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Abstract

The asymptotic behavior of the composition of two resolvents in a Hilbert space is investigated.
Connections are made between the solutions of associated monotone inclusion problems and
their dual versions. The applications provided include a study of an alternating minimization
procedure and a new proof of von Neumann’s classical result on the method of alternating
projections.
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1 Introduction

Throughout, H is a real Hilbert space with inner product 〈· | ·〉 and induced norm ‖ · ‖. Let A and
B be two maximal monotone operators from H to 2H with resolvents JA and JB, respectively, and
let γ ∈ ]0,+∞[. Our paper is concerned with the inclusion problem

find (x, y) ∈ H2 such that (0, 0) ∈
(
Id−R+ γ(A×B)

)
(x, y), (1)

where R : (x, y) 7→ (y, x). This abstract formulation subsumes a wide spectrum of problems in
nonlinear analysis and its applications. We thus recover problems arising in variational inequalities
[30], best approximation [12], image processing [2, 44], mechanics [34], and optimization [1, 31]. The
dual inclusion problem associated with (1) is

find (x∗, y∗) ∈ H2 such that (0, 0) ∈
(
(Id−R)−1 + (A−1 ×B−1) ◦ (Id /γ)

)
(x∗, y∗). (2)

Now consider the alternating resolvent method

x0 ∈ H and (∀n ∈ N) yn = JγBxn, xn+1 = JγAyn, (3)
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where N = {0, 1, 2, . . .}. The objective of the present paper is to provide a systematic investigation
of the asymptotic behavior of the sequences (xn)n∈N, (yn)n∈N, (yn − xn)n∈N, and (xn+1 − yn)n∈N
generated by this algorithm in connection with the solutions of (1) and (2). When specialized to
the case when A and B are subdifferentials, our results will be significantly refined and will yield
new insights into an alternating minimization procedure.

The remainder of the paper is organized as follows. Section 2 contains basic notation and auxiliary
results on nonexpansive and monotone operators. In section 3, we provide a detailed investigation
of the asymptotic behavior of (3). The applications discussed in that section include variational
inequalities as well as the problem of finding cycles for inconsistent feasibility problems. In section 4,
the results of section 3 are sharpened in the context of proximity operators and we obtain new
results on the primal and dual behavior of an alternating minimization procedure. Among the
applications presented is a new proof of von Neumann’s classical result on the convergence of
alternating projections.

2 Auxiliary results

We recall some useful results on monotone operators and resolvents. Let A : H → 2H be a set-
valued operator. The sets domA = {x ∈ H | Ax 6= Ø}, ranA = {u ∈ H | (∃x ∈ H) u ∈ Ax}, and
grA = {(x, u) ∈ H2 | u ∈ Ax} are the domain, the range, and the graph of A, respectively. The
inverse of A is the set-valued operator A−1 with graph {(u, x) ∈ H2 | u ∈ Ax}, the resolvent of A
is JA = (Id+A)−1, and the Yosida approximation of A of index γ ∈ ]0,+∞[ is

γA = (Id−JγA)/γ =
(
Id+A−1/γ

)−1 ◦ (Id /γ). (4)

The operator A is monotone if 〈x− y | u− v〉 ≥ 0, for all (x, u) and (y, v) in grA. If A is monotone
and grA cannot be enlarged without destroying monotonicity, then A is maximal monotone. A
classical result due to Minty [35] implies that A is maximal monotone if and only if JA is firmly
nonexpansive with domain H. We now provide basic properties of firmly nonexpansive operators
(see [24, sections 1.9 and 1.11] for proofs and additional properties).

Fact 2.1 Let T : H → H be an operator with domain D. Then T is firmly nonexpansive on D if
any of the following equivalent properties holds:

(i) (∀x ∈ D)(∀y ∈ D) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(Id−T )x− (Id−T )y‖2.

(ii) 2T − Id is nonexpansive, i.e., (∀x ∈ D)(∀y ∈ D) ‖(2T − Id)x− (2T − Id)y‖ ≤ ‖x− y‖.

(iii) T = JA for some monotone operator A : H → 2H.

The class of firmly nonexpansive operators is not closed under composition. In [15], Bruck and
Reich introduced the class of strongly nonexpansive operators: a nonexpansive operator T : H → H
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is strongly nonexpansive on D = domT if (xn − yn) − (Txn − Tyn) → 0, whenever (xn)n∈N and
(yn)n∈N are sequences in D such that (xn − yn)n∈N is bounded and ‖xn − yn‖ − ‖Txn − Tyn‖ → 0.
We shall utilize the following properties of strongly nonexpansive operators (which hold true in
considerably more general settings, see [15] and [40]). As usual,

FixT =
{
x ∈ H | Tx = x

}
(5)

denotes the set of fixed points of an operator T : H → H.

Fact 2.2 Let T and (Ti)1≤i≤m be operators from H to H with domain H. Then the following
properties hold.

(i) If T is firmly nonexpansive, then it is strongly nonexpansive.

(ii) If the operators (Ti)1≤i≤m are strongly nonexpansive, then the composition T1 · · ·Tm is also
strongly nonexpansive.

(iii) Suppose that T is strongly nonexpansive and let x0 ∈ H. If FixT 6= Ø, then the sequence
(Tnx0)n∈N converges weakly to some point in FixT ; otherwise, ‖Tnx0‖ → +∞.

Proof. (i): See [15, Proposition 2.1]. (ii): See [15, Proposition 1.1]. (iii): See [15, Corollary 1.3 and
Corollary 1.4].

Now let A : H → 2H be a set-valued operator. We use the notation

A∨ = A ◦ (− Id) (6)

and
Ã = (− Id) ◦A−1 ◦ (− Id) = −

(
(A−1)∨

)
. (7)

It is straightforward to verify that Ã is (maximal) monotone if and only if A is, that y ∈ Ãx if and
only if −x ∈ A(−y), and that

γ̃A = γ Id+Ã. (8)

These concepts admit finer descriptions when specialized to subdifferentials. Let Γ0(H) be the
class of all proper lower semicontinuous convex functions from H to ]−∞,+∞]. Now take f ∈
Γ0(H). Then the subdifferential operator ∂f of f is maximal monotone and the proximity operator
proxf = J∂f has full domain H [36]. For γ ∈ ]0,+∞[, the function

γf = f � (
1
2γ
‖ · ‖2) (9)

is the Moreau envelope of f of index γ, where � denotes the inf-convolution operator. We have
[36]

∇( γf) = γ(∂f). (10)
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Now let f∗ denote the conjugate of f . Then Moreau’s decomposition [36] states that 1
2‖ · ‖

2 =(
1
2‖ · ‖

2 � f
)

+
(

1
2‖ · ‖

2 � f∗
)
. Differentiation then yields Id = proxf +proxf∗ . More generally, we

deduce from (4) that
(∀x ∈ H) x = proxγf x+ γ proxf∗/γ(x/γ). (11)

If f is the indicator function of a nonempty closed convex set C, denoted by ιC , then proxf is the
projector onto C, denoted by PC .

We conclude this section with a resolvent identity.

Fact 2.3 Let A,B : H → 2H be maximal monotone operators and let ρ ∈ ]0,+∞[. Then

FixJρA

(
(1− ρ) Id+ρJB

)
= Fix JAJB. (12)

Proof. Take x ∈ H. Then the following equivalences hold: x ∈ Fix(JAJB) ⇔ JBx − x ∈ Ax ⇔
(1−ρ)x+ρJBx ∈ x+ρAx⇔

(
(1−ρ) Id+ρJB

)
x ∈ (Id+ρA)x⇔ x = (Id+ρA)−1

(
(1−ρ) Id+ρJB

)
x

⇔ x ∈ FixJρA

(
(1− ρ) Id+ρJB

)
.

The following facts appear implicitly in [4] and [34].

Fact 2.4 Let H be a real Hilbert space and let A,B : H → 2H be maximal monotone operators. Let
S be the set of solutions to the primal inclusion problem

find x ∈ H such that 0 ∈ Ax+ Bx, (13)

and let S∗ be the set of solutions to the associated dual problem

find x∗ ∈ H such that 0 ∈ A−1x∗ + B̃x∗. (14)

Then:

(i) S =
{
x ∈ H | (∃x∗ ∈ S∗) x∗ ∈ Ax and − x∗ ∈ Bx

}
.

(ii) S∗ =
{
x∗ ∈ H | (∃x ∈ S) x ∈ A−1x∗ and − x ∈ B̃x∗

}
.

3 The composition of two resolvents

Throughout this section, A,B : H → 2H are maximal monotone operators and γ ∈ ]0,+∞[.
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3.1 Primal and dual inclusions

A regularization of the problem

find x ∈ H such that 0 ∈ Ax+Bx (15)

is [31, 34]
find x ∈ H such that 0 ∈ Ax+ γBx. (16)

As seen in Fact 2.4, the dual problem of (16) is

find x∗ ∈ H such that 0 ∈ A−1x∗ + γ̃Bx∗. (17)

An alternative regularization of (15) is

find y ∈ H such that 0 ∈ γAy +By, (18)

the dual of which is
find y∗ ∈ H such that 0 ∈ γ̃Ay∗ +B−1y∗. (19)

The connection between the composition of the two resolvents JγA and JγB and the inclusion
problems (16), (17), (18), and (19) will be explored after the following definition.

Definition 3.1 Set

(i) S =
(
Id−R+ γ(A×B)

)−1(0, 0);

(ii) S∗ =
(
(Id−R)−1 + (A−1 ×B−1) ◦ (Id /γ)

)−1(0, 0);

(iii) E =
(
A+ γB

)−1(0) and F =
(

γA+B
)−1(0);

(iv) u∗ = J
(A−1+ eB)/γ

(0) and v∗ = J
( eA+B−1)/γ

(0); note that, depending on the domains of
J

(A−1+ eB)/γ
and J

( eA+B−1)/γ
, the vectors u∗ and v∗ may not exist.

In other words, the solution sets of (1), (2), (16), and (18) are denoted by S, S∗, E and F ,
respectively.

Proposition 3.2 The following identities hold.

(i) E = Fix JγAJγB = JγA(F ) and F = Fix JγBJγA = JγB(E).

(ii) S = Fix Jγ(A×B)R = (E × F ) ∩ grJγB.

(iii) S∗ = {(γu∗, γv∗)} and v∗ = −u∗.

(iv) S∗ = (R− Id)(S).
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(v) JγB

∣∣
E

: E → F : x 7→ x+ γu∗ is a bijection with inverse JγA

∣∣
F

: F → E : y 7→ y + γv∗.

(vi) E = A−1(u∗) ∩ ( γB)−1(v∗) and F = ( γA)−1(u∗) ∩B−1(v∗).

(vii) S = (E × F ) ∩ (R− Id)−1(S∗).

Proof. (i): The equivalences

x ∈ E ⇔ 0 ∈ Ax+ γBx⇔ JγBx ∈ x+ γAx⇔ x = JγAJγBx⇔ x ∈ FixJγAJγB (20)

show that E = FixJγAJγB; the proof of F = FixJγBJγA is analogous. If x ∈ FixJγAJγB, then
JγBx ∈ FixJγBJγA. Hence JγB(E) ⊂ F and similarly JγA(F ) ⊂ E. Now apply JγA and JγB to the
last two inclusions and obtain the remaining inclusions E ⊂ JγA(F ) and F ⊂ JγB(E), respectively.

(ii): These two identities result from the equivalences

(x, y) ∈ S ⇔ R(x, y) ∈
(
Id+ γ(A×B)

)
(x, y)

⇔ (x, y) ∈ FixJγ(A×B)R

⇔ x = JγAy and y = JγBx

⇔ x ∈ FixJγAJγB, y ∈ FixJγBJγA, and y = JγBx

⇔ (x, y) ∈ E × F and (x, y) ∈ grJγB, (21)

where the last equivalence follows from (i).

(iii): Take (x∗, y∗) ∈ S∗, i.e.,

(0, 0) ∈
(
A−1(x∗/γ)×B−1(y∗/γ)

)
+ (Id−R)−1(x∗, y∗). (22)

Then, by Fact 2.4(ii), there exists (x, y) ∈ S such that{
(x, y) ∈ A−1(x∗/γ)×B−1(y∗/γ)
(−x,−y) ∈ (Id−R)−1(x∗, y∗).

(23)

These two inclusions can be rewritten as{
(x∗, y∗) ∈ γ(A×B)(x, y)
(−x∗,−y∗) = (Id−R)(x, y).

(24)

In turn, (24) is equivalent to 
x ∈ A−1(x∗/γ)
−y ∈ B̃(x∗/γ)
x∗ = y − x = −y∗,

(25)

or, alternatively, to 
−x ∈ Ã(y∗/γ)
y ∈ B−1(y∗/γ)
x∗ = y − x = −y∗.

(26)
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Adding the two inclusions in both (25) and (26), we arrive at{
−x∗ = x− y ∈

(
A−1 + B̃

)
(x∗/γ)

−y∗ = y − x ∈
(
Ã+B−1

)
(y∗/γ).

(27)

In view of Definition 3.1(iv), we conclude that{
x∗/γ = J

(A−1+ eB)/γ
(0) = u∗

y∗/γ = J
( eA+B−1)/γ

(0) = v∗.
(28)

We have thus proven that

S∗ ⊂ {(γu∗, γv∗)} and, if S∗ 6= Ø, then v∗ = −u∗. (29)

Now suppose that u∗ = J
(A−1+ eB)/γ

(0) exists. Then 0 ∈ γu∗ + A−1u∗ + B̃u∗ = A−1u∗ + γ̃Bu∗ by
(8). In other words, u∗ solves the dual problem (17) and, by Fact 2.4(ii), the primal problem (16)
also has a solution. Accordingly, by Definition 3.1(iii), E 6= Ø. In turn, it follows from (i) and (ii)
that S 6= Ø. Consequently, invoking Fact 2.4(i), we obtain S∗ 6= Ø and we therefore deduce from
(29) that (iii) holds.

(iv): Since S = Ø ⇔ S∗ 6= Ø, it is enough to assume that S∗ 6= Ø. Since S∗ = {(γu∗, γv∗)}, it
follows from (25) that there exists (x, y) ∈ S such that γu∗ = y−x = γv∗. Hence S∗ ⊂ (Id−R)(S).
Conversely, take (x, y) ∈ S. Then, by Fact 2.4(i), (24) holds and therefore γu∗ = y−x = γv∗. Thus
(Id−R)(S) ⊂ S∗.

(v): It is clear from (i) that JγB|E : E → F is surjective. Now take x ∈ E. Then (ii) implies that
(x, JγBx) ∈ S. By (iii) and (iv), γ(u∗, v∗) = (R− Id)(x, JγBx) and hence JγB|E is a translation by
γu∗, the inverse of which is a translation by −γu∗ = γv∗, namely, JγA|F .

(vi): Fix x ∈ E and set y = JγBx. Then it follows from (i) and (ii) that (x, y) ∈ S. In turn, we
deduce from (25) and (28) that{

x ∈ A−1u∗

v∗ = (x− y)/γ = (x− JγBx)/γ = γBx,
(30)

whence x ∈ A−1u∗ ∩ ( γB)−1(v∗). Accordingly, E ⊂ A−1u∗ ∩ ( γB)−1(v∗). To verify the reverse
inclusion, take x ∈ A−1u∗ ∩ ( γB)−1(v∗) and set y = x + γu∗. Then x = JγAy and y = JγBx.
Thus, (i) yields x ∈ FixJγAJγB = E and we obtain A−1u∗ ∩ ( γB)−1(−u∗) ⊂ E. The corresponding
identity for F is derived in the same fashion.

(vii): On the one hand, (ii) yields S ⊂ E × F and, on the other hand, (iv) yields S ⊂ (R −
Id)−1(S∗). Therefore S ⊂ (E×F )∩(R−Id)−1(S∗). Conversely, let (x, y) ∈ (E×F )∩(R−Id)−1(S∗).
Then (x, y) ∈ (R−Id)−1(S∗) and it follows from (iii) that y = x+γu∗. Hence, since (x, y) ∈ (E×F ),
(v) yields y = JγBx. In view of (ii), we conclude that (x, y) ∈ S.
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3.2 Asymptotic behavior

The objective of this section is to study the asymptotic behavior of the alternating resolvent method

x0 ∈ H and (∀n ∈ N) yn = JγBxn, xn+1 = JγAyn. (31)

Theorem 3.3 Let γ ∈ ]0,+∞[, let A,B : H → 2H be maximal monotone operators such that
S 6= Ø, and let

(
(xn, yn)

)
n∈N be the sequence generated by (31). Then:

(i) The sequence
(
(xn, yn)

)
n∈N converges weakly to a point in S.

(ii) For every (x̄, ȳ) ∈ S,∑
n∈N
‖(xn − yn)− (x̄− ȳ)‖2 < +∞ and

∑
n∈N
‖(xn+1 − yn)− (x̄− ȳ)‖2 < +∞. (32)

(iii) The sequence
(
(yn − xn, xn+1 − yn)

)
n∈N converges strongly to γ(u∗, v∗).

Proof. Let (x̄, ȳ) ∈ S. Then we derive from Proposition 3.2(i)&(v) the equalities

ȳ = JγBx̄ = x̄+ γu∗ and x̄ = JγAȳ = ȳ + γv∗ = ȳ − γu∗. (33)

Hence, it follows from Fact 2.1(i) and (31) that

(∀n ∈ N) ‖xn+1 − x̄‖2 = ‖JγAJγBxn − JγAJγBx̄‖2

≤ ‖JγBxn − JγBx̄‖2 − ‖(Id−JγA)JγBxn − (Id−JγA)JγBx̄‖2

≤ ‖xn − x̄‖2 − ‖(Id−JγB)xn − (Id−JγB)x̄‖2

− ‖(Id−JγA)JγBxn − (Id−JγA)JγBx̄‖2

= ‖xn − x̄‖2 − ‖(xn − yn)− (x̄− ȳ)‖2

− ‖(yn − xn+1)− (ȳ − x̄)‖2. (34)

Therefore, ∑
n∈N

(
‖(xn − yn)− (x̄− ȳ)‖2 + ‖(xn+1 − yn)− (x̄− ȳ)‖2

)
≤ ‖x0 − x̄‖2 (35)

and (ii) is established. In view of (33), we deduce from (ii) that yn − xn → ȳ − x̄ = γu∗ and
xn+1 − yn → x̄ − ȳ = γv∗. Hence (iii) holds and, moreover, xn+1 − xn → 0. Since JγAJγB is
nonexpansive, it follows from [38, Theorem 1] that (xn)n∈N converges weakly to a fixed point x of
JγAJγB. Now let y = JγBx. Then Proposition 3.2(i)&(ii) yield (x, y) ∈ S. Hence, as seen above,
yn − xn → y − x and therefore yn ⇀ y. Thus,

(
(xn, yn)

)
n∈N ⇀ (x, y) ∈ S.

Remark 3.4 Some comments on Theorem 3.3 are in order.
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(i) Item (i) in Theorem 3.3 was obtained via different techniques in [34, section 3.4]. It can also
be deduced from results on iterations of firmly nonexpansive operators [32, Théorème 5.5.2],
as well as from results on iterations of strongly nonexpansive operators [15]. Items (i) and (ii)
can also be derived from results on the asymptotic behavior of averaged operators [20]. Recall
that an averaged operator is a strict convex combination of a nonexpansive operator and the
identity. This notion was first introduced and analyzed in [6].

(ii) The sequences (xn)n∈N and (yn)n∈N in Theorem 3.3 converge strongly when both A and B are
odd. Indeed, the resolvents and their compositions are odd and averaged and [6, Corollary 2.1]
therefore applies. The counterexample of Genel and Lindenstrauss [23] shows that strong
convergence of (xn)n∈N and (yn)n∈N may fail outside Euclidean spaces, even when A = 0
(hence JγA = Id has no effect and only the resolvent JγB is iterated). The situation does not
improve for proximity operators or even projectors; see Remark 4.7(ii) below.

(iii) It would be interesting to find out in what form Theorem 3.3 can be extended to more general
Banach space settings, in which firmly nonexpansive operators are defined as resolvents of
accretive operators [24, section 1.11]. See also [15, Theorem 2.4] and [41] for weak and strong
convergence results on the iteration of a single resolvent in Banach spaces.

(iv) Theorem 3.3 may have a Hilbert ball counterpart based upon resolvents of co-accretive oper-
ators (which are firmly nonexpansive of the first kind and therefore (para-) strongly nonex-
pansive); see [42, page 540] and [13, section 9].

We now turn to the inconsistent case.

Theorem 3.5 Let γ ∈ ]0,+∞[, let A,B : H → 2H be maximal monotone operators such that
S = Ø, and let

(
(xn, yn)

)
n∈N be the sequence generated by (31). Then ‖xn‖ → +∞ and ‖yn‖ → +∞.

Proof. We have, for every n ∈ N, xn = Tnx0, where T = JγAJγB is strongly nonexpansive (see
Fact 2.2(i)&(ii)) with FixT = Ø by Proposition 3.2(i)&(vii). Hence ‖xn‖ → +∞ by Fact 2.2(iii).
The sequence (yn)n∈N is treated similarly.

3.3 Applications

In this section, we discuss applications of Theorem 3.3 that feature at least one resolvent which is
not a proximity operator.

3.3.1 Variational inequalities

Take γ ∈ ]0,+∞[, f ∈ Γ0(H), and set A = ∂f so that A−1 = ∂f∗. Then E is the set of solutions
to the variational inequality problem

find x ∈ H such that (∀z ∈ H) 〈x− z | γBx〉+ f(x) ≤ f(z), (36)
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which itself reduces to the classical variational inequality problem

find x ∈ C such that (∀z ∈ C) 〈x− z | γBx〉 ≤ 0 (37)

when f = ιC for some nonempty closed convex set C. Moreover, algorithm (31) becomes

x0 ∈ H and (∀n ∈ N) yn = JγBxn, xn+1 = proxγf yn. (38)

Let us assume that (36) possesses at least one solution, i.e., E 6= Ø. Then Proposition 3.2(i)&(ii)
imply that S 6= Ø. Consequently, Theorem 3.3 states that (xn)n∈N converges weakly to a point in
E and that (yn − xn)n∈N converges strongly to the solution J

(∂f∗+ eB)/γ
(0) of the associated dual

variational inequality, which is derived from (17) to be

find x∗ ∈ H such that

(∃ y∗ ∈ B−1(−x∗))(∀z∗ ∈ H) 〈x∗ − z∗ | γx∗ − y∗〉+ f∗(x∗) ≤ f∗(z∗). (39)

3.3.2 Cycles for compositions of projection operators

Consider a finite family of nonempty closed convex sets (Si)1≤i≤m in a real Hilbert space H with
associated projectors (Pi)1≤i≤m, where m ≥ 3 (the case m = 2 will be discussed in section 4.3).
The convex feasibility problem is to

find x ∈
m⋂

i=1

Si. (40)

This formulation has found numerous applications in engineering and in the physical sciences; see,
for instance, [10, 16, 19]. If the intersection of the sets (Si)1≤i≤m is nonempty, then one can
equivalently look for a fixed point of the composition Pm · · ·P1 [26]. This reformulation remains
useful even when the intersection of the sets (Si)1≤i≤m is empty; see [7, 11, 18] and the references
therein.

As in [7], it will be convenient to work in the product space Hm, where we define the product
set S = S1 × · · · × Sm and the circular right-shift operator R : Hm → Hm : (x1, x2, . . . , xm) 7→
(xm, x1, . . . , xm−1). The problem of finding a cycle, i.e., a point x = (x1, x2, . . . , xm) ∈ Hm satisfying
x1 = P1xm, x2 = P2x1, . . . , xm = Pmxm−1, is equivalent to finding a fixed point of PSR. Although
the projector PS is a resolvent (actually, a proximity operator; see section 2), the operator R is
not since it is not firmly nonexpansive. Theorem 3.3 is therefore not directly applicable. However,
since R is an isometry, it is nonexpansive on the entire space Hm. Hence, Fact 2.1 implies that
Q = (Id+R)/2 is defined everywhere and firmly nonexpansive, and that it is the resolvent of the
maximal monotone operator B = Q−1 − Id. Letting, furthermore, A = NS = ∂ιS (the normal cone
operator of S) and ρ = 2, we derive from Fact 2.3 that

FixPSR = FixPSQ. (41)

Now, let us assume that cycles exist, i.e., FixPSR 6= Ø. Then we first deduce from Proposition 3.2(v)
that every cycle x satisfies

Rx− x = 2J
N−1

S + eB(0). (42)
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Furthermore, if we take x0 ∈ Hm and set

(∀n ∈ N) xn+1 = PSQxn, (43)

then Theorem 3.3, Proposition 3.2(i), and (41) imply that (xn)n∈N converges weakly to some cycle
x, that Qxn ⇀ Qx, and that Rxn − xn = 2(Qxn − xn)→ 2(Qx− x) = Rx− x. We observe that,
since Q 6= Q∗ for m ≥ 3, Q cannot be a proximity operator [36, section 3].

3.3.3 Cycles for compositions of resolvents

The arguments just presented extend with minor modifications as follows. Suppose that (Ai)1≤i≤m

are finitely many maximal monotone operators on a real Hilbert space H which admit at least
one cycle, i.e., a point x = (x1, x2, . . . , xm) ∈ Hm satisfying x1 = JA1xm, x2 = JA2x1, . . . , xm =
JAmxm−1. Now define A = A1 × · · · × Am, let R be the circular right-shift operator, and set
Q = (Id+R)/2 and B = Q−1 − Id. Then a cycle is a fixed point of JAR and Fact 2.3 (applied
to A/2 and B, with ρ = 2) yields Fix JAR = Fix JA/2Q. Now take x0 ∈ Hm and generate a
sequence (xn)n∈N via xn+1 = JA/2Qxn, for all n ∈ N. Then it follows from Theorem 3.3 that
(xn)n∈N converges weakly to some cycle x, Qxn ⇀ Qx, and Rxn − xn → 2J

A−1(2·)+ eB(0).

4 The composition of two proximity operators

We specialize the results of section 3 on resolvents to proximity operators by setting

A = ∂f and B = ∂g, where {f, g} ⊂ Γ0(H). (44)

This additional structure makes significant refinements of the previous results possible. Let us
introduce the function

Φ: H×H → ]−∞,+∞] : (x, y) 7→ f(x) + g(y) +
1
2γ
‖x− y‖2, (45)

where γ ∈ ]0,+∞[. It is assumed throughout that

ϕ = inf Φ(H×H) ∈ R. (46)

4.1 Primal and dual optimization problems

We first identify the sets S, E, and F of Definition 3.1 in the present setting.

Proposition 4.1 The following identities hold.

(i) S = Argmin Φ.
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(ii) E = Fix
(
proxγf proxγg

)
= Argmin

(
f + γg

)
.

(iii) F = Fix
(
proxγg proxγf

)
= Argmin

(
γf + g

)
.

Proof. (i) follows from the equivalences

(x, y) minimizes Φ over H×H ⇔ (0, 0) ∈ γ∂Φ(x, y) = (γ∂f(x) + x− y, γ∂g(y) + y − x)
⇔ (0, 0) ∈

(
Id−R+ γ(∂f × ∂g)

)
(x, y). (47)

Next, using (44) and (10), we observe that

A+ γB = ∂f + γ(∂g) = ∂f + ∂( γg) = ∂
(
f + γg

)
. (48)

This identity and Definition 3.1(iii) imply that

x ∈ E ⇔ 0 ∈ (A+ γB)(x) ⇔ 0 ∈ ∂
(
f + γg

)
(x) ⇔ x minimizes f + γg. (49)

Hence (ii) is verified. The proof of (iii) is similar.

The following definition is justified by the Fenchel-Rockafellar duality theorem (see, for instance,
[43, Theorem 1] or [45, Corollary 2.8.5]).

Definition 4.2 Consider the problem of minimizing f + γg over H, and let w∗ ∈ H be the unique
solution of its Fenchel dual problem, i.e.,

−ϕ = f∗(w∗) + g∗(−w∗) +
γ

2
‖w∗‖2 = min

(
f∗ + g∗∨ +

γ

2
‖ · ‖2

)
(H). (50)

Proposition 4.3 The following statements hold true.

(i) w∗ = prox(f∗+g∗∨)/γ(0) = −1
γ

proxγ(f∗+g∗∨)∗(0) = −1
γ

proxγ(f � g∨)∗∗(0).

(ii) If f � g∨ is lower semicontinuous, then w∗ = − 1
γ proxγ(f � g∨)(0). In particular, this happens

when the cone generated by dom f∗ + dom g∗ is a closed vector subspace.

(iii) The vector u∗ in Definition 3.1(iv) exists if and only if f + γg has minimizers, in which case
u∗ = w∗.

Proof. Note that (50) implies that f∗ + g∗∨ ∈ Γ0(H) and, in turn, that (f∗ + g∗∨)∗ ∈ Γ0(H).

(i): The first equality is clear by Definition 4.2, and the second one follows from (11). Since
(f � g∨)∗ = f∗ + g∨∗ = f∗ + g∗∨, we have (f � g∨)∗∗ = (f∗ + g∗∨)∗ and hence the third equation is
also verified.

(ii): If f � g∨ is lower semicontinuous, then f � g∨ ∈ Γ0(H) and therefore f � g∨ = (f � g∨)∗∗.
In turn, the formula for w∗ follows from (i). Now, since dom f∗ + dom g∗ = dom f∗ − dom g∗∨,
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the stated assumption is simply the Attouch-Brézis qualification condition for f∗ and g∗∨ and it
follows from [3, Theorem 1.1] or [45, Theorem 2.8.7] that (f∗ + g∗∨)∗ = f � g∨, whence the lower
semicontinuity of f � g∨.

(iii): Proposition 3.2 implies that u∗ exists ⇔ S∗ 6= Ø ⇔ S 6= Ø ⇔ E 6= Ø. The equivalence thus
follows from Proposition 4.1. Now assume that u∗ exists. Then Definition 3.1(iv) and (44) yield

u∗ = J(
(∂f)−1+f∂g

)
/γ

(0) = J(
∂f∗+∂(g∗∨)

)
/γ

(0). (51)

We deduce that 0 ∈
(
γ Id+∂f∗+∂(g∗∨)

)
(u∗) ⊂

(
γ Id+∂(f∗+ g∗∨)

)
(u∗) and furthermore, using (i),

that u∗ = prox(f∗+g∗∨)/γ(0) = w∗.

4.2 Asymptotic behavior

We begin with two preliminary results.

Lemma 4.4 Let (x, y, u, v, w) ∈ H5. Then

‖x− u‖2 = ‖x− w‖2 + ‖w − v‖2 − ‖x− y‖2 + ‖(x− y)− (u− v)‖2

+ 2 〈x− w | w − v〉+ 2 〈u− v | v − y〉 . (52)

Proof. This is verified by a straightforward calculation.

Proposition 4.5 Let Φ, ϕ, and w∗ be as in (45), (46), and (50), respectively. Let
(
(un, vn)

)
n∈N

be a sequence in H×H such that Φ(un, vn)→ ϕ. Then (vn − un)/γ → w∗.

Proof. Equation (50) and the Fenchel-Young inequality imply

0← Φ(un, vn)− ϕ

= f(un) + g(vn) +
1
2γ
‖un − vn‖2 + f∗(w∗) + g∗(−w∗) +

γ

2
‖w∗‖2

=
(
f(un) + f∗(w∗)

)
+

(
g(vn) + g∗(−w∗)

)
+

1
2γ
‖un − vn‖2 +

γ

2
‖w∗‖2

≥ 〈un | w∗〉+ 〈vn | −w∗〉+
1
2γ
‖un − vn‖2 +

γ

2
‖w∗‖2

=
1
2γ
‖(vn − un)− γw∗‖2

≥ 0. (53)

Therefore, vn − un → γw∗.

The main result of this section is a refinement of Theorem 3.3 for the case of proximity operators.
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Theorem 4.6 Let γ ∈ ]0,+∞[, let f and g be two functions in Γ0(H), and let

Φ: H×H → ]−∞,+∞] : (x, y) 7→ f(x) + g(y) +
1
2γ
‖x− y‖2. (54)

Assume that ϕ = inf Φ(H ×H) ∈ R and consider the sequences (xn)n∈N and (yn)n∈N generated by
the method of alternating proximity operators

x0 ∈ H and (∀n ∈ N) yn = proxγg(xn), xn+1 = proxγf (yn). (55)

Then:

(i) (∀n ∈ N) Φ(xn+1, yn+1) ≤ Φ(xn+1, yn) ≤ Φ(xn, yn).

(ii) lim
n→+∞

Φ(xn+1, yn) = lim
n→+∞

Φ(xn, yn) = ϕ.

(iii) The sequences
(
(yn − xn)/γ

)
n∈N and

(
(yn − xn+1)/γ

)
n∈N converge strongly to the unique

minimizer
w∗ = prox(f∗+g∗∨)/γ(0) = −1

γ
proxγ(f � g∨)∗∗(0) (56)

of the function z∗ 7→ f∗(z∗) + g∗(−z∗) + (γ/2)‖z∗‖2.

(iv) If ArgminΦ 6= Ø, then (xn)n∈N converges weakly to a minimizer x̄ of f + γg and (yn)n∈N
converges weakly to a minimizer ȳ of γf + g. Moreover,

(a) ȳ = proxγg(x̄).

(b)
∑

n∈N ‖(xn − yn)− (x̄− ȳ)‖2 < +∞ and
∑

n∈N ‖(xn+1 − yn)− (x̄− ȳ)‖2 < +∞.

(c) Φ(x̄, ȳ) = ϕ.

(d) ȳ − x̄ = γw∗.

(e)
∑

n∈N(Φ(xn+1, yn)− ϕ) < +∞ and
∑

n∈N(Φ(xn, yn)− ϕ) < +∞.

(v) If ArgminΦ = Ø, then ‖xn‖ → +∞ and ‖yn‖ → +∞.
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Proof. (i): For every n ∈ N, we have

ϕ ≤ Φ(xn+1, yn+1)

= f(xn+1) + g(yn+1) +
1
2γ
‖xn+1 − yn+1‖2

= f(xn+1) + g
(
proxγg(xn+1)

)
+

1
2γ
‖xn+1 − proxγg(xn+1)‖2

≤ f(xn+1) + g(yn) +
1
2γ
‖xn+1 − yn‖2

= Φ(xn+1, yn)

= f
(
proxγf (yn)

)
+ g(yn) +

1
2γ
‖proxγf (yn)− yn‖2

≤ f(xn) + g(yn) +
1
2γ
‖xn − yn‖2

= Φ(xn, yn). (57)

(ii): In view of (57), the two limits are well defined and coincide, say with ψ. Thus,

ϕ ≤ ψ = lim
n→+∞

Φ(xn+1, yn) = lim
n→+∞

Φ(xn, yn). (58)

Our next step is to prove that ϕ = ψ, i.e., by (58), ϕ ≥ ψ. To this end, let n ∈ N and (x, y) ∈
dom f × dom g. Lemma 4.4 (with (u, v, w) replaced by (xn, yn, xn+1)) yields

‖x− xn‖2 = ‖x− xn+1‖2 + ‖xn+1 − yn‖2 − ‖x− y‖2 + ‖(x− y)− (xn − yn)‖2

+ 2 〈x− xn+1 | xn+1 − yn〉+ 2 〈xn − yn | yn − y〉 . (59)

On the other hand, since yn = proxγg(xn) and xn+1 = proxγf (yn), we have xn − yn ∈ γ∂g(yn) and
yn − xn+1 ∈ γ∂f(xn+1), whence

γg(y)− γg(yn) + 〈yn − y | xn − yn〉 ≥ 0 (60)

and
γf(x)− γf(xn+1) + 〈xn+1 − x | yn − xn+1〉 ≥ 0. (61)

Thus (59), (60), (61), (i), and (58) result in

‖x− xn‖2 − ‖x− xn+1‖2 = ‖xn+1 − yn‖2 − ‖x− y‖2 + ‖(x− y)− (xn − yn)‖2

+ 2γ
(
f(xn+1) + g(yn)− f(x)− g(y)

)
+ 2

(
γf(x)− γf(xn+1) + 〈x− xn+1 | xn+1 − yn〉

)
+ 2

(
γg(y)− γg(yn) + 〈xn − yn | yn − y〉

)
≥ ‖xn+1 − yn‖2 − ‖x− y‖2 + ‖(x− y)− (xn − yn)‖2

+ 2γ
(
f(xn+1) + g(yn)− f(x)− g(y)

)
= 2γ

(
Φ(xn+1, yn)− Φ(x, y)

)
+ ‖(yn − xn)− (y − x)‖2

≥ 2γ
(
ψ − Φ(x, y)

)
. (62)
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Consequently,

2γ
(
Φ(xn+1, yn)− Φ(x, y)

)
+ ‖(yn − xn)− (y − x)‖2 ≤ ‖xn − x‖2 − ‖xn+1 − x‖2. (63)

Now suppose that ϕ < ψ. Then we can pick (x, y) ∈ dom f × dom g so that

ϕ = inf Φ(H×H) ≤ Φ(x, y) < ψ. (64)

However, summing (62) over n ∈ N, we arrive at the absurdity +∞ > 2
∑

n∈N
(
ψ−Φ(x, y)

)
= +∞.

Therefore, ϕ ≥ ψ.

(iii): This claim follows from (ii), Proposition 4.5, and Proposition 4.3(i).

(iv): Suppose that Argmin Φ 6= Ø. Then it follows from Proposition 4.1(i) that S 6= Ø. There-
fore, (iv) and items (iv)(a) and (iv)(b) follow from Theorem 3.3(i)&(ii), Proposition 3.2(ii), and
Proposition 4.1(ii)&(iii). (iv)(c): Since (x̄, ȳ) ∈ S by Theorem 3.3(i), this claim follows at once from
Proposition 4.1(i) and (46). (iv)(d): We deduce from (iv)(b) that yn − xn → ȳ − x̄. On the other
hand, (iii) yields yn − xn → γw∗. (iv)(e): Let (x, y) be a minimizer of Φ. Then summing (63) over
n ∈ N, we obtain the first summability property and, using (i), the second follows.

(v): Suppose that ArgminΦ = Ø. Then S = Ø by Proposition 4.1(i) and the claim follows
from Theorem 3.5. Alternatively, if the desired conclusion were false, then by (iii) the sequence(
(xn, yn)

)
n∈N would have a weakly convergent subsequence, say (xkn , ykn) ⇀ (x̄, ȳ). However, the

weak lower semicontinuity of Φ on H×H and (ii) would then imply that (x̄, ȳ) is a minimizer of Φ,
which is a contradiction.

Remark 4.7 Some comments on Theorem 4.6 are in order.

(i) In [1], Acker and Prestel obtained items (i), (ii), and (v) of Theorem 4.6 by different means.
They also established the weak convergence of

(
(xn, yn)

)
n∈N to a minimizer of Φ, as well as

the strong convergence of (yn − xn)n∈N. The identification of the strong limit in (iii) as the
solution of a dual optimization problem as well as the other items in Theorem 4.6 are new.

(ii) Strong convergence of (xn)n∈N and (yn)n∈N in Theorem 4.6(iv) is guaranteed when both f and
g are even (which implies that (0, 0) is a minimizer of Φ and that the subdifferential operators
∂f and ∂g are odd so that Remark 3.4(ii) is applicable). On the other hand, it is known that
strong convergence may fail to hold, even when both proximity operators are projectors (see
[28] and [33]) or even when only a single proximity operator is iterated (see [13] and [27]). See
also Remark 4.8 below.

(iii) Along the same lines as in Remark 3.4(iii), it would be interesting to know how these results
generalize to Banach space settings. A starting point could be [39, Theorem 3.7(b)], which
yields strong convergence of the sequence (xn+1 − xn)n∈N.

Remark 4.8 (weak-but-not-strong convergence of the gradient projection method)
Let C and D be two closed convex subsets of H with associated distance functions dC and dD,
respectively, and assume that C ∩D 6= Ø.
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(i) Set f = ιC and g = ιD. Then (55) yields the method of alternating projections

xn+1 = PCPDxn. (65)

This iteration converges weakly [14, Theorem 1] to a point in C ∩ D (see also Theo-
rem 4.6(iv)(a)). Now set h = d2

D/2, which implies that ∇h = Id−PD is 1-Lipschitz. Observe
that (65) assumes the form of the gradient projection method [25, 29]

xn+1 = PC

(
xn −∇h(xn)

)
. (66)

As shown in [28], (65) does not converge strongly in general and, therefore, neither does the
gradient projection method.

(ii) Set f = ιH and g : H → R : x 7→ 1
2 min ‖(C − x) ∩ (x − D)‖2. Then proxf = Id, proxg =

(PC + PD)/2 [13, Theorem 6.1], and (55) becomes the method of barycentric projections

xn+1 =
PCxn + PDxn

2
, (67)

which is known to converge weakly to a point in C ∩D [5]. Now set h = (d2
C + d2

D)/4. Then
(67) assumes the form of the (unconstrained) gradient method [22]

xn+1 = xn −∇h(xn). (68)

As shown in [13, Corollary 7.1], (67) does not converge strongly in general and, therefore,
neither does the gradient method.

4.3 Applications

Our first application concerns the method of alternating projections. Set f = ιC and g = ιD in (45),
where C and D are nonempty closed convex sets in H. Then minimizing Φ reduces to finding a best
approximation pair, i.e., (x, y) ∈ C ×D such that ‖x− y‖ is equal to the gap inf ‖C −D‖ between
C and D. It is possible that Φ has no minimizers in which case u∗ is not defined: consider, for
instance, the case when C is the horizontal axis and D is the epigraph of the exponential function in
the Euclidean plane. Returning to the general setting, note that iteration (55) becomes the method
of alternating projections

x0 ∈ H and (∀n ∈ N) yn = PD(xn), xn+1 = PC(yn). (69)

Now observe that f � g∨ = ιC � ι−D = ιC−D. Hence

(f � g∨)∗∗ = ι∗∗C−D = ιC−D (70)

is the indicator function of the closure of the Minkowski difference C −D. Using Proposition 4.3(i)
with γ = 1, we determine the dual solution to be (see also [8, section 2])

w∗ = −prox(f � g∨)∗∗(0) = −proxιC−D
(0) = −PC−D(0) = PD−C(0). (71)
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In this setting, Theorem 4.6 recovers most of the results in [9, section 4], which — when viewed in
the product space setting utilized in section 3.3.2 — yield in turn some of the results on parallel
projection methods discussed in [8, section 6], [9, section 6], and [18]. Alternating projections for
two possibly nonintersecting sets were first considered by Cheney in Goldstein [17] in 1959 and then
by Gubin, Polyak, and Raik in 1967 [26]; see also [12] and [33, Corollary 4.6] for related recent
results.

As a second application, we propose a new derivation of von Neumann’s method of alternating
projections [37]. Let C and D be two closed vector subspaces of H, and let z ∈ H. Consider
the problem of finding PC∩D(z), i.e., the best approximation to z from C ∩ D. J. von Neumann
proved that PC∩D(z) can be constructed by alternating projections. We now provide a novel proof
of his result (see [37] and [21, Chapter 9] for further information, and [13, section 3] for a recent
elementary proof).

Corollary 4.9 (von Neumann) Suppose that C and D are closed vector subspaces of H and that
z ∈ H. Then

lim
n→+∞

(PDPC)n(z) = PC∩D(z). (72)

Proof. Denote the orthogonal complements of C and D by C⊥ and D⊥, respectively. We define

f : H → ]−∞,+∞] : x 7→ ιC⊥(x+ z)− 1
2‖z‖

2 and g = ιD⊥ . (73)

Then, for every z∗ ∈ H, f∗(z∗) = 1
2‖z‖

2 − 〈z | z∗〉 + ιC(z∗) and g∗(z∗) = ιD(z∗). Recalling Defi-
nition 4.2 with γ = 1, the (Fenchel dual) minimizer w∗ of the function z∗ 7→ f∗(z∗) + g∗(−z∗) +
1
2‖z

∗‖2 = 1
2‖z‖

2−〈z | z∗〉+ ιC(z∗)+ ιD(z∗)+ 1
2‖z

∗‖2 = 1
2‖z

∗− z‖2 + ιC∩D(z∗) is precisely PC∩D(z).
Furthermore, for any w ∈ H, we compute

proxf (w) = w − PCw − PCz and proxg(w) = w − PDw. (74)

Now consider the alternating proximity operator iteration

x0 ∈ H and (∀n ∈ N) yn = xn − PDxn, xn+1 = yn − PCyn − PCz. (75)

Theorem 4.6(iii) with γ = 1 implies that

lim
n→+∞

yn − xn = w∗ = PC∩D(z). (76)

Now let x0 = 0 and observe that (75) yields y0 = 0, x1 = −PCz, y1 = −PCz + PDPCz, x2 =
−PCz + PDPCz − PCPDPCz, y2 = −PCz + PDPCz − PCPDPCz + PDPCPDPCz, and so forth.
Therefore,

(∀n ∈ N r {0}) yn − xn = (PDPC)n(z), (77)

and the result follows from (76).
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