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Abstract

The notion of quasi-Fejér monotonicity has proven to be an efficient tool to simplify and
unify the convergence analysis of various algorithms arising in applied nonlinear analysis. In
this paper, we extend this notion in the context of variable metric algorithms, whereby the
underlying norm is allowed to vary at each iteration. Applications to convex optimization
and inverse problems are demonstrated.
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1 Introduction

Let C be a nonempty closed subset of the Euclidean space R
N and let y be a point in its

complement. In 1922, Fejér [21] considered the problem of finding a point x ∈ R
N such that

(∀z ∈ C) ‖x− z‖ < ‖y− z‖. Based on this work, the term Fejér-monotonicity was coined in [27]
in connection with sequences (xn)n∈N in R

N that satisfy

(∀z ∈ C)(∀n ∈ N) ‖xn+1 − z‖ 6 ‖xn − z‖. (1.1)

This concept was later broadened to that of quasi-Fejér monotonicity in [20] by relaxing (1.1) to

(∀z ∈ C)(∀n ∈ N) ‖xn+1 − z‖2 6 ‖xn − z‖2 + εn, (1.2)

where (εn)n∈N is a summable sequence in [0,+∞[. These notions have proven to be remarkably
useful in simplifying and unifying the convergence analysis of a large collection of algorithms
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The work of B`̆ang Công Vũ was partially supported by Grant 102.01-2012.15 of the Vietnam National Foundation
for Science and Technology Development (NAFOSTED).

1

mailto:plc@math.jussieu.fr
mailto:vu@ljll.math.upmc.fr
mailto:plc@math.jussieu.fr


arising in hilbertian nonlinear analysis, see for instance [2, 5, 12, 13, 14, 18, 19, 30, 31, 35]
and the references therein. In recent years, there have been attempts to generalize standard
algorithms such as those discussed in the above references by allowing the underlying metric to
vary over the course of the iterations, e.g., [7, 10, 11, 16, 26, 29]. In order to better understand
the convergence properties of such algorithms and lay the ground for further developments, we
extend in the present paper the notion of quasi-Fejér monotonicity to the context of variable
metric iterations in general Hilbert spaces and investigate its properties.

Our notation and preliminary results are presented in Section 2. The notion of variable metric
quasi-Fejér monotonicity is introduced in Section 3, where weak and strong convergence results
are also established. In Section 4, we focus on the special case when, as in (1.2), monotonicity is
with respect to the squared norms. Finally, we illustrate the potential of these tools in the analysis
of variable metric convex feasibility algorithms in Section 5 and in the design of algorithms for
solving inverse problems in Section 6.

2 Notation and technical facts

Throughout, H is a real Hilbert space, 〈· | ·〉 is its scalar product and ‖ · ‖ the associated norm.
The symbols ⇀ and → denote respectively weak and strong convergence, Id denotes the identity
operator, and B(z; ρ) denotes the closed ball of center z ∈ H and radius ρ ∈ ]0,+∞[ ; S (H) is
the space of self-adjoint bounded linear operators from H to H. The Loewner partial ordering
on S (H) is defined by

(∀L1 ∈ S (H))(∀L2 ∈ S (H)) L1 < L2 ⇔ (∀x ∈ H) 〈L1x | x〉 > 〈L2x | x〉. (2.1)

Now let α ∈ [0,+∞[, set
Pα(H) =

{
L ∈ S (H) | L < α Id

}
, (2.2)

and fix W ∈ Pα(H). We define a semi-scalar product and a semi-norm (a scalar product and a
norm if α > 0) by

(∀x ∈ H)(∀y ∈ H) 〈x | y〉W = 〈Wx | y〉 and ‖x‖W =
√

〈Wx | x〉. (2.3)

Let C be a nonempty subset of H, let α ∈ ]0,+∞[, and let W ∈ Pα(H). The interior of C is
intC, the distance function of C is dC , and the convex envelope of C is convC, with closure
convC. If C is closed and convex, the projection operator onto C relative to the metric induced
by W in (2.3) is

PW
C : H → C : x 7→ argmin

y∈C
‖x− y‖W . (2.4)

We write P Id
C = PC . Finally, ℓ

1
+(N) denotes the set of summable sequences in [0,+∞[.

Lemma 2.1 Let α ∈ ]0,+∞[, let µ ∈ ]0,+∞[, and let A and B be operators in S (H) such that
µ Id < A < B < α Id. Then the following hold.

(i) α−1 Id < B−1 < A−1 < µ−1 Id.

(ii) (∀x ∈ H) 〈A−1x | x〉 > ‖A‖−1‖x‖2.
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(iii) ‖A−1‖ 6 α−1.

Proof. These facts are known [24, Section VI.2.6]. We provide a simple convex-analytic proof.

(i): It suffices to show that B−1 < A−1. Set (∀x ∈ H) f(x) = 〈Ax | x〉/2 and g(x) = 〈Bx |
x〉/2. The conjugate of f is f∗ : H → [−∞,+∞] : u 7→ supx∈H

(
〈x | u〉 − f(x)

)
= 〈A−1u | u〉/2

[5, Proposition 17.28]. Likewise, g∗ : H → [−∞,+∞] : u 7→ 〈B−1u | u〉/2. Since, f > g, we have
g∗ > f∗, hence the result.

(ii): Since ‖A‖ Id < A, (i) yields A−1 < ‖A‖−1 Id.

(iii): We have A−1 ∈ S (H) and, by (i), (∀x ∈ H) ‖x‖2/α > 〈A−1x | x〉. Hence, upon taking
the supremum over B(0; 1), we obtain 1/α > ‖A−1‖.

Lemma 2.2 [30, Lemma 2.2.2] Let (αn)n∈N be a sequence in [0,+∞[, let (ηn)n∈N ∈ ℓ1+(N), and
let (εn)n∈N ∈ ℓ1+(N) be such that (∀n ∈ N) αn+1 6 (1 + ηn)αn + εn. Then (αn)n∈N converges.

The following lemma extends the classical property that a uniformly bounded monotone
sequence of operators in S (H) converges pointwise [33, Théorème 104.1].

Lemma 2.3 Let α ∈ ]0,+∞[, let (ηn)n∈N ∈ ℓ1+(N), and let (Wn)n∈N be a sequence in Pα(H)
such that µ = supn∈N ‖Wn‖ < +∞. Suppose that one of the following holds.

(i) (∀n ∈ N) (1 + ηn)Wn < Wn+1.

(ii) (∀n ∈ N) (1 + ηn)Wn+1 < Wn.

Then there exists W ∈ Pα(H) such that Wn → W pointwise.

Proof. (i): Set τ =
∏

n∈N(1 + ηn), τ0 = 1, and, for every n ∈ Nr {0}, τn =
∏n−1

k=0(1 + ηk). Then
τn → τ < +∞ [25, Theorem 3.7.3] and

(∀n ∈ N) µ Id < Wn < α Id and τn+1 = τn(1 + ηn). (2.5)

Now define

(∀n ∈ N)(∀m ∈ N) Wn,m =
1

τn
Wn − 1

τn+m
Wn+m. (2.6)

Then we derive from (2.5) that

(∀n ∈ N)(∀m ∈ Nr {0})(∀x ∈ H) 0 =
1

τn
〈Wnx | x〉 − 1

τn+m

n+m−1∏

k=n

(1 + ηk)〈Wnx | x〉

6
1

τn
〈Wnx | x〉 − 1

τn+m
〈Wn+mx | x〉

= 〈Wn,mx | x〉

6
1

τn
〈Wnx | x〉

6 〈Wnx | x〉
6 µ‖x‖2. (2.7)
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Therefore
(∀n ∈ N)(∀m ∈ N) Wn,m ∈ P0(H) and ‖Wn,m‖ 6 µ. (2.8)

Let us fix x ∈ H. By assumption, (∀n ∈ N) ‖x‖2Wn+1
6 (1 + ηn)‖x‖2Wn

. Hence, by Lemma 2.2,

(‖x‖2Wn
)n∈N converges. In turn, (τ−1

n ‖x‖2Wn
)n∈N converges, which implies that

‖x‖2Wn,m
= 〈Wn,mx | x〉 = 1

τn
‖x‖2Wn

− 1

τn+m
‖x‖2Wn+m

→ 0 as n,m → +∞. (2.9)

Therefore, using (2.8), Cauchy-Schwarz for the semi-norms (‖ · ‖Wn,m)(n,m)∈N2 , and (2.9), we
obtain

‖Wn,mx‖4 = 〈x | Wn,mx〉2Wn,m

6 ‖x‖2Wn,m
‖Wn,mx‖2Wn,m

6 ‖x‖2Wn,m
µ3‖x‖2

→ 0 as n,m → +∞. (2.10)

Thus, we derive from (2.6) that (τ−1
n Wnx)n∈N is a Cauchy sequence. Hence, it converges strongly,

and so does (Wnx)n∈N. If we call Wx the limit of (Wnx)n∈N, the above construction yields the
desired operator W ∈ Pα(H).

(ii): Set (∀n ∈ N) Ln = W−1
n . It follows from Lemma 2.1(i)&(iii) that (Ln)n∈N lies in

P1/µ(H), supn∈N ‖Ln‖ 6 1/α, and (∀n ∈ N) (1 + ηn)Ln < Ln+1. Hence, appealing to (i), there
exists L ∈ P1/µ(H) such that ‖L‖ 6 1/α and Ln → L pointwise. Now let x ∈ H, and set
W = L−1 and (∀n ∈ N) xn = Ln(Wx). Then W ∈ Pα(H) and xn → L(Wx) = x. Moreover,
‖Wnx−Wx‖ = ‖Wn(x− xn)‖ 6 µ‖xn − x‖ → 0.

3 Variable metric quasi-Fejér monotone sequences

Our paper hinges on the following extension of (1.2).

Definition 3.1 Let α ∈ ]0,+∞[, let φ : [0,+∞[ → [0,+∞[, let (Wn)n∈N be a sequence in
Pα(H), let C be a nonempty subset of H, and let (xn)n∈N be a sequence in H. Then (xn)n∈N is:

(i) φ-quasi-Fejér monotone with respect to the target set C relative to (Wn)n∈N if

(
∃ (ηn)n∈N ∈ ℓ1+(N)

)(
∀z ∈ C

)(
∃ (εn)n∈N ∈ ℓ1+(N)

)
(∀n ∈ N)

φ(‖xn+1 − z‖Wn+1) 6 (1 + ηn)φ(‖xn − z‖Wn) + εn; (3.1)

(ii) stationarily φ-quasi-Fejér monotone with respect to the target set C relative to (Wn)n∈N if

(
∃ (εn)n∈N ∈ ℓ1+(N)

)(
∃ (ηn)n∈N ∈ ℓ1+(N)

)
(∀z ∈ C)(∀n ∈ N)

φ(‖xn+1 − z‖Wn+1) 6 (1 + ηn)φ(‖xn − z‖Wn) + εn. (3.2)

We start with basic properties.
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Proposition 3.2 Let α ∈ ]0,+∞[, let φ : [0,+∞[ → [0,+∞[ be strictly increasing and such
that limt→+∞ φ(t) = +∞, let (Wn)n∈N be in Pα(H), let C be a nonempty subset of H, and let
(xn)n∈N be a sequence in H such that (3.1) is satisfied. Then the following hold.

(i) Let z ∈ C. Then (‖xn − z‖Wn)n∈N converges.

(ii) (xn)n∈N is bounded.

Proof. (i): Set (∀n ∈ N) ξn = ‖xn − z‖Wn . It follows from (3.1) and Lemma 2.2 that (φ(ξn))n∈N
converges, say φ(ξn) → λ. In turn, since limt→+∞ φ(t) = +∞, (ξn)n∈N is bounded and, to show
that it converges, it suffices to show that it cannot have two distinct cluster points. Suppose to
the contrary that we can extract two subsequences (ξkn)n∈N and (ξln)n∈N such that ξkn → η and
ξln → ζ > η, and fix ε ∈ ]0, (ζ − η)/2[. Then, for n sufficiently large, ξkn 6 η + ε < ζ − ε 6 ξln
and, since φ is strictly increasing, φ(ξkn) 6 φ(η + ε) < φ(ζ − ε) 6 φ(ξln). Taking the limit as
n → +∞ yields λ 6 φ(η + ε) < φ(ζ − ε) 6 λ, which is impossible.

(ii): Let z ∈ C. Since (Wn)n∈N lies in Pα(H), we have

(∀n ∈ N) α‖xn − z‖2 6 〈xn − z | Wn(xn − z)〉 = ‖xn − z‖2Wn
. (3.3)

Hence, since (i) asserts that (‖xn − z‖Wn)n∈N is bounded, so is (xn)n∈N.

The next result concerns weak convergence. In the case of standard Fejér monotonicity (1.1),
it appears in [9, Lemma 6] and, in the case of quasi-Fejér monotonicity (1.2), it appears in [1,
Proposition 1.3].

Theorem 3.3 Let α ∈ ]0,+∞[, let φ : [0,+∞[ → [0,+∞[ be strictly increasing and such that
limt→+∞ φ(t) = +∞, let (Wn)n∈N and W be operators in Pα(H) such that Wn → W pointwise,
let C be a nonempty subset of H, and let (xn)n∈N be a sequence in H such that (3.1) is satisfied.
Then (xn)n∈N converges weakly to a point in C if and only if every weak sequential cluster point
of (xn)n∈N is in C.

Proof. Necessity is clear. To show sufficiency, suppose that every weak sequential cluster point
of (xn)n∈N is in C, and let x and y be two such points, say xkn ⇀ x and xln ⇀ y. Then it
follows from Proposition 3.2(i) that (‖xn − x‖Wn)n∈N and (‖xn − y‖Wn)n∈N converge. Moreover,
‖x‖2Wn

= 〈Wnx | x〉 → 〈Wx | x〉 and, likewise, ‖y‖2Wn
→ 〈Wy | y〉. Therefore, since

(∀n ∈ N) 〈Wnxn | x− y〉 = 1

2

(
‖xn − y‖2Wn

− ‖xn − x‖2Wn
+ ‖x‖2Wn

− ‖y‖2Wn

)
, (3.4)

the sequence (〈Wnxn | x− y〉)n∈N converges, say 〈Wnxn | x− y〉 → λ ∈ R, which implies that

〈xn | Wn(x− y)〉 → λ ∈ R. (3.5)

However, since xkn ⇀ x andWkn(x−y) → W (x−y), it follows from (3.5) and [5, Lemma 2.41(iii)]
that 〈x | W (x− y)〉 = λ. Likewise, passing to the limit along the subsequence (xln)n∈N in (3.5)
yields 〈y | W (x− y)〉 = λ. Thus,

0 = 〈x | W (x− y)〉 − 〈y | W (x− y)〉 = 〈x− y | W (x− y)〉 > α‖x− y‖2. (3.6)
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This shows that x = y. Upon invoking Proposition 3.2(ii) and [5, Lemma 2.38], we conclude that
xn ⇀ x.

Lemma 2.3 provides instances in which the conditions imposed on (Wn)n∈N in Theorem 3.3
are satisfied. Next, we present a characterization of strong convergence which can be found in
[12, Theorem 3.11] in the special case of quasi-Fejér monotonicity (1.2).

Proposition 3.4 Let α ∈ ]0,+∞[, let χ ∈ [1,+∞[, and let φ : [0,+∞[ → [0,+∞[ be an in-
creasing upper semicontinuous function vanishing only at 0 and such that

(
∀(ξ1, ξ2) ∈ [0,+∞[2

)
φ(ξ1 + ξ2) 6 χ

(
φ(ξ1) + φ(ξ2)

)
. (3.7)

Let (Wn)n∈N be a sequence in Pα(H) such that µ = supn∈N ‖Wn‖ < +∞, let C be a nonempty
closed subset of H, and let (xn)n∈N be a sequence in H such that (3.2) is satisfied. Then (xn)n∈N
converges strongly to a point in C if and only if lim dC(xn) = 0.

Proof. Necessity is clear. For sufficiency, suppose that lim dC(xn) = 0 and set (∀n ∈ N) ξn =
infz∈C ‖xn−z‖Wn . For every n ∈ N, let (zn,k)k∈N be a sequence in C such that ‖xn−zn,k‖Wn → ξn.
Then, since φ is increasing, (3.2) yields

(∀n ∈ N)(∀k ∈ N) φ(ξn+1) 6 φ(‖xn+1 − zn,k‖Wn+1) 6 (1 + ηn)φ(‖xn − zn,k‖Wn) + εn. (3.8)

Hence, it follows from the upper semicontinuity of φ that

(∀n ∈ N) φ(ξn+1) 6 (1 + ηn) lim
k→+∞

φ(‖xn − zn,k‖Wn) + εn

6 (1 + ηn)φ(ξn) + εn. (3.9)

Therefore, by Lemma 2.2, (
φ(ξn)

)
n∈N

converges. (3.10)

Moreover, since

(∀n ∈ N)(∀m ∈ N)(∀x ∈ H) α‖xn − x‖2 6 ‖xn − x‖2Wm
6 µ‖xn − x‖2, (3.11)

we have
(∀n ∈ N)

√
αdC(xn) 6 ξn 6

√
µdC(xn). (3.12)

Consequently, since lim dC(xn) = 0, we derive from (3.12) that lim ξn = 0. Let us extract
a subsequence (ξkn)n∈N such that ξkn → 0. Since φ is upper semicontinuous, we have 0 6

limφ(ξkn) 6 lim φ(ξkn) 6 φ(0) = 0. In view of (3.10), we therefore obtain φ(ξn) → 0 and, in
turn, ξn → 0. Hence, we deduce from (3.12) that

dC(xn) → 0. (3.13)

Next, let N be the smallest integer such that N >
√
µ, and set ρ = χN−1 +

∑N−1
k=1 χk if N > 1;

ρ = 1 if N = 1. Moreover, let x ∈ C and let m and n be strictly positive integers. Using (3.11),
the monotonicity of φ, and (3.7), we obtain

φ
(
‖xn − x‖Wm

)
6 φ

(√
µ‖xn − x‖

)
6 φ

(
N‖xn − x‖

)
6 ρφ

(
‖xn − x‖

)
. (3.14)
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Now set τ =
∏

k∈N(1 + ηk). Then τ < +∞ [25, Theorem 3.7.3] and we derive from (3.7), (3.2),
and (3.14) that

χ−1φ
(
‖xn+m − xn‖Wn+m

)
6 χ−1φ

(
‖xn+m − x‖Wn+m

+ ‖xn − x‖Wn+m

)

6 φ
(
‖xn+m − x‖Wm+n

)
+ φ

(
‖xn − x‖Wm+n

)

6 τ

(
φ
(
‖xn − x‖Wn

)
+

n+m−1∑

k=n

εk

)
+ φ

(
‖xn − x‖Wm+n

)

6 ρ(1 + τ)φ
(
‖xn − x‖

)
+ τ

∑

k>n

εk. (3.15)

Therefore, upon taking the infimum over x ∈ C, we obtain by upper semicontinuity of φ

φ
(
‖xn+m − xn‖Wn+m

)
6 χρ(1 + τ)φ

(
dC(xn)

)
+ χτ

∑

k>n

εk. (3.16)

Hence, appealing to (3.13) and the summability of (εk)k∈N, we deduce from (3.16) that, as
n → +∞, φ(‖xn+m − xn‖Wn+m

) → 0 and, hence, α‖xn+m − xn‖2 6 ‖xn+m − xn‖2Wn+m
→ 0.

Thus, (xn)n∈N is a Cauchy sequence inH and there exists x ∈ H such that xn → x. By continuity
of dC and (3.13), we obtain dC(x) = 0 and, since C is closed, x ∈ C.

4 The quadratic case

In this section, we focus on the important case when φ = | · |2 in Definition 3.1. Our first result
states that variable metric quasi-Fejér monotonicity “spreads” to the convex hull of the target
set.

Proposition 4.1 Let α ∈ ]0,+∞[, let (ηn)n∈N be a sequence in ℓ1+(N), and let (Wn)n∈N be a
sequence in Pα(H) such that

µ = sup
n∈N

‖Wn‖ < +∞ and (∀n ∈ N) (1 + ηn)Wn < Wn+1. (4.1)

Let C be a nonempty subset of H and let (xn)n∈N be a sequence in H such that

(
∃ (ηn)n∈N ∈ ℓ1+(N)

)(
∀z ∈ C

)(
∃ (εn)n∈N ∈ ℓ1+(N)

)
(∀n ∈ N)

‖xn+1 − z‖2Wn+1
6 (1 + ηn)‖xn − z‖2Wn

+ εn. (4.2)

Then the following hold.

(i) (xn)n∈N is | · |2-quasi-Fejér monotone with respect to convC relative to (Wn)n∈N.

(ii) For every y ∈ convC, (‖xn − y‖Wn)n∈N converges.

Proof. Let us fix z ∈ convC. There exist finite sets {zi}i∈I ⊂ C and {λi}i∈I ⊂ ]0, 1] such that

∑

i∈I

λi = 1 and z =
∑

i∈I

λizi. (4.3)
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For every i ∈ I, it follows from (4.2) that there exists a sequence (εi,n)n∈N ∈ ℓ1+(N) such that

(∀n ∈ N) ‖xn+1 − zi‖2Wn+1
6 (1 + ηn)‖xn − zi‖2Wn

+ εi,n. (4.4)

Now set

(∀n ∈ N)





αn =
1

2

∑

i∈I

∑

j∈I

λiλj‖zi − zj‖2Wn

εn = (1 + ηn)αn − αn+1 +max{ε1,n, . . . , εm,n}.
(4.5)

Then (max{ε1,n, . . . , εm,n})n∈N ∈ ℓ1+(N) and, by (4.1), (∀n ∈ N) (1 + ηn)αn > αn+1. Hence,
Lemma 2.2 asserts that (αn)n∈N converges, which implies that (εn)n∈N ∈ ℓ1+(N).

(i): Using (4.3), [5, Lemma 2.13(ii)], and (4.4), we obtain

(∀n ∈ N) ‖xn+1 − z‖2Wn+1
=

∑

i∈I

λi‖xn+1 − zi‖2Wn+1
− αn+1

6 (1 + ηn)
∑

i∈I

λi‖xn − zi‖2Wn
− αn+1 +max{ε1,n, . . . , εm,n}

= (1 + ηn)‖xn − z‖2Wn
+ (1 + ηn)αn − αn+1 +max{ε1,n, . . . , εm,n}

= (1 + ηn)‖xn − z‖2Wn
+ εn. (4.6)

(ii): It follows from [5, Lemma 2.13(ii)] that

(∀n ∈ N) ‖xn − z‖2Wn
=

∑

i∈I

λi‖xn − zi‖2Wn
− αn. (4.7)

However, (αn)n∈N converges and, for every i ∈ I, Proposition 3.2(i) asserts that (‖xn−zi‖Wn)n∈N
converges. Hence, (‖xn−z‖Wn)n∈N converges. Now let y ∈ convC. Then there exists a sequence
(yk)k∈N in convC such that yk → y. It follows from (i) and Proposition 3.2(i) that, for every
k ∈ N, (‖xn − yk‖Wn)n∈N converges. Moreover, we have

(∀k ∈ N)(∀n ∈ N) −√
µ‖yk − y‖ 6 −‖yk − y‖Wn

6 ‖xn − y‖Wn − ‖xn − yk‖Wn

6 ‖yk − y‖Wn

6
√
µ‖yk − y‖. (4.8)

Consequently,

(∀k ∈ N) −√
µ‖yk − y‖ 6 lim ‖xn − y‖Wn − lim ‖xn − yk‖Wn

6 lim ‖xn − y‖Wn − lim ‖xn − yk‖Wn

6
√
µ‖yk − y‖. (4.9)

Taking the limit as k → +∞ yields limn→+∞ ‖xn − y‖Wn = limk→+∞ limn→+∞ ‖xn − yk‖Wn .

Standard Fejér monotone sequences may fail to converge weakly and, even when they converge
weakly, strong convergence may fail [12, 23]. However, if the target set C is closed and convex in
(1.1), the projected sequence (PCxn)n∈N converges strongly; see [2, Theorem 2.16(iv)] and [32,
Remark 1]. This property, which remains true in the quasi-Fejérian case [12, Proposition 3.6(iv)],
is extended below.
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Proposition 4.2 Let α ∈ ]0,+∞[, let (ηn)n∈N be a sequence in ℓ1+(N), let (Wn)n∈N be a uni-
formly bounded sequence in Pα(H), let C be a nonempty closed convex subset of H, and let
(xn)n∈N be a sequence in H such that

(
∃ (εn)n∈N ∈ ℓ1+(N)

)(
∃ (ηn)n∈N ∈ ℓ1+(N)

)
(∀z ∈ C)(∀n ∈ N)

‖xn+1 − z‖2Wn+1
6 (1 + ηn)‖xn − z‖2Wn

+ εn. (4.10)

Then (PWn

C xn)n∈N converges strongly.

Proof. Set (∀n ∈ N) zn = PWn

C xn. For every (m,n) ∈ N
2, since zn ∈ C and zm+n = P

Wn+m

C xn+m,
the well-known convex projection theorem [5, Theorem 3.14] yields

〈zn − zn+m | xn+m − zn+m〉Wn+m
6 0, (4.11)

which implies that

〈zn − xn+m | xn+m − zn+m〉Wn+m
= 〈zn − zn+m | xn+m − zn+m〉Wn+m

− ‖xn+m − zn+m‖2Wn+m

6 −‖xn+m − zn+m‖2Wn+m
. (4.12)

Therefore, for every (m,n) ∈ N
2,

‖zn − zn+m‖2Wn+m
= ‖zn − xn+m‖2Wn+m

+ 2〈zn − xn+m | xn+m − zn+m〉Wn+m

+ ‖xn+m − zn+m‖2Wn+m

6 ‖zn − xn+m‖2Wn+m
− ‖xn+m − zn+m‖2Wn+m

. (4.13)

Now fix z ∈ C, and set µ = supn∈N ‖Wn‖ and ρ = supn∈N ‖xn − z‖2Wn
. Then µ < +∞ and,

in view of Proposition 3.2(i), ρ < +∞. It follows from (4.10) that, for every n ∈ N and every
m ∈ Nr {0}, since PWn

C is nonexpansive with respect to ‖ · ‖Wn [5, Proposition 4.8], we have

‖xn+m − zn‖2Wn+m
6 ‖xn − zn‖2Wn

+
n+m−1∑

k=n

(
ηk‖xk − zn‖2Wk

+ εk
)

6 ‖xn − zn‖2Wn
+

n+m−1∑

k=n

(
2ηk

(
‖xk − z‖2Wk

+ ‖zn − z‖2Wk

)
+ εk

)

6 ‖xn − zn‖2Wn
+

n+m−1∑

k=n

(
2ηk

(
ρ+

µ

α
‖PWn

C xn − PWn

C z‖2Wn

)
+ εk

)

6 ‖xn − zn‖2Wn
+

n+m−1∑

k=n

(
2ηk

(
ρ+

µ

α
‖xn − z‖2Wn

)
+ εk

)

6 ‖xn − zn‖2Wn
+

n+m−1∑

k=n

(
2ρηk

(
1 +

µ

α

)
+ εk

)
. (4.14)

Combining (4.13) and (4.14), we obtain that for every n ∈ N and every m ∈ Nr {0},

α‖zn+m − zn‖2 6 ‖zn+m − zn‖2Wn+m

6 ‖xn − zn‖2Wn
− ‖xn+m − zn+m‖2Wn+m

+
∑

k>n

(
2ρηk

(
1 +

µ

α

)
+ εk

)
. (4.15)
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On the other hand, (4.10) yields

(∀n ∈ N) ‖xn+1 − zn+1‖2Wn+1
6 ‖xn+1 − zn‖2Wn+1

6 (1 + ηn)‖xn − zn‖2Wn
+ εn, (4.16)

which, by Lemma 2.2, implies that (‖xn − zn‖Wn)n∈N converges. Consequently, since (ηk)k∈N
and (εk)k∈N are in ℓ1+(N), we derive from (4.15) that (zn)n∈N is a Cauchy sequence and hence
that it converges strongly.

In the case of classical Fejér monotone sequences, it has been known since [31] that strong
convergence is achieved when the interior of the target set is nonempty (see also [12, Proposi-
tion 3.10] for the case of quasi-Fejér monotonicity). The following result extends this fact in the
context of variable metric quasi-Fejér sequences.

Proposition 4.3 Let α ∈ ]0,+∞[, let (νn)n∈N ∈ ℓ1+(N), and let (Wn)n∈N be a sequence in
Pα(H) such that

µ = sup
n∈N

‖Wn‖ < +∞ and (∀n ∈ N) (1 + νn)Wn+1 < Wn. (4.17)

Furthermore, let C be a subset of H such that intC 6= ∅, let z ∈ C and ρ ∈ ]0,+∞[ be such that
B(z; ρ) ⊂ C, and let (xn)n∈N be a sequence in H such that

(
∃ (εn)n∈N ∈ ℓ1+(N)

)(
∃ (ηn)n∈N ∈ ℓ1+(N)

)
(∀x ∈ B(z; ρ))(∀n ∈ N)

‖xn+1 − x‖2Wn+1
6 (1 + ηn)‖xn − x‖2Wn

+ εn. (4.18)

Then (xn)n∈N converges strongly.

Proof. We derive from (4.17) and Proposition 3.2(ii) that

ζ = sup
x∈B(z;ρ)

sup
n∈N

‖xn − x‖2Wn
6 2µ

(
sup
n∈N

‖xn − z‖2 + sup
x∈B(z;ρ)

‖x− z‖2
)

< +∞. (4.19)

It follows from (4.18) and (4.19) that

(∀n ∈ N)(∀x ∈ B(z; ρ)) ‖xn+1 − x‖2Wn+1
6 ‖xn − x‖2Wn

+ ξn, where ξn = ζηn + εn. (4.20)

Now set
(∀n ∈ N) vn = Wn+1(xn+1 − z)−Wn(xn − z), (4.21)

and define a sequence (zn)n∈N in B(z; ρ) by

(∀n ∈ N) zn = z − ρun, where un =

{
0, if vn = 0;

vn/‖vn‖, if vn 6= 0.
(4.22)

Then

(∀n ∈ N)





‖xn+1 − zn‖2Wn+1
= ‖xn+1 − z‖2Wn+1

+ 2ρ〈Wn+1(xn+1 − z) | un〉
+ ρ2‖un‖2Wn+1

;

‖xn − zn‖2Wn
= ‖xn − z‖2Wn

+ 2ρ〈Wn(xn − z) | un〉+ ρ2‖un‖2Wn
.

(4.23)
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On the other hand, (4.20) yields (∀n ∈ N) ‖xn+1 − zn‖2Wn+1
6 ‖xn − zn‖2Wn

+ ξn. Therefore, it
follows from (4.23), (4.21), and (4.17) that

(∀n ∈ N) ‖xn+1 − z‖2Wn+1
6 ‖xn − z‖2Wn

− 2ρ‖vn‖+ ρ2
(
‖un‖2Wn

− ‖un‖2Wn+1

)
+ ξn

6 ‖xn − z‖2Wn
− 2ρ‖vn‖+ ρ2µνn + ξn. (4.24)

Since (ρ2µνn + ξn)n∈N ∈ ℓ1+(N), this implies that

∑

n∈N

‖wn+1 − wn‖ =
∑

n∈N

‖vn‖ < +∞, where (∀n ∈ N) wn = Wn(xn − z). (4.25)

Hence, (wn)n∈N is a Cauchy sequence in H and, therefore, there exists w ∈ H such that wn → w.
On the other hand, we deduce from (4.17) and Lemma 2.3(ii) that there exists W ∈ Pα(H) such
that Wn → W . Now set x = z + W−1w. Then, since (Wn)n∈N lies in Pα(H), it follows from
Cauchy-Schwarz that

α‖xn − x‖ 6 ‖Wnxn −Wnx‖ = ‖wn −WnW
−1w‖ 6 ‖wn − w‖+ ‖w −WnW

−1w‖ → 0, (4.26)

which concludes the proof.

5 Application to convex feasibility

We illustrate our results through an application to the convex feasibility problem, i.e., the generic
problem of finding a common point of a family of closed convex sets. As in [4], given α ∈ ]0,+∞[
and W ∈ Pα(H), we say that an operator T : H → H with fixed point set FixT belongs to T(W )
if

(∀x ∈ H)(∀y ∈ Fix T ) 〈y − Tx | x− Tx〉W 6 0. (5.1)

If T ∈ T(W ), then [12, Proposition 2.3(ii)] yields

(∀x ∈ H)(∀y ∈ FixT )(∀λ ∈ [0, 2]) ‖(Id+λ(T − Id))x− y‖2W
6 ‖x− y‖2W − λ(2− λ)‖Tx− x‖2W . (5.2)

The usefulness of the class T(W ) stems from the fact that it contains many of the operators com-
monly encountered in nonlinear analysis: firmly nonexpansive operators (in particular resolvents
of maximally monotone operators and proximity operators of proper lower semicontinuous convex
functions), subgradient projection operators, projection operators, averaged quasi-nonexpansive
operators, and several combinations thereof [4, 6, 12].

Theorem 5.1 Let α ∈ ]0,+∞[, let (Ci)i∈I be a finite or countably infinite family of closed
convex subsets of H such that C =

⋂
i∈I Ci 6= ∅, let (an)n∈N be a sequence in H such that∑

n∈N ‖an‖ < +∞, let (ηn)n∈N be a sequence in ℓ1+(N), and let (Wn)n∈N be a sequence in Pα(H)
such that

µ = sup
n∈N

‖Wn‖ < +∞ and (∀n ∈ N) (1 + ηn)Wn < Wn+1. (5.3)

Let i : N → I be such that

(∀j ∈ I)(∃Mj ∈ Nr {0})(∀n ∈ N) j ∈ {i(n), . . . , i(n+Mj − 1)}. (5.4)
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For every i ∈ I, let (Ti,n)n∈N be a sequence of operators such that

(∀n ∈ N) Ti,n ∈ T(Wn) and Fix Ti,n = Ci. (5.5)

Fix ε ∈ ]0, 1[ and x0 ∈ H, let (λn)n∈N be a sequence in [ε, 2 − ε], and set

(∀n ∈ N) xn+1 = xn + λn

(
Ti(n),nxn + an − xn

)
. (5.6)

Suppose that, for every strictly increasing sequence (pn)n∈N in N, every x ∈ H, and every j ∈ I,





xpn ⇀ x

Tj,pnxpn − xpn → 0

(∀n ∈ N) j = i(pn)

⇒ x ∈ Cj. (5.7)

Then the following hold for some x ∈ C.

(i) xn ⇀ x.

(ii) Suppose that intC 6= ∅ and that there exists (νn)n∈N ∈ ℓ1+(N) such that (∀n ∈ N) (1 +
νn)Wn+1 < Wn. Then xn → x.

(iii) Suppose that lim dC(xn) = 0. Then xn → x.

(iv) Suppose that there exists an index j ∈ I of demicompact regularity: for every strictly
increasing sequence (pn)n∈N in N,





supn∈N ‖xpn‖ < +∞
Tj,pnxpn − xpn → 0

(∀n ∈ N) j = i(pn)

⇒ (xpn)n∈N has a strong sequential cluster point. (5.8)

Then xn → x.

Proof. Fix z ∈ C and set

(∀n ∈ N) yn = xn + λn

(
Ti(n),nxn − xn

)
. (5.9)

Appealing to (5.2) and the fact that, by virtue of (5.4), z ∈ ⋂
i∈I Ci =

⋂
n∈N FixTi(n),n, we

obtain,

(∀n ∈ N) ‖yn − z‖2Wn
6 ‖xn − z‖2Wn

− λn(2− λn)‖Ti(n),nxn − xn‖2Wn

6 ‖xn − z‖2Wn
− ε2‖Ti(n),nxn − xn‖2Wn

. (5.10)

Moreover, it follows from (5.3) that

(∀n ∈ N) ‖yn − z‖2Wn+1
6 (1 + ηn)‖yn − z‖2Wn

. (5.11)

Thus,

(∀n ∈ N) ‖yn − z‖2Wn+1
6 (1 + ηn)‖xn − z‖2Wn

− ε2(1 + ηn)‖Ti(n),nxn − xn‖2Wn

6 (1 + ηn)‖xn − z‖2Wn
− ε2‖Ti(n),nxn − xn‖2Wn

(5.12)

6 (1 + ηn)‖xn − z‖2Wn
. (5.13)
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Using (5.6), (5.9), and (5.13), we get

(∀n ∈ N) ‖xn+1 − z‖Wn+1 6 ‖yn − z‖Wn+1 + λn‖an‖Wn+1

6
√

1 + ηn‖xn − z‖Wn +
√
µλn‖an‖

6 (1 + ηn)‖xn − z‖Wn + 2
√
µ‖an‖, (5.14)

which shows that

(xn)n∈N satisfies (3.2) – and hence (3.1) – with φ = | · |. (5.15)

It follows from (5.15) and Proposition 3.2(i) that (‖xn − z‖Wn)n∈N converges, say

‖xn − z‖Wn → ξ ∈ R. (5.16)

We therefore derive from (5.14) that ‖yn − z‖Wn+1 → ξ and then from (5.12) that

αε2‖Ti(n),nxn − xn‖2 6 ε2‖Ti(n),nxn − xn‖2Wn
6 (1+ ηn)‖xn − z‖2Wn

−‖yn − z‖2Wn+1
→ 0. (5.17)

(i): It follows from (5.6) and (5.17) that

‖xn+1 − xn‖ = λn

∥∥Ti(n),nxn + an − xn
∥∥

6 2
(
‖Ti(n),nxn − xn‖+ ‖an‖

)

6 2
(
‖Ti(n),nxn − xn‖Wn/

√
α+ ‖an‖

)

→ 0. (5.18)

Now, fix j ∈ I and let x be a weak sequential cluster point of (xn)n∈N. According to (5.4), there
exist strictly increasing sequences (kn)n∈N and (pn)n∈N in N such that xkn ⇀ x and

(∀n ∈ N)

{
kn 6 pn 6 kn +Mj − 1 < kn+1 6 pn+1,

j = i(pn).
(5.19)

Therefore, we deduce from (5.18) that

‖xpn − xkn‖ 6

kn+Mj−2∑

l=kn

‖xl+1 − xl‖

6 (Mj − 1) max
kn6l6kn+Mj−2

‖xl+1 − xl‖

→ 0, (5.20)

which implies that xpn ⇀ x. We also derive from (5.17) and (5.19) that Tj,pnxpn − xpn =
Ti(pn),pnxpn − xpn → 0. Altogether, it follows from (5.7) that x ∈ Cj . Since j was arbitrarily
chosen in I, we obtain x ∈ C and, in view of Lemma 2.3(i) and Theorem 3.3, we conclude that
xn ⇀ x.

(ii): Suppose that z ∈ intC and fix ρ ∈ ]0,+∞[ such that B(z; ρ) ⊂ C. Set η = supn∈N ηn,
ζ = supx∈B(z;ρ) supn∈N ‖xn − x‖Wn , and

(∀n ∈ N) εn = 4
(
ζ
√

µ(1 + η)‖an‖+ µ‖an‖2
)
. (5.21)
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Then η < +∞ and, as in (4.19), ζ < +∞. Therefore (εn)n∈N ∈ ℓ1+(N). Furthermore, we derive
from (5.6), (5.9), and (5.13) that, for every x ∈ B(z; ρ) and every n ∈ N,

‖xn+1 − x‖2Wn+1
6 ‖yn − x‖2Wn+1

+ 2λn‖yn − x‖Wn+1 ‖an‖Wn+1 + λ2
n‖an‖2Wn+1

6 (1 + ηn)‖xn − x‖2Wn
+ 4

√
µ(1 + ηn)‖xn − x‖Wn ‖an‖+ 4µ‖an‖2

6 (1 + ηn)‖xn − x‖2Wn
+ εn. (5.22)

Altogether, the assertion follows from (i) and Proposition 4.3.

(iii): This follows from (5.15), Proposition 3.4, and (i).

(iv): Let j ∈ I be an index of demicompact regularity and let (pn)n∈N be a strictly increasing
sequence such that (∀n ∈ N) j = i(pn). Then (xpn)n∈N is bounded, while (5.17) asserts that
Tj,pnxpn − xpn → 0. In turn, (5.8) and (i) imply that xpn → x ∈ C. Therefore lim dC(xn) 6

‖xpn − x‖ → 0 and (iii) yields the result.

Condition (5.4) first appeared in [9, Definition 5]. Property (5.7) was introduced in [2, Def-
inition 3.7] and property (5.8) in [12, Definition 6.5]. Examples of sequences of operators that
satisfy (5.7) can be found in [2, 6, 12]. Here is a simple application of Theorem 5.1 to a variable
metric periodic projection method.

Corollary 5.2 Let α ∈ ]0,+∞[, let m be a strictly positive integer, let I = {1, . . . ,m}, let
(Ci)i∈I be family of closed convex subsets of H such that C =

⋂
i∈I Ci 6= ∅, let (an)n∈N be a

sequence in H such that
∑

n∈N ‖an‖ < +∞, let (ηn)n∈N be a sequence in ℓ1+(N), and let (Wn)n∈N
be a sequence in Pα(H) such that supn∈N ‖Wn‖ < +∞ and (∀n ∈ N) (1 + ηn)Wn < Wn+1. Fix
ε ∈ ]0, 1[ and x0 ∈ H, let (λn)n∈N be a sequence in [ε, 2 − ε], and set

(∀n ∈ N) xn+1 = xn + λn

(
PWn

C1+rem(n,m)
xn + an − xn

)
, (5.23)

where rem(·,m) is the remainder function of the division by m. Then the following hold for some
x ∈ C.

(i) xn ⇀ x.

(ii) Suppose that intC 6= ∅ and that there exists (νn)n∈N ∈ ℓ1+(N) such that (∀n ∈ N) (1 +
νn)Wn+1 < Wn. Then xn → x.

(iii) Suppose that there exists j ∈ I such that Cj is boundedly compact, i.e., its intersection with
every closed ball of H is compact. Then xn → x.

Proof. The function i : N → I : n 7→ 1+rem(n,m) satisfies (5.4) with (∀j ∈ I) Mj = m. Now, set
(∀i ∈ I)(∀n ∈ N) Ti,n = PWn

Ci
. Then (∀i ∈ I)(∀n ∈ N) Ti,n ∈ T(Wn) and Fix Ti,n = Ci. Hence,

(5.23) is a special case of (5.6).

(i)–(ii): Fix j ∈ I and let (xpn)n∈N be a weakly convergent subsequence of (xn)n∈N, say xpn ⇀

x, such that Tj,pnxpn − xpn → 0 and (∀n ∈ N) j = i(pn). Then Cj ∋ P
Wpn

Cj
xpn = Tj,pnxpn ⇀ x

and, since Cj is weakly closed [5, Theorem 3.32], we have x ∈ Cj . This shows that (5.7) holds.
Altogether, the claims follow from Theorem 5.1(i)–(ii).
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(iii): Let (pn)n∈N be a strictly increasing sequence in N such that P
Wpn

Cj
xpn −xpn = Tj,pnxpn −

xpn → 0 and (∀n ∈ N) j = i(pn). Then

‖PCj
xpn − xpn‖ 6 ‖PWpn

Cj
xpn − xpn‖ → 0. (5.24)

On the other hand, since (xpn)n∈N is bounded and PCj
is nonexpansive, (PCj

xpn)n∈N is a bounded
sequence in the boundedly compact set Cj. Hence, (PCj

xpn)n∈N admits a strong sequential cluster
point and so does (xpn)n∈N since PCj

xpn − xpn → 0. Thus, j ∈ I is an index of demicompact
regularity and the claim therefore follows from Theorem 5.1(iv).

Remark 5.3 In the special case when, for every n ∈ N, Wn = Id and ηn = 0, Corollary 5.2(i)
was established in [8] (with (∀n ∈ N) λn = 1), and Corollary 5.2(ii) in [22].

Next is an application of Corollary 5.2 to the problem of solving linear inequalities. In
Euclidean spaces, the use of periodic projection methods to solve this problem goes back to
[27].

Example 5.4 Let α ∈ ]0,+∞[, let m be a strictly positive integer, let I = {1, . . . ,m}, let (ηi)i∈I
be real numbers, and suppose that (ui)i∈I are nonzero vectors in H such that

C =
{
x ∈ H | (∀i ∈ I) 〈x | ui〉 6 ηi

}
6= ∅. (5.25)

Let (ηn)n∈N be a sequence in ℓ1+(N), and let (Wn)n∈N be a sequence in Pα(H) such that
supn∈N ‖Wn‖ < +∞ and (∀n ∈ N) (1 + ηn)Wn < Wn+1. Fix ε ∈ ]0, 1[ and x0 ∈ H, let
(λn)n∈N be a sequence in [ε, 2 − ε], and set

(∀n ∈ N)



i(n) = 1 + rem(n,m)
if 〈xn | ui(n)〉 6 ηi(n)⌊
yn = xn

if 〈xn | ui(n)〉 > ηi(n)⌊
yn = xn +

ηi(n) − 〈xn | ui(n)〉
〈ui(n) | W−1

n ui(n)〉
W−1

n ui(n)

xn+1 = xn + λn(yn − xn).

(5.26)

Then there exists x ∈ C such that xn ⇀ x.

Proof. Set (∀i ∈ I) Ci =
{
x ∈ H | 〈x | ui〉 6 ηi

}
. Then it follows from [5, Example 28.16(iii)]

that (5.26) can be rewritten as

(∀n ∈ N) xn+1 = xn + λn

(
PWn

C1+rem(n,m)
xn − xn

)
. (5.27)

The claim is therefore a consequence of Corollary 5.2(i).

We now turn our attention to the problem of finding a zero of a maximally monotone operator
A : H → 2H (see [5] for background) via a variable metric proximal point algorithm. Let α ∈
]0,+∞[, let γ ∈ ]0,+∞[, let W ∈ Pα(H), and let A : H → 2H be maximally monotone with
graph graA. It follows from [3, Corollary 3.14(ii)] (applied with f : x 7→ 〈Wx | x〉/2) that

JW
γA : H → H : x 7→ (W + γA)−1(Wx) (5.28)
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is well-defined, and that

JW
γA ∈ T(W ) and Fix JW

γA =
{
z ∈ H | 0 ∈ Az

}
. (5.29)

We write J Id
γA = JγA.

Corollary 5.5 Let α ∈ ]0,+∞[, let A : H → 2H be a maximally monotone operator such that
C =

{
z ∈ H | 0 ∈ Az

}
6= ∅, let (an)n∈N be a sequence in H such that

∑
n∈N ‖an‖ < +∞,

let (ηn)n∈N be a sequence in ℓ1+(N), and let (Wn)n∈N be a sequence in Pα(H) such that µ =
supn∈N ‖Wn‖ < +∞ and (∀n ∈ N) (1 + ηn)Wn < Wn+1. Fix ε ∈ ]0, 1[ and x0 ∈ H, let (λn)n∈N
be a sequence in [ε, 2 − ε], let (γn)n∈N be a sequence in [ε,+∞[, and set

(∀n ∈ N) xn+1 = xn + λn

(
JWn

γnA
xn + an − xn

)
. (5.30)

Then the following hold for some x ∈ C.

(i) xn ⇀ x.

(ii) Suppose that intC 6= ∅ and that there exists (νn)n∈N ∈ ℓ1+(N) such that (∀n ∈ N) (1 +
νn)Wn+1 < Wn. Then xn → x.

(iii) Suppose that A is pointwise uniformly monotone on C, i.e., for every x ∈ C there exists
an increasing function φ : [0,+∞[ → [0,+∞] vanishing only at 0 such that

(∀u ∈ Ax)(∀(y, v) ∈ graA) 〈x− y | u− v〉 > φ(‖x− y‖). (5.31)

Then xn → x.

Proof. In view of (5.29), (5.30) is a special case of (5.6) with I = {1} and (∀n ∈ N) T1,n = JWn

γnA
.

Hence, using Theorem 5.1(i)–(ii), to show (i)–(ii), it suffices to prove that (5.7) holds. To this
end, let (xpn)n∈N be a weakly convergent subsequence of (xn)n∈N, say xpn ⇀ x, such that

J
Wpn

γpnA
xpn − xpn → 0. To show that 0 ∈ Ax, let us set

(∀n ∈ N) yn = JWn

γnA
xn and vn =

1

γn
Wn(xn − yn). (5.32)

Then (5.28) yields (∀n ∈ N) vn ∈ Ayn. On the other hand, since ypn − xpn → 0, we have

‖vpn‖ =
‖Wpn(xpn − ypn)‖

γpn
6

µ

ε
‖xpn − ypn‖ → 0. (5.33)

Thus, ypn ⇀ x and Aypn ∋ vpn → 0. Since graA is sequentially closed in Hweak × Hstrong [5,
Proposition 20.33(ii)], we conclude that 0 ∈ Ax. Let us now show (iii). We have 0 ∈ Ax and
(∀n ∈ N) vpn ∈ Aypn . Hence, it follows from (5.31) that there exists an increasing function
φ : [0,+∞[ → [0,+∞] vanishing only at 0 such that

(∀n ∈ N) 〈ypn − x | vpn〉 > φ(‖ypn − x‖). (5.34)

Since vpn → 0, we get φ(‖ypn−x‖) → 0 and, in turn, ‖ypn−x‖ → 0. It follows that ‖xpn−x‖ → 0
and hence that lim dC(xn) = 0. In view of Theorem 5.1(iii), we conclude that xn → x.
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Remark 5.6 Corollary 5.5(i) reduces to the classical result of [34, Theorem 1] when (∀n ∈ N)
Wn = Id, ηn = 0, and λn = 1. In this context, Corollary 5.5(ii) appears in [28, Section 6]. In a
finite-dimensional setting, an alternative variable metric proximal point algorithm is proposed in
[29], which also uses the above conditions on (Wn)n∈N but alternative error terms and relaxation
parameters.

6 Application to inverse problems

In this section, we consider an application to a structured variational inverse problem. Hence-
forth, Γ0(H) denotes the class of proper lower semicontinuous convex functions from H to
]−∞,+∞].

Problem 6.1 Let f ∈ Γ0(H) and let I be a nonempty finite index set. For every i ∈ I, let
(Gi, ‖ · ‖i) be a real Hilbert space, let Li : H → Gi be a nonzero bounded linear operator, let
ri ∈ Gi, and let µi ∈ ]0,+∞[. The problem is to

minimize
x∈H

f(x) +
1

2

∑

i∈I

µi‖Lix− ri‖2i . (6.1)

This formulation covers many inverse problems (see [17, Section 5] and the references therein)
and it can be interpreted as follows: an ideal object x̃ ∈ H is to be recovered from noisy linear
measurements ri = Lix̃+wi ∈ Gi, where wi represents noise (i ∈ I), and the function f penalizes
the violation of prior information on x̃. Thus, (6.1) attempts to strike a balance between the
observation model, represented by the data fitting term x 7→ (1/2)

∑
i∈I µi‖Lix − ri‖2i , and a

priori knowledge, represented by f . To solve this problem within our framework, we require the
following facts.

Let α ∈ ]0,+∞[, let W ∈ Pα(H), and let ϕ ∈ Γ0(H). The proximity operator of ϕ relative to
the metric induced by W is

proxWϕ : H → H : x 7→ argmin
y∈H

(
ϕ(y) +

1

2
‖x− y‖2W

)
. (6.2)

Now, let ∂ϕ be the subdifferential of ϕ [5, Chapter 16]. Then, in connection with (5.28), ∂ϕ is
maximally monotone and we have [16, Section 3.3]

(∀γ ∈ ]0,+∞[) proxWγϕ = JW
γ∂ϕ = (W + γ∂ϕ)−1 ◦W. (6.3)

We write proxIdγϕ = proxγϕ.

Lemma 6.2 Let A : H → 2H be maximally monotone, let U be a nonzero operator in P0(H), let
γ ∈ ]0, 1/‖U‖[, let u ∈ H, set W = Id−γU , and set B = A+ U + {u}. Then

(∀x ∈ H) JW
γBx = JγA

(
Wx− γu

)
. (6.4)
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Proof. Since U ∈ P0(H), U is maximally monotone [5, Example 20.29]. In turn, it follows from [5,
Corollary 24.4(i)] that B is maximally monotone. Moreover, W ∈ Pα(H), where α = 1− γ‖U‖.
Now, let x and p be in H. Then it follows from (5.28) that

p = JW
γBx ⇔ Wx ∈ Wp+ γBp ⇔ Wx− γu ∈ p+ γAp ⇔ p = JγA

(
Wx− γu

)
, (6.5)

which completes the proof.

Proposition 6.3 Let ε ∈
]
0, 1/(1 +

∑
i∈I µi‖Li‖2)

[
, let (an)n∈N be a sequence in H such that∑

n∈N ‖an‖ < +∞, let (ηn)n∈N be a sequence in ℓ1+(N), and let (γn)n∈N be a sequence in R such
that

(∀n ∈ N) ε 6 γn 6
1− ε∑

i∈I

µi‖Li‖2
and (1 + ηn)γn − γn+1 6

ηn∑

i∈I

µi‖Li‖2
. (6.6)

Furthermore, let C be the set of solutions to Problem 6.1, let x0 ∈ H, let (λn)n∈N be a sequence
in [ε, 2− ε], and set

(∀n ∈ N) xn+1 = xn + λn

(
proxγnf

(
xn + γn

∑

i∈I

µiL
∗
i

(
ri − Lixn

))
+ an − xn

)
. (6.7)

Then the following hold for some x ∈ C.

(i) Suppose that

lim
‖x‖→+∞

f(x) +
1

2

∑

i∈I

µi‖Lix− ri‖2i = +∞. (6.8)

Then xn ⇀ x.

(ii) Suppose that there exists j ∈ I such that Lj is bounded below, say,

(∃ β ∈ ]0,+∞[)(∀x ∈ H) ‖Ljx‖j > β‖x‖. (6.9)

Then C = {x} and xn → x.

Proof. Set U =
∑

i∈I µiL
∗
iLi and u = −∑

i∈I µiL
∗
i ri. Then

‖U‖ 6
∑

i∈I

µi‖Li‖2, (6.10)

and the assumptions imply that 0 6= U ∈ P0(H) and that (∀n ∈ N) ε 6 γn 6 (1 − ε)/‖U‖. Now
set

g : H → ]−∞,+∞] : x 7→ f(x) +
1

2
〈Ux | x〉+ 〈x | u〉 (6.11)

and
(∀n ∈ N) Wn = Id−γnU. (6.12)

Then (6.1) is equivalent to minimizing g. Furthermore, it follows from (6.6) that (Wn)n∈N lies
in Pε(H) and that supn∈N ‖Wn‖ 6 2− ε. In addition, we have

(∀n ∈ N) ηn >
(
(1 + ηn)γn − γn+1

)
‖U‖. (6.13)
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Indeed if, for some n ∈ N, (1+ηn)γn 6 γn+1 then ηn > 0 > ((1+ηn)γn−γn+1)‖U‖; otherwise we
deduce from (6.6) and (6.10) that ηn > ((1+ηn)γn−γn+1)

∑
i∈I µi‖Li‖2 > ((1+ηn)γn−γn+1)‖U‖.

Thus, since U ∈ P0(H), we have ‖U‖ = sup‖x‖61〈Ux | x〉 and therefore

(6.13) ⇒ (∀n ∈ N)(∀x ∈ H) ηn‖x‖2 >
(
(1 + ηn)γn − γn+1

)
〈Ux | x〉

⇒ (∀n ∈ N)(∀x ∈ H) (1 + ηn)(‖x‖2 − γn〈Ux | x〉) > ‖x‖2 − γn+1〈Ux | x〉
⇒ (∀n ∈ N) (1 + ηn)Wn < Wn+1. (6.14)

Now set A = ∂f and B = A+U+{u}. Then we derive from [5, Corollary 16.38(iii)] that B = ∂g.
Hence, using (6.3), (6.12), and Lemma 6.2, (6.7) can be rewritten as

(∀n ∈ N) xn+1 = xn + λn

(
proxγnf

(
xn − γn(Uxn + u)

)
+ an − xn

)

= xn + λn

(
JγnA

(
Wnxn − γnu

)
+ an − xn

)

= xn + λn

(
JWn

γnB
xn + an − xn

)
. (6.15)

On the other hand, it follows from Fermat’s rule [5, Theorem 16.2] that

{
z ∈ H | 0 ∈ Bz

}
= Argmin g = C. (6.16)

(i): Since f ∈ Γ0(H) and U ∈ P0(H), it follows from [5, Proposition 11.14(i)] that Problem 6.1
admits at least one solution. Altogether, the result follows from Corollary 5.5(i).

(ii): It follows from (6.9) that L∗
jLj ∈ Pβ2(H). Therefore, U ∈ Pµjβ2(H) and, since f ∈ Γ0(H),

we derive from (6.11) that g ∈ Γ0(H) is strongly convex. Hence, [5, Corollary 11.16] asserts that
(6.1) possesses a unique solution, while [5, Example 22.3(iv)] asserts that B is strongly – hence
uniformly – monotone. Altogether, the claim follows from Corollary 5.5(iii).

Remark 6.4 In Problem 6.1 suppose that I = {1}, µ1 = 1, L1 = L, and r1 = r, and that
lim‖x‖→+∞ f(x) + ‖Lx− r‖21/2 = +∞. Then (6.7) reduces to the proximal Landweber method

(∀n ∈ N) xn+1 = xn + λn

(
proxγnf

(
xn + γnL

∗(r − Lxn)
)
+ an − xn

)
, (6.17)

and we derive from Proposition 6.3(i) that (xn)n∈N converges weakly to a minimizer of x 7→
f(x) + ‖Lx− r‖21/2 if

(∀n ∈ N)





ε 6 γn 6 (1− ε)/‖L‖2
(1 + ηn)γn 6 γn+1 + ηn/‖L‖2
ε 6 λn 6 2− ε.

(6.18)

This result complements [17, Theorem 5.5(i)], which establishes weak convergence under alter-
native conditions on the parameters (γn)n∈N and (λn)n∈N, namely

(∀n ∈ N)

{
ε 6 γn 6 (2− ε)/‖L‖2
ε 6 λn 6 1.

(6.19)

In particular, suppose that H is separable, let (ek)k∈N be an orthonormal basis of H, and set
f : x 7→

∑
k∈N φk(〈x | ek〉), where (∀k ∈ N) Γ0(R) ∋ φk > φk(0) = 0. Moreover, for every n ∈ N,
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let (αn,k)k∈N be a sequence in ℓ2(N) and suppose that
∑

n∈N

√∑
k∈N |αn,k|2 < +∞. Now set

(∀n ∈ N) an =
∑

k∈N αn,kek. Then, arguing as in [17, Section 5.4], (6.17) becomes

(∀n ∈ N) xn+1 = xn + λn

(∑

k∈N

(
αn,k + proxγnφk

〈xn + γnL
∗(r − Lxn) | ek〉

)
ek − xn

)
, (6.20)

and we obtain convergence under the new condition (6.18) (see also [15] for potential signal and
image processing applications of this result).
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[21] L. Fejér, Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art
entspringen, Math. Ann., vol. 85, pp. 41–48, 1922.

[22] L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding the common point
of convex sets, USSR Comput. Math. and Math. Phys., vol. 7, pp. 1–24, 1967.

[23] H. S. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal., vol. 57,
pp. 35–61, 2004.

[24] T. Kato, Perturbation Theory for Linear Operators, 2nd ed. Springer-Verlag, New York, 1980.

[25] K. Knopp, Infinite Sequences and Series. Dover, New York, 1956.

[26] P. A. Lotito, L. A. Parente, and M. V. Solodov, A class of variable metric decomposition methods
for monotone variational inclusions, J. Convex Anal., vol. 16, pp. 857–880, 2009.

[27] T. S. Motzkin and I. J. Schoenberg, The relaxation method for linear inequalities, Canadian J. Math,
vol. 6, pp. 393–404, 1954.

[28] O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iterative methods
for accretive operators in Banach spaces, Israel J. Math., vol. 32, pp. 44–58, 1979.

[29] L. A. Parente, P. A. Lotito, and M. V. Solodov, A class of inexact variable metric proximal point
algorithms, SIAM J. Optim., vol. 19, pp. 240–260, 2008.

[30] B. T. Polyak, Introduction to Optimization. Optimization Software Inc., New York, 1987.
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