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1 Introduction

One of the main objectives of domain decomposition is to solve partial differential equations and

the associated boundary value problems on complex geometries by partitioning the original do-

main in smaller and simpler subdomains [10, 13, 18, 32, 34, 38, 40]. The objective of the present

paper is to propose an original algorithm for solving variational formulations associated with par-

tial differential equations posed on partitioned domains. Our analysis pertains to nonoverlapping

domain decompositions, in which subdomains intersect only on their interfaces. The original do-

main Ω is partitioned into m subdomains (Ωi)i∈I , the interface between two subdomains Ωi and

Ωj is denoted by Υij , and Υii stands for the part of the boundary of Ωi shared with the boundary

of Ω (see Fig. 1, where I = {1, . . . ,m}).
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Figure 1: Decomposition of the domain Ω.

A sizable literature has been devoted to variational domain decomposition; see for instance

[3, 5, 9, 10, 13, 17, 26, 28, 38, 40]. The novelty of our framework is to allow for the use of

several subdomains with general convex energy functions on each of them, together with a broad

range of transmission conditions on interfaces. More specifically, in our model the ith variable ui
lies in a suitable Sobolev space Hi and the structured minimization problem under consideration

assumes the form

minimize
(ui)i∈I∈

⊕
i∈I Hi

∑

i∈I

ϕi(ui) +
∑

(i,j)∈K

ψij(Tij ui − Tji uj), (1.1)

where K is the set indices of active interfaces, Tij : Hi → L2(Υij) denotes the trace operator

relative to the interface Υij , and ϕi : Hi → ]−∞,+∞] and ψij : L
2(Υij) → ]−∞,+∞] are lower

semicontinuous convex functions. In applications, one is often interested in solving the Fenchel-

Rockafellar dual problem associated with (1.1), the solutions of which model tensions (e.g.,

stresses or fluxes) at the interfaces. There are two main components in (1.1). The first com-

ponent is the separable function (ui)i∈I 7→
∑

i∈I ϕi(ui) which incorporates the internal energy

functions (ϕi)i∈I on each subdomain. The other component is a coupling term which models

transmission conditions across the interfaces. Since the separable term needs not be smooth and

may take on the value +∞, hard constraints on (ui)i∈I can be imposed in our formulation. It can

also deal with non quadratic functions, capturing, for instance, p-Laplacian or obstacle problems.
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On the other hand, the coupling function models transmission conditions, in particular continu-

ity, through the interfaces. A major advantage of this approach is its flexibility, which makes it

possible to treat in a unified fashion unilateral and/or nonlinear transmission conditions.

To solve (1.1) and its dual, we bring into play a multivariate primal-dual proximal splitting

method recently proposed in [2] for structured convex minimization problems. The algorithm

generates both primal and dual sequences which converge strongly to the unique solution sat-

isfying the Kuhn-Tucker conditions, and lying closest to some initial point. At each iteration an

outer approximation to the Kuhn-Tucker set is constructed as the intersection of two half-spaces,

and the update is obtained by projecting the initial point onto this intersection. This method

will be adapted to solve the variational problem (1.1) in a fully split fashion, in that each ele-

mentary step of the algorithm involves the constituents of the problem (namely ui, ϕi, ψij , and

Tij) separately. In addition, its structure lends it to implementations on parallel architectures.

Let us note that typically, Lagrangian-based approaches [8, 28] do not achieve full splitting with

respect to the linear operators, which complicates the numerical implementation and may re-

quire additional restrictions on these linear operators to ensure convergence. Another salient

advantage of the proposed algorithm that distinguishes it from Lagrangian-based approaches as

well as from splitting algorithms which could be considered for solving (1.1), such as those of

[14, 16, 20, 21, 22, 41], is that these methods provide only weak convergence. In addition, the

methods of [14, 16, 20, 21, 22, 41] require the computation of bounds on the range of certain

parameters. In the case of (1.1), these bounds involve norms of combinations of trace opera-

tors, which are very hard to estimate. Altogether, the proposed algorithm provides significant

advantages over the state of the art.

The paper is organized as follows. In Section 2, we present the notation and the abstract

primal-dual splitting algorithm which is the basis of our method. In Section 3, we formally state

the domain decomposition problem under investigation, define the functional setting, and intro-

duce the main algorithm. Section 4 is devoted to applications to concrete domain decomposition

problems. Finally, in Section 5, we briefly discuss some adaptations of our setting to other inter-

esting problems.

2 Notation and preliminaries

Let B be a real Banach space. Weak and strong convergence in B are denoted by
B
−⇀ and

B
−→ , respectively, and Γ0(B) is the class of lower semicontinuous convex functions ϕ : B →
]−∞,+∞] which are not identically equal to +∞. A function ϕ : B → ]−∞,+∞] is coercive

if lim‖u‖→+∞ ϕ(u) = +∞. The Hilbert direct sum of a finite family of Hilbert spaces (Hi)i∈I is

denoted by
⊕

i∈I Hi.

R
N denotes the usual N -dimensional Euclidean space and | · | its norm. Let Ω be a nonempty

open bounded subset of RN with Lipschitz boundary bdryΩ. We denote by x a generic element

of Ω, and by dx the restriction to Ω of the Lebesgue measure on R
N . All the functional spaces

considered throughout the paper involve real-valued functions. For every p ∈ ]1,+∞[, W 1,p(Ω) ={
v ∈ Lp(Ω)

∣∣ Dv ∈ (Lp(Ω))N
}

, where D denotes the weak gradient (derivatives in the sense of

distributions). In particular, we setH1(Ω) =W 1,2(Ω), which is a Hilbert space with scalar product

〈· | ·〉H1(Ω) : (u, v) 7→
∫
Ω uv +

∫
Ω(Du)

⊤Dv. We denote by S the surface measure on bdryΩ [37,
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Section 1.1.3]. Now let Υ be a nonempty open subset of bdryΩ and let L2(Υ) be the space of

square S-integrable functions on Υ. Endowed with the scalar product (v,w) 7→
∫
Υ vw dS, L2(Υ)

is a Hilbert space. The Sobolev trace operator T : H1(Ω) → L2(bdryΩ) is the unique bounded

linear operator such that (∀v ∈ C
1(Ω)) Tv = v|bdryΩ. Endowed with the scalar product

〈· | ·〉 : (u, v) 7→

∫

Ω
(Du)⊤Dv, (2.1)

the space H1
0,Υ(Ω) =

{
u ∈ H1(Ω)

∣∣ Tu = 0 on Υ
}

is a Hilbert space [44, Section 25.10]. For

every α ∈ ]0, 1], C1,α(Ω) is the subspace of C1(Ω) consisting of those functions u such that

(∃µ ∈ ]0,+∞[)(∀(x, y) ∈ Ω2) |u(x)−u(y)| 6 µ|x−y|α and |Du(x)−Du(y)| 6 µ|x−y|α. (2.2)

Finally, for S-almost every ω ∈ bdryΩ, there exists a unit outward normal vector ν(ω). For details

and complements, see [1, 4, 23, 29, 37, 43, 44].

Let H be a real Hilbert space with scalar product 〈· | ·〉 and associated norm ‖ · ‖, and let

ϕ ∈ Γ0(H). The subdifferential of ϕ is

∂ϕ : H → 2H : u 7→
{
u∗ ∈ H

∣∣ (∀v ∈ H) ϕ(u) + 〈v − u | u∗〉 6 ϕ(v)
}
, (2.3)

the conjugate of ϕ is the function ϕ∗ ∈ Γ0(H) defined by

ϕ∗ : u∗ 7→ sup
u∈H

(
〈u | u∗〉 − ϕ(u)

)
, (2.4)

and the proximity operator of ϕ ∈ Γ0(H) is [36]

proxϕ : H → H : u 7→ argmin
v∈H

(
ϕ(v) +

1

2
‖u− v‖2

)
. (2.5)

Let C be a nonempty closed convex subset of H. The indicator function of C is

ιC : H → ]−∞,+∞] : u 7→

{
0, if u ∈ C;

+∞, otherwise,
(2.6)

and the projection (or best approximation) operator onto C is

PC = proxιC : H → C : u 7→ argmin
v∈C

‖u− v‖. (2.7)

For background on convex analysis in Hilbert spaces the reader is referred to [11].
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The backbone of our model will be the following abstract primal-dual saddle problem.

Problem 2.1 Let I and K be nonempty finite index sets, and let (Hi)i∈I and (Gk)k∈K be real

Hilbert spaces. For every i ∈ I and k ∈ K, let Φi ∈ Γ0(Hi), let Ψk ∈ Γ0(Gk), let Λki : Hi → Gk be

a bounded linear operator, and let Λ∗
ki : Gk → Hi be its adjoint. It is assumed that

(∀i ∈ I) 0 ∈ range

(
∂Φi +

∑

k∈K

Λ∗
ki ◦ (∂Ψk) ◦

∑

j∈I

Λkj

)
. (2.8)

Let u0 = (ui,0)i∈I ∈ H =
⊕

i∈I Hi and let w0 = (wk,0)k∈K ∈ G =
⊕

k∈K Gk. The problem is to

find the best approximation in H⊕ G to (u0,w0) from the Kuhn-Tucker set

Z =

{
u = (ui)i∈I ∈ H, w = (wk)k∈K ∈ G

∣∣∣∣ (∀i ∈ I) −
∑

k∈K

Λ∗
kiwk ∈ ∂Φi(ui)

and (∀k ∈ K)
∑

i∈I

Λkiui ∈ ∂Ψ∗
k(wk)

}
. (2.9)

Proposition 2.2 Problem 2.1 has a unique solution (u,w). Moreover, u = (ui)i∈I solves the primal

problem

minimize
(ui)i∈I∈

⊕
i∈I Hi

∑

i∈I

Φi(ui) +
∑

k∈K

Ψk

(∑

i∈I

Λkiui

)
, (2.10)

and w = (wk)k∈K solves the dual problem

minimize
(wk)k∈K∈

⊕
k∈K Gk

∑

i∈I

Φ∗
i

(
−

∑

k∈K

Λ∗
kiwk

)
+

∑

k∈K

Ψ∗
k(wk). (2.11)

Proof. Since Z in (2.9) is nonempty, closed, and convex [16, Proposition 2.8], the projection

(u,w) of (u0,w0) onto Z is uniquely defined. The remaining claims follow from [2, Corol-

lary 4.5(i)].

To solve Problem 2.1, we shall use the following splitting algorithm from [2]. This algorithm

generates a sequence (un,wn)n∈N that converges strongly to the unique solution to Problem 2.1.

It exploits a convergence principle that goes back in its simplest form to the work of Haugazeau

[30] (see [19] for historical comments). Let us note that existing methods for solving (2.10)–

(2.11) [14, 16, 20, 21, 22, 41] guarantee only weak convergence to an unspecified primal-dual

solution and, in addition, require the knowledge of bounds on certain compositions of the linear

operators involved in the model. In our setting, such bounds would be extremely hard to obtain.

Moreover, the proposed method solves Problem 2.1 in a fully split fashion in that each elementary

step of the algorithm activates the functions and operators of the problem separately.

In geometrical terms, the algorithm is executed as follows [2] (see Fig. 2). Set x0 = (u0,w0)
and, given two points a and b in K = H ⊕ G, denote by H(a, b) the closed affine half-

space of K onto which b is the projection of a. At iteration n, the current iterate is xn =(
(ui,n)i∈I , (wk,n)k∈K

)
∈ K and we find xn+1/2 =

(
(ui,n+1/2)i∈I , (wk,n+1/2)k∈K

)
∈ K such that
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Figure 2: Geometrical interpretation of a generic iteration of (2.14) for computing the projection

of x0 onto the Kuhn-Tucker set Z in the primal-dual space K. At iteration n, the current iterate is

xn and Z is contained in the half-space H(x0,xn) onto which xn is the projection of x0. A point

xn+1/2 is constructed so that the half-space H(xn,xn+1/2) contains Z. The update xn+1 is the

projection of x0 onto H(x0,xn) ∩H(xn,xn+1/2).

Z ⊂ H(xn,xn+1/2). The computation of xn+1/2 involves proximal steps with respect to the func-

tions (Φi)i∈I and (Ψk)k∈K , as well as applications of the linear operators (Λki)i∈I,k∈K and their

adjoints. The update xn+1 =
(
(ui,n+1)i∈I , (wk,n+1)k∈K

)
is then obtained as the projection of x0

onto H(x0,xn)∩H(xn,xn+1/2), which can be computed explicitly in terms of (x0,xn,xn+1/2) as

[11, Corollary 28.21]

xn+1 =





xn+1/2, if ρn = 0 and χn > 0;

x0 + (1 + χn/νn)(xn+1/2 − xn), if ρn > 0 and χnνn > ρn;

xn + (νn/ρn)
(
χn(x0 − xn) + µn(xn+1/2 − xn)

)
, if ρn > 0 and χnνn < ρn,

(2.12)

where




χn =
〈
x0 − xn | xn − xn+1/2

〉

µn = ‖x0 − xn‖
2

νn = ‖xn − xn+1/2‖
2

ρn = µnνn − χ2
n.

(2.13)

The sequence (xn)n∈N thus constructed converges strongly to PZx0.
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Theorem 2.3 [2, Corollary 4.5(ii)–(iii)] Let ε ∈ ]0, 1[, let (γn)n∈N and (µn)n∈N be sequences in

[ε, 1/ε], let (λn)n∈N be a sequence in [ε, 1], and iterate

for n = 0, 1, . . .

for every i ∈ I⌊
vi,n = ui,n − γn

∑
k∈K Λ∗

kiwk,n
pi,n = proxγnΦi

vi,n
for every k ∈ K
lk,n =

∑
i∈I Λkiui,n

qk,n = proxµnΨk

(
lk,n + µnwk,n

)

tk,n = qk,n −
∑

i∈I Λkipi,n
for every i ∈ I⌊
si,n = γ−1

n (ui,n − pi,n) + µ−1
n

∑
k∈K Λ∗

ki(lk,n − qk,n)
τn =

∑
i∈I ‖si,n‖

2 +
∑

k∈K ‖tk,n‖
2

if τn = 0⌊
θn = 0

if τn > 0⌊
θn = λn

(
γ−1
n

∑
i∈I ‖ui,n − pi,n‖

2 + µ−1
n

∑
k∈K ‖lk,n − qk,n‖

2
)
/τn

for every i ∈ I⌊
ui,n+1/2 = ui,n − θnsi,n

for every k ∈ K⌊
wk,n+1/2 = wk,n − θntk,n

χn =
∑

i∈I

〈
ui,0 − ui,n | ui,n − ui,n+1/2

〉
+

∑
k∈K

〈
wk,0 − wk,n | wk,n − wk,n+1/2

〉

µn =
∑

i∈I ‖ui,0 − ui,n‖
2 +

∑
k∈K ‖wk,0 − wk,n‖

2

νn =
∑

i∈I ‖ui,n − ui,n+1/2‖
2 +

∑
k∈K ‖wk,n − wk,n+1/2‖

2

ρn = µnνn − χ2
n

if ρn = 0 and χn > 0

for every i ∈ I⌊
ui,n+1 = ui,n+1/2

for every k ∈ K⌊
wk,n+1 = wk,n+1/2

if ρn > 0 and χnνn > ρn

for every i ∈ I⌊
ui,n+1 = ui,0 + (1 + χn/νn)(ui,n+1/2 − ui,n)

for every k ∈ K⌊
wk,n+1 = wk,0 + (1 + χn/νn)(wk,n+1/2 − wk,n)

if ρn > 0 and χnνn < ρn

for every i ∈ I⌊
ui,n+1 = ui,n + (νn/ρn)

(
χn(ui,0 − ui,n) + µn(ui,n+1/2 − ui,n)

)

for every k ∈ K⌊
wk,n+1 = wk,n + (νn/ρn)

(
χn(wk,0 − wk,n) + µn(wk,n+1/2 − wk,n)

)
.

(2.14)

Then, for every i ∈ I and every k ∈ K, (2.14) generates infinite sequences (ui,n)n∈N and (wk,n)n∈N

such that ui,n
Hi−→ui and wk,n

Gk−→wk.
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3 Problem formulation and algorithm

The problem under consideration is the following.

Problem 3.1 Let Ω be a nonempty open bounded subset of RN with Lipschitz boundary bdryΩ,

let m > 2 be an integer, and set I = {1, . . . ,m}. Suppose that the following hold:

(i) (Ωi)i∈I are disjoint open subsets of Ω (see Fig. 1) with Lipschitz boundaries (bdryΩi)i∈I ,
Ω =

⋃
i∈I Ωi, and

(∀i ∈ I) Υii = int bdryΩ(bdryΩi ∩ bdryΩ) 6= ∅, (3.1)

where int bdryΩ denotes the interior relative to bdryΩ.

(ii) For every i ∈ I,

J(i) =
{
j ∈ I r {i}

∣∣ Υij 6= ∅
}
6= ∅, (3.2)

where

(∀j ∈ {i+ 1, . . . ,m}) Υij = Υji = int bdryΩi
(bdryΩi ∩ bdryΩj). (3.3)

Moreover, J(i−) = J(i)∩{1, . . . , i−1} and J(i+) = J(i)∩{i+1, . . . ,m}, with the convention

J(1−) = J(m+) = ∅.

(iii) The set of indices of interfaces is

K =
{
(i, j)

∣∣ i ∈ {1, . . . ,m− 1} and j ∈ J(i+)
}
. (3.4)

(iv) For every i ∈ I, Ti : H
1(Ωi) → L2(bdryΩi) is the trace operator. Moreover,

Hi = H1
0,Υii

(Ωi) =
{
u ∈ H1(Ωi)

∣∣ Ti u = 0 on Υii

}
, (3.5)

endowed with the scalar product

〈u | v〉 =

∫

Ωi

(Du)⊤Dv, (3.6)

is a Hilbert space, and, for every j ∈ J(i), Tij : Hi → L2(Υij) : u 7→ (Tiu)|Υij
.

(v) For every i ∈ I,

Gi =
⊕

j∈J(i)

L2(Υij), (3.7)

νi(ω) is the unit outward normal vector at ω ∈ bdryΩi, and

Qi : L
2(Ωi)× Gi → Hi (3.8)

is the operator that maps every (f, (hj)j∈J(i)) in L2(Ωi)×Gi into the weak solution in Hi of

the Dirichlet-Neumann boundary value problem




−∆u = f on Ωi,

u = 0 on Υii,

ν⊤i Du = hj on Υij, for every j ∈ J(i+),

ν⊤i Du = −hj on Υij, for every j ∈ J(i−).

(3.9)
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(vi) For every (i, j) ∈ K, ϕi ∈ Γ0(Hi) and ψij ∈ Γ0(L
2(Υij)).

(vii) There exist ũ = (ũi)i∈I ∈
⊕

i∈I Hi and g̃ = (g̃ij)(i,j)∈K ∈
⊕

(i,j)∈K L
2(Υij) such that

(∀(i, j) ∈ K)

{
g̃ij ∈ ∂ψij(Tij ũi − Tji ũj)

−Qi
(
0, (g̃ij)j∈J(i+), (g̃ji)j∈J(i−)

)
∈ ∂ϕi(ũi).

(3.10)

(viii) Let u0 = (ui,0)i∈I ∈
⊕

i∈I Hi and let g0 = (gij,0)(i,j)∈K ∈
⊕

(i,j)∈K L
2(Υij).

The problem is to find the closest point (u,g) to (u0,g0) in
⊕

i∈I Hi ⊕
⊕

(i,j)∈K L
2(Υij) that

satisfies (3.10).

Let us illustrate our problem via a simple example.

Example 3.2 In Problem 3.1 set, for every i ∈ I and every j ∈ J(i+), ψij = ι{0} and ϕi : ui 7→
1
2

∫
Ωi

|Dui|
2 −

∫
Ωi
fu. Then Problem 3.1 reduces to

minimize
(ui)i∈I∈

⊕
i∈I Hi

(∀(i,j)∈K) Tijui=Tjiuj

m∑

i=1

1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui, (3.11)

which is the domain decomposition associated to the Poisson problem

{
−∆u = f, on Ω;

u = 0, on bdryΩ.
(3.12)

As will be seen in Section 4, the flexibility of our setting allows for more elaborated structures

and conditions on the interfaces. This example will be studied in detail in Section 4.1.

Remark 3.3 In Problem 3.1, (i)–(iii) describe the geometrical setting, and (iv)–(viii) fix the func-

tional Hilbert setting. In particular, item (vii) will ensure the existence of a solution. For every

i ∈ I, since bdryΩi = Υii ∪
⋃
j∈J(i)Υij, the existence and uniqueness of the solution to (3.9) is

guaranteed by condition (i) in Problem 3.1 and [44, Theorem 25.I], from which we deduce that

Qi is linear and continuous.

In order to analyze and solve Problem 3.1, we shall exploit the following connection.

Proposition 3.4 Problem 3.1 is a special case of Problem 2.1.

Proof. Let us set

(
∀k = (i, j) ∈ K

)
Ψk = ψij , Gk = L2(Υij), (∀ℓ ∈ I) Λkℓ =





Tij , if ℓ = i;

−Tji, if ℓ = j;

0, otherwise,

(3.13)

and define

(∀i ∈ I) Φi = ϕi. (3.14)

9



For every i ∈ I, it follows from Poincaré’s inequality, that the embedding Hi →֒ H1(Ωi) is continu-

ous [44, p. 1033] and therefore, for every j ∈ J(i), the trace operators Ti : H
1(Ωi) → L2(bdryΩi)

and Tij : Hi → L2(Υij) are linear and bounded. Moreover, for every i ∈ I, every (ui)i∈I ∈⊕
i∈I Hi, and every

(wk)k∈K = (gij)(i,j)∈K ∈
⊕

(i,j)∈K

L2(Υij), (3.15)

it follows from (v) in Problem 3.1 that

〈
ui

∣∣∣∣
∑

k∈K

Λ∗
k,iwk

〉
=

〈
ui

∣∣∣∣
∑

j∈J(i+)

T
∗
ijgij −

∑

j∈J(i−)

T
∗
jigji

〉

=
∑

j∈J(i+)

〈Tijui | gij〉 −
∑

j∈J(i−)

〈Tjiui | gji〉

=
∑

j∈J(i+)

∫

Υij

(Tijui)gij dS −
∑

j∈J(i−)

∫

Υij

(Tijui)gji dS

=

∫

bdryΩi

(Tiui)
(
ν⊤i DQi(0, (gij)j∈J(i+), (gji)j∈J(i−))

)
dS

=

∫

Ωi

(Dui)
⊤DQi(0, (gij)j∈J(i+), (gji)j∈J(i−))

=
〈
ui | Qi

(
0, (gij)j∈J(i+), (gji)j∈J(i−)

)〉
, (3.16)

which yields

(∀i ∈ I) Qi
(
0, (gij)j∈J(i+), (gji)j∈J(i−)

)
=

∑

k∈K

Λ∗
kiwk. (3.17)

It remains to check that (2.8) is satisfied. It follows from (vii) that there exist (ũi)i∈I ∈
⊕

i∈I Hi

and (w̃k)k∈K = (g̃ij)(i,j)∈K ∈
⊕

(i,j)∈K L
2(Υij) such that (3.10) holds. Combining (vii), (3.13),

(3.14), and (3.17) we obtain

(3.10) ⇔

{
(∀i ∈ I) −

∑
k∈K Λ∗

kiw̃k ∈ ∂Φi(ũi)

(∀k ∈ K) w̃k ∈ ∂Ψk

(∑
ℓ∈I Λkℓũℓ

)

⇒ 0 ∈ ∂Φi(ũi) +
∑

k∈K

Λ∗
ki

(
∂Ψk

(∑

ℓ∈I

Λkℓũℓ

))

⇒ (2.8), (3.18)

which completes the proof.

The following proposition clarifies the interplay between Problem 3.1, (1.1), and its dual.

Proposition 3.5 Problem 3.1 has a unique solution (u,g). Moreover, u = (ui)i∈I solves

minimize
(ui)i∈I∈

⊕

i∈I

Hi

∑

i∈I

ϕi(ui) +
∑

(i,j)∈K

ψij(Tij ui − Tji uj) (3.19)
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and g = (gij)(i,j)∈K solves

minimize
(gij)(i,j)∈K∈

⊕

(i,j)∈K

L2(Υij)

∑

i∈I

ϕ∗
i

(
−Qi

(
0, (gij)j∈J(i+), (gji)j∈J(i−)

))
+

∑

(i,j)∈K

ψ∗
ij(gij). (3.20)

Proof. This follows from Proposition 3.4 and Proposition 2.2 applied with (3.13), (3.14), (3.15),

and (3.17).

Our objective is to provide a flexible method for solving Problem 3.1 (and hence (3.19) and

(3.20)) in which each elementary step involves the constituents of the problem, i.e., the trace

operators and the functions, separately.
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Theorem 3.6 Let ε ∈ ]0, 1[, let (γn)n∈N and (µn)n∈N be sequences in [ε, 1/ε], let (λn)n∈N be a

sequence in [ε, 1], and iterate

for n = 0, 1, . . .

for every i ∈ I⌊
vi,n = ui,n − γnQi

(
0, (gij,n)j∈J(i+), (gji,n)j∈J(i−)

)

pi,n = proxγnϕi
vi,n

for every i ∈ I

for every j ∈ J(i+)
lij,n = Tijui,n − Tjiuj,n
qij,n = proxµnψij

(lij,n + µngij,n)

tij,n = qij,n − Tijpi,n + Tjipj,n
for every i ∈ I⌊
si,n = γ−1

n (ui,n − pi,n) + µ−1
n Qi

(
0, (lij,n − qij,n)j∈J(i+), (lji,n − qji,n)j∈J(i−)

)

τn =
∑

i∈I ‖si,n‖
2 +

∑
(i,j)∈K ‖tij,n‖

2

if τn = 0⌊
θn = 0

if τn > 0⌊
θn = λn

(
γ−1
n

∑
i∈I ‖ui,n − pi,n‖

2 + µ−1
n

∑
(i,j)∈K ‖lij,n − qij,n‖

2
)
/τn

for every i ∈ I
ui,n+1/2 = ui,n − θnsi,n
for every j ∈ J(i+)⌊
gij,n+1/2 = gij,n − θntij,n

χn =
∑

i∈I

〈
ui,0 − ui,n | ui,n − ui,n+1/2

〉
+

∑
(i,j)∈K

〈
gij,0 − gij,n | gij,n − gij,n+1/2

〉

µn =
∑

i∈I ‖ui,0 − ui,n‖
2 +

∑
(i,j)∈K ‖gij,0 − gij,n‖

2

νn =
∑

i∈I ‖ui,n − ui,n+1/2‖
2 +

∑
(i,j)∈K ‖gij,n − gij,n+1/2‖

2

ρn = µnνn − χ2
n

if ρn = 0 and χn > 0

for every i ∈ I
ui,n+1 = ui,n+1/2

for every j ∈ J(i+)⌊
gij,n+1 = gij,n+1/2

if ρn > 0 and χnνn > ρn

for every i ∈ I
ui,n+1 = ui,0 + (1 + χn/νn)(ui,n+1/2 − ui,n)

for every j ∈ J(i+)⌊
gij,n+1 = gij,0 + (1 + χn/νn)(gij,n+1/2 − gij,n)

if ρn > 0 and χnνn < ρn

for every i ∈ I
ui,n+1 = ui,n + (νn/ρn)

(
χn(ui,0 − ui,n) + µn(ui,n+1/2 − ui,n)

)

for every j ∈ J(i+)⌊
gij,n+1 = gij,n + (νn/ρn)

(
χn(gij,0 − gij,n) + µn(gij,n+1/2 − gij,n)

)
.

(3.21)

Then, for every i ∈ I and j ∈ J(i+), ui,n
Hi−→ui and gij,n

L2(Υij)
−−−−−→ gij.
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Proof. Using (3.13), (3.14), and (3.15), it follows from (3.17) that (3.21) is a special case of

(2.14). In view of Proposition 3.4 and Theorem 2.3, the proof is complete.

Remark 3.7 Algorithm (3.21) is mainly organized as a series of loops indexed by the variables

i and j that can be executed simultaneously and, therefore, implemented on parallel processors.

The first loop computes vi,n as well as pi,n = proxγnϕi
vi,n for each subdomain i ∈ I. The compu-

tation of vi,n involves the operator Qi which, in view of Problem 3.1(v), amounts to solving the

Dirichlet-Neumann boundary problem





−∆u = 0 on Ωi,

u = 0 on Υii,

ν⊤i Du = gij,n on Υij, for every j ∈ J(i+),

ν⊤i Du = −gji,n on Υij, for every j ∈ J(i−).

(3.22)

On the other hand, it follows from (2.5) that

pi,n = argmin
w∈Hi

γnϕi(w) +
1

2

∫

Ωi

∣∣Dw −Dvi,n
∣∣2. (3.23)

Likewise, the proximity operation across interface Υij in the next loop is computed as

qij,n = argmin
w∈L2(Υij)

µnψij(w) +
1

2

∫

Υij

∣∣w − lij,n − µngij,n
∣∣2dS. (3.24)

The remaining steps involve straightforward computations.

Remark 3.8 The variational formulation of Problem 3.1 can be modified to include domain de-

composition problems with overlapping subdomains. Indeed, for every i ∈ I and j ∈ J(i+), it is

necessary to consider a projection operator Pij : Hi → H1(Ωi ∩ Ωj) instead of the trace operator

Tij : Hi → L2(Υij). An application of the overlapping framework to image processing with total

variation and ℓ1 minimization can be found in [25].

Remark 3.9 An alternative approach in order to guarantee condition (vii) in Problem 3.1 is to

replace the Hilbert spaces (L2(Υij))(i,j)∈K by (H1/2(Υij))(i,j)∈K , in which case the trace operators

are surjective [29, Theorem 1.5.1.2]. The difficulty of this approach resides in the computation

of the proximity operators (proxψij
)(i,j)∈K in (3.21), which is not easy because of the complexity

of the metric of (H1/2(Υij))(i,j)∈K .

4 Special cases

We illustrate the potential use of algorithm (3.21) through a few applications to domain decompo-

sition in the context of the Poisson, p–Laplacian, and obstacle problems with Dirichlet conditions

and continuity at the interfaces. We start with a couple of technical facts. First, define

(∀i ∈ I) Epi =
{
u ∈W 1,p(Ωi)

∣∣ Tiu = 0 on Υii

}
. (4.1)
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Proposition 4.1 Consider the setting of Problem 3.1. Let p ∈ ]1,+∞[, for every i ∈ I let φi ∈
Γ0(W

1,p(Ωi)) be a strictly convex coercive function with respect to the W 1,p(Ωi) norm, and set

ϕ : W 1,p(Ω) → ]−∞,+∞] : u 7→
∑

i∈I

φi(u|Ωi
). (4.2)

Then ϕ is a strictly convex coercive function in Γ0(W
1,p(Ω)) which is coercive with respect to the

W 1,p(Ω) norm, and the optimization problems

minimize
u∈W 1,p

0 (Ω)
ϕ(u) (4.3)

and

minimize
(ui)i∈I∈×i∈I E

p
i

(∀(i,j)∈K) Tijui=Tjiuj

∑

i∈I

φi(ui) (4.4)

have unique solutions u ∈W 1,p
0 (Ω) and (ui)i∈I ∈ E

p
1 × · · · × Epm, respectively. Moreover,

(∀i ∈ I) u(x) = ui(x) for almost every x ∈ Ωi. (4.5)

Proof. Let u and v be functions in W 1,p(Ω) such that u 6= v, and let α ∈ ]0, 1[. There exists

a measurable set U ⊂ Ω of nonzero Lebesgue measure such that (∀x ∈ U) u(x) 6= v(x). For

every i ∈ I, set Ui = U ∩Ωi. By assumption (i) in Problem 3.1, and the additivity property of the

Lebesgue measure, there exists j ∈ I such that Uj has nonzero measure, which yields u|Ωj
6= v|Ωj

.

It then follows from the strict convexity of the functions (φi)i∈I that

∑

i∈I

φi
(
(αu+(1−α)v)|Ωi

)
=

∑

i∈I

φi
(
αu|Ωi

+(1−α)v|Ωi

)
< α

∑

i∈I

φi(u|Ωi
)+(1−α)

∑

i∈I

φi(v|Ωi
), (4.6)

which shows that ϕ is strictly convex. On the other hand, since assumption (i) in Problem 3.1

yields, for every u ∈W 1,p(Ω),

‖u‖p
W 1,p(Ω)

=

∫

Ω
|u|p +

∫

Ω
|Du|p =

∑

i∈I

∫

Ωi

|u|p +

∫

Ωi

|Du|p =
∑

i∈I

‖u|Ωi
‖p
W 1,p(Ωi)

, (4.7)

the coercivity of ϕ follows from the coercivity of the functions (φi)i∈I .

The existence of solutions u ∈ W 1,p
0 (Ω) and (ui)i∈I ∈ Ep1 × · · · × Epm, respectively to (4.3)

and (4.4), follows from the classical theorems for the minimization of closed convex coercive

functions on reflexive Banach spaces (see, e.g., [4, Theorem 3.3.4], [42, Theorem 2.5.1(ii)]).

The uniqueness is a consequence of the strict convexity of the objective functions. Set

(∀i ∈ I) ũ(x) = ui(x) for almost every x ∈ Ωi. (4.8)

Since Ω r
⋃
i∈I Ωi has zero Lebesgue measure, it follows from condition (i) in Problem 3.1 that

the function ũ is well defined in Lp(Ω). Let us prove that ũ = u, which will complete the proof.

Arguing as in [4, Lemma 6.4.1], we deduce that, for every u ∈ Lp(Ω),

u ∈W 1,p(Ω) ⇔ (∀(i, j) ∈ K) u|Ωi
∈W 1,p(Ωi) and Tij(u|Ωi

) = Tji(u|Ωj
). (4.9)

14



The characterization (4.9) expresses the fact that the jumps of every u ∈W 1,p(Ω) across the inter-

faces (Υij)(i,j)∈K are zero. Correspondingly, taking into account the Dirichlet boundary condition

[24, Section 2.1], we deduce that, for every u ∈ Lp(Ω),

u ∈W 1,p
0 (Ω) ⇔ (∀(i, j) ∈ K) u|Ωi

∈ Epi and Tij(u|Ωi
) = Tji(u|Ωj

). (4.10)

It then follows from (4.8) that, for every i ∈ I, ũ|Ωi
= ui ∈ Epi , and, for every (i, j) ∈ K,

Tij(ũ|Ωi
) = Tijui = Tjiuj = Tji(ũ|Ωj

). Hence, (4.10) yields ũ ∈ W 1,p
0 (Ω) and, for every u ∈

W 1,p
0 (Ω), (4.2) yields (the sets (Ωi)i∈I are disjoint, and the Lebesgue measure of the interfaces is

zero)

ϕ(ũ) =
∑

i∈I

φi(ui) 6
∑

i∈I

φi(u|Ωi
) = ϕ(u), (4.11)

which, by uniqueness of the solution, yields ũ = u.

Proposition 4.2 Consider the setting of Problem 3.1. Let γ ∈ ]0,+∞[, let f ∈ L2(Ω), and, for every

i ∈ I, let Ci be a nonempty closed convex subset of Hi. Suppose that

ϕi : Hi → ]−∞,+∞] : ui 7→ ιCi
(ui) +

1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui. (4.12)

Then the following hold for every i ∈ I:

(i) We have





ϕi : ui 7→ ιCi
(ui) +

1

2
‖ui‖

2 − 〈Qi(f, 0, . . . , 0) | ui〉

∂ϕi = NCi
+ Id −Qi(f, 0, . . . , 0)

proxγϕi
= PCi

(
1

1 + γ
Id +

γ

1 + γ
Qi(f, 0, . . . , 0)

)
.

(4.13)

(ii) Suppose that Ci = Hi. Then ϕi is Gâteaux–differentiable on Hi and





ϕi : ui 7→
1

2
‖ui‖

2 − 〈Qi(f, 0, . . . , 0) | ui〉

∇ϕi = Id −Qi(f, 0, . . . , 0)

proxγϕi
=

1

1 + γ
Id +

γ

1 + γ
Qi(f, 0, . . . , 0).

(4.14)

Proof. Fix i ∈ I. First note that

φi : Hi → R : ui 7→

∫

Ωi

fui (4.15)

is linear. Moreover, since Ωi bounded, the Cauchy-Schwarz and Poincaré’s inequalities [44, Ap-

pendix (53c)], and (2.1) yield

(∃ δ ∈ ]0,+∞[)(∀ui ∈ Hi) |φi(ui)| 6 ‖f‖L2(Ωi)‖ui‖L2(Ωi) 6 δ‖f‖L2(Ωi)‖ui‖. (4.16)
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Hence, the Riesz-Fréchet representation theorem asserts that there exists a unique vi ∈ Hi such

that

(∀ui ∈ Hi) φi(ui) =

∫

Ωi

fui =

∫

Ωi

(Dvi)
⊤Dui = 〈vi | ui〉. (4.17)

Thus, it follows from [44, Proposition 25.28] and (3.9) that vi = Qi(f, 0, . . . , 0). Using (2.1), we

can therefore write (4.12) as

ϕi : ui 7→
1

2
‖ui‖

2 − 〈Qi(f, 0, . . . , 0) | ui〉+ ιCi
(ui). (4.18)

Moreover, we deduce from standard subdifferential calculus [11, Section 16.4] that

∂ϕi = Id −Qi(f, 0, . . . , 0) +NCi
, (4.19)

where NCi
is the normal cone operator to Ci. Hence, it follows from (4.19) that, for every ui and

pi in Hi,

pi = proxγϕi
ui ⇔ ui − pi ∈ γ∂ϕi(pi)

⇔ ui ∈ (1 + γ)pi − γQi(f, 0, . . . , 0) +NCi
pi

⇔
1

1 + γ
ui +

γ

1 + γ
Qi(f, 0, . . . , 0) ∈ pi +NCi

pi

⇔ pi = PCi

(
1

1 + γ
ui +

γ

1 + γ
Qi(f, 0, . . . , 0)

)
. (4.20)

(ii): Since NCi
≡ {0} and PCi

= Id , the result follows from (i).

4.1 Poisson problem

Let f ∈ L2(Ω), and consider the Poisson problem with an homogeneous Dirichlet boundary

condition
{
−∆u = f, on Ω;

u = 0, on bdryΩ.
(4.21)

Classically, this problem has a unique weak solution u ∈ H1
0 (Ω), which can be obtained by solving

the strongly convex minimization problem (see [24, Chapter IV.2.1] or [44, Chapter 25.9])

minimize
u∈H1

0 (Ω)

1

2

∫

Ω
|Du|2 −

∫

Ω
fu. (4.22)

As a simple example of the flexibility of our framework, we solve (4.22) by decomposing the

domain Ω into subdomains satisfying the hypotheses in Problem 3.1, and by imposing continuity

conditions at the interfaces.

Problem 4.3 Consider the setting of Problem 3.1. Let f ∈ L2(Ω) and, for every (i, j) ∈ K,

assume that Υij and bdryΩ are of class C2. The problem is to

minimize
(ui)i∈I∈

⊕
i∈I Hi

(∀(i,j)∈K) Tijui=Tjiuj

m∑

i=1

1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui. (4.23)
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We first show the equivalence between Problem 4.3 and (4.22).

Proposition 4.4 The optimization problem in (4.23) has a unique solution (ui)i∈I . Moreover, the

function defined in (4.5) is the unique solution to (4.22).

Proof. This is a consequence of Proposition 4.1 with p = 2 and, for every i ∈ I, φi : u 7→
1
2

∫
Ωi

|Du|2 −
∫
Ωi
fu, which are strongly convex. In this case ϕ : u 7→ 1

2

∫
Ω |Du|2 −

∫
Ω fu.

Our method for solving Problem 4.3 is a particular case of (3.21). Hence, the following con-

vergence result is an application of Theorem 3.6.

Theorem 4.5 In algorithm (3.21) of Theorem 3.6, replace the steps defining pi,n and qij,n by

pi,n =
1

1 + γn
vi,n +

γn
1 + γn

Qi(f, 0, . . . , 0) and qij,n = 0, (4.24)

respectively. Then, for every i ∈ I, the sequence (ui,n)n∈N generated by (3.21) converges strongly to

ui in Hi.

Proof. Set




(∀i ∈ I) ϕi : ui 7→

1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui

(∀(i, j) ∈ K) ψij = ι{0}.
(4.25)

Since, for every (i, j) ∈ K, ϕi ∈ Γ0(Hi) and ψij ∈ Γ0(L
2(Υij)), Problem 4.3 is a particular case

of (3.19). Let us verify that condition (3.10) holds. Let (ui)i∈I ∈ H1 ⊕ · · · ⊕ Hm be the solution

to (4.23) guaranteed by Proposition 4.4 and let u ∈ H1
0 (Ω) be as in (4.5). Since ψij = ι{0}, we

have ∂ψij(0) = L2(Υij) and, hence, the first condition in (3.10) is satisfied. Since bdryΩ and

(Υij)(i,j)∈K are of class C2, [29, Theorem 2.2.2.3] yields u ∈ H2(Ω). Therefore, we deduce from

[29, Theorem 1.5.1.2] that, for every i ∈ I and j ∈ J(i), ν⊤i Dui and ν⊤j Duj belong to L2(Υij).
Now let us show that the second condition in (3.10) holds with

(∀(i, j) ∈ K) gij = ν⊤j Duj ∈ L2(Υij). (4.26)

We note that the solution (ui)i∈I to Problem 4.3 satisfies (see, e.g., [4, Theorem 6.4.1])

(∀i ∈ I)





−∆ui = f, on Ωi;

ui = 0, on Υii;

Tij ui = Tjiuj , on Υij, for every j ∈ J(i);

ν⊤i Dui = −ν⊤j Duj , on Υij, for every j ∈ J(i)

(4.27)

in the sense of distributions, which, from (3.9), yields

(∀i ∈ I) ui = Qi(f, (−ν
⊤
j Duj)j∈J(i+), (ν

⊤
j Duj)j∈J(i−)). (4.28)

Let us observe that, because of the regularity u ∈ H2(Ω), the transmission conditions satisfied

by u can be expressed as equalities in the spaces L2(Υij), which fits in our abstract framework.

Since, for every (i, j) ∈ K, ν⊤i Dui = −ν⊤j Duj , (4.26) implies that

ui = Qi
(
f, (−ν⊤j Duj)j∈J(i+), (ν

⊤
j Duj)j∈J(i−)

)
= Qi

(
f, (−gij)j∈J(i+), (−gji)j∈J(i−)

)
. (4.29)
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Hence, upon invoking Proposition 4.2(ii) and the linearity of Qi, we obtain

∇ϕi(ui) = ui −Qi(f, 0, . . . , 0)

= Qi
(
f, (−gij)j∈J(i+), (−gji)j∈J(i−)

)
−Qi(f, 0, . . . , 0)

= Qi
(
0, (−gij)j∈J(i+), (−gji)j∈J(i−)

)

= −Qi
(
0, (gij)j∈J(i+), (gji)j∈J(i−)

)
, (4.30)

which is the second condition in (3.10). On the other hand, it follows from (2.5) and (4.25)

that, for every (i, j) ∈ K and every µ ∈ ]0,+∞[, proxµψij
≡ 0. Hence, we deduce from Proposi-

tion 4.2(ii) that (4.24) yields

(∀n ∈ N)

{
(∀i ∈ I) pi,n = proxγnϕi

vi,n

(∀(i, j) ∈ K) qij,n = proxµnψij
(lij,n + µngij,n),

(4.31)

and the result follows from Theorem 3.6 with (ϕi)i∈I and (ψij)(i,j)∈K defined as in (4.25).

Remark 4.6

(i) Note that (gij)(i,j)∈K defined in (4.26) is a solution to the dual problem associated with

Problem 4.3. The method proposed in Theorem 4.5 also converge in the dual variables, but

for the sake of simplicity we provide only the convergence in primal variables.

(ii) In (3.21) we have

(∀n ∈ N)(∀i ∈ I) vi,n = ui,n − γnQi
(
0, (gij,n)j∈J(i+), (gji,n)j∈J(i−)

)
. (4.32)

Hence, since the operators (Qi)i∈I defined in (3.9) are multilinear, the sequences

(pi,n)i∈I, n∈N can be computed more efficiently via

(∀n ∈ N)(∀i ∈ I) pi,n =
1

1 + γn
ui,n+

γn
1 + γn

Qi
(
f, (−gij,n)j∈J(i+), (−gji,n)j∈J(i−)

)
. (4.33)

This allows us to solve only m auxiliary PDE’s for updating (pi,n)i∈I at each iteration n.

Remark 4.7 The analysis of Theorem 4.5 can be adapted to the case of the linear elasticity system

by using Korn’s inequality instead of Poincaré’s inequality. A key ingredient (and possible limita-

tion) of our approach is the H2 regularity property of the solution to the problem in the case of

the linear elasticity system. Likewise fluid-solid interactions can be handled via our framework.

4.2 p-Laplacian

It has long been observed that semi-linear and quasi-linear monotone problems can be efficiently

analyzed using modern convex-analytical tools [6, 15, 43]. We follow a similar approach in

applying our variational decomposition method to the p-Laplacian operator ∆p.

Let p ∈ ]1,+∞[, let f ∈ L∞(Ω), and consider the partial differential equation governed by the

p-Laplacian operator with Dirichlet boundary conditions
{
−div

(
|Du|p−2Du

)
= f, on Ω;

u = 0, on bdryΩ.
(4.34)
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Note that, if p = 2, (4.34) reduces to (4.21). This problem possesses a unique weak solution

u ∈ W 1,p
0 (Ω), which can be obtained by solving the strictly convex minimization problem [24,

Section IV.2.2]

minimize
u∈W 1,p

0 (Ω)

1

p

∫

Ω
|Du|p −

∫

Ω
fu. (4.35)

As another example of our framework, we are interested to solve (4.35) by decomposing the

domain Ω in subdomains satisfying the hypotheses in Problem 3.1, and considering continuity

conditions on the interfaces. More precisely, we are interested in the following problem.

Problem 4.8 Consider the setting of Problem 3.1. Let p ∈ ]1,+∞[, let α ∈ ]0, 1], and let f ∈
L∞(Ω). Suppose that the unique solution to (4.35) is in C

1,α(Ω). The problem is to

minimize
(ui)i∈I∈×i∈I E

p
i

(∀(i,j)∈K) Tijui=Tjiuj

m∑

i=1

1

p

∫

Ωi

|Dui|
p −

∫

Ωi

fui. (4.36)

Proposition 4.9 Problem 4.8 has a unique solution (ui)i∈I . Moreover, the function u defined in

(4.5) is the unique solution to (4.35).

Proof. This is a consequence of Proposition 4.1 where, for every i ∈ I, φi : u 7→ 1
p

∫
Ωi

|Du|p −∫
Ωi
fu, which is strictly convex and coercive. In this case φ : u 7→ 1

p

∫
Ω |Du|p −

∫
Ω fu.

We now present our method for solving Problem 4.8.

Theorem 4.10 In algorithm (3.21) of Theorem 3.6, replace the steps defining pi,n and qij,n by

pi,n = argmin
w∈Hi∩E

p
i

γn

(
1

p

∫

Ωi

|Dw|p −

∫

Ωi

fw

)
+

1

2

∫

Ωi

|Dw −Dvi,n|
2 and qij,n = 0, (4.37)

respectively. Then, for every i ∈ I, the sequence (ui,n)n∈N generated by (3.21) converges strongly to

ui in Hi.

Proof. We consider two cases.

(a) p > 2: Since Ω is bounded, we have W 1,p(Ω) ⊂ H1(Ω), and hence it follows from (4.1)

that Epi ⊂ Hi. Thus, Problem 4.8 corresponds to the special case of Problem 3.1 in which




(∀i ∈ I) ϕi : Hi → ]−∞,+∞] : ui 7→





1

p

∫

Ωi

|Dui|
p −

∫

Ωi

fui, if ui ∈ Epi ;

+∞, otherwise

(∀(i, j) ∈ K) ψij = ι{0}.

(4.38)

It is clear that the functions (ψij)(i,j)∈K are proper, lower semicontinuous, and convex. Since the

convexity of functions (ϕi)i∈I is clear, let us show that they are lower semicontinuous. To this

end, fix i ∈ I, take λ ∈ R, and let (un)n∈N be a sequence in Hi such that un
Hi−→u ∈ Hi and

(∀n ∈ N) ϕi(un) 6 λ. We deduce from [4, Theorem 5.4.3] that the norm in W 1,p(Ωi) and the

norm

u 7→

(∫

Ωi

|Du|p
)1/p

= ‖Du‖Lp(Ωi) (4.39)
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are equivalent in Epi , which yields the coercivity of ϕi in Epi . Therefore, (un)n∈N is bounded in Epi
and, hence, it converges weakly to u in Epi . Moreover, the function ϕi is convex and continuous

on Epi , and hence weakly lower semicontinuous, which yields

ϕi(u) 6 limϕi(un) 6 λ. (4.40)

Let us show that condition (3.10) holds. Let (ui)i∈I ∈ H1 ⊕ · · · ⊕ Hm be the solution to Prob-

lem 4.8, and let u ∈ H1
0 (Ω) be as in (4.5). Since ψij = ι{0}, we have ∂ψij(0) = L2(Υij), and

the first condition in (3.10) is therefore satisfied. Now since u ∈ C
1,α(Ω), for every (i, j) ∈ K,

ν⊤i |Dui|
p−2Dui ∈ L2(Υij) and ν⊤j |Duj |

p−2Duj ∈ L2(Υij). Let us show that the second condition

in (3.10) holds with

(∀(i, j) ∈ K) gij = |Duj|
p−2ν⊤j Duj ∈ L2(Υij). (4.41)

The Euler equation associated with Problem 4.8 yields

(∀i ∈ I)





−div
(
|Dui|

p−2Dui
)
= f, on Ωi;

ui = 0, on Υii;

Tij ui = Tjiuj , on Υij, for every j ∈ J(i);

|Dui|
p−2ν⊤i Dui = −|Duj |

p−2ν⊤j Duj , on Υij, for every j ∈ J(i).

(4.42)

Now, for every i ∈ I, let us compute an element vi ∈ ∂ϕi(ui). By a classical directional differenti-

ation argument (see [4, Theorem 6.6.1] for a detailed proof) we obtain

(∀u ∈ Hi)

∫

Ωi

(|Dui|
p−2Dui −Dvi)

⊤Du =

∫

Ωi

fu, (4.43)

from which we deduce that vi satisfies, in sense of distributions, the boundary value problem





−∆vi = −f − div
(
|Dui|

p−2Dui
)
, on Ωi;

vi = 0, on Υii;

ν⊤i Dvi = ν⊤i |Dui|
p−2Dui, on Υij, for every j ∈ J(i),

(4.44)

which, using (4.42) and (4.41), reduces to





∆vi = 0, on Ωi;

vi = 0, on Υii;

ν⊤i Dvi = −gij , on Υij, for every j ∈ J(i+);

ν⊤i Dvi = gji, on Υij, for every j ∈ J(i−).

(4.45)

Hence, we derive from (3.9) that vi = Qi(0, (−gij)j∈J(i+), (−gji)j∈J(i−)) ∈ ∂ϕi(ui) which yields

(3.10). On the other hand, it follows from (2.5) and (4.25) that, for every (i, j) ∈ K and every

µ ∈ ]0,+∞[, proxµψij
≡ 0. Hence, we deduce from (2.5) that (4.37) yields

(∀n ∈ N)

{
(∀i ∈ I) pi,n = proxγnϕi

vi,n

(∀(i, j) ∈ K) qij,n = proxµnψij
(lij,n + µngij,n).

(4.46)
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Therefore, when (ϕi)i∈I and (ψij)(i,j)∈K are defined by (4.38), we deduce from Theorem 3.6 that

ui,n
Hi−→ui.

(b) 1 < p < 2: In this case, for every i ∈ I, Hi ⊂ W 1,p(Ωi), with continuous embedding. Let

us assume that the solution u of problem (4.35) belongs to H1
0 (Ω) (indeed we shall further state

regularity properties of u which make this property satisfied). Combining this property with the

density of H1
0 (Ω) in W 1,p

0 (Ω) (for the norm topology of W 1,p
0 (Ω)), the variational problem (4.35)

equivalently writes

minimize
u∈H1

0 (Ω)

1

p

∫

Ω
|Du|p −

∫

Ω
fu. (4.47)

Using the same argument as in Proposition 3.5, this is equivalent to solving

minimize
(ui)i∈I∈

⊕
i∈I Hi

(∀(i,j)∈K) Tijui=Tjiuj

m∑

i=1

1

p

∫

Ωi

|Dui|
p −

∫

Ωi

fui. (4.48)

Thus we are led to set

(∀i ∈ I) ϕi : Hi → R : ui 7→
1

p

∫

Ωi

|Dui|
p −

∫

Ωi

fui, (4.49)

which is continuous on Hi. The remainder of the proof is identical to the case p > 2. Just notice

that, when p < 2, the p-Laplacian becomes a singular elliptic operator. The global regularity of

the solution u to problem (4.35), with a globally continuous gradient, is well established [12, 35].

Remark 4.11

(i) A recent account of regularity properties for the solution to the p-Laplacian equation can

be found in [12, 33, 39]. Note that, in contrast with the case p = 2, the degeneracy of the

elliptic operator −∆p for p > 2 makes the regularity study more involved. In [12], global

H2(Ω) regularity is obtained for the regularized operator −ε∆−∆p (ε > 0). In general, for

smooth data, the local regularity C1,α
loc (Ω) holds (α ∈ ]0,+∞[).

(ii) Our approach makes it possible to consider the case when p assumes different values on

each subdomain Ωi. In this case, the minimization problem becomes

minimize
(ui)i∈I∈

⊕
i∈I Hi

(∀(i,j)∈K) Tijui=Tjiuj

m∑

i=1

ϕi(ui) (4.50)

where, for every i ∈ I,

ϕi : Hi → ]−∞,+∞] : ui 7→





1

pi

∫

Ωi

|Dui|
pi −

∫

Ωi

fui, if ui ∈ Epii ∩Hi;

+∞, otherwise,
(4.51)

and pi ∈ ]1,+∞[. This modification is motivated by bonding problems in continuum me-

chanics.
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(iii) Note that (gij)(i,j)∈K defined in (4.41) is a solution to the dual problem associated with

Problem 4.8. The method proposed in Theorem 4.10 also converges in the dual variables,

but for the sake of simplicity we provide only the convergence in primal variables.

Remark 4.12 The Plateau problem, i.e., the non parametric zero mean curvature problem, can

be treated similar to the p-Laplacian problem (case 1 < p < 2). The variational problem reads

minimize
u∈W 1,1(Ω)

u=φ on bdryΩ

∫

Ω

√
1 + |Du|2dx, (4.52)

where φ : bdryΩ → R is a given boundary data. The main issue in that situation is the existence

and regularity of the solution of the variational problem. The regularity of the solution to (4.52)

has been the object of active research. When bdryΩ is regular with nonnegative mean curvature

and φ ∈ C3(Ω̄), there exists a unique solution of problem (4.52) which is regular, and the bound-

ary condition is satisfied in a classical sense (by contrast with the relaxed boundary condition in

the general case), see [24, Theorem 2.2, pp. 130]. Then one has to modify the function ϕi by in-

troducing the non homogeneous Dirichlet boundary condition in its domain (i.e., ϕi is set to +∞
when this condition is not satisfied). The function ϕi is still convex and lower semicontinuous on

Hi = H1(Ωi).

4.3 Obstacle problem

We adopt the notation of the Poisson Problem 4.3. Let h : Ω → R be an obstacle function of class

C1,1, and suppose that the constraint set

C =
{
u ∈ H1

0 (Ω)
∣∣ u > h a.e. in Ω

}
(4.53)

is nonempty. This clearly requires that h 6 0 on bdryΩ.

We consider the convex minimization problem called obstacle problem

minimize
u∈C

1

2

∫

Ω
|Du|2 −

∫

Ω
fu. (4.54)

This strongly convex minimization problem admits a unique solution u (see [7, 31] for a general

presentation and analysis of this problem). We are interested in solving it using the following

equivalent formulation, which fits in our domain decomposition approach.

Problem 4.13 Consider the setting of Problem 3.1. Let f ∈ L2(Ω), let h ∈ C1,1(Ω), and, for every

i ∈ I, define Ci =
{
u ∈ Hi

∣∣ u > h a.e. in Ωi
}

. Suppose that, for every (i, j) ∈ K, Υij and bdryΩ
are of class C2. The problem is to

minimize
(ui)i∈I∈×i∈I Ci

(∀(i,j)∈K) Tijui=Tjiuj

m∑

i=1

1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui. (4.55)

Proposition 4.14 Problem 4.13 has a unique solution (ui)i∈I . Moreover, the function defined in

(4.5) is the unique solution to (4.54).
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Proof. This is a consequence of Proposition 4.1 with, for every i ∈ I, φi : u 7→ ιCi
(u)+ 1

2

∫
Ωi

|Du|2−∫
Ωi
fu, which are strongly convex. In this case, φ : u 7→ ιC(u) +

1
2

∫
Ω |Du|2 −

∫
Ω fu.

Theorem 4.15 In algorithm (3.21) of Theorem 3.6, replace the steps defining pi,n and qij,n by

pi,n = PCi

(
1

1 + γn
vi,n +

γn
1 + γn

Qi(f, 0, . . . , 0)

)
and qij,n = 0, (4.56)

respectively. Then, for every i ∈ I, the sequence (ui,n)n∈N generated by (3.21) converges strongly to

ui in Hi.

Proof. Set




(∀i ∈ I) ϕi : Hi → ]−∞,+∞] : ui 7→ ιCi

(ui) +
1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui

(∀(i, j) ∈ K) ψij = ι{0}.
(4.57)

Since the sets (Ci)i∈I are closed and convex in Hi, the convex functions (ϕi)i∈I are lower

semicontinuous, and hence, for every i ∈ I, ϕi ∈ Γ0(Hi). Moreover, for every (i, j) ∈ K,

ψij ∈ Γ0(L
2(Υij)). Altogether, Problem 4.13 is a particular case of Problem 3.1. Let us verify

that condition (3.10) holds. Let (ui)i∈I ∈ C1 × · · · × Cm be the solution to Problem 4.13, and let

u ∈ C defined by (4.5) be the unique solution to (4.54) guaranteed by Proposition 4.14. Since

ψij = ι{0}, we have ∂ψij(0) = L2(Υij), and hence the first condition in (3.10) is satisfied. Since

bdryΩ and (Υij)(i,j)∈K are of class C
2 and h ∈ C1,1, we have u ∈ C1,1 and, for every i ∈ I and

j ∈ J(i), ν⊤i Dui ∈ L2(Υij) and ν⊤j Duj ∈ L2(Υij) [31, Theorem 8.2] (see also [27]). Now let us

show that the second condition in (3.10) holds with

(∀(i, j) ∈ K) gij = ν⊤j Duj ∈ L2(Υij). (4.58)

The optimality condition for the solution u to (4.54) and Proposition 4.14 yield u ∈ C and

(∀v ∈ C)

∫

Ω
Du⊤D(v − u)−

∫

Ω
f(v − u) > 0 (4.59)

or, equivalently,

(∀i ∈ I)(∀vi ∈ Ci) such that (∀(i, j) ∈ K) Tijvi = Tjivj
∑

i∈I

(∫

Ωi

Du⊤i D(vi − ui) −

∫

Ωi

f(vi − ui)

)
> 0. (4.60)

We deduce the system of Kuhn-Tucker conditions: for every i ∈ I and every j ∈ J(i), there exist

positive Borel measures µi on Ωi and ηij on Υij such that

(∀i ∈ I)





−∆ui − f = µi, on Ωi;

ui = 0, on Υii;∫
Ωi
(ui − h)dµi = 0;

Tij ui = Tjiuj , on Υij, for every j ∈ J(i);

ν⊤i Dui + ν⊤j Duj = ηij on Υij, for every j ∈ J(i);∫
Υij

(ui − h)d ηij = 0 for every j ∈ J(i).

(4.61)
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Analogously, for every i ∈ I, the inclusion vi ∈ ∂ϕi(ui) is equivalent to the existence, for every

j ∈ J(i), of positive Borel measures µi on Ωi and ηij on Υij such that





−∆(ui − vi)− f = µi, on Ωi;

ui − vi = 0, on Υii;∫
Ωi
(ui − h)dµi = 0;

Tij ui = Tjiuj, on Υij , for every j ∈ J(i);

ν⊤i D(ui − vi) = ηij on Υij , for every j ∈ J(i);∫
Υij

(ui − h)dηij = 0 for every j ∈ J(i).

(4.62)

Hence, by taking, for every i ∈ I, vi to be the solution to the boundary value problem





−∆vi = 0, on Ωi;

vi = 0, on Υii;

ν⊤i Dvi = −ν⊤j Duj , on Υij, for every j ∈ J(i)

(4.63)

and, for every j ∈ J(i), gij = ν⊤j Duj on Υij, we deduce from (3.9) and (4.63) that vi =

−Qi
(
0, (gij)j∈J(i+), (gji)j∈J(i−)

)
∈ ∂ϕi(ui) where gij = ν⊤j Duj on Υij. Hence, condition (3.10)

holds.

On the other hand, it follows from (2.5) and (4.57) that, for every (i, j) ∈ K and µ ∈ ]0,+∞[,
proxµψij

≡ 0. Hence, we deduce from Proposition 4.2(i) that (4.56) yields

(∀n ∈ N)

{
(∀i ∈ I) pi,n = proxγnϕi

vi,n

(∀(i, j) ∈ K) qij,n = proxµnψij
(lij,n + µngij,n).

(4.64)

Therefore, the result follows from Theorem 3.6, where (ϕi)i∈I and (ψij)(i,j)∈K are defined by

(4.57).

Remark 4.16

(i) Note that (gij)(i,j)∈K defined in (4.58) is a solution to the dual problem associated with

Problem 4.13. The method proposed in Theorem 4.15 also guarantees the convergence of

the dual variables, but for the sake of simplicity we provide only the primal convergence

statement.

(ii) In (3.21) we have

(∀n ∈ N)(∀i ∈ I) vi,n = ui,n − γnQi
(
0, (gij,n)j∈J(i+), (gji,n)j∈J(i−)

)
. (4.65)

Hence, since the operators (Qi)i∈I defined in (3.9) are multilinear, the sequences

(pi,n)i∈I, n∈N can be computed more efficiently via

(∀n ∈ N)(∀i ∈ I) pi,n = PCi

( 1

1 + γn
ui,n+

γn
1 + γn

Qi(f, (−gij,n)j∈J(i+), (−gji,n)j∈J(i−))
)
.

(4.66)

This allows us to solve only m auxiliary PDE’s for updating (pi,n)i∈I at each iteration n.
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5 Perspectives

In this section we briefly outline possible adaptations and variants of our framework to related

problems.

First, in the setting of the Poisson Problem 4.3 let, for every i ∈ I and j ∈ J(i+), εij ∈ {−1, 1},

and consider the variational problem

minimize
u1∈H1,...,um∈Hm

(∀i∈I)(∀j∈J(i+)) εij(Tijui−Tjiuj)>0

m∑

i=1

1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui. (5.1)

By contrast with the preceding problems in which the bilateral constraint Tijui − Tjiuj = 0
imposes a continuity property at the interfaces, the constraint εij (Tijui − Tjiuj) > 0 models a

unilateral transmission condition through the interfaces. This occurs for example in the modelling

of fissures and cracks. Depending on the sign of εij , we have a nonzero flux from Ωi towards Ωj,
or in the reverse direction. The main difference with respect to the previous examples is that,

instead of using ψij = ι{0}, in this case we set ψij = ι{L2(Υij )+} or ψij = ι{L2(Υij)−}, depending

on the sign of εij . Clearly ψij ∈ Γ0(L
2(Υij)) because L2(Υij)

+ and L2(Υij)
− are closed convex

cones in L2(Υij).

Modeling semi-permeable membranes gives rise to similar problems, which possibly involve

both unilateral transmission conditions and surface energy functions. For example (here µij > 0
stands for some permeability coefficients)

minimize
i∈I, ui∈Hi

εij(Tijui−Tjiuj)>0,
j∈J(i+)

m∑

i=1

1

2

∫

Ωi

|Dui|
2 −

∫

Ωi

fui +
∑

i,j

µij
2

∫

Υij

|Tijui − Tjiuj|
2. (5.2)

This problem is within the scope of our study. Depending on the sign of εij one can take

ψij(g) = ι{L2(Υij)+}(g) +
µij
2

∫

Υij

|g|2 (5.3)

or

ψij(g) = ι{L2(Υij)−}(g) +
µij
2

∫

Υij

|g|2. (5.4)

Finally, let us note that in this paper we have considered only Dirichlet boundary conditions.

Neumann and mixed boundary conditions can also be considered by working in Sobolev spaces

(Hi)i∈I associated with the corresponding variational formulation (for example, for the Neumann

problem, one can take Hi = H1(Ωi)).
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