, Math. Program., vol. B168, pp. 55–61, 2018.

[17] H. H. Bauschke, X. Wang, and L. Yao, On Borwein-Wiersma decompositions of monotone linear relations,
SIAM J. Optim., vol. 20, pp. 2636–2652, 2010.

[18] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM J. Imaging Sci., vol. 2, pp. 183–202, 2009.

[19] R. Bellman, R. E. Kalaba, and J. A. Lockett, Numerical Inversion of the Laplace Transform: Applications to

Biology, Economics Engineering, and Physics. Elsevier, New York, 1966.

[20] J. M. Borwein, Maximal monotonicity via convex analysis, J. Convex Anal., vol. 13, pp. 561–586, 2006.

[21] J. M. Borwein, Asplund decompositions of monotone operators, ESAIM: Proc., vol. 17, pp. 19–25, 2007.

[22] J. M. Borwein and H. Wiersma, Asplund decomposition of monotone operators, SIAM J. Optim., vol. 18,
pp. 946–960, 2007.
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pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, RAIRO Anal. Numer., vol. 2,
pp. 41–76, 1975.

[63] R. Glowinski, S. J. Osher, and W. Yin (eds.), Splitting Methods in Communication, Imaging, Science, and

Engineering. Springer, New York, 2016.

[64] M. Golomb, Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungssysteme und allge-
meinen Funktionalgleichungen, Math. Z., vol. 39, pp. 45–75, 1935.
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[98] N. Papadakis, G. Peyré, and E. Oudet, Optimal transport with proximal splitting, SIAM J. Imaging Sci.,

vol. 7, pp. 212–238, 2014.

[99] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, 2nd ed. Springer-Verlag, Berlin,
1993.
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