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Abstract

A convex variational formulation is proposed to solve multicomponent signal
processing problems in Hilbert spaces. The cost function consists of a separable
term, in which each component is modeled through its own potential, and of a
coupling term, in which constraints on linear transformations of the components
are penalized with smooth functionals. An algorithm with guaranteed weak con-
vergence to a solution to the problem is provided. Various multicomponent signal
decomposition and recovery applications are discussed.

1 Problem statement

The processing of multicomponent signals has become increasingly important due, on
the one hand, to the development of new imaging modalities and sensing devices,
and, on the other hand, to the introduction of sophisticated mathematical models to
represent complex signals. It is for instance required in applications dealing with the
recovery of multichannel signals [8, 33, 34, 40], which arise in particular in color
imaging and in the multi- and hyperspectral imaging techniques used in astronomy and
in satellite imaging. Another important instance of multicomponent processing is found
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in signal decomposition problems, e.g., [2, 5, 6, 7, 15, 43, 44]. In such problems, the
ideal signal is viewed as a mixture of elementary components that need to be identified
individually.

Mathematically, a multicomponent signal can be viewed as an m-tuple (xi)1≤i≤m,
where each component xi lies in a real Hilbert space Hi. A generic convex variational
formulation for solving multicomponent signal recovery or decomposition problems is

minimize
x1∈H1,..., xm∈Hm

Φ(x1, . . . , xm), (1.1)

where Φ: H1 ⊕ · · · ⊕Hm → ]−∞,+∞] is a convex cost function. At this level of gener-
ality, however, no algorithm exists to solve (1.1) reliably in the sense that it produces
m sequences (x1,n)n∈N, . . . , (xm,n)n∈N converging (weakly or strongly) to points x1,
. . . , xm, respectively, such that (xi)1≤i≤m minimizes Φ. Let us recall that, even in the
elementary case when m = 2 and H1 = H2 = R, the basic Gauss-Seidel alternating
minimization algorithm does not possess this property [28]. In this paper, we consider
the following, more structured version of (1.1).

Problem 1.1 Let m ≥ 2 and p ≥ 1 be integers, let (Hi)1≤i≤m and (Gk)1≤k≤p be
real Hilbert spaces, and let (τk)1≤k≤p be in ]0,+∞[. For every i ∈ {1, . . . ,m}, let
fi : Hi → ]−∞,+∞] be a proper lower semicontinuous convex function and, for ev-
ery k ∈ {1, . . . , p}, let ϕk : Gk → R be convex and differentiable with a τk–Lipschitz
continuous gradient, and let Lki : Hi → Gk be linear and bounded. It is assumed that
min1≤k≤p

∑m
i=1 ‖Lki‖2 > 0. The problem is to

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +
p∑

k=1

ϕk

( m∑

i=1

Lkixi

)
, (1.2)

under the assumption that solutions exist.

Let us note that (1.2) is a particular case of (1.1), in which Φ is decomposed in two
terms, namely

Φ(x1, . . . , xm) =
m∑

i=1

fi(xi)

︸ ︷︷ ︸
separable term

+
p∑

k=1

ϕk

( m∑

i=1

Lkixi

)

︸ ︷︷ ︸
coupling term

. (1.3)

Each function fi in the separable term promotes an intrinsic property of the ith com-
ponent xi of the signal. On the other hand, the coupling term models p interactions
between the m components (xi)1≤i≤m. An elementary interaction is associated with
a potential ϕk acting on a linear transformation

∑m
i=1 Lkixi of the components. The

coupling is smooth in the sense that the function ϕk is differentiable with a Lipschitz
gradient. As will be seen in subsequent sections, Problem 1.1 not only captures ex-
isting formulations for which reliable solution methods are not available, but it also
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allows us to investigate a wide range of new problems. In addition, it can be solved
reliably by the following proximal algorithm recently developed in [4] (the definition
of the proximity operator proxfi

of a convex function fi : Hi → ]−∞,+∞] is given in
Section 2.2).

Algorithm 1.1 Set

β1 =
1

p max
1≤k≤p

τk

m∑

i=1

‖Lki‖2

, (1.4)

and fix ε in ]0,min{1, β1}[, (λn)n∈N in [ε, 1], (γn)n∈N in [ε, 2β1 − ε], and (xi,0)1≤i≤m in
H1 × · · · × Hm. For every i ∈ {1, . . . ,m} set, for every n ∈ N,

xi,n+1 = xi,n+λn

(
proxγnfi

(
xi,n−γn

( p∑

k=1

L∗ki∇ϕk
( m∑

j=1

Lkjxj,n

)
+bi,n

))
+ai,n−xi,n

)
,

(1.5)
where (ai,n)n∈N and (bi,n)n∈N are sequences in Hi such that

∑

n∈N
‖ai,n‖ < +∞ and

∑

n∈N
‖bi,n‖ < +∞. (1.6)

Algorithm 1.1 generates m sequences (x1,n)n∈N, . . . , (xm,n)n∈N in parallel. It also
tolerates errors ai,n and bi,n in the implementation of the proximity operator and of the
gradients, respectively. Its convergence to a solution to Problem 1.1 is guaranteed by
the following theorem. Let us stress that, although some algorithms are available for
specific instances of Problem 1.1 with m = 2 (see [1], [3], [10], and [23, Section 4.4]),
no method with such convergence properties seems to be available in the literature in
the general setting we consider here.

Theorem 1.1 [4, Theorem 4.3] Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by
Algorithm 1.1. Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges weakly to a point
xi ∈ Hi, and (xi)1≤i≤m is a solution to Problem 1.1.

The paper is organized as follows. In Section 2, we introduce our notation and recall
some important definitions and properties from convex analysis, and discuss proximity
operators. In Section 3, we study the particular case when the coupling functions are
Moreau envelopes and address specific cases. Section 4 is devoted to problems in which
the coupling functions are quadratic. In Section 5, the focus is placed on coupling terms
involving linear combinations of the components. Finally, Section 6 is devoted to an
application to multiframe signal representation.

2 Notation and background

Throughout the paper, H and (Hi)1≤i≤m are real Hilbert spaces. Their scalar products
are denoted by 〈· | ·〉 and the associated norms by ‖·‖. Moreover, Id denotes the identity
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operator and B(x; ρ) the closed ball of center x ∈ H and radius ρ ∈ ]0,+∞[. In this
section, we recall some useful definitions and facts from convex analysis [31, 36, 46]
and provide background and new results on proximity operators.

2.1 Convex analysis

We denote by Γ0(H) the class of lower semicontinuous convex functions ϕ : H →
]−∞,+∞] which are proper in the sense that domϕ =

{
x ∈ H ∣∣ ϕ(x) < +∞} 6= ∅.

Let ϕ ∈ Γ0(H). The set of minimizers of ϕ is denoted by Argminϕ and, if ϕ has a
unique minimizer, this minimizer is denoted by argminx∈H ϕ(x). The conjugate of ϕ is
the function ϕ∗ ∈ Γ0(H) defined by

ϕ∗ : H → ]−∞,+∞] : u 7→ sup
x∈H

〈x | u〉 − ϕ(x) (2.1)

and the subdifferential of ϕ is the set-valued operator

∂ϕ : H → 2H : x 7→
{
u ∈ H ∣∣ (∀y ∈ H) 〈y − x | u〉+ ϕ(x) ≤ ϕ(y)

}
. (2.2)

The Fenchel-Moreau theorem states that

ϕ∗∗ = ϕ. (2.3)

In addition,

(∀x ∈ H)(∀u ∈ H)

{
ϕ(x) + ϕ∗(u) ≥ 〈x | u〉
ϕ(x) + ϕ∗(u) = 〈x | u〉 ⇔ u ∈ ∂ϕ(x).

(2.4)

The next lemma follows directly from [17, Corollary 3.5].

Lemma 2.1 Let g : H → [0,+∞[ be a continuous convex function and let φ ∈ Γ0(R).
Suppose that φ is increasing on [0,+∞[ and that there exists a point z ∈ H such that
g(z) ∈ int domφ. Then, for every x ∈ H,

∂(φ ◦ g)(x) =
⋃

ν∈∂φ(g(x))∩[0,+∞[

ν ∂g(x). (2.5)

Now, let C be a nonempty closed convex subset of H. The indicator function of C
is

ιC : x 7→
{

0, if x ∈ C;
+∞, if x /∈ C, (2.6)

the normal cone operator of C is

NC = ∂ιC : x 7→
{{

u ∈ H ∣∣ (∀y ∈ C) 〈y − x | u〉 ≤ 0
}
, if x ∈ C;

∅, otherwise,
(2.7)
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the support function of C is

σC = ι∗C : H → ]−∞,+∞] : u 7→ sup
x∈C

〈x | u〉, (2.8)

and the distance from x ∈ H to C is dC(x) = infy∈C‖x − y‖. For every x ∈ H, there
exists a unique point PCx ∈ C such that dC(x) = ‖x−PCx‖; PCx is called the projection
of x onto C and it is characterized by

(∀p ∈ H) p = PCx ⇔ x− p ∈ NCp. (2.9)

We have

(∀x ∈ H) ∂dC(x) =





{
x− PCx

dC(x)

}
, if x ∈ H \ C;

NCx ∩B(0; 1), if x ∈ C.
(2.10)

Lemma 2.2 Let C be a nonempty convex closed subset of H, let φ : R → ]−∞,+∞] be
increasing on [0,+∞[ and even, and set ϕ = φ ◦ dC . Then ϕ∗ = σC + φ∗ ◦ ‖ · ‖.
Proof. Set, for every η ∈ [0,+∞[, Dη =

{
z ∈ H ∣∣ ‖z‖ = η

}
. For every x ∈ H, since

infy∈C‖x− y‖ = ‖x− PCx‖ and since φ is increasing on [0,+∞[, we have

(∀z ∈ C) inf
y∈C

φ(‖x− y‖) ≤ φ(‖x− PCx‖) = φ
(

inf
y∈C

‖x− y‖
)
≤ φ(‖x− z‖), (2.11)

which implies that inf y∈Cφ(‖x − y‖) = φ(inf y∈C‖x − y‖). Hence, since H =⋃
η∈[0,+∞[Dη and since φ is even, we have

(∀u ∈ H) ϕ∗(u) = sup
x∈H

〈x | u〉 − φ
(

inf
y∈C

‖x− y‖
)

= sup
x∈H

〈x | u〉 − inf
y∈C

φ(‖x− y‖)

= sup
y∈C

sup
x∈H

〈x | u〉 − φ(‖x− y‖)

= sup
y∈C

〈y | u〉+ sup
z∈H

〈z | u〉 − φ(‖z‖)

= sup
y∈C

〈y | u〉+ sup
η∈[0,+∞[

sup
z∈Dη

〈z | u〉 − φ(η)

= sup
y∈C

〈y | u〉+ sup
η∈[0,+∞[

η ‖u‖ − φ(η)

= sup
y∈C

〈y | u〉+ sup
η∈R

η ‖u‖ − φ(η)

= σC(u) + φ∗(‖u‖), (2.12)

which completes the proof.
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Lemma 2.3 Let φ ∈ Γ0(R) be such that 0 ∈ int domφ, let ξ ∈ ]0,+∞[ ∩ dom ∂φ, and let
ν ∈ ∂φ(ξ). Then

max ∂φ(0) ≤ ν. (2.13)

Proof. Since 0 ∈ int domφ, ∂φ(0) is a nonempty compact set [36, p. 215 and Theo-
rem 23.4]. Moreover, (2.2) yields

(∀µ ∈ ∂φ(0))

{
(ξ − 0)µ+ φ(0) ≤ φ(ξ)
(0− ξ)ν + φ(ξ) ≤ φ(0).

(2.14)

Adding these inequalities results in

(∀µ ∈ ∂φ(0)) µξ ≤ νξ, (2.15)

from which we deduce (2.13).

2.2 Proximity operators

For a detailed account of the theory of proximity operators, see [31, 23] and the classi-
cal paper [35].

Let ϕ ∈ Γ0(H) and let γ ∈ ]0,+∞[. The Moreau envelope of index γ of ϕ is the
continuous convex function

γϕ : H → R : x 7→ inf
y∈H

ϕ(y) +
1
2γ
‖x− y‖2. (2.16)

For every x ∈ H, the infimum in (2.16) is achieved at a unique point denoted by
proxγϕ x, which is characterized by the inclusion

(∀p ∈ H) p = proxγϕ x ⇔ x− p ∈ γ∂ϕ(p). (2.17)

The proximity operator of ϕ is defined as

proxϕ : H → H : x 7→ argminy∈H ϕ(y) +
1
2
‖x− y‖2. (2.18)

The Moreau envelope γϕ satisfies

γϕ ≤ ϕ and Argmin γϕ = Argminϕ. (2.19)

Moreover, it is Fréchet differentiable and

∇ γϕ =
1
γ

(Id − proxγϕ) = proxϕ∗/γ(·/γ) is 1/γ–Lipschitz continuous. (2.20)

Lemma 2.4 [19, Proposition 11] Let G be a real Hilbert space, let ψ ∈ Γ0(G), let L : H →
G be linear and bounded, and set ϕ = ψ ◦ L. Suppose that L ◦ L∗ = κ Id , for some
κ ∈ ]0,+∞[. Then ϕ ∈ Γ0(H) and

proxϕ = Id +
1
κ
L∗ ◦ (proxκψ − Id ) ◦ L. (2.21)
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If C is a nonempty closed and convex subset C of H, we have

proxγιC = PC . (2.22)

Closed-form expressions for the proximity operators of various functions can be found
in [16, 19, 20, 21, 23, 35]. We now derive new examples, some of which will be used
in Section 3.3.

Proposition 2.1 Let C be a nonempty closed convex subset of H, let φ ∈ Γ0(R) be even,
and set ϕ = φ ◦ dC . Then ϕ ∈ Γ0(H). Moreover, proxϕ = PC if φ = ι{0} + η for some
η ∈ R and, otherwise, for every x ∈ H,

proxϕ x =





x+
proxφ∗ dC(x)

dC(x)
(PCx− x), if dC(x) > max ∂φ(0);

PCx, if x /∈ C and dC(x) ≤ max ∂φ(0);
x, if x ∈ C.

(2.23)

Proof. If φ = ι{0} + η for some η ∈ R, then ϕ = ιC + η, which implies that ϕ ∈ Γ0(H)
and that proxϕ = PC . Now assume that φ 6= ι{0} + η with η ∈ R. Since φ is even,
convex, and proper, we have 0 ∈ int domφ and it follows that

(∀z ∈ C) dC(z) = 0 ∈ int domφ. (2.24)

Thus, ∅ 6= C ⊂ domϕ, which shows that ϕ is proper. Next, since dC is continuous and
φ is lower semicontinuous, ϕ is lower semicontinuous. Moreover, since φ is convex and
even, it is increasing on [0,+∞[ and, by convexity of dC , we deduce that ϕ is convex.
Altogether ϕ ∈ Γ0(H).

Now, let x ∈ H and set p = proxϕ x. We derive from (2.17) that

x− p ∈ ∂(φ ◦ dC)(p). (2.25)

Therefore, in view of (2.24), taking g = dC in Lemma 2.1 yields

x− p ∈
⋃

ν∈∂φ(dC(p))∩[0,+∞[

ν ∂dC(p). (2.26)

We examine two alternatives.

(a) p ∈ C: In this case, dC(p) = 0 and, from (2.10), ∂dC(p) = NCp ∩B(0; 1). Hence,
(2.26) asserts that there exists ν ∈ ∂φ(0) ∩ [0,+∞[ such that

x− p ∈ NCp ∩B(0; ν). (2.27)

Using (2.9), we first deduce that

p = PCx. (2.28)

In addition,

dC(x) = ‖x− PCx‖ = ‖x− p‖ ≤ ν ≤ max ∂φ(0). (2.29)
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(b) p /∈ C: In this case, dC(p) > 0 and (2.10) yields ∂dC(p) = {(p − PCp)/dC(p)}.
Hence, (2.26) implies that there exists ν ∈ ∂φ(dC(p)) ∩ [0,+∞[ such that

x− p = ν
p− PCp

dC(p)
, (2.30)

which can be written equivalently as

x− PCp =
ν + dC(p)
dC(p)

(p− PCp). (2.31)

Since (2.9) asserts that p − PCp ∈ NC(PCp), (2.31) yields x − PCp ∈ NC(PCp)
and, therefore,

PCx = PCp. (2.32)

Consequently, (2.31) is equivalent to

x− PCx =
ν + dC(p)
dC(p)

(p− PCp). (2.33)

In turn, upon applying the norm, we obtain

dC(x) = ν + dC(p). (2.34)

Since ν ∈ ∂φ(dC(p)), we deduce from (2.34) that

dC(x)− dC(p) ∈ ∂φ(dC(p)), (2.35)

which yields dC(p) = proxφ dC(x) by (2.17). Thus, it follows from (2.34) and
(2.20) that

ν = proxφ∗(dC(x)). (2.36)

On the other hand, it follows from (2.33) and (2.34) that

p− PCp

dC(p)
=

x− PCx

ν + dC(p)
=
x− PCx

dC(x)
. (2.37)

Hence, using (2.36) and (2.37), we deduce from (2.30) that

p = x+
proxφ∗(dC(x))

dC(x)
(PCx− x). (2.38)

In view of (2.28) and (2.38), it remains to show that

p ∈ C ⇔ dC(x) ≤ max ∂φ(0). (2.39)

To this end, we first observe that (2.29) yields p ∈ C ⇒ dC(x) ≤ max ∂φ(0). For the
reverse implication, suppose that dC(x) ≤ max ∂φ(0) and that p /∈ C. Then, we deduce
from Lemma 2.3 and (2.34) that

max ∂φ(0) + dC(p) ≤ ν + dC(p) = dC(x) ≤ max ∂φ(0), (2.40)

which implies that dC(p) = 0 and therefore that p ∈ C = C, which contradicts our
assumption.
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Proposition 2.2 Let C be a nonempty closed convex subset of H, let φ ∈ Γ0(R) be even
and nonconstant, and set ϕ = σC + φ ◦ ‖ · ‖. Then ϕ ∈ Γ0(H) and, for every x ∈ H,

proxϕ x =





proxφ dC(x)
dC(x)

(x− PCx), if dC(x) > max Argminφ;

x− PCx, if x /∈ C and dC(x) ≤ max Argminφ;
0, if x ∈ C.

(2.41)

Proof. Set ψ = φ∗ ◦ dC . Since φ is an even function in Γ0(R), φ∗ is likewise. Hence, it
follows from Proposition 2.1 that ψ ∈ Γ0(H). Using the facts that ∂φ∗(0) = Argminφ,
that φ∗ is not of the form ι{0}+η with η ∈ R, and that, by (2.3), φ∗∗ = φ, we also derive
from Proposition 2.1 that, for every x ∈ H,

proxψ x =





x+
proxφ dC(x)

dC(x)
(PCx− x), if dC(x) > max Argminφ;

PCx, if x /∈ C and dC(x) ≤ max Argminφ;
x, if x ∈ C.

(2.42)
On the other hand, Lemma 2.2 yields ψ∗ = σC +φ∗∗ ◦‖ ·‖ = σC +φ◦‖ ·‖ = ϕ. Hence, it
follows from (2.20) (with γ = 1) that proxϕ = proxψ∗ = Id − proxψ. In view of (2.42),
we thus obtain (2.41).

Proposition 2.3 Let C be a nonempty closed convex subset of a real Hilbert space G and
let z ∈ G. Let φ ∈ Γ0(R) be even and not of the form φ = ι{0} + η with η ∈ R, let
L : H → G be a bounded linear operator such that L ◦ L∗ = κ Id for some κ ∈ ]0,+∞[,
and set

ϕ : H → ]−∞,+∞] : x 7→ φ(dC(Lx− z)). (2.43)

Then ϕ ∈ Γ0(H) and, for every x ∈ H,

proxϕ x =





x+
prox(κφ)∗ dC(Lx− z)

κ dC(Lx− z)
L∗

(
PC(Lx− z) + z − Lx

)
,

if dC(Lx− z) > κmax ∂φ(0);

x+
1
κ
L∗

(
PC(Lx− z) + z − Lx

)
,

if Lx− z /∈ C and dC(Lx− z) ≤ κmax ∂φ(0);

x, if Lx− z ∈ C.
(2.44)

Proof. Set g = φ ◦ dC . It follows from Proposition 2.1 that g ∈ Γ0(G) and that, for every
y ∈ G,

proxκg y =




y +

prox(κφ)∗ dC(y)
dC(y)

(PCy − y), if dC(y) > κmax ∂φ(0);

PCy, if dC(y) ≤ κmax ∂φ(0).
(2.45)
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We also observe that, since ϕ = g ◦ (L · −z) and L is linear and continuous, ϕ ∈ Γ0(H).
Now take x ∈ H and set p = proxϕ x. Using (2.17), the identity L ◦ L∗ = κ Id , and
elementary subdifferential calculus, we obtain

p = proxϕ x ⇔ x− p ∈ ∂ϕ(p) = L∗∂g(Lp− z)

⇔ (x− κ−1L∗z)− (p− κ−1L∗z) ∈ L∗∂g(L(p− κ−1L∗z))
⇔ (x− κ−1L∗z)− (p− κ−1L∗z) ∈ ∂(g ◦ L)(p− κ−1L∗z)
⇔ p− κ−1L∗z = proxg◦L(x− κ−1L∗z). (2.46)

Hence, by Lemma 2.4,

p = κ−1L∗z + (x− κ−1L∗z) + κ−1L∗
(

proxκg(L(x− κ−1L∗z))− L(x− κ−1L∗z)
)

= x+ κ−1L∗
(

proxκg(Lx− z) + z − Lx
)
. (2.47)

Upon combining (2.47) and (2.45) we obtain (2.44).

3 Coupling with Moreau envelopes

In this section we interpret Problem 1.1 as a relaxation of a problem with a non-smooth
coupling term.

3.1 Problem formulation

As seen in (2.20), the Moreau envelope of index ρk ∈ ]0,+∞[ of a function gk ∈ Γ0(G) is
a convex function which is 1/ρk–Lipschitz differentiable everywhere. We can therefore
set

(∀k ∈ {1, . . . , p}) ϕk = ρkgk (3.1)

in Problem 1.1 to obtain the following formulation.

Problem 3.1 Let (Hi)1≤i≤m and (Gk)1≤k≤p be real Hilbert spaces, and let (ρk)1≤k≤p be
in ]0,+∞[. For every i ∈ {1, . . . ,m} and k ∈ {1, . . . , p}, let fi ∈ Γ0(Hi), let gk ∈ Γ0(Gk),
and let Lki : Hi → Gk be linear and bounded. It is assumed that

min
1≤k≤p

m∑

i=1

‖Lki‖2 > 0. (3.2)

The problem is to

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +
p∑

k=1

ρkgk

( m∑

i=1

Lkixi

)
, (3.3)

under the assumption that solutions exist.
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The functions ( ρkgk)1≤k≤p are approximations to the functions (gk)1≤k≤p in the
sense of (2.19). Thus, (3.3) can be regarded as a relaxation of the problem

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +
p∑

k=1

gk

( m∑

i=1

Lkixi

)
. (3.4)

Since this problem involves not necessarily smooth coupling functions (gk)1≤k≤p, it will
in general be harder to solve than (3.3) and, in some cases, it may not possess any
solution while (3.3) does (see [18] for an illustration of the latter situation).

In view of (3.1) and (2.20), the specialization of Algorithm 1.1 to Problem 3.1
assumes the following form.

Algorithm 3.1 Set

β1 =
1
p

min
1≤k≤p

ρk∑m
i=1 ‖Lki‖2

, (3.5)

and fix ε in ]0,min{1, β1}[, (λn)n∈N in [ε, 1], (γn)n∈N in [ε, 2β1 − ε], and (xi,0)1≤i≤m in
H1 × · · · × Hm. For every i ∈ {1, . . . ,m} set, for every n ∈ N,

xi,n+1 = xi,n + λn

(
proxγnfi

(
xi,n + γn

( p∑

k=1

L∗ki

(
proxρkgk

− Id
ρk

)( m∑

j=1

Lkjxj,n

)

+ bi,n

))
+ ai,n − xi,n

)
, (3.6)

where (ai,n)n∈N and (bi,n)n∈N are sequences in Hi such that
∑

n∈N
‖ai,n‖ < +∞ and

∑

n∈N
‖bi,n‖ < +∞. (3.7)

We obtain the weak convergence of this algorithm as a direct application of Theo-
rem 1.1.

Corollary 3.1 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by Algorithm 3.1.
Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges weakly to a point xi ∈ Hi, and
(xi)1≤i≤m is a solution to Problem 3.1.

Remark 3.1 In the particular case of m = 1 variable, Problem 3.1 reduces to [23,
Problem 4.1], which was itself shown in [23, Section 4] to cover several signal decom-
position and recovery problems.
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3.2 Relaxation of problems with hard coupling

As a first application of the results of Section 3.1, we consider problems in which hard
constraints on p linear mixtures of the signals are available. More precisely, the con-
straints are of the form

(∀k ∈ {1, . . . , p})
m∑

i=1

Lkixi ∈ Dk, (3.8)

where each Dk is a nonempty closed convex subset of Gk and, for every i ∈ {1, . . . ,m},
Lki is a bounded linear operator from Hi to Gk. In our setting, this leads to the hard-
coupled problem

minimize
x1∈H1,..., xm∈HmPm

i=1 L1ixi∈D1,...,
Pm

i=1 Lpixi∈Dp

m∑

i=1

fi(xi), (3.9)

which amounts to setting

(∀k ∈ {1, . . . , p}) gk = ιDk
(3.10)

in (3.4). Let us note that, due to inaccuracies in the definition of the sets (Dk)1≤k≤p
[18, 29], (3.9) may be infeasible in the sense that

⋂p
k=1Dk = ∅. On the other hand,

the approximate problem (3.3), which becomes

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +
p∑

k=1

1
2ρk

d2
Dk

( m∑

i=1

Lkixi

)
, (3.11)

will admit solutions under mild assumptions [23, Proposition 3.1(i)]. Moreover, using
(2.22), the iteration (3.6) in Algorithm 3.1 reduces to (we set ai,n ≡ 0, bi,n ≡ 0, and
λn ≡ 1 for simplicity)

xi,n+1 = proxγnfi

(
xi,n + γn

p∑

k=1

L∗ki

(
PDk

− Id
ρk

)( m∑

j=1

Lkjxj,n

))
. (3.12)

As an illustration of the construction of the sets (Dk)1≤k≤p, let us consider the
problem of finding m sources (xi)1≤i≤m from the noisy observation of p mixtures

(∀k ∈ {1, . . . , p}) zk =
m∑

i=1

Lkixi + wk, (3.13)

where wk ∈ Gk represents the noise corrupting the kth measurement. As discussed in
[22, 39], a wide range of probabilistic a priori information on the kth noise process can
be translated into constraints of the form zk −

∑m
i=1 Lkixi ∈ Ek, where Ek is a closed

convex subset of Gk. This corresponds to (3.8), where Dk = zk − Ek. For instance,
if a statistical bound ηk is available on the energy of the kth noise process, we obtain
Dk = B(zk;

√
ηk).
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3.3 Relaxation of problems with hard constraints and hard coupling

We place ourselves in the same setting as in Section 3.2 and make the additional as-
sumption that hard constraints are available for each signal, namely

(∀i ∈ {1, . . . ,m}) xi ∈ Ci, (3.14)

where each Ci is a nonempty closed convex subset ofHi. In this context, (3.9) coincides
with the feasibility problem

Find x1 ∈ C1, . . . , xm ∈ Cm such that
m∑

i=1

L1ixi ∈ D1, . . . ,

m∑

i=1

Lpixi ∈ Dp. (3.15)

Let us relax the p constraints
∑m

i=1 Lkixi ∈ Dk as in (3.11) and the m constraints in
(3.14) by penalizing the distances to the sets via functions

(∀i ∈ {1, . . . ,m}) fi = φi ◦ dCi , (3.16)

where (φi)1≤i≤m are nonzero even functions in Γ0(R) r {ι{0}} such that φi(0) ≡ 0.
Thus, (3.11) becomes

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

φi(dCi(xi)) +
p∑

k=1

1
2ρk

d2
Dk

( m∑

i=1

Lkixi

)
, (3.17)

which is our relaxation of (3.15). Corollary 3.1 asserts that this problem can be solved
via Algorithm 3.1 where, by virtue of Proposition 2.1, (3.6) reduces to (we set ai,n ≡ 0,
bi,n ≡ 0, and λn ≡ 1 for simplicity)





yi,n = xi,n + γn

p∑

k=1

L∗ki

(
PDk

− Id
ρk

)( m∑

j=1

Lkjxj,n

)

xi,n+1 =





yi,n +
prox(γnφi)∗ dCi(yi,n)

dCi(yi,n)
(PCiyi,n − yi,n),

if dCi(yi,n) > γn max ∂φi(0);

PCiyi,n, if yi,n /∈ Ci and dCi(yi,n) ≤ γn max ∂φi(0);
yi,n, if yi,n ∈ Ci.

(3.18)

4 Quadratic coupling

In this section, we study Problem 1.1 when the coupling functions (ϕk)1≤k≤p are of the
form

(∀k ∈ {1, . . . , p}) ϕk =
1
2
‖zk − ·‖2, where zk ∈ Gk. (4.1)
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4.1 Problem formulation

We first restate Problem 1.1 under assumption (4.1).

Problem 4.1 Let (Hi)1≤i≤m and (Gk)1≤k≤p be real Hilbert spaces. For every i ∈
{1, . . . ,m}, let fi ∈ Γ0(Hi) and, for every k ∈ {1, . . . , p}, let zk ∈ Gk and let Lki : Hi → Gk
be linear and bounded. It is assumed that min1≤k≤p

∑m
i=1 ‖Lki‖2 > 0. The problem is to

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +
1
2

p∑

k=1

∥∥∥∥zk −
m∑

i=1

Lkixi

∥∥∥∥
2

, (4.2)

under the assumption that solutions exist.

Here is a variant of Algorithm 1.1 for solving Problem 4.1.

Algorithm 4.1 Set

β2 =
1

p∑

k=1

m∑

i=1

‖Lki‖2

, (4.3)

and fix ε in ]0,min{1, β2}[, (λn)n∈N in [ε, 1] (γn)n∈N in [ε, 2β2 − ε], and (xi,0)1≤i≤m in
H1 × · · · × Hm. For every i ∈ {1, . . . ,m} set, for every n ∈ N,

xi,n+1 = xi,n+λn

(
proxγnfi

(
xi,n+γn

( p∑

k=1

L∗ki

(
zk−

m∑

j=1

Lkjxj,n

)
+bi,n

))
+ai,n−xi,n

)
,

(4.4)
where (ai,n)n∈N and (bi,n)n∈N are sequences in Hi such that

∑

n∈N
‖ai,n‖ < +∞ and

∑

n∈N
‖bi,n‖ < +∞. (4.5)

Remark 4.1 The Lipschitz constant of each ∇ϕk is τk = 1. Hence, the bound β1 of
(1.4) is β1 = 1/

(
pmax1≤k≤p

∑m
i=1 ‖Lki‖2

)
. If we used this bound in (4.3), we could

derive at once the convergence of Algorithm 4.1 from Theorem 1.1. However, we use
the bound β2 of (4.3), which is better than the general bound β1 since

β1 =
(
p max
1≤k≤p

m∑

i=1

‖Lki‖2

)−1

≤
( p∑

k=1

m∑

i=1

‖Lki‖2

)−1

= β2. (4.6)

Theorem 4.1 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by Algorithm 4.1.
Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges weakly to a point xi ∈ Hi, and
(xi)1≤i≤m is a solution to Problem 4.1.
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Proof. We set H = H1⊕· · ·⊕Hm, i.e., H is the real Hilbert space obtained by endowing
H1× · · · ×Hm with the scalar product 〈〈· | ·〉〉 : (x,y) 7→ ∑m

i=1 〈xi | yi〉, with associated
norm ||| · ||| : x 7→ √∑m

i=1 ‖xi‖2, where x = (xi)1≤i≤m denotes a generic element in H.
We also introduce

g : H → R : x 7→ 1
2

p∑

k=1

∥∥∥∥zk −
m∑

j=1

Lkjxj

∥∥∥∥
2

(4.7)

and, for every i ∈ {1, . . . ,m}, we let Bi be the gradient of g with respect to the ith
variable. Thus, ∇g = (Bi)1≤i≤m, where

Bi : H → Hi : x 7→
p∑

k=1

L∗ki

( m∑

j=1

Lkjxj − zk

)
. (4.8)

Now take x and y in H. Since, in view of (4.1), (4.4) is a special case of (1.5),
proceeding as in the proof of [4, Theorem 4.3], to reach the announced conclusion it
is enough to show that

m∑

i=1

〈Bi(x)−Bi(y) | xi − yi〉 ≥ β2

m∑

i=1

∥∥Bi(x)−Bi(y)
∥∥2 (4.9)

or, equivalently, that 〈〈∇g(x)−∇g(y) | x− y〉〉 ≥ β2|||∇g(x) − ∇g(y)|||2. Since g is
convex, it follows from the Baillon-Haddad theorem [9, Corollary 10] that this inequal-
ity is equivalent to |||∇g(x)−∇g(y)||| ≤ |||x− y|||/β2, i.e., to

m∑

i=1

∥∥Bi(x)−Bi(y)
∥∥2 ≤ |||x− y|||2/β2

2 . (4.10)

For every i ∈ {1, . . . ,m}, (4.8) and the Cauchy-Schwarz inequality imply that

∥∥Bi(x)−Bi(y)
∥∥2 =

∥∥∥∥
m∑

j=1

p∑

k=1

L∗kiLkj(xj − yj)
∥∥∥∥

2

≤
( m∑

j=1

p∑

k=1

‖Lki‖ ‖Lkj‖ ‖xj − yj‖
)2

=
( p∑

k=1

‖Lki‖
m∑

j=1

‖Lkj‖ ‖xj − yj‖
)2

≤
( p∑

k=1

‖Lki‖2

) p∑

k=1

( m∑

j=1

‖Lkj‖ ‖xj − yj‖
)2

≤
( p∑

k=1

‖Lki‖2

) p∑

k=1

( m∑

j=1

‖Lkj‖2

)( m∑

j=1

‖xj − yj‖2

)

=
( p∑

k=1

‖Lki‖2

)
|||x− y|||2/β2. (4.11)
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Hence,
m∑

i=1

∥∥Bi(x)−Bi(y)
∥∥2 ≤

( m∑

i=1

p∑

k=1

‖Lki‖2

)
|||x− y|||2/β2 = |||x− y|||2/β2

2 , (4.12)

which yields (4.10).

4.2 Split feasibility problems

Suppose that m = p+1. For every k ∈ {1, . . . , p}, set zk = 0, Gk = Hk+1, and, for every
i ∈ {2, . . . ,m},

Lki =

{
− Id , if i = k + 1;
0, otherwise.

(4.13)

Then (4.2) becomes

minimize
x1∈H1,...,xm∈Hm

m∑

i=1

fi(xi) +
1
2

m−1∑

k=1

‖Lk1x1 − xk+1‖2. (4.14)

Setting errors to zero and λn ≡ 1 for simplicity, the updating rule (4.4) in Algorithm 4.1
reduces to




x1,n+1 = proxγnf1

(
x1,n − γn

m−1∑

k=1

L∗k1
(
Lk1x1,n − xk+1,n

))
,

xi,n+1 = proxγnfi

(
(1− γn)xi,n + γnLi−1,1x1,n

)
, for 2 ≤ i ≤ m.

(4.15)

In particular, if each fi in (4.14) is the indicator function of a nonempty closed
convex set Ci ⊂ H1, we obtain

minimize
x1∈C1,...,xm∈Cm

1
2

m−1∑

k=1

‖Lk1x1 − xk+1‖2, (4.16)

which can be regarded as a relaxation of the split feasibility problem

find x1 ∈ C1 such that L11x1 ∈ C2, L21x1 ∈ C3, . . . , Lm−1,1x1 ∈ Cm. (4.17)

For m = 2, this type of problem was introduced in [13] and further studied in [11, 14,
23].

In [42] a problem similar to (4.14) is investigated in the case when m = 2, in which
the linear operator depends on the partial derivatives of one component.

5 Strong coupling

An important instance of Problem 4.1 occurs when the linear mixtures describing the
interactions between the components in (4.2) reduce to linear combinations. Such a
coupling is referred to as strong.
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5.1 Problem formulation

Problem 5.1 For every i ∈ {1, . . . ,m}, let fi ∈ Γ0(H) and, for every k ∈ {1, . . . , p}, let
ξki ∈ R and let zk ∈ H. It is assumed that min1≤k≤p

∑m
i=1 |ξki| > 0. The problem is to

minimize
x1∈H,..., xm∈H

m∑

i=1

fi(xi) +
1
2

p∑

k=1

∥∥∥∥zk −
m∑

i=1

ξkixi

∥∥∥∥
2

, (5.1)

under the assumption that solutions exist.

To solve this problem, we propose the following variant of Algorithm 4.1, which
features a better bound than (4.3).

Algorithm 5.1 Set Ξ = [ξki] ∈ Rp×m, ∆ = Ξ>Ξ = [δij ], and

β3 =
1

λmax
, (5.2)

where λmax is the largest eigenvalue of ∆. Fix ε in ]0,min{1, β3}[, (λn)n∈N in [ε, 1],
(γn)n∈N in [ε, 2β3 − ε], and (xi,0)1≤i≤m in Hm. For every i ∈ {1, . . . ,m} set, for every
n ∈ N,

xi,n+1 = xi,n +λn

(
proxγnfi

(
xi,n + γn

p∑

k=1

ξki

(
zk−

m∑

j=1

ξkjxj,n

))
+ ai,n−xi,n

)
, (5.3)

where (ai,n)n∈N is a sequence in H such that
∑

n∈N ‖ai,n‖ < +∞.

Remark 5.1 Using standard matrix norm inequalities, we obtain

λmax ≤
p∑

k=1

m∑

i=1

|ξki|2 ≤ p max
1≤k≤p

m∑

i=1

|ξki|2, (5.4)

which yields

β3 =
1

λmax
≥ β2 =

1
p∑

k=1

m∑

i=1

|ξki|2
≥ β1 =

1

p max
1≤k≤p

m∑

i=1

|ξki|2
. (5.5)

In other words, in the problem under consideration, the bound of (5.2) is better than
that of (4.3), which is itself better than that of (1.4).

Theorem 5.1 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by Algorithm 5.1.
Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges weakly to a point xi ∈ H, and
(xi)1≤i≤m is a solution to Problem 5.1.
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Proof. Define H as in the proof of Theorem 4.1 (with Hi ≡ H), set

g : H → R : x 7→ 1
2

p∑

k=1

∥∥∥∥zk −
m∑

i=1

ξkixi

∥∥∥∥
2

, (5.6)

and introduce the bounded linear operator

B : H → H : x 7→
( p∑

k=1

m∑

j=1

ξkiξkjxj

)

1≤i≤m
. (5.7)

As in the proof of Theorem 4.1, it is sufficient to prove that ∇g is β−1
3 –Lipschitz contin-

uous.
Since ∆ is a real m ×m symmetric matrix, there exists an orthogonal matrix Π =

[πij ] ∈ Rm×m such that ∆ = ΠΛΠ>, where Λ is the diagonal matrix the diagonal entries
of which are the eigenvalues (λi)1≤i≤m of ∆. Now set D : H → H : x 7→ (

λixi
)
1≤i≤m

and U : H → H : x 7→ ( ∑m
j=1 πijxj

)
1≤i≤m. Then U is unitary and

|||B|||2 = |||UDU∗|||2 = |||D|||2 = sup
|||x|||≤1

m∑

i=1

λ2
i ‖xi‖2 = λ2

max. (5.8)

Hence, for every x and y in H, we have

|||∇g(x)−∇g(y)|||2 = |||Bx−By|||2 ≤ λ2
max|||x− y|||2, (5.9)

which implies that ∇g is β−1
3 –Lipschitz continuous and completes the proof.

5.2 Signal decomposition

Suppose that an ideal signal x ∈ H can be decomposed as

x =
m∑

i=1

xi, where (∀i ∈ {1, . . . ,m}) xi ∈ H. (5.10)

A common problem is to recover the components (xi)1≤i≤m from some measurement
z of x and some prior information. Assuming that the prior information on each com-
ponent xi is promoted by a potential fi ∈ Γ0(H) and using a least-squares data fitting
term leads to the variational problem

minimize
x1∈H,...,xm∈H

m∑

i=1

fi(xi) +
1
2

∥∥∥∥z −
m∑

i=1

xi

∥∥∥∥
2

. (5.11)

Instances of this problem have been considered in [5, 7, 23, 41, 42] for m = 2, in
[6, 27] for m = 3, and in [15] for m = 4.
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We observe that (5.11) is a special case of (5.1), where p = 1, z1 = z, and, for every
i ∈ {1, . . . ,m}, ξ1i = 1. Thus, Ξ = [1 · · · 1] ∈ R1×m and β3 = 1/m in Algorithm 5.1.
Moreover, the updating rule (5.3) now assumes the form

xi,n+1 = xi,n + λn

(
proxγnfi

(
xi,n + γn

(
z −

m∑

j=1

xj,n

))
+ ai,n − xi,n

)
. (5.12)

The weak convergence of the m sequences so generated to a solution to (5.11) is guar-
anteed by Theorem 5.1. For m = 2, an alternative weakly convergent method is pro-
posed in [23, Section 4.4], which subsumes that of [5] (see also the alternative method
of [3]). However, for m > 2, no weakly convergent algorithm seems to be available in
the literature. Thus, in [15], a model of the form (5.11) with m = 4 component is in-
vestigated but no convergence proof is furnished for the proposed cyclic minimization
algorithm; in [6], a model with m = 3 components is investigated in H = RN and a
coordinate descent algorithm with modest convergence properties is utilized.

For the sake of illustration, consider the case when m = 3. Then (5.2) yields
β = 1/3. Taking for simplicity γn ≡ 1/2, λn ≡ 1, and, for every i ∈ {1, 2, 3}, ai,n ≡ 0,
(5.12) leads to the simple parallel scheme





x1,n+1 = proxf1/2
(
(z + x1,n − x2,n − x3,n)/2

)

x2,n+1 = proxf2/2
(
(z − x1,n + x2,n − x3,n)/2

)

x3,n+1 = proxf3/2
(
(z − x1,n − x2,n + x3,n)/2

)
.

(5.13)

On the other hand, if m = 2, (5.11) becomes

minimize
x1∈H, x2∈H

f1(x1) + f2(x2) +
1
2
‖z − x1 − x2‖2. (5.14)

This problem is studied in [23], where an alternating algorithm is proposed which
converges weakly to a solution to (5.14). In particular, if we take f1 to be the indicator
function of a nonempty closed convex set C1 ⊂ H and f2 = σC2 to be the support
function of a nonempty closed convex set C2 ⊂ H, (5.14) becomes

minimize
x1∈C1, x2∈H

σC2(x2) +
1
2
‖z − x1 − x2‖2. (5.15)

This problem is studied in [5].
The role of each potential fi in (5.11) is to promote certain known properties of the

component xi. For instance, if some properties of the coefficients (〈xi | eik〉)k∈N of the
decomposition of xi in an orthonormal basis (eik)k∈N of H are available, we can take
(see [16, 20, 25] for specific choices of the potentials (φik)k∈N)

fi : H → ]−∞,+∞] : xi 7→
∑

k∈N
φik

(〈xi | eik〉
)
, (5.16)
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where, for every k ∈ N, φik ∈ Γ0(R) satisfies φik ≥ φik(0) = 0. If we adopt this model
for each component in (5.11), we obtain

minimize
x1∈H,...,xm∈H

m∑

i=1

∑

k∈N
φik

(〈xi | eik〉
)

+
1
2

∥∥∥∥z −
m∑

i=1

xi

∥∥∥∥
2

. (5.17)

In addition, we derive from (5.16) and [23, Example 2.19] that (5.12) reduces to (we
set λn ≡ 1 and ai,n ≡ 0 for simplicity)

xi,n+1 =
∑

k∈N
proxγnφik

(
〈xi,n | eik〉+ γn

(
〈z | eik〉 −

m∑

j=1

〈xj,n | eik〉
))

eik. (5.18)

5.3 Signal synthesis

Let p = m(m− 1)/2 be the cardinality of the set K =
{
(i, j) ∈ {1, . . . ,m}2

∣∣ j > i
}

. For
every k = (k1, k2) ∈ K set zk = 0 and

ξki =





1, if i = k1;
−1, if i = k2;
0, otherwise.

(5.19)

With this scenario, Problem 5.1 features pairwise quadratic couplings, which yields

minimize
x1∈H,..., xm∈H

m∑

i=1

fi(xi) +
1
2

m∑

i=1

m∑

j=i+1

‖xi − xj‖2. (5.20)

For instance, when m = 2 and f1 and f2 are the indicator functions of nonempty closed
convex sets C1 and C2 in H, we obtain the classical problem

minimize
x1∈C1,x2∈C2

‖x1 − x2‖2, (5.21)

which has been studied in [29, 45]. Another instance of (5.20) with m = 2, is that
obtained by taking f2 : x 7→ ‖y−Lx‖2/2, where L is a bounded linear operator from H
to a real Hilbert space G and y ∈ G. In this case (5.20) becomes

minimize
x1∈H,x2∈H

f1(x1) +
1
2
‖y − Lx2‖2 +

1
2
‖x1 − x2‖2. (5.22)

This formulation arises in the image restoration problems of [44, 32] for specific choices
of f1 in finite dimensional spaces.

Since the matrix ∆ = Ξ>Ξ = m Id −1 · 1> has largest eigenvalue λmax = m, we
have β3 = 1/m in Algorithm 5.1. In addition, (5.3) becomes

xi,n+1 = xi,n + λn

(
proxγnfi

(
(1−mγn)xi,n + γn

m∑

j=1

xj,n

)
+ ai,n − xi,n

)
. (5.23)
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In particular, upon setting γn ≡ 1/m, λn ≡ 1, and ai,n ≡ 0, we obtain the parallel
method 




x1,n+1 = proxf1/m

(
1
m

m∑

j=1

xj,n

)
,

...

xm,n+1 = proxfm/m

(
1
m

m∑

j=1

xj,n

)
.

(5.24)

6 Application to multiframe signal representation

This section is devoted to an application to multiframe signal processing in a real
Hilbert space G. Recall that a sequence (ek)k∈N in G is a frame if there exist constants
µ and ν in ]0,+∞[ such that [24, 30, 38]

(∀y ∈ G) µ‖y‖2 ≤
∑

k∈N

∣∣〈y | ek〉
∣∣2 ≤ ν‖y‖2. (6.1)

The associated frame operator is the injective bounded linear operator

F : G → `2(N) : y 7→ (〈y | ek〉
)
k∈N, (6.2)

and its adjoint is the surjective bounded linear operator

F ∗ : `2(N) → G : (ηk)k∈N 7→
∑

k∈N
ηkek. (6.3)

Frames extend the notion of orthonormal bases and they have been used in a number
of variational signal processing problems due to their ability to efficiently capture a
wide range signal features, e.g., [16, 12, 26]. We consider a variational formulation
which exploits information on the frame representation of each signal component. In
the case of m = 1 component, a similar setting is considered in [16].

Problem 6.1 Set H = `2(R) and let ϕ ∈ Γ0(G) be a τ–Lipschitz differentiable function,
for some τ ∈ ]0,+∞[. For every i ∈ {1, . . . ,m}, let (eik)k∈N be a frame of G with
associated frame operator Fi and, for every k ∈ N, let φik ∈ Γ0(R) be such that φik ≥
φik(0) = 0. The problem is to

minimize
(η1k)k∈N∈H,...,(ηmk)k∈N∈H

m∑

i=1

∑

k∈N
φik(ηik) + ϕ

( m∑

i=1

∑

k∈N
ηikeik

)
, (6.4)

under the assumption that solutions exist.
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Algorithm 6.1 Set H = `2(R) and

β4 =
1

τ
∑m

i=1 νi
, (6.5)

where, for every i ∈ {1, . . . ,m}, νi ∈ ]0,+∞[ is the upper frame constant of (eik)k∈N
(see (6.1)). Fix ε in ]0,min{1, β4}[, (λn)n∈N in [ε, 1], (γn)n∈N in [ε, 2β4 − ε], and let
(η1k,0)k∈N, . . . , (ηmk,0)k∈N be sequences in H. For every i ∈ {1, . . . ,m} set, for every
n ∈ N,

(∀k ∈ N) ηik,n+1 = ηik,n+λn

(
proxγnφik

(
ηik,n−γn

(〈
∇ϕ

( m∑

j=1

∑

k∈N
ηjk,nejk

) ∣∣∣∣ eik
〉

+ βik,n

))
+ αik,n − ηik,n

)
, (6.6)

where (αik,n)(k,n)∈N2 and (βik,n)(k,n)∈N2 are real sequences such that

∑

n∈N

√∑

k∈N
|αik,n|2 < +∞ and

∑

n∈N

√∑

k∈N
|βik,n|2 < +∞. (6.7)

Remark 6.1 In some cases, it may be possible to obtain a sharper bound than (6.5);
see [16, Remark 5.3].

Corollary 6.1 Let
(
(η1k,n)k∈N

)
n∈N, . . . ,

(
(ηmk,n)k∈N

)
n∈N be sequences generated by Al-

gorithm 6.1. Then, for every i ∈ {1, . . . ,m} and k ∈ N, (ηik,n)n∈N converges to a point
ηik ∈ R, and

(
(ηik)k∈N

)
1≤i≤m is a solution to Problem 6.1.

Proof. Problem 6.1 is a particular case of Problem 1.1 in which p = 1, ϕ1 = ϕ, and for
every i ∈ {1, . . . ,m}, Hi = H = `2(R), fi : H → ]−∞,+∞] : (ηk)k∈N 7→

∑
k∈N φik(ηk),

and L1i = F ∗i . In addition, we derive from (6.5), (1.4), and (6.1) that β4 ≤ β1.
Finally, using [23, Example 2.19], we deduce that Algorithm 6.1 is a particular case of
Algorithm 1.1. The result therefore follows from Theorem 1.1.

We conclude with a specific instance of Problem 6.1.

Example 6.1 Let K be a real Hilbert space, let z ∈ K, and let L : G → K be linear
and bounded. Set ϕ = ‖z − L · ‖2/2 and, for every i ∈ {1, . . . ,m} and k ∈ N, set
φik = wik| · |pi , where pi ∈ [1, 2] and wik ∈ ]0,+∞[. Then (6.4) becomes

minimize
(η1k)k∈N∈H,...,(ηmk)k∈N∈H

m∑

i=1

∑

k∈N
wik|ηik|pi +

1
2

∥∥∥∥z − L

( m∑

i=1

∑

k∈N
ηikeik

)∥∥∥∥
2

. (6.8)

This problem is studied in [37].
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[46] C. ZĂLINESCU, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ,
2002.

25


	Problem statement
	Notation and background
	Convex analysis
	Proximity operators

	Coupling with Moreau envelopes
	Problem formulation
	Relaxation of problems with hard coupling
	Relaxation of problems with hard constraints and hard coupling

	Quadratic coupling
	Problem formulation
	Split feasibility problems

	Strong coupling
	Problem formulation
	Signal decomposition
	Signal synthesis

	Application to multiframe signal representation

