
Saddle Point Algorithms for Large-Scale
Well-Structured Convex Optimization

Arkadi Nemirovski
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

Joint research
with

Anatoli Juditsky† and Fatma Kilinc Karzan ‡
†: Joseph Fourier University, Grenoble, France; ‡: Tepper Business School,

Carnegie Mellon University, Pittsburgh, USA

Institut Henri Poincaré
OPTIMIZATION, GAMES, AND DYNAMICS

November 28-29, 2011

Saddle Point First Order Algorithms

Overview

Goals
Background:

Nesterov’s strategy
Basic Mirror Prox algorithm

Accelerating Mirror Prox:
Splitting
Utilizing strong concavity
Randomization

Saddle Point First Order Algorithms

Situation and goals

♣ Problem: Convex minimization problem
Opt(P) = min

x∈X
f (x) (P)

• X ⊂ Rn: convex compact • f : x → R: convex Lipschitz continuous

♣ Goal: to solve nonsmooth large-scale problems of sizes
beyond the “practical grasp” of polynomial time algorithms
⇒Focus on computationally cheap First Order methods with
(nearly) dimension-independent rate of convergence:
• for every ǫ > 0, an ǫ-solution xǫ ∈ X :

f (xǫ)− Opt(P) ≤ ǫ[max
X

f − min
X

f]

is computed in at most C · M(ǫ) First Order iterations, where
• M(ǫ) is a universal (i.e., problem-independent) function
• C is either an absolute constant, or a universal function of

n = dim X with slow (e.g., logarithmic) growth.

Saddle Point First Order Algorithms

Strategy (Nesterov ’03)

Opt(P) = min
x∈X

f (x) (P)

• X ⊂ Rn: convex compact • f : x → R: convex Lipschitz continuous

1. Utilizing problem’s structure, we represent f as
f (x) = max

y∈Y
φ(x , y)

• Y ⊂ Rm: convex compact
• φ(x , y): convex in x ∈ X , concave in y ∈ Y and smooth

⇒(P) becomes the convex-concave saddle point problem:
Opt(P) = min

x∈X
max
y∈Y

φ(x , y) (SP)

⇔

Opt(P) = min
x∈X

[
f (x) = max

y∈Y
φ(x , y)

]
(P)

Opt(D) = max
y∈Y

[
f (y) = min

x∈X
φ(x , y)

]
(D)

Opt(P) = Opt(D)

Saddle Point First Order Algorithms

Strategy (continued)

Opt(P) = min
x∈X

f (x) ⇔ Opt(P) = min
x∈X

max
y∈Y

φ(x , y)

2. (SP) is solved by a Saddle Point First Order method utilizing
smoothness of φ.
⇒after t = 1,2, ... steps of the method, approximate solution
(x t , y t) ∈ X × Y is built with

f (x t)− Opt(P) ≤ εsad(x t , y t) := f (x t)− f (y t)≤ O(1/t). (!)

♣ Note: When X ,Y are of “favorable geometry” and φ is
“simple” (which is the case in numerous applications),

• Efficiency estimate (!) is “nearly dimension-independent:”

εsad(x t , y t) ≤ C(dim [X × Y])VarX (f)
t , VarX (f) = maxX f − minX f

• C(n): grows with n at most logarithmically
• The method is “computationally cheap:” a step requires

O(1) computations of ∇φ plus computational overhead of O(n)
(“scalar case”) or O(n3/2) (“matrix case”) arithmetic operations.

Saddle Point First Order Algorithms

Why O(1/t) is a good convergence rate?

f (x t)− Opt(P) ≤ O(1/t) (!)

♣ When solving nonsmooth large-scale problems, even “ideally
structured” ones, by First Order methods, convergence rate
O(1/t) seems to be unimprovable. This is so already when
solving Least Squares problems

Opt(P) = minx∈X [f (x) := ‖Ax − b‖2] , X = {x ∈ Rn : ‖x‖2 ≤ R}
⇔ Opt(P) = min‖x‖2≤R max‖y‖2≤1 yT (Ax − b)

♣ Fact [Nem.’91]: Given t and n > O(1)t , for every method
which generates x t after t sequential calls to Multiplication
oracle capable to multiply vectors, one at a time, by A and AT ,
there exists an n-dimensional Least Squares problem such that
Opt(P) = 0 and

f (x t)− Opt(P) ≥ O(1)VarX (f)/t .

Saddle Point First Order Algorithms

Examples of saddle form reformulations

• Minimizing the maximum of smooth convex functions:
min
x∈X

max
1≤i≤m

fi(x)

⇔ min
x∈X

max
y∈Y

∑
i
yi fi(x), Y = {y ≥ 0,

∑
i
yi = 1}

• Minimizing maximal eigenvalue:
min
x∈X

λmax(
∑

i xiAi)

⇔ min
x∈X

max
y∈Y

Tr(y [
∑

i
xiA

i]), Y = {y � 0,Tr(y) = 1}

• L1/Nuclear norm minimization. The main tool in sparsity
oriented Signal Processing – the problem

minξ{‖ξ‖1 : ‖A(ξ)− b‖p ≤ δ}
• ξ 7→ A(ξ): linear • ‖ · ‖1: ℓ1/nuclear norm of a vector/matrix

reduces to a small series of bilinear saddle point problems
min

x
{‖A(x) − ρb‖p : ‖x‖1 ≤ 1} ⇔ min

‖x‖1≤1
max

‖y‖p/(p−1)≤1
yT (A(x)− ρb)

Saddle Point First Order Algorithms

Background: Basic Mirror Prox Algorithm [Nem.’04]

minx∈X maxy∈Yφ(x , y) (SP)
• X ⊂ Ex ,Y ⊂ Ey : convex compacts in Euclidean spaces
• φ : convex-concave Lipschitz continuous

MP Setup

♣ We fix:
• a norm ‖ · ‖ on the space E = Ex × Ey ⊃ Z := X × Y
• a distance-generating function (d.-g.f.) ω(z) : Z → R – a
continuous convex function such that

— the subdifferential ∂ω(·) admits a selection ω′(·) continuous
on Z o = {z ∈ Z : ∂ω(z) 6= ∅}

— ω(·) is strongly convex modulus 1 w.r.t. ‖ · ‖:
〈ω′(z) − ω′(z′), z − z′〉 ≥ ‖z − z′‖2 ∀z, z′ ∈ Z o

♣ We introduce:
• ω-center of Z : zω := argminZ ω(·)
• Bregman distance: Vz(u) := ω(u)− ω(z)− 〈ω′(z), u − z〉 [z ∈ Z o]
• Prox-mapping: Proxz(ξ) = argminu∈Z [〈ξ, u〉+ Vz(u)] [z ∈ Z o, ξ ∈ E]
• “ω-size of Z ”: Ω := maxu∈Z Vzω (u)

Saddle Point First Order Algorithms

Basic MP algorithm (continued)

minx∈X maxy∈Yφ(x , y) (SP)
F (x , y) = [Fx(x , y);Fy (x , y)] : Z = X × Y → E = Ex × Ey :

Fx (x , y) ∈ ∂xφ(x , y), Fy(x , y) ∈ ∂y [−φ(x , y)]

♣ Basic MP algorithm:
z1 = zω := argminZ ω(·)

zt ⇒ wt = Proxzt (γtF (zt)) [γt > 0 : stepsizes]
⇒ zt+1 = Proxzt (γtF (wt))

z t = (x t , y t) :=
[∑t

τ=1 γτ

]−1 ∑t
τ=1 γτwτ

Illustration: Euclidean setup

• ‖ · ‖ = ‖ · ‖2, ω(z) = 1
2 zT z

⇒Vz(u) = 1
2‖u − z‖2

2, Ω = O(1) max
u,v∈Z

‖u − v‖2
2, Proxz(ξ) = ProjZ (z − ξ)

⇒
Z ∋ zt ⇒ wt = ProjZ (zt − γtF (zt)) ⇒ zt+1 = ProjZ (zt − γtF (wt))

z t =
[∑t

τ=1 γτ

]−1 ∑t
τ=1 γτwτ

Note: Up to averaging, this is Extragradient method due to
G. Korpelevich ’76.

Saddle Point First Order Algorithms

Basic MP algorithm: efficiency estimate

minx∈X maxy∈Yφ(x , y) (SP)
F (x , y) = [Fx(x , y);Fy (x , y)] : Z = X × Y → E = Ex × Ey :

Fx (x , y) ∈ ∂xφ(x , y), Fy(x , y) ∈ ∂y [−φ(x , y)]

♣ Theorem [Nem.’04]: Let F be Lipschitz continuous:

‖F (z) − F (z′)‖∗ ≤ L‖z − z′‖ ∀z, z′ ∈ Z ,

(‖ · ‖∗ is the conjugate of ‖ · ‖) and let γτ ≥ L−1 be such that

γτ 〈F (wτ),wτ − zτ+1〉 ≤ Fzτ (zτ+1),

which definitely is the case when γτ ≡ L−1. Then

∀t ≥ 1 : εsad(z t) ≤
[∑t

τ=1
γτ

]−1

Ω ≤ ΩL/t

Saddle Point First Order Algorithms

The case of “favorable geometry”

minx∈X maxy∈Yφ(x , y) (SP)

♣ Let Z = X × Y be a subset of the direct product Z+ of p + q
standard blocks: Z := X × Y ⊂ Z+ = Z 1 × ...× Z p+q

• Z i = {‖zi‖2 ≤ 1} ⊂ Ei = Rni , 1 ≤ i ≤ p: ball blocks
• Z i = Si ⊂ Ei = Sν i

, p + 1 ≤ i ≤ p + q: spectahedron blocks
Sν i

: space of symmetric matrices of block-diagonal structure ν i

with the Frobenius inner product
Si : the set of all unit trace � 0-matrices from Sν i

• X and Y are subsets of products of complementary groups of Z i ’s

♣ Note:
• The simplex ∆n = {x ∈ Rn

+ :
∑

i xi = 1} is a spectahedron;
• ℓ1/nuclear norm balls (as in ℓ1/nuclear norm minimization) can be

expressed via spectahedrons:
u ∈ Rn, ‖u‖1 ≤ 1 ⇔ ∃[v ,w] ∈ ∆2n : u = v − w

U ∈ Rp×q, ‖U‖∗ ≤ 1 ⇔ ∃V ,W :

[
V 1

2 U
1
2 UT W

]
∈ S

Saddle Point First Order Algorithms

“Favorable geometry” (continued)

minx∈X maxy∈Y φ(x , y) (SP)
X × Y := Z ⊂ Z+ = Z 1 × ...× Z p+q

♣ We associate with blocks Z i “partial MP setup data:”

Block
Norm on the

embedding space
d.-g.f. ωi -size of Z i

ball
Z i ⊂ Rni

‖zi‖(i) ≡ ‖zi‖2
1
2 zT

i zi Ωi =
1
2

spectahedron

Z i ⊂ Sν i ‖zi‖(i) ≡ ‖λ(zi)‖1
∑

ℓ λℓ(zi) lnλℓ(zi) Ωi = ln(|ν i |)

[λℓ(zi) : eigenvalues of zi ∈ Sν i
]

♣ Assuming ∇φ Lipschitz continuous, we find Lij = Lji satisfying
‖∇ziφ(u) −∇ziφ(v)‖(i,∗) ≤

∑
j Lij‖uj − vj‖(j)

♣ Partial setup data induce MP setup for (SP) yielding the
efficiency estimate

∀t : εsad(z t) ≤ L/t , L =
∑

i ,j Lij
√

ΩiΩj

Saddle Point First Order Algorithms

(Nearly) dimension-independent efficiency estimate

minx∈X
[
f (x) = maxy∈Yφ(x , y)

]
(SP)

• Z := X × Y ⊂ Z+ = Z 1 × ...× Z p+q

• Z 1, ...,Z p: unit balls • Z p+1, ...,Z p+q: spectahedrons
‖∇ziφ(u)−∇ziφ(v)‖(i,∗) ≤

∑
j Lij‖uj − vj‖(j)

⇒ εsad(z t) ≤ L/t ,
L =

∑
i ,j Lij

√
ΩiΩj ≤ ln(dim Z)(p + q)2 maxi ,j Lij

(!)

♣ In good cases, p + q = O(1), ln(dim Z) ≤ O(1) ln(dim X) and
maxi ,j Lij ≤ O(1)[maxX f − minX f]
⇒(!) becomes nearly dimension-independent O(1/t) efficiency
estimate

f (x t)− minX f ≤ O(1) ln(dim X)VarX (f)/t
♣ If Z is cut off Z+ by O(1) linear inequalities, the effort per
iteration reduces to O(1) computations of ∇φ and eigenvalue
decomposition of O(1) matrices from Sν i

, p + 1 ≤ i ≤ p + q.

Saddle Point First Order Algorithms

Example: Linear fitting

Opt(P) = minξ∈Ξ [f (ξ) = ‖Aξ − b‖p] , Ξ = {ξ : ‖ξ‖π ≤ R}
• A: m × n • p: 2 or ∞ • π: 1 or 2

m
Opt(P) = min‖x‖π≤1max‖y‖p∗≤1 yT (RAx − b), p∗ = p/(p − 1)

♣ Setting

‖A‖π,p = max
‖x‖π≤1

‖Ax‖p =

max1≤j≤n ‖Columnj(A)‖p, π = 1
‖σ(A)‖∞, π = p = 2
max1≤i≤m ‖Rowi(A)‖2, π = 2, p = ∞

the efficiency estimate of MP reads

f (x t)− Opt(P) ≤ O(1)[ln(n)]
1
π
− 1

2 [ln(m)]
1
2−

1
p ‖A‖π,p/t

♣ When problem is “nontrivial:” Opt(P) ≤ 1
2‖b‖p, this implies

f (x t)− Opt(P) ≤ O(1)[ln(n)]
1
π
− 1

2 [ln(m)]
1
2−

1
p VarΞ(f)/t

Note: When π = 1, the results remain intact when passing from
Ξ = {ξ ∈ Rn : ‖ξ‖1 ≤ R} to Ξ = {ξ ∈ Rn×n : ‖σ(ξ)‖1 ≤ R}.

Saddle Point First Order Algorithms

How it works: Example 1: First Order method vs. IPM

x̂ ≈ argmin
x

{‖Ax − b‖∞ : ‖x‖1 ≤ 1}
[

A: random m × n submatrix of n × n D.F.T. matrix
b: ‖Ax∗ − b‖∞ ≤ δ = 5.e-3 with 16-sparse x∗, ‖x∗‖1 = 1

]

Errors CPU
m × n Method ‖x∗ − x̂‖1 ‖x∗ − x̂‖2 ‖x∗ − x̂‖∞ sec

512 × 2048 DMP 0.0052 0.0018 0.0013 3.3
IP 0.0391 0.0061 0.0021 321.6

1024 × 4096 DMP 0.0096 0.0028 0.0015 3.5
IP Out of space (2GB RAM)

4096 × 16384 DMP 0.0057 0.0026 0.0024 46.4
IP not tested

• Mirror Prox utilizing FFT
• IP: Commercial Interior Point LP solver mosekopt

Saddle Point First Order Algorithms

How it works: Example 2: Sparse ℓ1 recovery

♣ Situation and Goal: We observe 33% of randomly selected
pixels in a 256 × 256 image X and want to recover the entire image.
♠ Solution strategy: Representing the image in a wavelet basis:
X = Ux , the observation becomes y = Ax , where A is comprised of
randomly selected rows of U.
Applying the ℓ1 minimization, the recovered image is X̂ = Ux̂ ,

x̂= Argmin
x

{‖x‖1 : Ax = b}
Note: multiplication of a vector by A and AT takes linear time
⇒situation is perfectly well suited for First Order methods
♠ Matrix A:

• sizes 21, 789 × 65, 536
• density 4% (5.3 × 107 nonzero entries)

♠ Target accuracy: we seek for x̃ such that ‖x̃‖1 ≤ ‖x̂‖1 and
‖Ax̃ − b‖2 ≤ 0.0075‖b‖2

♠ CPU time: 1,460 sec (MATLAB, 2.13 GHz single-core Intel Pentium
M processor, 2 GB RAM)

Saddle Point First Order Algorithms

Example 2 (continued)

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Observations True image

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Steps: 328 CPU: 99′′

‖Ax−b‖2
‖b‖2

= 0.0647
Steps: 947 CPU: 290′′

‖Ax−b‖2
‖b‖2

= 0.0271
Steps: 4,746 CPU: 1460′′

‖Ax−b‖2
‖b‖2

= 0.0075

Saddle Point First Order Algorithms

How it works: Example 3: Lovasz Capacity of a graph

♣ Problem: Given graph G with n nodes and m arcs, compute
θ(G) = min

X∈Sn

{
λmax(X + J) : Xij = 0 when (i , j) is an arc

}

within accuracy ǫ.
• J: all-ones matrix
♣ Saddle point reformulation:

min
X∈X

max
Y∈Y

Tr (Y (X + J))

X = {X ∈ Sn : Xij = 0 when (i , j) is an arc, |Xij | ≤ θ̄}
Y = {Y ∈ Sn : Y � 0,Tr(Y) = 1}
θ̄ : a priori upper bound on θ(G)

♠ For ǫ fixed and n large, theoretical complexity of estimating
θ(G) within accuracy ǫ is by orders of magnitude smaller than
the cost of a single IP iteration.

Saddle Point First Order Algorithms

Example 3 (continued)

of arcs # of nodes
of steps,

ǫ = 1
CPU time,
Mirror Prox

CPU time,
IPM (estimate)

616 50 527 2′′ 0
2,459 100 738 15′′ 15 sec
4,918 200 1,003 2′ 30′′ >2 min

11,148 300 3,647 32′ 08′′ >23 min
20,006 400 2,067 46′ 35′′ >2 hours
62,230 500 1,867 25′ 21′′ >2.7 days

197,120 1024 1,762 1h 37′ 40′′ >12.7 weeks

Computing Lovasz Capacity, performance 3 Gfl/sec.

Saddle Point First Order Algorithms

Accelerating MP, I: Splitting [Ioud.&Nem.’11]

♣ Fact [Nesterov’07,Beck&Teboulle’08,...]: If the objective f (x)
in a convex problem minx∈X f (x) is given as f (x) = g(x) + h(x),
where g, h are convex, and

— g(·) is smooth,
— h(·) is perhaps nonsmooth, but “easy to handle,”

then f can be minimized at the rate O(1/t2) — “as if” there
were no nonsmooth component.
♣ This fact admits saddle point extension.

Saddle Point First Order Algorithms

Splitting (continued)

Situation

♣ Problem of interest:
minx∈X maxy∈Yφ(x , y) [⇒ Φ(z) = ∂xφ(z) × ∂y [−φ(z)]]

• X ⊂ Ex ,Y ⊂ Ey : convex compacts in Euclidean spaces
• φ: convex-concave continuous
• E = Ex × Ey , Z = X × Y : equipped with norm ‖ · ‖ and d.-g.f. ω(·)
♣ Splitting Assumption:

Φ(z) ⊃ G(z) +H(z)
• G(·) : Z → E : single-valued Lipschitz: ‖G(z)−G(z ′)‖∗ ≤ L‖z − z ′‖
• H(z): monotone convex valued with closed graph and “easy to
handle:” Given α > 0 and ξ, we can easily find a strong solution to
the variational inequality given by Z and the monotone operator
H(·) + αω′(·) + ξ, that is, find z̄ ∈ Z and ζ ∈ H(z̄) such that

〈ζ + αω′(z̄) + ξ, z − z̄〉 ≥ 0 ∀z ∈ Z

Saddle Point First Order Algorithms

Splitting (continued)

minx∈X maxy∈Yφ(x , y) ⇒ Φ(z) = ∂xφ(z) × ∂y [−φ(z)]
Φ(z) ⊃ G(z) +H(z)

• ‖G(z)− G(z ′)‖∗ ≤ L‖z − z ′‖
• H: monotone and easy to handle

♣ Theorem [Ioud.&Nem.’11]: Under Splitting Assumption, the
MP algorithm can be modified to yield the efficiency estimate
“as if” there were no H-component:

εsad(z t) ≤ ΩL/t ,
Ω = max

z∈Z
[ω(z) − ω(zω)− 〈ω′(zω), z − zω〉]: ω-size of Z .

An iteration of the modified algorithm costs 2 computations of
G(·), solving auxiliary problem as in Splitting Assumption, and
computing 2 prox-mappings.

Saddle Point First Order Algorithms

Illustration: Dantzig selector

♣ Dantzig selector recovery in Compressed Sensing reduces
to solving the problem

minξ{‖ξ‖1 : ‖AT Aξ − AT b‖∞ ≤ δ} [A ∈ Rm×n]
• In typical Compressed Sensing applications, the diagonal
entries in AT A are O(1)’s, while moduli of off-diagonal entries
do not exceed µ ≪ 1 (usually, µ = O(1)

√
ln(n)/m).

⇒In the saddle point reformulation of Dantzig selector problem,
splitting induced by partitioning AT A into its off-diagonal and
diagonal parts accelerates the solution process by factor 1/µ.

Saddle Point First Order Algorithms

Accelerating MP, II: Strongly concave case [Ioud.&Nem.’11]

Situation:

♣ Problem of interest:
minx∈X maxy∈Yφ(x , y) [⇒ Φ(z) = ∂xφ(z) × ∂y [−φ(z)]]

• X ⊂ Ex : convex compact,
Ex ,X equipped with ‖ · ‖x and d.-g.f. ωx(x)

• Y ⊂ Ey = Rm: closed and convex,
Ey equipped with ‖ · ‖y and d.-g.f. ωy (y)

• φ: continuous, convex in x and
strongly concave in y w.r.t. ‖ · ‖y

♣ Modified Splitting Assumption:
Φ(x , y) ⊃ G(x , y) +H(x , y)

• G(x , y) = [Gx(x , y);Gy (x , y)] : Z → E = Ex × Ey :
single-valued Lipschitz with Gx(x , y) depending solely on y
• H(x , y): monotone convex valued with closed graph and
“easy to handle.”

Saddle Point First Order Algorithms

Strongly concave case (continued)

minx∈X maxy∈Yφ(x , y) (SP)

♣ Fact [Ioud.&Nem’11]: Under outlined assumptions, the
efficiency estimate of properly modified MP can be improved
from O(1/t) to O(1/t2).
♣ Idea of acceleration:
• The error bound of MP is proportional to the ω-size of the
domain Z = X × Y
• When applying MP to (SP), strong concavity of φ in y results
in a qualified convergence of y t to the y-component y∗ of a
saddle point
⇒Eventually the (upper bound) on the distance from y t to y∗
will be reduced by absolute constant factor. When it happens,
independence of Gx of x allows to rescale the problem and to
proceed as if the ω-size of Z were reduced by absolute
constant factor.

Saddle Point First Order Algorithms

Illustration: LASSO

♣ Problem of interest:
Opt = min

‖ξ‖1≤R

[
f (ξ) := ‖ξ‖1 + ‖Pξ − p‖2

2

]
[P : m × n]

(LASSO with added upper bound on ‖ξ‖1).

♣ Result: With the outlined acceleration, one can find
ǫ-solution to the problem in

M(ǫ) = O(1)R‖P‖1,2
√

ln(n)/ǫ,
‖P‖1,r = maxj ‖Columnj(P)‖r

steps, with effort per step dominated by two matrix-vector
multiplications involving P and PT .

♣ Note: In terms of its efficiency and application scope, the
outlined acceleration is similar to the “excessive gap technique”
[Nesterov’05].

Saddle Point First Order Algorithms

Accelerating MP, III: Randomization [Ioud.&Kil.-Karz.&Nem.’10]

♣ We have seen that many important convex programs reduce
to bilinear saddle point problems

minx∈X maxy∈Y [φ(x , y) = 〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (SP

⇒ F (z = (x , y)) = [a;−b] +Az, A =

[
A∗

−A

]
= −A∗

♣ When X ,Y are simple, the computational cost of an iteration
of a First Order method (e.g., MP) is dominated by computing
O(1) matrix-vector products X ∋ x 7→ Ax, Y ∋ y 7→ A∗y .
• Can we save on computing these products?

Saddle Point First Order Algorithms

Randomization (continued)

♣ Computing matrix-vector product u 7→ Bu : Rp → Rq is easy
to randomize, e.g., as follows:

pick a sample ∈ {1, ...,p} from the probability
distribution Prob{ = j} = |uj |/‖u‖1, j = 1, ...,p and
return ζ = ‖u‖1sign(u)Column[B].

♣ Note:
• ζ is an unbiased random estimate of Bu: E{ζ} = Bu;
• We have ‖ζ‖ ≤ ‖u‖1 maxj ‖Columnj [B]‖
⇒“noisiness” of the estimate is controlled by ‖u‖1

• When the columns of B are readily available, computing ζ is simple:
given u, it takes O(1)(p + q) a.o. vs. O(1)pq a.o. required for precise
computation of Bu for a general-type B.

Saddle Point First Order Algorithms

Randomization (continued)

minx∈X maxy∈Y [φ(x , y) = 〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (SP)

♣ Situation:
• X ⊂ Ex : convex compact, Ex ,X are equipped with ‖ · ‖x and

d.-g.f. ωx(·)
• Y ⊂ Ey : convex compact, Ey ,Y are equipped with ‖ · ‖y and

d.-g.f. ωy (·)
⇒

{
Ωx ,Ωy : respective ω-sizes of X ,Y
‖A‖x,y := maxx{‖Ax‖y ,∗ : ‖x‖x ≤ 1}

• x ∈ X are associated with probability distributions Px on X
such that Eξ∼Px{ξ} ≡ x

• y ∈ Y are associated with probability distributions Πy on Ey

such that Eη∼Πy{η} ≡ y .

⇒

ξu = 1
kx

∑kx
ℓ=1 ξ

ℓ, ξℓ ∼ Pu : i.i.d. [u ∈ X]

ηv = 1
ky

∑ky

ℓ=1 η
ℓ, ηℓ ∼ Πv : i.i.d. [v ∈ Y]

σ2
x = supu∈X E{‖A[ξu − u]‖2

y ,∗}
σ2

y = supv∈Y E{‖A∗[ηv − v]‖2
x,∗}

⇒
{

ω(x , y) = 1
2Ωx

ωx (x) + 1
2Ωy

ωy (y), σ2 = 2
[
Ωxσ

2
y +Ωyσ

2
x

]

Saddle Point First Order Algorithms

Randomization (continued)

minx∈X maxy∈Y [φ(x , y) = 〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (SP)
[F (x , y) = [Fx = a + A∗y ;Fy = −b − Ax]]

‖ · ‖x , ωx(·), ‖ · ‖y , ωy (·), {Pu}u∈X , {Πv}v∈Y , kx , ky

⇒
⇒ {ξx , x ∈ X}; {ηy , y ∈ Y}; ω(x , y) : Z := X × Y → R; Ωx ,Ωy , σ

2

Randomized MP Algorithm

♣ With number N of steps given, set γ = min
[

1
2‖A‖x,y

√
3ΩxΩy

, 1√
3σ2N

]

and execute:
z1 = argminz∈Z ω(z)

For t = 1, 2, ...,N:
zt = (xt , yt) ⇒ ζt = [ξxt , ξyt] ⇒ F (ζt)

⇒ wt = (ut , vt) = Proxzt (γF (ζt))
:= argminw∈Z {ω(w) + 〈γF (ζt)− ω′(zt),w〉}
⇒ ζ̂t = [ξut ; ηvt] ⇒ F (ζ̂t)

⇒ zt+1 = Proxzt (γF (ζ̂t))

zN = (xN , yN) = 1
N

∑N
t=1 ζ̂t ⇒ F (zN) = 1

N

∑N
t=1 F (ζt).

Saddle Point First Order Algorithms

Randomization (continued)

Opt = minx∈X
{

f (x) := maxy∈Y [〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉]
}

(SP)
⇒ ⇒ Ωx ,Ωy , σ

Theorem [Ioud.&Nem.’11]

For every N, the N-step Randomized MP algorithm ensures
that xN ∈ X and

E
{

f (xN)− Opt
}
≤ 7 max

[
σ√
N
,
‖A‖x,y

√
ΩxΩy

N

]
.

When Πy is supported on Y for all y ∈ Y , then also yN ∈ Y and

E
{
εsad(zN)

}
≤ 7 max

[
σ√
N
,
‖A‖x,y

√
ΩxΩy

N

]
.

Note: The method produces both zN and F (zN), which allows for
easy computation of εsad(z

N). This feature is instrumental when
Randomized MP is used as “working horse” in processing, e.g., ℓ1

minimization problems
min

x
{‖x‖1 : ‖Ax − b‖p ≤ δ}

Saddle Point First Order Algorithms

Application I: ℓ1 minimization with uniform fit

♣ ℓ1 minimization with uniform fit
minξ {‖ξ‖1 : ‖Aξ − b‖∞ ≤ δ} [A : m × n]

reduces to a small series of problems
Opt = min‖x‖1≤1 ‖Ax − ρb‖∞

= min
‖x‖1≤1

max
‖y‖1≤1

yT (Ax − ρb) (!)

Corollary of Theorem:

For every N, one can find random feasible solution (xN , yN) to
(!), along with AxN , AT yN , in such a way that

Prob

{
εsad(xN , yN) ≤ O(1)

ln(2mn)‖A‖1,∞√
N

}
> 1

2

in N steps of Randomized MP, with effort per step dominated by
extracting from A O(1) columns and rows, given their indices.

Saddle Point First Order Algorithms

Discussion

Opt = min‖x‖1≤1 ‖Ax − ρb‖∞
= min

‖x‖1≤1
max
‖y‖1≤1

yT (Ax − ρb) (!)

♣ Let confidence level 1 − β, β ≪ 1 and ǫ < ‖A‖1,∞ = maxi,j |Aij | be
given. Applying Randomized MP, we with confidence ≥ 1 − β find a
feasible solution (x̄ , ȳ) satisfying εsad(x̄ , ȳ) ≤ ǫ in

O(1) ln2(2mn) ln(1/β)(m + n)
[
‖A‖1,∞

ǫ

]2

arithmetic operations.
♣ When A is general type dense m × n matrix, the best known
complexity of finding ǫ-solution to (!) by a deterministic algorithm is,
for ǫ fixed and m, n large,

O(1)
√

ln(2m) ln(2n)mn
[
‖A‖1,∞

ǫ

]

arithmetic operations.
⇒When the relative accuracy ǫ/‖A‖1,∞ is fixed and m,n are
large, the computational effort in the randomized algorithm is
negligible as compared to the one in a deterministic method.

Saddle Point First Order Algorithms

Discussion (continued)

Opt = min‖x‖1≤1 ‖Ax − ρb‖∞
= min

‖x‖1≤1
max
‖y‖1≤1

yT (Ax − ρb) (!)

♣ The efficiency estimate

O(1) ln2(2mn) ln(1/β)(m + n)
[
‖A‖1,∞

ǫ

]2
a.o.

says that with ǫ, β fixed and m,n large, the Randomized MP
exhibits sublinear time behavior: ǫ-solution is found reliably
while looking through a negligible fraction of the data.

Note: (!) is equivalent to a zero sum matrix game, and a such can be
solved by the sublinear time randomized algorithm for matrix games
[Grigoriadis&Khachiyan’95]. In hindsight, this “ad hoc” algorithm is
close, although not identical, to Randomized MP as applied to (!).

♣ Note: Similar results hold true for ℓ1 minimization with 2-fit:
minξ {‖ξ‖1 : ‖Aξ − b‖2 ≤ δ}

Saddle Point First Order Algorithms

Numerical Illustration: Policeman vs. Burglar

♣ Problem: There are n houses in a city, i-th with wealth wi .
Every evening, Burglar chooses a house i to be attacked, and
Policeman chooses his post near a house j . The probability for
Policeman to catch Burglar is

exp{−θdist(i , j)}, dist(i , j): distance between houses i and j.
Burglar wants to maximize his expected profit

wi(1 − exp{−θdist(i , j)}),
the interest of Policeman is completely opposite.

• What are the optimal mixed strategies of Burglar and
Policeman?

♠ Equivalently: Solve the matrix game
max
y≥0,

∑n
i=1 yi=1

min
x≥0,

∑n
j=1 xj=1

φ(x , y) := yT Ax

Aij = wi(1 − exp{−θdist(i , j)})

Saddle Point First Order Algorithms

Policeman vs. Burglar (continued)

Wealth on 200×200 square grid of houses

♠ Deterministic approach: The 40,000×40,000 fully dense game
matrix A is too large for 8 GB RAM of my computer. To compute once
∇φ(x , y) = [AT y ;Ax] via on-the-fly generating rows and columns of A
takes 97.5 sec (2.67 GHz Intel Core i7 64-bit CPU).
⇒Running time of Deterministic algorithm is tens of hours...
♠ Randomization: 50,000 iterations of the randomized MP take
1h31′30′′ (like just 28 steps of deterministic algorithm) and result in
approximate solution of accuracy 0.0008.

Saddle Point First Order Algorithms

Policeman vs. Burglar (continued)

0

50

100

150

200

0

50

100

150

200
0

0.01

0.02

0.03

0.04

0.05

0

50

100

150

200

0

50

100

150

200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Policeman Burglar
♠ The resulting highly sparse near-optimal solution can be refined by
further optimizing it on its support by an interior point method. This
reduces inaccuracy from 0.0008 to 0.0005 in just 39′.

0

50

100

150

200

0

50

100

150

200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

50

100

150

200

0

50

100

150

200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Policeman, refined Burglar, refined

Saddle Point First Order Algorithms

References

A. Beck, M. Teboulle, A Fast Iterative... – SIAM J. Imag. Sci. ’08

D. Goldfarb, K. Scheinberg, Fast First Order... Tech. rep. Dept. IEOR,
Columbia Univ. ’10

M. Grigoriadis, L. Khachiyan, A Sublinear Time... – OR Letters 18 ’95

A. Juditsky, F. Kilinç Karzan, A. Nemirovski, ℓ1 Minimization... (’10),
http://www.optimization-online.org

A. Juditsky, A. Nemirovski, First Order... I,II: S. Sra, S. Novozin, S.J.
Wright, Eds., Optimization for Machine Learning, MIT Press, 2011

A. Nemirovski, Information-Based... – J. of Complexity 8 ’92

A. Nemirovski, Prox-Method... – SIAM J. Optim. 15 ’04

Yu. Nesterov, A Method for Solving... – Soviet Math. Dokl. 27:2 ’83

Yu. Nesterov, Smooth Minimization... – Math. Progr. 103 ’05

Yu. Nesterov, Excessive Gap Technique... SIAM J. Optim. 16:1 ’05

Yu. Nesterov, Gradient Methods for Minimizing... CORE Discussion
Paper ’07/76

Saddle Point First Order Algorithms

