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Situation and goals

♣ Problem: Convex minimization problem
Opt(P) = min

x∈X
f (x) (P)

• X ⊂ Rn: convex compact • f : x → R: convex Lipschitz continuous

♣ Goal: to solve nonsmooth large-scale problems of sizes
beyond the “practical grasp” of polynomial time algorithms
⇒Focus on computationally cheap First Order methods with
(nearly) dimension-independent rate of convergence:
• for every ǫ > 0, an ǫ-solution xǫ ∈ X :

f (xǫ)− Opt(P) ≤ ǫ[max
X

f − min
X

f ]

is computed in at most C · M(ǫ) First Order iterations, where
• M(ǫ) is a universal (i.e., problem-independent) function
• C is either an absolute constant, or a universal function of

n = dim X with slow (e.g., logarithmic) growth.
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Strategy (Nesterov ’03)

Opt(P) = min
x∈X

f (x) (P)

• X ⊂ Rn: convex compact • f : x → R: convex Lipschitz continuous

1. Utilizing problem’s structure, we represent f as
f (x) = max

y∈Y
φ(x , y)

• Y ⊂ Rm: convex compact
• φ(x , y): convex in x ∈ X , concave in y ∈ Y and smooth

⇒(P) becomes the convex-concave saddle point problem:
Opt(P) = min

x∈X
max
y∈Y

φ(x , y) (SP)

⇔





Opt(P) = min
x∈X

[
f (x) = max

y∈Y
φ(x , y)

]
(P)

Opt(D) = max
y∈Y

[
f (y) = min

x∈X
φ(x , y)

]
(D)

Opt(P) = Opt(D)
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Strategy (continued)

Opt(P) = min
x∈X

f (x) ⇔ Opt(P) = min
x∈X

max
y∈Y

φ(x , y)

2. (SP) is solved by a Saddle Point First Order method utilizing
smoothness of φ.
⇒after t = 1,2, ... steps of the method, approximate solution
(x t , y t ) ∈ X × Y is built with

f (x t)− Opt(P) ≤ εsad(x t , y t) := f (x t)− f (y t )≤ O(1/t). (!)

♣ Note: When X ,Y are of “favorable geometry” and φ is
“simple” (which is the case in numerous applications),

• Efficiency estimate (!) is “nearly dimension-independent:”

εsad(x t , y t) ≤ C(dim [X × Y ])VarX (f )
t , VarX (f ) = maxX f − minX f

• C(n): grows with n at most logarithmically
• The method is “computationally cheap:” a step requires

O(1) computations of ∇φ plus computational overhead of O(n)
(“scalar case”) or O(n3/2) (“matrix case”) arithmetic operations.
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Why O(1/t) is a good convergence rate?

f (x t)− Opt(P) ≤ O(1/t) (!)

♣ When solving nonsmooth large-scale problems, even “ideally
structured” ones, by First Order methods, convergence rate
O(1/t) seems to be unimprovable. This is so already when
solving Least Squares problems

Opt(P) = minx∈X [f (x) := ‖Ax − b‖2] , X = {x ∈ Rn : ‖x‖2 ≤ R}
⇔ Opt(P) = min‖x‖2≤R max‖y‖2≤1 yT (Ax − b)

♣ Fact [Nem.’91]: Given t and n > O(1)t , for every method
which generates x t after t sequential calls to Multiplication
oracle capable to multiply vectors, one at a time, by A and AT ,
there exists an n-dimensional Least Squares problem such that
Opt(P) = 0 and

f (x t)− Opt(P) ≥ O(1)VarX (f )/t .

Saddle Point First Order Algorithms



Examples of saddle form reformulations

• Minimizing the maximum of smooth convex functions:
min
x∈X

max
1≤i≤m

fi(x)

⇔ min
x∈X

max
y∈Y

∑
i
yi fi(x), Y = {y ≥ 0,

∑
i
yi = 1}

• Minimizing maximal eigenvalue:
min
x∈X

λmax(
∑

i xiAi)

⇔ min
x∈X

max
y∈Y

Tr(y [
∑

i
xiA

i ]), Y = {y � 0,Tr(y) = 1}

• L1/Nuclear norm minimization. The main tool in sparsity
oriented Signal Processing – the problem

minξ{‖ξ‖1 : ‖A(ξ)− b‖p ≤ δ}
• ξ 7→ A(ξ): linear • ‖ · ‖1: ℓ1/nuclear norm of a vector/matrix

reduces to a small series of bilinear saddle point problems
min

x
{‖A(x) − ρb‖p : ‖x‖1 ≤ 1} ⇔ min

‖x‖1≤1
max

‖y‖p/(p−1)≤1
yT (A(x)− ρb)
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Background: Basic Mirror Prox Algorithm [Nem.’04]

minx∈X maxy∈Yφ(x , y) (SP)
• X ⊂ Ex ,Y ⊂ Ey : convex compacts in Euclidean spaces
• φ : convex-concave Lipschitz continuous

MP Setup

♣ We fix:
• a norm ‖ · ‖ on the space E = Ex × Ey ⊃ Z := X × Y
• a distance-generating function (d.-g.f.) ω(z) : Z → R – a
continuous convex function such that

— the subdifferential ∂ω(·) admits a selection ω′(·) continuous
on Z o = {z ∈ Z : ∂ω(z) 6= ∅}

— ω(·) is strongly convex modulus 1 w.r.t. ‖ · ‖:
〈ω′(z) − ω′(z′), z − z′〉 ≥ ‖z − z′‖2 ∀z, z′ ∈ Z o

♣ We introduce:
• ω-center of Z : zω := argminZ ω(·)
• Bregman distance: Vz(u) := ω(u)− ω(z)− 〈ω′(z), u − z〉 [z ∈ Z o]
• Prox-mapping: Proxz(ξ) = argminu∈Z [〈ξ, u〉+ Vz(u)] [z ∈ Z o, ξ ∈ E ]
• “ω-size of Z ”: Ω := maxu∈Z Vzω (u)
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Basic MP algorithm (continued)

minx∈X maxy∈Yφ(x , y) (SP)
F (x , y) = [Fx(x , y);Fy (x , y)] : Z = X × Y → E = Ex × Ey :

Fx (x , y) ∈ ∂xφ(x , y), Fy(x , y) ∈ ∂y [−φ(x , y)]

♣ Basic MP algorithm:
z1 = zω := argminZ ω(·)

zt ⇒ wt = Proxzt (γtF (zt)) [γt > 0 : stepsizes]
⇒ zt+1 = Proxzt (γtF (wt))

z t = (x t , y t ) :=
[∑t

τ=1 γτ

]−1 ∑t
τ=1 γτwτ

Illustration: Euclidean setup

• ‖ · ‖ = ‖ · ‖2, ω(z) = 1
2 zT z

⇒Vz(u) = 1
2‖u − z‖2

2, Ω = O(1) max
u,v∈Z

‖u − v‖2
2, Proxz(ξ) = ProjZ (z − ξ)

⇒
Z ∋ zt ⇒ wt = ProjZ (zt − γtF (zt )) ⇒ zt+1 = ProjZ (zt − γtF (wt))

z t =
[∑t

τ=1 γτ

]−1 ∑t
τ=1 γτwτ

Note: Up to averaging, this is Extragradient method due to
G. Korpelevich ’76.
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Basic MP algorithm: efficiency estimate

minx∈X maxy∈Yφ(x , y) (SP)
F (x , y) = [Fx(x , y);Fy (x , y)] : Z = X × Y → E = Ex × Ey :

Fx (x , y) ∈ ∂xφ(x , y), Fy(x , y) ∈ ∂y [−φ(x , y)]

♣ Theorem [Nem.’04]: Let F be Lipschitz continuous:

‖F (z) − F (z′)‖∗ ≤ L‖z − z′‖ ∀z, z′ ∈ Z ,

(‖ · ‖∗ is the conjugate of ‖ · ‖) and let γτ ≥ L−1 be such that

γτ 〈F (wτ ),wτ − zτ+1〉 ≤ Fzτ (zτ+1),

which definitely is the case when γτ ≡ L−1. Then

∀t ≥ 1 : εsad(z t ) ≤
[∑t

τ=1
γτ

]−1

Ω ≤ ΩL/t
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The case of “favorable geometry”

minx∈X maxy∈Yφ(x , y) (SP)

♣ Let Z = X × Y be a subset of the direct product Z+ of p + q
standard blocks: Z := X × Y ⊂ Z+ = Z 1 × ...× Z p+q

• Z i = {‖zi‖2 ≤ 1} ⊂ Ei = Rni , 1 ≤ i ≤ p: ball blocks
• Z i = Si ⊂ Ei = Sν i

, p + 1 ≤ i ≤ p + q: spectahedron blocks
Sν i

: space of symmetric matrices of block-diagonal structure ν i

with the Frobenius inner product
Si : the set of all unit trace � 0-matrices from Sν i

• X and Y are subsets of products of complementary groups of Z i ’s

♣ Note:
• The simplex ∆n = {x ∈ Rn

+ :
∑

i xi = 1} is a spectahedron;
• ℓ1/nuclear norm balls (as in ℓ1/nuclear norm minimization) can be

expressed via spectahedrons:
u ∈ Rn, ‖u‖1 ≤ 1 ⇔ ∃[v ,w ] ∈ ∆2n : u = v − w

U ∈ Rp×q, ‖U‖∗ ≤ 1 ⇔ ∃V ,W :

[
V 1

2 U
1
2 UT W

]
∈ S
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“Favorable geometry” (continued)

minx∈X maxy∈Y φ(x , y) (SP)
X × Y := Z ⊂ Z+ = Z 1 × ...× Z p+q

♣ We associate with blocks Z i “partial MP setup data:”

Block
Norm on the

embedding space
d.-g.f. ωi -size of Z i

ball
Z i ⊂ Rni

‖zi‖(i) ≡ ‖zi‖2
1
2 zT

i zi Ωi =
1
2

spectahedron

Z i ⊂ Sν i ‖zi‖(i) ≡ ‖λ(zi)‖1
∑

ℓ λℓ(zi) lnλℓ(zi) Ωi = ln(|ν i |)

[λℓ(zi) : eigenvalues of zi ∈ Sν i
]

♣ Assuming ∇φ Lipschitz continuous, we find Lij = Lji satisfying
‖∇ziφ(u) −∇ziφ(v)‖(i,∗) ≤

∑
j Lij‖uj − vj‖(j)

♣ Partial setup data induce MP setup for (SP) yielding the
efficiency estimate

∀t : εsad(z t ) ≤ L/t , L =
∑

i ,j Lij
√

ΩiΩj
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(Nearly) dimension-independent efficiency estimate

minx∈X
[
f (x) = maxy∈Yφ(x , y)

]
(SP)

• Z := X × Y ⊂ Z+ = Z 1 × ...× Z p+q

• Z 1, ...,Z p: unit balls • Z p+1, ...,Z p+q: spectahedrons
‖∇ziφ(u)−∇ziφ(v)‖(i,∗) ≤

∑
j Lij‖uj − vj‖(j)

⇒ εsad(z t) ≤ L/t ,
L =

∑
i ,j Lij

√
ΩiΩj ≤ ln(dim Z )(p + q)2 maxi ,j Lij

(!)

♣ In good cases, p + q = O(1), ln(dim Z ) ≤ O(1) ln(dim X ) and
maxi ,j Lij ≤ O(1)[maxX f − minX f ]
⇒(!) becomes nearly dimension-independent O(1/t) efficiency
estimate

f (x t)− minX f ≤ O(1) ln(dim X )VarX (f )/t
♣ If Z is cut off Z+ by O(1) linear inequalities, the effort per
iteration reduces to O(1) computations of ∇φ and eigenvalue
decomposition of O(1) matrices from Sν i

, p + 1 ≤ i ≤ p + q.
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Example: Linear fitting

Opt(P) = minξ∈Ξ [f (ξ) = ‖Aξ − b‖p] , Ξ = {ξ : ‖ξ‖π ≤ R}
• A: m × n • p: 2 or ∞ • π: 1 or 2

m
Opt(P) = min‖x‖π≤1max‖y‖p∗≤1 yT (RAx − b), p∗ = p/(p − 1)

♣ Setting

‖A‖π,p = max
‖x‖π≤1

‖Ax‖p =





max1≤j≤n ‖Columnj(A)‖p, π = 1
‖σ(A)‖∞, π = p = 2
max1≤i≤m ‖Rowi(A)‖2, π = 2, p = ∞

the efficiency estimate of MP reads

f (x t)− Opt(P) ≤ O(1)[ln(n)]
1
π
− 1

2 [ln(m)]
1
2−

1
p ‖A‖π,p/t

♣ When problem is “nontrivial:” Opt(P) ≤ 1
2‖b‖p, this implies

f (x t)− Opt(P) ≤ O(1)[ln(n)]
1
π
− 1

2 [ln(m)]
1
2−

1
p VarΞ(f )/t

Note: When π = 1, the results remain intact when passing from
Ξ = {ξ ∈ Rn : ‖ξ‖1 ≤ R} to Ξ = {ξ ∈ Rn×n : ‖σ(ξ)‖1 ≤ R}.
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How it works: Example 1: First Order method vs. IPM

x̂ ≈ argmin
x

{‖Ax − b‖∞ : ‖x‖1 ≤ 1}
[

A: random m × n submatrix of n × n D.F.T. matrix
b: ‖Ax∗ − b‖∞ ≤ δ = 5.e-3 with 16-sparse x∗, ‖x∗‖1 = 1

]

Errors CPU
m × n Method ‖x∗ − x̂‖1 ‖x∗ − x̂‖2 ‖x∗ − x̂‖∞ sec

512 × 2048 DMP 0.0052 0.0018 0.0013 3.3
IP 0.0391 0.0061 0.0021 321.6

1024 × 4096 DMP 0.0096 0.0028 0.0015 3.5
IP Out of space (2GB RAM)

4096 × 16384 DMP 0.0057 0.0026 0.0024 46.4
IP not tested

• Mirror Prox utilizing FFT
• IP: Commercial Interior Point LP solver mosekopt
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How it works: Example 2: Sparse ℓ1 recovery

♣ Situation and Goal: We observe 33% of randomly selected
pixels in a 256 × 256 image X and want to recover the entire image.
♠ Solution strategy: Representing the image in a wavelet basis:
X = Ux , the observation becomes y = Ax , where A is comprised of
randomly selected rows of U.
Applying the ℓ1 minimization, the recovered image is X̂ = Ux̂ ,

x̂= Argmin
x

{‖x‖1 : Ax = b}
Note: multiplication of a vector by A and AT takes linear time
⇒situation is perfectly well suited for First Order methods
♠ Matrix A:

• sizes 21, 789 × 65, 536
• density 4% (5.3 × 107 nonzero entries)

♠ Target accuracy: we seek for x̃ such that ‖x̃‖1 ≤ ‖x̂‖1 and
‖Ax̃ − b‖2 ≤ 0.0075‖b‖2

♠ CPU time: 1,460 sec (MATLAB, 2.13 GHz single-core Intel Pentium
M processor, 2 GB RAM)
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Example 2 (continued)
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Steps: 328 CPU: 99′′

‖Ax−b‖2
‖b‖2

= 0.0647
Steps: 947 CPU: 290′′

‖Ax−b‖2
‖b‖2

= 0.0271
Steps: 4,746 CPU: 1460′′

‖Ax−b‖2
‖b‖2

= 0.0075
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How it works: Example 3: Lovasz Capacity of a graph

♣ Problem: Given graph G with n nodes and m arcs, compute
θ(G) = min

X∈Sn

{
λmax(X + J) : Xij = 0 when (i , j) is an arc

}

within accuracy ǫ.
• J: all-ones matrix
♣ Saddle point reformulation:

min
X∈X

max
Y∈Y

Tr (Y (X + J))



X = {X ∈ Sn : Xij = 0 when (i , j) is an arc, |Xij | ≤ θ̄}
Y = {Y ∈ Sn : Y � 0,Tr(Y ) = 1}
θ̄ : a priori upper bound on θ(G)




♠ For ǫ fixed and n large, theoretical complexity of estimating
θ(G) within accuracy ǫ is by orders of magnitude smaller than
the cost of a single IP iteration.
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Example 3 (continued)

# of arcs # of nodes
# of steps,

ǫ = 1
CPU time,
Mirror Prox

CPU time,
IPM (estimate)

616 50 527 2′′ 0
2,459 100 738 15′′ 15 sec
4,918 200 1,003 2′ 30′′ >2 min

11,148 300 3,647 32′ 08′′ >23 min
20,006 400 2,067 46′ 35′′ >2 hours
62,230 500 1,867 25′ 21′′ >2.7 days

197,120 1024 1,762 1h 37′ 40′′ >12.7 weeks

Computing Lovasz Capacity, performance 3 Gfl/sec.
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Accelerating MP, I: Splitting [Ioud.&Nem.’11]

♣ Fact [Nesterov’07,Beck&Teboulle’08,...]: If the objective f (x)
in a convex problem minx∈X f (x) is given as f (x) = g(x) + h(x),
where g, h are convex, and

— g(·) is smooth,
— h(·) is perhaps nonsmooth, but “easy to handle,”

then f can be minimized at the rate O(1/t2) — “as if” there
were no nonsmooth component.
♣ This fact admits saddle point extension.
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Splitting (continued)

Situation

♣ Problem of interest:
minx∈X maxy∈Yφ(x , y) [⇒ Φ(z) = ∂xφ(z) × ∂y [−φ(z)]]

• X ⊂ Ex ,Y ⊂ Ey : convex compacts in Euclidean spaces
• φ: convex-concave continuous
• E = Ex × Ey , Z = X × Y : equipped with norm ‖ · ‖ and d.-g.f. ω(·)
♣ Splitting Assumption:

Φ(z) ⊃ G(z) +H(z)
• G(·) : Z → E : single-valued Lipschitz: ‖G(z)−G(z ′)‖∗ ≤ L‖z − z ′‖
• H(z): monotone convex valued with closed graph and “easy to
handle:” Given α > 0 and ξ, we can easily find a strong solution to
the variational inequality given by Z and the monotone operator
H(·) + αω′(·) + ξ, that is, find z̄ ∈ Z and ζ ∈ H(z̄) such that

〈ζ + αω′(z̄) + ξ, z − z̄〉 ≥ 0 ∀z ∈ Z
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Splitting (continued)

minx∈X maxy∈Yφ(x , y) ⇒ Φ(z) = ∂xφ(z) × ∂y [−φ(z)]
Φ(z) ⊃ G(z) +H(z)

• ‖G(z)− G(z ′)‖∗ ≤ L‖z − z ′‖
• H: monotone and easy to handle

♣ Theorem [Ioud.&Nem.’11]: Under Splitting Assumption, the
MP algorithm can be modified to yield the efficiency estimate
“as if” there were no H-component:

εsad(z t ) ≤ ΩL/t ,
Ω = max

z∈Z
[ω(z) − ω(zω)− 〈ω′(zω), z − zω〉]: ω-size of Z .

An iteration of the modified algorithm costs 2 computations of
G(·), solving auxiliary problem as in Splitting Assumption, and
computing 2 prox-mappings.
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Illustration: Dantzig selector

♣ Dantzig selector recovery in Compressed Sensing reduces
to solving the problem

minξ{‖ξ‖1 : ‖AT Aξ − AT b‖∞ ≤ δ} [A ∈ Rm×n]
• In typical Compressed Sensing applications, the diagonal
entries in AT A are O(1)’s, while moduli of off-diagonal entries
do not exceed µ ≪ 1 (usually, µ = O(1)

√
ln(n)/m).

⇒In the saddle point reformulation of Dantzig selector problem,
splitting induced by partitioning AT A into its off-diagonal and
diagonal parts accelerates the solution process by factor 1/µ.
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Accelerating MP, II: Strongly concave case [Ioud.&Nem.’11]

Situation:

♣ Problem of interest:
minx∈X maxy∈Yφ(x , y) [⇒ Φ(z) = ∂xφ(z) × ∂y [−φ(z)]]

• X ⊂ Ex : convex compact,
Ex ,X equipped with ‖ · ‖x and d.-g.f. ωx(x)

• Y ⊂ Ey = Rm: closed and convex,
Ey equipped with ‖ · ‖y and d.-g.f. ωy (y)

• φ: continuous, convex in x and
strongly concave in y w.r.t. ‖ · ‖y

♣ Modified Splitting Assumption:
Φ(x , y) ⊃ G(x , y) +H(x , y)

• G(x , y) = [Gx(x , y);Gy (x , y)] : Z → E = Ex × Ey :
single-valued Lipschitz with Gx(x , y) depending solely on y
• H(x , y): monotone convex valued with closed graph and
“easy to handle.”
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Strongly concave case (continued)

minx∈X maxy∈Yφ(x , y) (SP)

♣ Fact [Ioud.&Nem’11]: Under outlined assumptions, the
efficiency estimate of properly modified MP can be improved
from O(1/t) to O(1/t2).
♣ Idea of acceleration:
• The error bound of MP is proportional to the ω-size of the
domain Z = X × Y
• When applying MP to (SP), strong concavity of φ in y results
in a qualified convergence of y t to the y-component y∗ of a
saddle point
⇒Eventually the (upper bound) on the distance from y t to y∗
will be reduced by absolute constant factor. When it happens,
independence of Gx of x allows to rescale the problem and to
proceed as if the ω-size of Z were reduced by absolute
constant factor.
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Illustration: LASSO

♣ Problem of interest:
Opt = min

‖ξ‖1≤R

[
f (ξ) := ‖ξ‖1 + ‖Pξ − p‖2

2

]
[P : m × n]

(LASSO with added upper bound on ‖ξ‖1).

♣ Result: With the outlined acceleration, one can find
ǫ-solution to the problem in

M(ǫ) = O(1)R‖P‖1,2
√

ln(n)/ǫ,
‖P‖1,r = maxj ‖Columnj(P)‖r

steps, with effort per step dominated by two matrix-vector
multiplications involving P and PT .

♣ Note: In terms of its efficiency and application scope, the
outlined acceleration is similar to the “excessive gap technique”
[Nesterov’05].
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Accelerating MP, III: Randomization [Ioud.&Kil.-Karz.&Nem.’10]

♣ We have seen that many important convex programs reduce
to bilinear saddle point problems

minx∈X maxy∈Y [φ(x , y) = 〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (SP

⇒ F (z = (x , y)) = [a;−b] +Az, A =

[
A∗

−A

]
= −A∗

♣ When X ,Y are simple, the computational cost of an iteration
of a First Order method (e.g., MP) is dominated by computing
O(1) matrix-vector products X ∋ x 7→ Ax, Y ∋ y 7→ A∗y .
• Can we save on computing these products?
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Randomization (continued)

♣ Computing matrix-vector product u 7→ Bu : Rp → Rq is easy
to randomize, e.g., as follows:

pick a sample  ∈ {1, ...,p} from the probability
distribution Prob{ = j} = |uj |/‖u‖1, j = 1, ...,p and
return ζ = ‖u‖1sign(u)Column[B].

♣ Note:
• ζ is an unbiased random estimate of Bu: E{ζ} = Bu;
• We have ‖ζ‖ ≤ ‖u‖1 maxj ‖Columnj [B]‖
⇒“noisiness” of the estimate is controlled by ‖u‖1

• When the columns of B are readily available, computing ζ is simple:
given u, it takes O(1)(p + q) a.o. vs. O(1)pq a.o. required for precise
computation of Bu for a general-type B.
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Randomization (continued)

minx∈X maxy∈Y [φ(x , y) = 〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (SP)

♣ Situation:
• X ⊂ Ex : convex compact, Ex ,X are equipped with ‖ · ‖x and

d.-g.f. ωx(·)
• Y ⊂ Ey : convex compact, Ey ,Y are equipped with ‖ · ‖y and

d.-g.f. ωy (·)
⇒

{
Ωx ,Ωy : respective ω-sizes of X ,Y
‖A‖x,y := maxx{‖Ax‖y ,∗ : ‖x‖x ≤ 1}

• x ∈ X are associated with probability distributions Px on X
such that Eξ∼Px{ξ} ≡ x

• y ∈ Y are associated with probability distributions Πy on Ey

such that Eη∼Πy{η} ≡ y .

⇒





ξu = 1
kx

∑kx
ℓ=1 ξ

ℓ, ξℓ ∼ Pu : i.i.d. [u ∈ X ]

ηv = 1
ky

∑ky

ℓ=1 η
ℓ, ηℓ ∼ Πv : i.i.d. [v ∈ Y ]

σ2
x = supu∈X E{‖A[ξu − u]‖2

y ,∗}
σ2

y = supv∈Y E{‖A∗[ηv − v ]‖2
x,∗}

⇒
{

ω(x , y) = 1
2Ωx

ωx (x) + 1
2Ωy

ωy (y), σ2 = 2
[
Ωxσ

2
y +Ωyσ

2
x

]

Saddle Point First Order Algorithms



Randomization (continued)

minx∈X maxy∈Y [φ(x , y) = 〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (SP)
[F (x , y) = [Fx = a + A∗y ;Fy = −b − Ax ]]

‖ · ‖x , ωx(·), ‖ · ‖y , ωy (·), {Pu}u∈X , {Πv}v∈Y , kx , ky

⇒ .........
⇒ {ξx , x ∈ X}; {ηy , y ∈ Y}; ω(x , y) : Z := X × Y → R; Ωx ,Ωy , σ

2

Randomized MP Algorithm

♣ With number N of steps given, set γ = min
[

1
2‖A‖x,y

√
3ΩxΩy

, 1√
3σ2N

]

and execute:
z1 = argminz∈Z ω(z)

For t = 1, 2, ...,N:
zt = (xt , yt) ⇒ ζt = [ξxt , ξyt ] ⇒ F (ζt )

⇒ wt = (ut , vt) = Proxzt (γF (ζt ))
:= argminw∈Z {ω(w) + 〈γF (ζt )− ω′(zt),w〉}
⇒ ζ̂t = [ξut ; ηvt ] ⇒ F (ζ̂t )

⇒ zt+1 = Proxzt (γF (ζ̂t ))

zN = (xN , yN) = 1
N

∑N
t=1 ζ̂t ⇒ F (zN) = 1

N

∑N
t=1 F (ζt ).
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Randomization (continued)

Opt = minx∈X
{

f (x) := maxy∈Y [〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉]
}

(SP)
⇒ ......... ⇒ Ωx ,Ωy , σ

Theorem [Ioud.&Nem.’11]

For every N, the N-step Randomized MP algorithm ensures
that xN ∈ X and

E
{

f (xN)− Opt
}
≤ 7 max

[
σ√
N
,
‖A‖x,y

√
ΩxΩy

N

]
.

When Πy is supported on Y for all y ∈ Y , then also yN ∈ Y and

E
{
εsad(zN)

}
≤ 7 max

[
σ√
N
,
‖A‖x,y

√
ΩxΩy

N

]
.

Note: The method produces both zN and F (zN), which allows for
easy computation of εsad(z

N). This feature is instrumental when
Randomized MP is used as “working horse” in processing, e.g., ℓ1

minimization problems
min

x
{‖x‖1 : ‖Ax − b‖p ≤ δ}
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Application I: ℓ1 minimization with uniform fit

♣ ℓ1 minimization with uniform fit
minξ {‖ξ‖1 : ‖Aξ − b‖∞ ≤ δ} [A : m × n]

reduces to a small series of problems
Opt = min‖x‖1≤1 ‖Ax − ρb‖∞

= min
‖x‖1≤1

max
‖y‖1≤1

yT (Ax − ρb) (!)

Corollary of Theorem:

For every N, one can find random feasible solution (xN , yN) to
(!), along with AxN , AT yN , in such a way that

Prob

{
εsad(xN , yN) ≤ O(1)

ln(2mn)‖A‖1,∞√
N

}
> 1

2

in N steps of Randomized MP, with effort per step dominated by
extracting from A O(1) columns and rows, given their indices.
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Discussion

Opt = min‖x‖1≤1 ‖Ax − ρb‖∞
= min

‖x‖1≤1
max
‖y‖1≤1

yT (Ax − ρb) (!)

♣ Let confidence level 1 − β, β ≪ 1 and ǫ < ‖A‖1,∞ = maxi,j |Aij | be
given. Applying Randomized MP, we with confidence ≥ 1 − β find a
feasible solution (x̄ , ȳ) satisfying εsad(x̄ , ȳ) ≤ ǫ in

O(1) ln2(2mn) ln(1/β)(m + n)
[
‖A‖1,∞

ǫ

]2

arithmetic operations.
♣ When A is general type dense m × n matrix, the best known
complexity of finding ǫ-solution to (!) by a deterministic algorithm is,
for ǫ fixed and m, n large,

O(1)
√

ln(2m) ln(2n)mn
[
‖A‖1,∞

ǫ

]

arithmetic operations.
⇒When the relative accuracy ǫ/‖A‖1,∞ is fixed and m,n are
large, the computational effort in the randomized algorithm is
negligible as compared to the one in a deterministic method.
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Discussion (continued)

Opt = min‖x‖1≤1 ‖Ax − ρb‖∞
= min

‖x‖1≤1
max
‖y‖1≤1

yT (Ax − ρb) (!)

♣ The efficiency estimate

O(1) ln2(2mn) ln(1/β)(m + n)
[
‖A‖1,∞

ǫ

]2
a.o.

says that with ǫ, β fixed and m,n large, the Randomized MP
exhibits sublinear time behavior: ǫ-solution is found reliably
while looking through a negligible fraction of the data.

Note: (!) is equivalent to a zero sum matrix game, and a such can be
solved by the sublinear time randomized algorithm for matrix games
[Grigoriadis&Khachiyan’95]. In hindsight, this “ad hoc” algorithm is
close, although not identical, to Randomized MP as applied to (!).

♣ Note: Similar results hold true for ℓ1 minimization with 2-fit:
minξ {‖ξ‖1 : ‖Aξ − b‖2 ≤ δ}
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Numerical Illustration: Policeman vs. Burglar

♣ Problem: There are n houses in a city, i-th with wealth wi .
Every evening, Burglar chooses a house i to be attacked, and
Policeman chooses his post near a house j . The probability for
Policeman to catch Burglar is

exp{−θdist(i , j)}, dist(i , j): distance between houses i and j.
Burglar wants to maximize his expected profit

wi(1 − exp{−θdist(i , j)}),
the interest of Policeman is completely opposite.

• What are the optimal mixed strategies of Burglar and
Policeman?

♠ Equivalently: Solve the matrix game
max
y≥0,

∑n
i=1 yi=1

min
x≥0,

∑n
j=1 xj=1

φ(x , y) := yT Ax

Aij = wi(1 − exp{−θdist(i , j)})
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Policeman vs. Burglar (continued)

Wealth on 200×200 square grid of houses

♠ Deterministic approach: The 40,000×40,000 fully dense game
matrix A is too large for 8 GB RAM of my computer. To compute once
∇φ(x , y) = [AT y ;Ax ] via on-the-fly generating rows and columns of A
takes 97.5 sec (2.67 GHz Intel Core i7 64-bit CPU).
⇒Running time of Deterministic algorithm is tens of hours...
♠ Randomization: 50,000 iterations of the randomized MP take
1h31′30′′ (like just 28 steps of deterministic algorithm) and result in
approximate solution of accuracy 0.0008.
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Policeman vs. Burglar (continued)
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♠ The resulting highly sparse near-optimal solution can be refined by
further optimizing it on its support by an interior point method. This
reduces inaccuracy from 0.0008 to 0.0005 in just 39′.

0

50

100

150

200

0

50

100

150

200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

50

100

150

200

0

50

100

150

200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Policeman, refined Burglar, refined

Saddle Point First Order Algorithms



References

A. Beck, M. Teboulle, A Fast Iterative... – SIAM J. Imag. Sci. ’08

D. Goldfarb, K. Scheinberg, Fast First Order... Tech. rep. Dept. IEOR,
Columbia Univ. ’10

M. Grigoriadis, L. Khachiyan, A Sublinear Time... – OR Letters 18 ’95

A. Juditsky, F. Kilinç Karzan, A. Nemirovski, ℓ1 Minimization... (’10),
http://www.optimization-online.org

A. Juditsky, A. Nemirovski, First Order... I,II: S. Sra, S. Novozin, S.J.
Wright, Eds., Optimization for Machine Learning, MIT Press, 2011

A. Nemirovski, Information-Based... – J. of Complexity 8 ’92

A. Nemirovski, Prox-Method... – SIAM J. Optim. 15 ’04

Yu. Nesterov, A Method for Solving... – Soviet Math. Dokl. 27:2 ’83

Yu. Nesterov, Smooth Minimization... – Math. Progr. 103 ’05

Yu. Nesterov, Excessive Gap Technique... SIAM J. Optim. 16:1 ’05

Yu. Nesterov, Gradient Methods for Minimizing... CORE Discussion
Paper ’07/76

Saddle Point First Order Algorithms


