
Extrapolation algorithm for affine-convex feasibility problems

Heinz H. Bauschke∗, Patrick L. Combettes†, and Serge G. Kruk‡

October 5, 2005

Abstract

The convex feasibility problem under consideration is to find a common point of a countable
family of closed affine subspaces and convex sets in a Hilbert space. To solve such problems, we
propose a general parallel block-iterative algorithmic framework in which the affine subspaces
are exploited to introduce extrapolated over-relaxations. This framework encompasses a wide
range of projection, subgradient projection, proximal, and fixed point methods encountered in
various branches of applied mathematics. The asymptotic behavior of the method is investigated
and numerical experiments are provided to illustrate the benefits of the extrapolations.

1 Introduction

Let (Si)i∈I be a countable family of intersecting closed convex sets in a real Hilbert space H. The
associated convex feasibility problem is to

find x ∈
⋂
i∈I

Si. (1.1)

This problem has a long and rich history in applied mathematics, going back at least to the
nineteenth century [13]. We refer the reader to [3, 14, 16, 18, 20, 29] for surveys and background,
and to [12] for recent developments.

The early methods by Cimmino [17] and by Kaczmarz [41] on systems of linear equations relied
on projections. For every i ∈ I, let Pi denote the projection operator onto Si. A sequential
projection method generates a sequence (xn)n∈N in H according to the recursion

xn+1 = xn + λn(Pi(n)xn − xn), where i(n) ∈ I and 0 < λn < 2. (1.2)
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This scheme covers various methods by means of different index mappings i : N → I, which may
select indices cyclically [9], via the remotest set strategy [32, 40], or according to some other
sweeping rules [10]. In contrast, fully parallel methods activate all the sets simultaneously and the
iteration assumes the form [1, 26, 27, 28, 51]

xn+1 = xn + λn

(∑
i∈I

ωiPixn − xn

)
, where


0 < λn < 2,

{ωi}i∈I ⊂ ]0, 1] ,∑
i∈I ωi = 1.

(1.3)

Since these schemes can be slow, Pierra introduced in [48, 49] an extrapolated variant of (1.3),
namely (for convenience, we define 0/0 = 1 for the rest of this section)

xn+1 = xn + Ln

(∑
i∈I

ωiPixn − xn

)
, where Ln =

∑
i∈I ωi‖Pixn − xn‖2

‖
∑

i∈I ωiPixn − xn‖2
. (1.4)

In numerical experiments, Pierra observed that the extrapolation parameter Ln can be much larger
than 2 and that the sequence (xn)n∈N can converge much faster than the sequence generated
by (1.3). In the case of affine half-spaces in RN , this scheme had previously been investigated
by Merzlyakov [45]. Over the years, projection algorithms have been extended to more flexible
block-iterative methods in which only a block of sets (Si)i∈In⊂I is activated at iteration n [11,
22, 33, 34, 35, 38, 47]. Following a different track, some researchers observed that projections
can be replaced by alternative operators that may be easier to compute, such as subgradient
projectors, resolvents of monotone operators, resolvents of bifunctions, proximity operators, or
firmly nonexpansive operators [3, 15, 19, 21, 25, 31, 42, 43, 44, 53, 55]. In [23], these approaches
were unified through the iteration method

xn+1 = xn + λn

(∑
i∈In

ωi,nTi,nxn − xn

)
, where



In ⊂ I,

{ωi,n}i∈In ⊂ [0, 1] ,∑
i∈In

ωi,n = 1,

Ln =

∑
i∈In

ωi,n‖Ti,nxn − xn‖2

‖
∑

i∈In
ωi,nTi,nxn − xn‖2

,

0 < λn < 2Ln.

(1.5)

In this method, Ti,n is a so-called T-class operator (see section 2) chosen so that its fixed point set
coincides with Si.

Let A be a closed vector subspace of H and let B be a nonempty closed convex subset of H.
Denote the projectors onto A and B by PA and PB, respectively. In [48, 49], Algorithm (1.4) was
derived by investigating — in a suitable product space setting — the two-set iteration

xn+1 = xn + Kn(PAPBxn − xn), where Kn =
‖PBxn − xn‖2

‖PAPBxn − xn‖2
. (1.6)

This two-set relaxation strategy was originally used in [40] in order to potentially accelerate the
convergence of the basic alternating projection method xn+1 = PAPBxn. It should be noted that
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(1.6) is not covered by (1.5). Indeed, when (In)n∈N reduces to a sequence of singletons ({i(n)})n∈N,
then (1.5) reduces to (1.2), where the relaxations (λn)n∈N cannot exceed 2. However, as will be
illustrated in Figure 2 and Figure 6, the sequence of extrapolation parameters (Kn)n∈N from (1.6)
can include terms that are much larger than 2.

The objective of this paper is to introduce and analyze a general algorithmic framework that
captures and extends both (1.5) and (1.6). This investigation will unify existing convergence results
and provide new algorithms for solving convex feasibility problems. The crux of the proposed
algorithm is to insert in (1.5) extrapolation steps of type (1.6) involving affine subspaces. More
specifically, let I ′ be a subset of I containing indices corresponding to affine subspaces. Then our
iterative scheme is based upon the updating rule

xn+1 = xn + ρn

(
Pi(n)xn + χnLn

(∑
i∈In

ωi,nPi(n)Ti,nPi(n)xn − Pi(n)xn

)
− xn

)
, (1.7)

where 

i(n) ∈ I ′,

In ⊂ I,

{Ti,n}i∈In ⊂ T,

{ωi,n}i∈In ⊂ [0, 1] ,
∑

i∈In
ωi,n = 1,

Ln =

∑
i∈In

ωi,n‖Ti,nPi(n)xn − Pi(n)xn‖2

‖
∑

i∈In
ωi,nTi,nPi(n)xn − Pi(n)xn‖2

,

0 < χn ≤ Kn,

0 < ρn < 2,

(1.8)

and Kn is an extrapolation factor in [1,+∞[ similar to that defined in (1.6). The practical impor-
tance of the insertion of these extrapolation steps is the acceleration of block-parallel methods of
type (1.5). The method obtained is also much more flexible than algorithm (1.6).

An important tool in our analysis will be the notion of a T-class operator. In section 2, we
review known results concerning these operators and establish new properties that will be used in
subsequent sections. The new extrapolation algorithm is presented and analyzed in section 3. In
particular, the convergence of the method is established and connections with existing results are
made. In section 4, these results are specialized to the two-set case, which allows for significant
refinements. Numerical simulation results that confirm the expected acceleration are also presented.

2 T-class operators

This paper hinges to a large extent on the following notion.
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Definition 2.1 [4, Definition 2.2] T is the class of all operators T : dom T = H → H such that

(∀x ∈ H)(∀y ∈ FixT )
〈
y − Tx | x− Tx

〉
≤ 0. (2.1)

As the examples below show, the class T contains various operators encountered in nonlinear
analysis and applied mathematics.

Proposition 2.2 Let T : H → H and consider the following statements:

(i) T is the projector onto a nonempty closed convex subset of H.

(ii) T is the resolvent of a maximal monotone operator M : H → 2H, that is, T = (Id+M)−1.

(iii) T is the resolvent of a bifunction F : K × K → R, where K is a nonempty closed convex
subset of H and F satisfies

(a) (∀x ∈ K) F (x, x) = 0.

(b) (∀x ∈ K)(∀y ∈ K) F (x, y) + F (y, x) ≤ 0.

(c) For every x ∈ K, F (x, ·) : K → R is lower semicontinuous and convex.

(d) (∀x ∈ K)(∀y ∈ K)(∀z ∈ K) lim
ε→0+

F
(
(1− ε)x + εz, y

)
≤ F (x, y).

In other words, for every x ∈ H, Tx is the unique point in K that satisfies

(∀y ∈ K) F (Tx, y) +
〈
Tx− x | y − Tx

〉
≥ 0. (2.2)

(iv) dom T = H and T is firmly nonexpansive, that is,

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(Id−T )x− (Id−T )y‖2. (2.3)

(v) T is a subgradient projector onto the lower level set {x ∈ H | f(x) ≤ 0}, that is,

(∀x ∈ H) Tx =

x− f(x)
‖g(x)‖2

g(x), if f(x) > 0;

x, if f(x) ≤ 0,
(2.4)

where f : H → R is a continuous convex function such that {x ∈ H | f(x) ≤ 0} 6= Ø and
where g is a selection of the subdifferential ∂f of f .

(vi) dom T = H and R = 2T − Id is quasi-nonexpansive, that is,

(∀x ∈ H)(∀y ∈ FixR) ‖Rx− y‖ ≤ ‖x− y‖. (2.5)

4



(vii) T ∈ T.

Then
(i) ⇒ (ii) ⇔ (iv) ⇐ (iii)
⇓ ⇓

(v) ⇒ (vi) ⇔ (vii),
(2.6)

where all the one-sided implications are not reversible in general.

Proof. See [25, Lemma 2.13(i)&(ii)] for (iii) ⇒ (iv), and [4, Proposition 2.3] for the rest.

We now state some basic properties of T-class operators, starting with straightforward reformu-
lations of (2.1).

Proposition 2.3 Let T : H → H be an operator with dom T = H. Then the following statements
are equivalent.

(i) T ∈ T.

(ii) (∀x ∈ H)(∀y ∈ FixT ) ‖Tx− x‖2 ≤
〈
y − x | Tx− x

〉
.

(iii) (∀x ∈ H)(∀y ∈ FixT ) ‖Tx− y‖2 ≤ ‖x− y‖2 − ‖Tx− x‖2.

Proposition 2.4 Let T ∈ T. Then

(i) Set R = Id+κ(T − Id), where κ ∈ [0, 2]. Then

(∀x ∈ H)(∀y ∈ FixT ) ‖Rx− y‖2 ≤ ‖x− y‖2 − κ(2− κ)‖Tx− x‖2. (2.7)

(ii) (∀x ∈ Hr FixT )(∀y ∈ FixT ) ‖Tx− y‖ < ‖x− y‖.

(iii) T is quasi-nonexpansive.

(iv) FixT is closed and convex.

Proof. (i): [23, Proposition 2.3(ii)]. (ii): Take x ∈ H r FixT and y ∈ FixT . It follows from
Proposition 2.3 that ‖Tx−y‖2 ≤ ‖x−y‖2−‖Tx−x‖2 < ‖x−y‖2. (iii): An immediate consequence
of (ii). (iv): [4, Proposition 2.6(ii)].

Proposition 2.5 Let (Ti)1≤i≤m be a finite family of operators in T such that
⋂m

i=1 FixTi 6= Ø.
Then FixTm · · ·T1 =

⋂m
i=1 FixTi.
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Proof. We proceed by induction. If m = 1, the property clearly holds. Now suppose that m > 1
and that, for some p ∈ {1, . . . ,m − 1}, FixTp · · ·T1 =

⋂p
i=1 FixTi. Set R1 = Tp · · ·T1 and R2 =

Tp+1. Then Ø 6=
⋂m

i=1 FixTi ⊂
⋂p+1

i=1 FixTi = FixR2 ∩ FixR1 ⊂ FixR2R1. Conversely, take
x ∈ FixR2R1. Then it is enough to show that x ∈ FixR1 as this will imply that x ∈ FixR2.
Suppose to the contrary that x /∈ FixR1. Then R1x /∈ FixR2 since otherwise we would have
R1x = R2R1x = x 6= R1x. Now let y ∈ FixR2 ∩ FixR1. The operators (Ti)1≤i≤p satisfy (2.5) by
Proposition 2.4(iii) and y ∈ FixR1 =

⋂p
i=1 FixTi. Therefore,

‖R1x− y‖ = ‖Tp · · ·T1x− y‖ ≤ ‖Tp−1 · · ·T1x− y‖ ≤ · · · ≤ ‖T1x− y‖ ≤ ‖x− y‖. (2.8)

On the other hand, since R2 satisfies property (ii) in Proposition 2.4, we obtain

‖x− y‖ = ‖R2(R1x)− y‖ < ‖R1x− y‖ ≤ ‖x− y‖, (2.9)

which is absurd. Thus, Fix R2R1 = Fix R2 ∩ FixR1, i.e., FixTp+1 · · ·T1 =
⋂p+1

i=1 FixTi.

We now introduce a new example of a T-class operator that will play a key role in the proposed
algorithm. First, we recall some elementary properties of the projector onto an affine subspace.
Henceforth, PC designates the projector onto a nonempty closed convex subset C of H.

Proposition 2.6 Let A be a closed affine subspace of H and let U = A−A. Then

(i) (∀x ∈ H)(∀y ∈ A)(∀z ∈ A)
〈
x− PAx | y − z

〉
= 0.

(ii) (∀x ∈ H)(∀y ∈ A) ‖x− y‖2 = ‖x− PAx‖2 + ‖PAx− y‖2.

(iii) (∀x ∈ H)(∀y ∈ A) PAx = PUx + PU⊥y.

(iv) (∀x ∈ H)(∀y ∈ A) ‖PAx− x‖2 =
〈
y − x | PAx− x

〉
.

Proposition 2.7 Let A be a closed affine subspace of H and let T be an operator in T such that
A ∩ FixT 6= Ø. Then

(∀x ∈ A)(∀y ∈ A ∩ FixT ) ‖Tx− x‖2 ≤
〈
y − x | PATx− x

〉
. (2.10)

Proof. Take x ∈ A and y ∈ A∩FixT . Then Proposition 2.3 and Proposition 2.6(i) yield ‖Tx−x‖2 ≤〈
y − x | Tx− x

〉
=
〈
y − x | PATx− Tx

〉
+
〈
y − x | Tx− x

〉
=
〈
y − x | PATx− x

〉
.

Theorem 2.8 Let A be a closed affine subspace of H and let T be an operator in T such that
A ∩ FixT 6= Ø. Define

(∀x ∈ H) K(x,A, T ) =


‖TPAx− PAx‖2

‖PATPAx− PAx‖2
, if PAx /∈ FixT ;

1, otherwise,
(2.11)
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and

R : H → A : x 7→ PAx + κ(x)
(
PATPAx− PAx

)
, where 0 < κ(x) ≤ K(x,A, T ). (2.12)

Now fix x ∈ H. Then

(i) K(x,A, T ) is a well defined number in [1,+∞[; moreover,

K(x,A, T ) = 1 ⇔ TPAx ∈ A ⇔ PATPAx = TPAx (2.13)

and

PAx ∈ FixT ⇔ PAx ∈ A ∩ FixT ⇒ TPAx ∈ A ∩ FixT ⇒ TPAx ∈ A. (2.14)

(ii) K(x,A, T )‖PATPAx− PAx‖2 = ‖TPAx− PAx‖2.

(iii) FixR = A ∩ FixT .

(iv) R ∈ T.

Proof. For brevity, we write K(x) instead of K(x,A, T ). (i): It follows from Proposition 2.2(i) that
PA ∈ T. Consequently, since A ∩ FixT 6= Ø, we deduce from Proposition 2.5 that

FixPAT = Fix PA ∩ FixT = A ∩ FixT = Fix TPA. (2.15)

Thus,

TPAx = PAx ⇔ PAx ∈ FixT

⇔ PAx ∈ A ∩ FixT

⇔ PAx ∈ FixPAT

⇔ PATPAx = PAx. (2.16)

As a result, K(x) is a well defined number in R. Since A is an affine subspace, range R ⊂ A. Now,
suppose that PAx /∈ FixT . Then (2.11) and Proposition 2.6(ii) yield

K(x) =
‖TPAx− PAx‖2

‖PATPAx− PAx‖2

=
‖TPAx− PATPAx‖2 + ‖PATPAx− PAx‖2

‖PATPAx− PAx‖2

=
‖TPAx− PATPAx‖2

‖PATPAx− PAx‖2
+ 1. (2.17)

Therefore K(x) ≥ 1 and K(x) = 1 ⇔ TPAx = PATPAx ⇔ TPAx ∈ A. Next, suppose that
PAx ∈ FixT . Then TPAx = PAx ∈ A. On the other hand, (2.11) yields K(x) = 1. Altogether,
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we have verified (2.13). We now turn to (2.14) and observe that the equivalence is clear since
range PA ⊂ A. Next, if PAx ∈ A∩FixT , then TPAx = PAx ∈ A∩FixT , which verifies the middle
implication. The rightmost implication is obvious.

(ii): If PAx 6∈ FixT , then the conclusion follows directly from (2.11). If PAx ∈ FixT , then (2.11)
and (2.13) imply that K(x) = 1 and that PATPAx = TPAx = PAx. The conclusion is now clear.

(iii): Since A is a closed affine subspace and {PAx, PATPAx} ⊂ A, we have x = PAx ⇔ x ∈ A
and

x ∈ FixR ⇔ x =
(
1− κ(x)

)
PAx + κ(x)PATPAx ∈ A

⇔ x =
(
1− κ(x)

)
x + κ(x)PATx ∈ A

⇔ x = PATx

⇔ x ∈ FixPAT

⇔ x ∈ A ∩ FixT, (2.18)

where (2.18) follows from (2.15).

(iv): Item (i) implies that dom R = H and item (iii) states that Fix R = A ∩ FixT . Now let
y ∈ FixR. In view of Proposition 2.3, it suffices to show that ‖Rx− x‖2 ≤

〈
y − x | Rx− x

〉
. Since

A is a closed affine subspace, we derive from Proposition 2.6(i) and from item (ii) that

‖Rx− x‖2 = ‖PAx− x + κ(x)
(
PATPAx− PAx

)
‖2

= ‖PAx− x‖2 + κ(x)2‖PATPAx− PAx‖2 + 2κ(x)
〈
PAx− x | PATPAx− PAx

〉
≤ ‖PAx− x‖2 + κ(x)K(x)‖PATPAx− PAx‖2

= ‖PAx− x‖2 + κ(x)‖TPAx− PAx‖2. (2.19)

Moreover, since y ∈ A, Proposition 2.6(iv) yields

‖PAx− x‖2 =
〈
y − x | PAx− x

〉
. (2.20)

On the other hand, it follows from Proposition 2.7 and Proposition 2.6(i) that

‖TPAx− PAx‖2 ≤
〈
y − PAx | PATPAx− PAx

〉
=
〈
y − x | PATPAx− PAx

〉
+
〈
x− PAx | PATPAx− PAx

〉
=
〈
y − x | PATPAx− PAx

〉
. (2.21)

Upon combining (2.19), (2.20), and (2.21) we obtain

‖Rx− x‖2 ≤
〈
y − x | PAx− x

〉
+ κ(x)

〈
y − x | PATPAx− PAx

〉
=
〈
y − x | Rx− x

〉
, (2.22)

which is the desired inequality.

Remark 2.9 Several comments on Theorem 2.8 are in order.
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(i) As will be shown in Example 4.9, we can have K(x,A, T ) = 1 and PAx /∈ FixT in (2.11).

(ii) Let A = H, T = P{0}, and x ∈ H r {0}. Then PAx = x 6= 0 = TPAx ∈ {0} = A ∩ FixT .
This demonstrates that the implication PAx ∈ A ∩ FixT ⇒ TPAx ∈ A ∩ FixT in (2.14) is
not reversible in general.

(iii) Suppose that T = PB is the projector onto some closed convex set B such that A ∩ B 6= Ø.
If TPAx ∈ A, then TPAx ∈ A ∩ FixT since range T = range PB = B = FixT . Thus the
rightmost implication in (2.14) is actually an equivalence for projectors.

(iv) If T is not a projector, then the rightmost implication in (2.14) is not reversible in general.
For instance, let A = H and T = 1

2 Id. Then T ∈ T and Fix T = {0}. If x ∈ H r {0}, then
TPAx = 1

2x ∈ H = A, yet TPAx 6∈ FixT .

(v) As will be shown in Remark 4.10(ii), it is not possible to extend the range of the relaxation
parameter κ(x) in (2.12) beyond K(x,A, T ) without destroying the T-class property.

Corollary 2.10 Let A be a closed affine subspace of H and let T be an operator in T such that
A ∩ FixT 6= Ø. Then FixPATPA = A ∩ FixT and PATPA ∈ T.

Proof. Set κ(x) ≡ 1 in Theorem 2.8.

In the next two corollaries of Theorem 2.8, we recover two results previously established with
different tools.

Corollary 2.11 [4, Proposition 2.6(iii)] Let T ∈ T. Then (∀µ ∈ ]0, 1]) Id+µ(T − Id) ∈ T.

Proof. Set A = H and κ(x) ≡ µ in Theorem 2.8.

Corollary 2.12 [23, Proposition 2.4] Let I be a finite ordered index set, let (Ti)i∈I be a family of
operators in T such that C =

⋂
i∈I FixTi 6= Ø, and let (ωi)i∈I be real numbers in ]0, 1] such that∑

i∈I ωi = 1. Define

(∀x ∈ H) L
(
x, (Ti)i∈I , (ωi)i∈I

)
=


∑

i∈I ωi‖Tix− x‖2

‖
∑

i∈I ωiTix− x‖2
, if x /∈ C;

1, otherwise,
(2.23)

and

R : H → H : x 7→ x + λ(x)

(∑
i∈I

ωiTix− x

)
where 0 < λ(x) ≤ L

(
x, (Ti)i∈I , (ωi)i∈I

)
. (2.24)

Then

(i) For every x ∈ H, L
(
x, (Ti)i∈I , (ωi)i∈I

)
is a well defined number in [1,+∞[.
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(ii) FixR = C.

(iii) R ∈ T.

Proof. For brevity we write L(x) instead of L
(
x, (Ti)i∈I , (ωi)i∈I

)
. We use a product space technique

devised in [48, 49] in the context of projection methods. Let x = (xi)i∈I denote a generic element
in the product space H =×i∈IH. The space H endowed with the scalar product

〈〈〈
· | ·
〉〉〉
: (x,y) 7→∑

i∈I ωi

〈
xi | yi

〉
is a Hilbert space. The associated norm is ‖‖‖ · ‖‖‖ : x 7→

√∑
i∈I ωi‖xi‖2. Let us

introduce the closed vector subspace

D =
{
(x, . . . , x) ∈ H | x ∈ H

}
(2.25)

and the operator
T : H → H : x 7→ (Tixi)i∈I . (2.26)

The projector PD onto D is given by

PD : x 7→
(∑

i∈I

ωixi, . . . ,
∑
i∈I

ωixi

)
. (2.27)

It is easily verified that FixT =×i∈I FixTi and that T belongs to the T-class relative to H. Now,
let us define

(∀x ∈ H) K(x) =


‖‖‖TPDx−PDx‖‖‖2

‖‖‖PDTPDx−PDx‖‖‖2
, if PDx /∈ FixT;

1, otherwise,
(2.28)

and

R : H → D : x 7→ PDx + κ(x)
(
PDTPDx−PDx

)
, where 0 < κ(x) ≤ K(x). (2.29)

Then it follows from Theorem 2.8 that R is a T-class operator on H with

FixR = D ∩ FixT =
{
(x, . . . , x) | x ∈ C

}
6= Ø. (2.30)

Let us fix x ∈ H and set x = (x, . . . , x) ∈ D. We deduce from (2.28), (2.26), (2.27), and (2.30) that

K(x) =


‖‖‖Tx− x‖‖‖2

‖‖‖PDTx− x‖‖‖2
=
∑

i∈I ωi‖Tix− x‖2

‖
∑

i∈I ωiTix− x‖2
, if x /∈ C;

1, otherwise

= L(x) (2.31)

and then from (2.29), (2.26), and (2.27) that

Rx = x + κ(x)
(
PDTx− x

)
=
(
Rx, . . . , Rx

)
, (2.32)

where R is as in (2.24), with λ(x) = κ(x). Hence, we obtain (i) and we derive from (2.30) that
FixR = C, which establishes (ii). To show (iii), let us further fix y ∈ C and set y = (y, . . . , y) ∈
D ∩ FixR. Then (x,y) ∈ D× FixR and, since R is a T-class operator on H, we obtain〈

y −Rx | x−Rx
〉

=
∑
i∈I

ωi

〈
y −Rx | x−Rx

〉
=
〈〈〈
y −Rx | x−Rx

〉〉〉
≤ 0. (2.33)

Therefore, R ∈ T.
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3 Extrapolation algorithm for affine-convex feasibility

Let (Si)i∈I be a countable (finite or countably infinite) family of closed convex subsets of H such
that

S =
⋂
i∈I

Si 6= Ø. (3.1)

Denote by I ′ a subset of I such that (Si)i∈I′ are closed affine subspaces onto which projections are
easily computed (see [20] for concrete examples). It is assumed, without loss of generality, that
I ′ 6= Ø. Indeed, one can always add the whole space H to the family (Si)i∈I if necessary. For every
i ∈ I ′, we denote by Pi the projector onto the closed affine subspace Si.

In this section, we present and analyze a flexible algorithm for finding a point in S that exploits
the presence of the affine subspaces (Si)i∈I′ through extrapolated relaxations.

3.1 Extrapolation algorithm

The proposed algorithm involves a mix of T-class operators which are constructed by utilizing
Theorem 2.8 and Corollary 2.12. Recall that the operators K and L are defined in (2.11) and
(2.23), respectively.

Algorithm 3.1 Fix δ ∈ ]0, 1[ and x0 ∈ H. At iteration n ∈ N, xn designates the current iterate
and the update xn+1 is constructed according to the following steps.

À i(n) ∈ I ′.

Á Ø 6= In ⊂ I, where In is finite.

Â (∀i ∈ In) Ti,n ∈ T, FixTi,n = Si, and, if i ∈ I ′, then Ti,n = Pi.

Ã (∀i ∈ In) ωi,n ∈ [0, 1],
∑

i∈In
ωi,n = 1, and

(∃ j ∈ In)

‖Tj,nPi(n)xn − Pi(n)xn‖ = max
i∈In

‖Ti,nPi(n)xn − Pi(n)xn‖

ωj,n ≥ δ.
(3.2)

Ä I+
n =

{
i ∈ In | ωi,n > 0

}
.

Å Rn = Id+L
(
· , (Ti,n)i∈I+

n
, (ωi,n)i∈I+

n

)(∑
i∈I+

n
ωi,nTi,n − Id

)
.

Æ Tn : H → H : x 7→ Pi(n)x + κn(x)
(
Pi(n)RnPi(n)x− Pi(n)x

)
, where 0 < κn(x) ≤ K(x, Si(n), Rn).

Ç xn+1 = xn + ρn(Tnxn − xn), where 0 < ρn < 2.

11



In view of Corollary 2.12 and Theorem 2.8(iv), the operators Rn and Tn defined in Step Å and
Step Æ are T-class operators.

3.2 Convergence analysis

We use the standard notation xn ⇀ x and xn → x to denote, respectively, the weak and strong
convergence to x of a sequence (xn)n∈N in H.

Condition 3.2

(i) There exists ε ∈ ]0, 1[ such that, for every n ∈ N, ε ≤ ρn ≤ 2− ε and κn(xn) ≥ ε.

(ii) There exist strictly positive integers (Mi)i∈I such that

(∀i ∈ I)(∀n ∈ N) i ∈
n+Mi−1⋃

k=n

{i(k)} ∪ Ik. (3.3)

(iii) For every index i ∈ I r I ′, every orbit (xn)n∈N of Algorithm 3.1, every y ∈ H, and every
strictly increasing sequence (pn)n∈N in N, the implication

i ∈
⋂

n∈N Ipn ,
Pi(pn)xpn ⇀ y,

Ti,pnPi(pn)xpn − Pi(pn)xpn → 0

 ⇒ y ∈ Si (3.4)

holds.

We are now ready to present our main result.

Theorem 3.3 Let (xn)n∈N be an arbitrary orbit of Algorithm 3.1. Then

(i) (xn)n∈N is Fejér monotone with respect to S, that is,

(∀y ∈ S)(∀n ∈ N) ‖xn+1 − y‖ ≤ ‖xn − y‖. (3.5)

(ii)
∑

n∈N ρn(2− ρn)‖Pi(n)xn − xn‖2 < +∞.

(iii)
∑

n∈N ρnκn(xn)
(
2− ρnκn(xn)/Kn(xn, Si(n), Rn)

)
‖RnPi(n)xn − Pi(n)xn‖2 < +∞.

(iv)
∑

n∈N ρn(2− ρn)‖Tnxn − xn‖2 < +∞.

(v)
∑

n∈N(2− ρn)‖xn+1 − xn‖2 < +∞.

12



(vi) If Condition 3.2 is satisfied, then (xn)n∈N converges weakly to a point in S.

Proof. Let us fix y ∈ S and, for brevity, let us set

(∀n ∈ N)


zn = Pi(n)xn,

Ln = L
(
zn, (Ti,n)i∈I+

n
, (ωi,n)i∈I+

n

)
,

Kn = K(xn, Si(n), Rn),
χn = κn(xn).

(3.6)

For every n ∈ N, the weights (ωi,n)i∈I+
n

are strictly positive and
∑

i∈I+
n

ωi,n = 1. Therefore, Â, Å,
(3.1), and Corollary 2.12 yield

(∀n ∈ N) Rn ∈ T and FixRn =
⋂

i∈I+
n

Si. (3.7)

It follows from Ç that

(∀n ∈ N) ‖xn+1 − y‖2 = ‖xn − y + ρn(Tnxn − xn)‖2

= ‖xn − y‖2 + 2ρn

〈
xn − y | Tnxn − xn

〉
+ ρ2

n‖Tnxn − xn‖2. (3.8)

We observe that, for every n ∈ N, the points y, zn, and Pi(n)Rnzn belong to the closed affine
subspace Si(n). Therefore, Æ, Proposition 2.6(i), (3.7), and Proposition 2.7 yield

(∀n ∈ N)
〈
xn − y | Tnxn − xn

〉
=
〈
xn − y | zn − xn + χn(Pi(n)Rnzn − zn)

〉
=
〈
xn − zn | zn − xn + χn(Pi(n)Rnzn − zn)

〉
+
〈
zn − y | zn − xn + χn(Pi(n)Rnzn − zn)

〉
= −‖zn − xn‖2 + χn

〈
zn − y | Pi(n)Rnzn − zn

〉
≤ −‖zn − xn‖2 − χn‖Rnzn − zn‖2. (3.9)

On the other hand, by Æ, Proposition 2.6(i), and Theorem 2.8(ii),

(∀n ∈ N) ‖Tnxn − xn‖2 = ‖zn − xn + χn(Pi(n)Rnzn − zn)‖2

= ‖zn − xn‖2 + χ2
n‖Pi(n)Rnzn − zn‖2

= ‖zn − xn‖2 +
χ2

n

Kn
‖Rnzn − zn‖2. (3.10)

Altogether, (3.8), (3.9), and (3.10) result in

(∀n ∈ N) ‖xn+1 − y‖2 ≤ ‖xn − y‖2 − 2ρn

(
‖zn − xn‖2 + χn‖Rnzn − zn‖2

)
+ ρ2

n

(
‖zn − xn‖2 +

χ2
n

Kn
‖Rnzn − zn‖2

)
= ‖xn − y‖2 − ρn(2− ρn)‖zn − xn‖2

− ρnχn

(
2− ρnχn

Kn

)
‖Rnzn − zn‖2. (3.11)
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Observe that the conditions imposed on the relaxation parameters in Æ and Ç yield

(∀n ∈ N) ρn(2− ρn) > 0 and ρnχn

(
2− ρnχn

Kn

)
> 0. (3.12)

Let us now prove items (i)–(vi).

(i) follows at once from (3.11) and (3.12). As a result, we obtain∑
n∈N

(
‖xn − y‖2 − ‖xn+1 − y‖2

)
≤ ‖x0 − y‖2 < +∞. (3.13)

(ii)&(iii): We deduce from (3.11) that

(∀n ∈ N) ρn(2−ρn)‖zn−xn‖2+ρnχn

(
2− ρnχn

Kn

)
‖Rnzn−zn‖2 ≤ ‖xn−y‖2−‖xn+1−y‖2. (3.14)

Hence the claims follow from (3.12) and (3.13).

(iv): By Æ,
(∀n ∈ N) 0 <

χn

Kn
≤ 1, (3.15)

and therefore

(∀n ∈ N) ρn(2− ρn)
χ2

n

Kn
= ρnχn

(
2χn

Kn
− ρnχn

Kn

)
≤ ρnχn

(
2− ρnχn

Kn

)
. (3.16)

Thus, (3.12), (3.10), (3.16), and (3.14) yield

(∀n ∈ N) 0 ≤ ρn(2− ρn)‖Tnxn − xn‖2

= ρn(2− ρn)‖zn − xn‖2 + ρn(2− ρn)
χ2

n

Kn
‖Rnzn − zn‖2

≤ ρn(2− ρn)‖zn − xn‖2 + ρnχn

(
2− ρnχn

Kn

)
‖Rnzn − zn‖2

≤ ‖xn − y‖2 − ‖xn+1 − y‖2. (3.17)

Hence the assertion follows from (3.13).

(v): In view of Ç,

(∀n ∈ N) (2− ρn)‖xn+1 − xn‖2 = ρ2
n(2− ρn)‖Tnxn − xn‖2 ≤ 2ρn(2− ρn)‖Tnxn − xn‖2, (3.18)

and the claim follows from (iv).

(vi): In view of (i), to show that (xn)n∈N converges weakly to a point in S, it is enough to show
(see, e.g., [4, Proposition 2.1]) that each of its weak cluster points is in S. To this end, fix a weak
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cluster point z, say xkn ⇀ z, and an index j ∈ I. Then it suffices to show that z ∈ Sj . Using
successively Å, the inequality Ln ≥ 1 (see Corollary 2.12(i)), (2.23), and Ã, we obtain

(∀n ∈ N) ‖Rnzn − zn‖2 = L2
n

∥∥∥∥∥∥
∑
i∈I+

n

ωi,nTi,nzn − zn

∥∥∥∥∥∥
2

≥ Ln

∥∥∥∥∥∥
∑
i∈I+

n

ωi,nTi,nzn − zn

∥∥∥∥∥∥
2

=
∑
i∈I+

n

ωi,n ‖Ti,nzn − zn‖2

≥ δ max
i∈In

‖Ti,nzn − zn‖2. (3.19)

On the other hand, Condition 3.2(i), (3.15) and (iii) yield

ε3
∑
n∈N

‖Rnzn − zn‖2 ≤
∑
n∈N

ρnχn(2− ρn)‖Rnzn − zn‖2

≤
∑
n∈N

ρnχn(2− ρnχn/Kn)‖Rnzn − zn‖2

< +∞. (3.20)

It follows from (3.19) and (3.20) that

max
i∈In

‖Ti,nzn − zn‖ → 0. (3.21)

After passing to a subsequence of (xkn)n∈N if necessary, we assume that, for every n ∈ N, kn+1 ≥
kn + Mj . Then Condition 3.2(ii) asserts that there exists a sequence (pn)n∈N in N such that

(∀n ∈ N) kn ≤ pn ≤ kn + Mj − 1 < kn+1 ≤ pn+1 and j ∈ {i(pn)} ∪ Ipn . (3.22)

The Cauchy-Schwarz inequality then yields

(∀n ∈ N) ‖xpn − xkn‖ ≤
kn+Mj−2∑

l=kn

‖xl+1 − xl‖ ≤
√

Mj − 1
√∑

l≥kn

‖xl+1 − xl‖2. (3.23)

Hence (v) and Condition 3.2(i) imply that xpn − xkn → 0, and thus xpn ⇀ z. Since (ii) and
Condition 3.2(i) result in zpn − xpn → 0, we therefore obtain

zpn ⇀ z. (3.24)

In view of (3.22), there exists a subsequence of (pn)n∈N, which we still denote by (pn)n∈N for
convenience, such that

(∀n ∈ N) j = i(pn) (3.25)
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or
j ∈

⋂
n∈N

Ipn . (3.26)

Assume first that (3.25) holds. Using (3.24), we see that Sj 3 Pjxpn = zpn ⇀ z. Hence z ∈ Sj , as
Sj is weakly closed.

Now assume that (3.26) holds and observe that (3.21) and (3.24) yield

Tj,pnzpn − zpn → 0 and zpn ⇀ z. (3.27)

In turn, we obtain Tj,pnzpn ⇀ z. If j ∈ I ′, then Â gives Tj,pn ≡ Pj and therefore Sj 3 Pjzpn ⇀ z,
hence z ∈ Sj as Sj is weakly closed. On the other hand, if j 6∈ I ′, then we deduce at once from
(3.27) and Condition 3.2(iii) that z ∈ Sj .

We have thus shown that z ∈ Sj in all cases, which completes the proof.

Remark 3.4 In the setting of Theorem 3.3, we observe that (3.7) and Theorem 2.8 imply that

(∀n ∈ N) Tn ∈ T and FixTn = Si(n) ∩ FixRn = Si(n) ∩
⋂

i∈I+
n

Si. (3.28)

Therefore, Ç and the results of [23, Section 4] imply directly that (xn)n∈N is Fejér monotone with
respect to S, and that items (iv) and (v) hold in Theorem 3.3. However, under our general working
hypotheses, it does not seem possible to derive the crucial item (vi) of Theorem 3.3 from the
framework of [23].

3.3 Implementation and special cases

Algorithm 3.1 has been presented above in a form that suits the theoretical convergence analysis of
section 3.2 well. From a practical viewpoint, however, the operation of the algorithm at step n can
be more conveniently broken up as follows. One first selects the index i(n) of an affine subspace onto
which the projection Pi(n)xn is computed. Then one selects a finite block of indices In and, for every
index i ∈ In, one chooses an operator Ti,n ∈ T such that FixTi,n = Si. The choice of these operators
is tailored to a form in which the set Si can most conveniently be expressed as a fixed point set;
some examples are given in Proposition 2.2. Next, one evaluates the vectors (Ti,nPi(n)xn)i∈In . This
step can be distributed over parallel processors and, through a judicious choice of In, it may be
possible to match the computational load with the distributed computer resources at hand. The
next step is a coordination phase in which the convex combination

∑
i∈I+

n
ωi,nTi,nPi(n)xn is formed.
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Using the fact that Pi(n) is affine, we see that the update can then be computed as

xn+1 = xn + ρn

(
Tnxn − xn

)
= xn + ρn

(
Pi(n)xn + χn

(
Pi(n)RnPi(n)xn − Pi(n)xn

)
− xn

)

= xn + ρn

Pi(n)xn + χnLn

Pi(n)

∑
i∈I+

n

ωi,nTi,nPi(n)xn

− Pi(n)xn

− xn

 , (3.29)

where ρn ∈ ]0, 2[, χn = κn(xn), and Ln = L
(
Pi(n)xn, (Ti,n)i∈I+

n
, (ωi,n)i∈I+

n

)
. In (3.29), the range of

the parameter χn is
]
0,K(xn, Si(n), Rn)

]
. Furthermore, Corollary 2.12(ii) and Â imply FixRn =⋂

i∈I+
n

FixTi,n =
⋂

i∈I+
n

Si. Thus, using (2.11) and the fact that Pi(n) is an affine operator, we obtain

0 < χn ≤


‖
∑

i∈I+
n

ωi,nTi,nPi(n)xn − Pi(n)xn‖2

‖Pi(n)

(∑
i∈I+

n
ωi,nTi,nPi(n)xn

)
− Pi(n)xn‖2

, if Pi(n)xn /∈
⋂

i∈I+
n

Si;

1, otherwise.
(3.30)

Likewise, we derive from (2.23) that

Ln =


∑

i∈I+
n

ωi,n‖Ti,nPi(n)xn − Pi(n)xn‖2

‖
∑

i∈I+
n

ωi,nTi,nPi(n)xn − Pi(n)xn‖2
, if Pi(n)xn /∈

⋂
i∈I+

n
Si;

1, otherwise.
(3.31)

Altogether, the parameter χnLn satisfies

0 < χnLn ≤


∑

i∈I+
n

ωi,n‖Ti,nPi(n)xn − Pi(n)xn‖2

‖Pi(n)

(∑
i∈I+

n
ωi,nTi,nPi(n)xn

)
− Pi(n)xn‖2

, if Pi(n)xn /∈
⋂

i∈I+
n

Si;

1, otherwise.
(3.32)

We thus arrive at the following practical implementation of Algorithm 3.1.

Algorithm 3.5 Fix δ ∈ ]0, 1[ and x0 ∈ H. At iteration n ∈ N, xn designates the current iterate
and the update xn+1 is constructed by executing the following steps.

À i(n) ∈ I ′ and zn = Pi(n)xn.

Á Ø 6= In ⊂ I, where In is finite.

Â (∀i ∈ In) ti,n = Ti,nzn, where Ti,n ∈ T, FixTi,n = Si, and, if i ∈ I ′, then ti,n = Pizn.

Ã (∀i ∈ In) ωi,n ∈ [0, 1],
∑

i∈In
ωi,n = 1, and

(∃ j ∈ In)

‖tj,n − zn‖ = max
i∈In

‖ti,n − zn‖

ωj,n ≥ δ.
(3.33)
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Ä I+
n =

{
i ∈ In | ωi,n > 0

}
.

Å dn =
∑

i∈I+
n

ωi,nti,n and pn = Pi(n)dn.

Æ 0 < ρn < 2 and 0 < µn ≤


∑

i∈I+
n

ωi,n‖ti,n − zn‖2

‖pn − zn‖2
, if zn /∈

⋂
i∈I+

n
Si;

1, otherwise.

Ç xn+1 = xn + ρn (zn + µn (pn − zn)− xn).

Remark 3.6

(i) Consider the special case when {Si}i∈I′ = {H}. Then, for every n ∈ N, Pi(n) = PH = Id,
zn = xn, and pn = dn. Consequently, the above iteration becomes

xn+1 = xn + ρn (zn + µn (pn − zn)− xn)
= xn + ρnµn (dn − xn)

= xn + λn

∑
i∈I+

n

ωi,nTi,nxn − xn

 , (3.34)

where

0 < λn <

2

∑
i∈I+

n
ωi,n‖Ti,nxn − xn‖2

‖
∑

i∈I+
n

ωi,nTi,nxn − xn‖2
, if xn /∈

⋂
i∈I+

n
Si;

2, otherwise.
(3.35)

This is precisely the parallel block-iterative algorithm discussed in [23] which, in turn, covers
the projection methods of [1, 2, 3, 9, 22, 26, 32, 33, 34, 40, 47, 49], the firmly nonexpansive
operator methods of [10, 19, 43, 53], the subgradient projection methods of [3, 15, 21, 31,
50, 54, 55], the proximal point algorithms of [4, 44, 52], and the equilibrium programming
algorithm of [25].

(ii) Another special case of interest, leading in particular to (1.6), arises when {Si}i∈I′ = {A}
and when, for every n ∈ N, the family {Si}i∈In reduces to a single set {B}. This setting will
be discussed in detail in Section 4.

(iii) Suppose that the solution set S in (3.1) is a closed vector subspace. Then it follows from
Theorem 3.3(i) and [5, Fact 2.2] that Theorem 3.3(vi) can be strengthened to “If Condition 3.2
is satisfied, then (xn)n∈N converges weakly to PSx0.” In particular, let A and B be closed
vector subspaces of H and consider the problem of finding the projection of a given point
x ∈ H onto A ∩ B. Specializing Gubin et al.’s extrapolation algorithm [40] to this setting
leads to the iteration

x0 = PAPBx and (∀n ∈ N) xn+1 = xn + µn(PAPBxn − xn), (3.36)
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where

µn =


〈
xn | xn − PAPBxn

〉
‖PAPBxn − xn‖2

, if xn 6∈ A ∩B;

1, otherwise.
(3.37)

Since (xn)n∈N lies in A, it follows from the fact that PA is self-adjoint and Proposition 2.6(iv)
that

(∀n ∈ N)
〈
xn | xn − PAPBxn

〉
=
〈
xn | PAxn − PAPBxn

〉
=
〈
xn | xn − PBxn

〉
= ‖PBxn − xn‖2. (3.38)

Consequently, for every n ∈ N, µn = K(xn, A, PB). It should be noted that, in this specific
linear setting, the recent results on the iteration (3.36)–(3.37) provided in [6] (see also [5])
guarantee strong convergence.

3.4 On Condition 3.2

The purpose of this section is to give explicit examples of scenarios in which Condition 3.2 holds.

Condition 3.2(i) is rather standard in this type of iterative methods (see [3, 12, 23] and the
references therein) and it simply imposes hard bounds on the sequences (ρn)n∈N and

(
κn(xn)

)
n∈N.

Condition 3.2(ii) requires a certain regularity on the order in which the indices in I are used,
namely, that every index i be used at least once over Mi consecutive iterations. In the most general
case, both I ′ and I ′′ = I r I ′ are countable sets, say I ′ = {1, 2, 3, · · · } and I ′′ = −I ′. For every
i ∈ I, set Mi = 2|i|. Then an example of control rules that satisfy (3.3) is obtained by setting

i(0) = 1, I0 = −{1, 2}, (3.39)

and
n ∈ N r {0},
m ∈ N r {0},

n = 2m−1 (modulo 2m)

 ⇒
{

i(n) = m,
In = −{2m− 1, 2m}, (3.40)

i.e., by (
i(n)

)
n∈N =

(
1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4,

1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5,

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4,

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6,

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, . . .
)

(3.41)
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and (
In

)
n∈N = −

(
{1, 2}, {1, 2}, {3, 4}, {1, 2}, {5, 6}, {1, 2}, {3, 4}, {1, 2}, {7, 8},

{1, 2}, {3, 4}, {1, 2}, {5, 6}, {1, 2}, {3, 4}, {1, 2}, {9, 10},
{1, 2}, {3, 4}, {1, 2}, {5, 6}, {1, 2}, {3, 4}, {1, 2}, {7, 8},
{1, 2}, {3, 4}, {1, 2}, {5, 6}, {1, 2}, {3, 4}, {1, 2}, {11, 12},
{1, 2}, {3, 4}, {1, 2}, {5, 6}, {1, 2}, {3, 4}, {1, 2}, {7, 8}, . . .

)
. (3.42)

In practice,
(
i(n)

)
n∈N and

(
In

)
n∈N can be precomputed in a fashion similar to the determination

of prime numbers by the sieve of Eratosthenes.

Let us now turn to Condition 3.2(iii) and the choice of the operators (Ti,n)i∈In at Step Â of
Algorithm 3.1. Let us fix an index i ∈ I and let (pn)n∈N be the sequence of all nonnegative integers
such that Si is activated at Step Â, i.e., such that i ∈

⋂
n∈N Ipn . If i ∈ I ′, then Step Â imposes

Ti,pn ≡ Pi. We therefore consider the case when i /∈ I ′. We must construct a sequence (Ti,pn)n∈N
in T such that FixTi,pn ≡ Si and (3.4) holds. These requirements will be met if the conditions

(∀n ∈ N) Ti,pn ∈ T and FixTi,pn = Si (3.43)

and
(yn)n∈N in H,

yn ⇀ y,
Ti,pnyn − yn → 0

 ⇒ y ∈ Si (3.44)

are satisfied. As we now illustrate, (3.43) and (3.44) hold in important concrete situations.

Proposition 3.7 Suppose that Si 6= Ø. Then (3.43) and (3.44) are satisfied in each of the following
cases.

(i) For every n ∈ N, Ti,pn = Pi is the projector onto Si.

(ii) Si = A−1
i (0), where Ai : H → 2H is a maximal monotone operator and, for every n ∈ N, Ti,pn

is the resolvent of γi,pnAi, where (γi,pn)n∈N is a sequence in ]0,+∞[ such that infn∈N γi,pn > 0.

(iii) Si =
{
x ∈ H | (∀y ∈ K) Fi(x, y) ≥ 0

}
, where K is a nonempty closed convex subset of H

and Fi : K ×K → R satisfies

(a) (∀x ∈ K) Fi(x, x) = 0,

(b) (∀x ∈ K)(∀y ∈ K) Fi(x, y) + Fi(y, x) ≤ 0,

(c) For every x ∈ K, Fi(x, ·) : K → R is lower semicontinuous and convex,

(d) (∀x ∈ K)(∀y ∈ K)(∀z ∈ K) lim
ε→0+

Fi

(
(1− ε)x + εz, y

)
≤ Fi(x, y),

and, for every n ∈ N, Ti,pn is the resolvent of γi,pnFi, where (γi,pn)n∈N is a sequence in
]0,+∞[ such that infn∈N γi,pn > 0.
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(iv) Si = Fix Ri, where Ri : dom Ri = H → H is a firmly nonexpansive operator and, for every
n ∈ N, Ti,pn = Ri.

(v) Si = {x ∈ H | fi(x) ≤ 0}, where fi : H → R is a continuous convex function which is bounded
on bounded sets and, for every n ∈ N, Ti,pn is a subgradient projector onto Si (see (2.4)).

Proof. (i): See Proposition 2.2(i) and [3, Example 3.8]. (ii): See Proposition 2.2(ii) and [23,
Section 6.3]. (iii): See Proposition 2.2(iii) and [25, Section 3]. (iv): See Proposition 2.2(iv) and [3,
Example 3.8]. (v): See Proposition 2.2(v) and [3, Theorem 7.7].

In practice, item (i) corresponds to the case when it is relatively easy to compute the best approx-
imation to x from Si (see [3, 20, 30] for examples); item (ii) corresponds to the monotone inclusion
problem 0 ∈ Aix, which arises in many applied mathematics problems [24, 52, 56]; item (iii) cor-
responds to equilibrium problems [8, 25, 39, 46]; item (iv) corresponds to (firmly) nonexpansive
fixed point problems [36, 37] (recall that T is firmly nonexpansive if and only if T ′ = 2T − Id
is nonexpansive [37, Theorem 12.1], while FixT = FixT ′); finally, item (v) corresponds to the
inequality fi(x) ≤ 0, which arises in convex inequality systems [21, 55] (note that, if dimH < +∞,
then bounded sets are relatively compact and thus the boundedness condition on the function is
always satisfied).

4 Affine-convex pair

In this section, we specialize problem (1.1) to the case when {Si}i∈I = {A,B}, where A is a closed
affine subspace of H and where B is a closed convex subset B of H. The problem is thus to

find x ∈ A ∩B (4.1)

and, as in (3.1), we assume that
A ∩B 6= Ø. (4.2)

This setting allows for significant refinements of our general results.

4.1 Algorithm and convergence

Algorithm 4.1 Fix a starting point x0 ∈ A and construct the sequence (xn)n∈N recursively by

(∀n ∈ N) xn+1 = xn + λn(PARnxn − xn), (4.3)

where
(∀n ∈ N) Rn ∈ T, FixRn = B, and λn ∈ ]0, 2K(xn, A, Rn)[ . (4.4)
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We observe that in this algorithm, since A is an affine subspace and x0 ∈ A, we have

(∀n ∈ N) xn ∈ A. (4.5)

Condition 4.2

(i) There exists ε ∈ ]0, 1[ such that, for every n ∈ N, ε ≤ λn ≤ (2− ε)K(xn, A, Rn).

(ii) For every orbit (xn)n∈N of Algorithm 4.1, every y ∈ H, and every strictly increasing sequence
(pn)n∈N in N, the implication

xpn ⇀ y,
Rpnxpn − xpn → 0

}
⇒ y ∈ B (4.6)

holds.

Let us now state a specialization of Theorem 3.3(vi) to the present setting.

Corollary 4.3 Suppose that Condition 4.2 is satisfied. Then every orbit of Algorithm 4.1 converges
weakly to a point in A ∩B.

Proof. We observe that Problem (4.1) is a special case of Problem (1.1) with I = {1, 2}, S1 = A,
and S2 = B. Next, let us verify that Algorithm 4.1 under Condition 4.2 is a special case of
Algorithm 3.1 under Condition 3.2. In Algorithm 3.1, set I ′ = {1}, In ≡ {2}, i(n) ≡ 1, ω2,n ≡ 1,
and (∀n ∈ N) T2,n = Rn. Thus, using (2.23), we see that Rn is the same as in Step Å. Next, set

(∀n ∈ N) Kn = K(xn, A, Rn), ρn =

{
ε, if λn/Kn < ε;
λn/Kn, otherwise,

(4.7)

and, furthermore,

(∀n ∈ N) κn : H → R : x 7→


λn/ε, if λn/Kn < ε and x = xn;
Kn, if λn/Kn ≥ ε and x = xn;
K(x,A,Rn), otherwise.

(4.8)

Fix n ∈ N. Then 0 < κn ≤ K( · , A, Rn) and, at Step Æ of Algorithm 3.1, we have

Tn : H → H : x 7→ PAx + κn(x)(PARnPAx− PAx). (4.9)

On the other hand, (4.4) and (4.7) imply that ρn ∈ ]0, 2[. Next, in view of (4.7), (4.8), (4.5), and
(4.9), we rewrite the update rule (4.3) in Algorithm 4.1 as

xn+1 = xn + λn(PARnxn − xn)
= xn + ρnκn(xn)(PARnxn − xn)
= xn + ρn

(
xn + κn(xn)(PARnxn − xn)− xn

)
= xn + ρn

(
PAxn + κn(xn)(PARnPAxn − PAxn)− xn

)
= xn + ρn

(
Tnxn − xn

)
, (4.10)
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which is precisely Step Ç in Algorithm 3.1. Hence Algorithm 4.1 is an instance of Algorithm 3.1. It
is readily verified that Condition 4.2(i) implies Condition 3.2(i). Moreover, Condition 3.2(ii) holds
with M1 = M2 = 1, and Condition 4.2(ii) and (4.5) imply Condition 3.2(iii). The conclusion is
therefore a consequence of Theorem 3.3(vi).

Remark 4.4

(i) Condition 4.2(ii) is satisfied if Rn ≡ R and (R − Id)|A is demiclosed at 0, that is, for every
sequence (yn)n∈N in A and every y ∈ A, the conditions yn ⇀ y and Ryn − yn → 0 imply
y ∈ FixR. In particular, this is true when R is nonexpansive [10, Lemma 4].

(ii) Corollary 4.3 is related to [21, Theorem 1], where A is a closed vector subspace and Rn the
projector onto a closed convex superset Bn of B such that xn /∈ Bn. The special case when
Rn = PB and λn = K(xn, A, PB) is considered in [49, Section 1].

The next result provides information about the behavior of the sequence (PARnxn)n∈N in Algo-
rithm 4.1.

Proposition 4.5 Suppose that Condition 4.2 holds and that (xn)n∈N is an arbitrary orbit of Al-
gorithm 4.1 generated with infn∈N λn ≥ 1. Then

(∀y ∈ A ∩B)(∀n ∈ N) ‖PARn+1xn+1 − y‖2 ≤ ‖PARnxn − y‖2

− (λn − 1)
(
2K(xn, A, Rn)− 1− λn

)
‖PARnxn − xn‖2. (4.11)

Therefore, if infn∈N 2K(xn, A, Rn)− λn ≥ 1, then (PARnxn)n∈N is Fejér monotone with respect to
A ∩B, that is,

(∀y ∈ A ∩B)(∀n ∈ N) ‖PARn+1xn+1 − y‖ ≤ ‖PARnxn − y‖. (4.12)

Proof. Corollary 2.10 results in

(∀n ∈ N) PARnPA ∈ T and Fix PARnPA = A ∩ FixRn = A ∩B. (4.13)

Now let n ∈ N and y ∈ A ∩B. Then y ∈ FixRn, and it follows from Proposition 2.7 that〈
PARnxn − xn | xn − y

〉
≤ −‖Rnxn − xn‖2. (4.14)

Using (4.5), (4.13), and Proposition 2.4(iii), we obtain

‖PARn+1xn+1 − y‖2 = ‖PARn+1PAxn+1 − y‖2 ≤ ‖xn+1 − y‖2. (4.15)
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On the other hand,

‖xn+1 − y‖2 = ‖(1− λn)(xn − y) + λn(PARnxn − y)‖2

= (1− λn)‖xn − y‖2 + λn‖PARnxn − y‖2 − λn(1− λn)‖PARnxn − xn‖2

= ‖PARnxn − y‖2 − (λn − 1)
(
‖xn − y‖2 − ‖PARnxn − y‖2 − λn‖PARnxn − xn‖2

)
= (λn − 1)

(
‖PARnxn − xn‖2 + 2

〈
PARnxn − xn | xn − y

〉
+ λn‖PARnxn − xn‖2

)
+ ‖PARnxn − y‖2

= (λn − 1)
(
(λn + 1)‖PARnxn − xn‖2 + 2

〈
PARnxn − xn | xn − y

〉)
+ ‖PARnxn − y‖2

≤ (λn − 1)
(
(λn + 1)‖PARnxn − xn‖2 − 2‖Rnxn − xn‖2

)
(4.16)

+ ‖PARnxn − y‖2

= (λn − 1)
(
λn + 1− 2K(xn, A, Rn)

)
‖PARnxn − xn‖2 + ‖PARnxn − y‖2, (4.17)

where (4.16) follows from (4.14), and where (4.17) is a consequence of (4.5) and Theorem 2.8(ii).
Combining this with (4.15), we therefore obtain (4.11) and, in turn, (4.12).

4.2 Computation of the extrapolation parameter

This section illustrates the fact that, under certain circumstances, the function K( · , A, Rn) takes
on only two values, which simplifies the implementation of Algorithm 4.1. Let us introduce the
closed vector subspace

U = A−A, (4.18)

and let us assume that the operators (Rn)n∈N in Algorithm 4.1 satisfy

(∀n ∈ N)(∀a ∈ A) Rna = a + αn(a)v, where v ∈ H and αn : A → R. (4.19)

We also recall from (4.4) that

(∀n ∈ N) Rn ∈ T and Fix Rn = B. (4.20)

The following result shows that, if PUv = 0, then solving (4.1) amounts simply to selecting a point
in A.

Proposition 4.6 If PUv = 0, then A ⊂ B.

Proof. Let x ∈ H, n ∈ N, and a ∈ A. Proposition 2.6 and (4.19) yield

PARnPAx− PAx = PU (RnPAx) + PU⊥a−
(
PUx + PU⊥a

)
= PU (RnPAx− PAx)− PU (x− PAx)
= PU

(
αn(PAx)v

)
= αn(PAx)PUv (4.21)
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and thus
‖PARnPAx− PAx‖2 =

(
αn(PAx)

)2‖PUv‖2. (4.22)

Therefore, the equality PUv = 0 implies that PARnPAx = PAx. It then follows from Proposition 2.5
that PAx ∈ Fix(PARn) = A ∩ FixRn = A ∩B and, in turn, that A ⊂ B.

Proposition 4.7 (∀n ∈ N)(∀x ∈ H) K(x,A,Rn) =


‖v‖2

‖PUv‖2
, if PAx /∈ B;

1, otherwise.

Proof. Let x ∈ H and n ∈ N. Then (4.19) implies that RnPAx− PAx = αn(PAx)v and hence

‖RnPAx− PAx‖2 =
(
αn(PAx)

)2‖v‖2. (4.23)

Now suppose that PAx /∈ B = Fix Rn. In view of (2.11), (4.22), and (4.23), we obtain

K(x,A,Rn) =
‖RnPAx− PAx‖2

‖PARnPAx− PAx‖2
=

‖v‖2

‖PUv‖2
. (4.24)

On the other hand, if PAx ∈ B = Fix Rn, then (2.11) yields K(x,A,Rn) = 1.

Note that an operator Rn assumes the form described in (4.19) if it is the projector onto a closed
affine hyperplane, a closed halfspace, or a closed hyperslab (i.e., the intersection of two closed
halfspaces with linearly dependent normal vectors). It is then possible to construct explicitly a
point in A ∩B, as we now illustrate in the case of a hyperplane.

Proposition 4.8 Let B be a hyperplane with normal vector v and suppose that E is the fully
extrapolated operator in (2.12) (with T = PB), that is,

E : H → A : x 7→ PAx + K(x,A, PB)
(
PAPBPAx− PAx

)
. (4.25)

Then, for every x ∈ H, the point Ex lies in A ∩B and hence solves (4.1).

Proof. There exists β ∈ R such that B =
{
x ∈ H |

〈
x | v

〉
= β

}
and therefore [30, Theorem 6.17]

implies that

(∀x ∈ H) PBx = x +
β −

〈
x | v

〉
‖v‖2

v. (4.26)

Now let x ∈ H. Since range E ⊂ A, it is enough to show that Ex ∈ B. It follows from Proposi-
tion 4.7 that

Ex =

PAx +
‖v‖2

‖PUv‖2

(
PAPBPAx− PAx

)
, if PAx /∈ B;

PAPBPAx, otherwise.
(4.27)

Therefore, if PAx ∈ B, then Ex = PAx ∈ A ∩ B. Now assume that PAx 6∈ B. Then, since
‖PUv‖2 =

〈
PUv | v

〉
, we have

〈
Ex | v

〉
=
〈
PAx | v

〉
+

‖v‖2〈
PUv | v

〉〈PAPBPAx− PAx | v
〉
. (4.28)
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On the other hand, (4.21) and (4.26) yield

PAPBPAx− PAx =
β −

〈
PAx | v

〉
‖v‖2

PUv, (4.29)

and thus 〈
PAPBPAx− PAx | v

〉
=
(
β −

〈
PAx | v

〉)〈
PUv | v

〉/
‖v‖2. (4.30)

Combining (4.28) and (4.30), we obtain
〈
Ex | v

〉
= β and therefore Ex ∈ B.

Example 4.9 Let H = A = R2, v = (0, 1), Rn ≡ PB, where B =
{
x ∈ H |

〈
x | v

〉
= 0
}

= R×{0}.
Then A ∩B = B and

(∀x ∈ H) K(x,A, PB) = 1. (4.31)

Suppose also that δ : H → R and set

Eδ : H → A : x 7→ PAx +
(
K(x,A, PB) + δ(x)

)(
PAPBPAx− PAx

)
= PBx− δ(x)PB⊥x, (4.32)

so that E0 = PB corresponds to the fully extrapolated operator E of Proposition 4.8. Then:

(i) If there exists a point x ∈ H r B such that δ(x) 6= 0, then Eδx /∈ B. Consequently, if
range Eδ ⊂ B = A ∩B, then Eδ = E0.

(ii) If there exists a point x ∈ Hr B such that δ(x) > 0, then Eδ 6∈ T.

Proof. Note that (4.31) follows from Proposition 4.7 since U = A − A = H. We readily obtain
(4.32) which, in turn, implies (i). (ii): Suppose that x ∈ H r B satisfies δ(x) > 0. Then (4.32)
yields x−Eδx = (1+δ(x))PB⊥x and hence ‖x−Eδx‖ = (1+δ(x))‖PB⊥x‖ > ‖PB⊥x‖ = ‖x−PBx‖.
Thus

‖x− PBx‖ < ‖x− Eδx‖. (4.33)

Using (4.32), we also observe that PBx ∈ B ⊂ FixEδ. Let us now argue by contradiction by
assuming that Eδ ∈ T. Then Proposition 2.3 and the Cauchy-Schwarz inequality yield

‖Eδx− x‖2 ≤
〈
PBx− x | Eδx− x

〉
≤ ‖PBx− x‖‖Eδx− x‖. (4.34)

Hence ‖Eδx− x‖ ≤ ‖PBx− x‖, which contradicts (4.33). Therefore Eδ /∈ T.

Remark 4.10 Example 4.9 provides limiting cases in the following two senses.

(i) Example 4.9(i) illustrates that, with respect to the parameter range, only the fully extrapo-
lated operator of Proposition 4.8 provides a point in A ∩B.

(ii) Example 4.9(ii) shows that in (2.12) it is in general impossible to extend the range of κ(x)
beyond K(x,A, PB) without destroying the T-class property.
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4.3 Extrapolated alternating projection method: numerical experiments

We shall henceforth focus on the following projection setting.

Corollary 4.11 (extrapolated alternating projection method (EAPM)) Let (xn)n∈N be
generated by the recursion x0 ∈ A and

(∀n ∈ N) xn+1 = xn + ρK(xn, A, PB)
(
PAPBxn − xn

)
, where ρ ∈ ]0, 2[ . (4.35)

Then (xn)n∈N converges weakly to a point in A ∩B.

Proof. This is a special case of Corollary 4.3 with Rn ≡ PB. Indeed, (4.35) is a specialization of
Algorithm 4.1 for which Condition 4.2(i) is trivially satisfied. On the other hand, Condition 4.2(ii)
follows from Proposition 3.7(i).

We shall compare EAPM to the following three methods.

• Projections Onto Convex Sets (POCS) method: Setting Rn ≡ PB and λn ≡ 1 in
Corollary 4.3, we obtain the weak convergence to a point in A ∩ B of the POCS iterations
[9, 18], with starting point x0 ∈ A and

(∀n ∈ N) xn+1 = PAPBxn. (4.36)

• Reflection-projection method (RPM): This method, which generates a sequence via
x0 ∈ A and

(∀n ∈ N) xn+1 = PA(2PBxn − xn), (4.37)

was shown in [7] to converge weakly to a point in A ∩ B provided that B is a closed
convex cone that is obtuse, i.e., B contains its dual cone ([7] treats also the case when
A ∩ B = Ø). Since PA is an affine operator in our present setting, the update rule can be
rewritten as xn+1 = xn + 2(PAPBxn − xn), which formally corresponds to the case when
ρK(xn, A, PB) ≡ 2 in (4.35). This case is not necessarily covered by the results in the present
paper. Indeed, if

(
K(xn, A, PB)

)
n∈N is not bounded away from 1, then we cannot have

2 ≤ infn∈N ρK(xn, A, PB) for any ρ ∈ ]0, 2[.

• Extrapolated parallel projection method (EPPM): Pierra’s extrapolated parallel pro-
jection method [49], specialized to the present setup, is x0 ∈ H and

(∀n ∈ N) xn+1 = xn +
‖PAxn − xn‖2 + ‖PBxn − xn‖2

‖PAxn + PBxn − 2xn‖2
(PAxn + PBxn − 2xn), (4.38)

which corresponds to Algorithm 3.1 with I = {1, 2, 3}, S1 = A, S2 = B, S3 = H, I ′ = {3},
In ≡ {1, 2}, T1,n ≡ PA, T2,n ≡ PB, ω1,n ≡ ω2,n ≡ 1/2, κn(·) ≡ 1, and ρn ≡ 1.
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We shall consider the experimental framework of [7, Section 5], where RPM compared favorably
with POCS. In

H = R450, (4.39)

we generate random instances of A, where

A is a closed affine subspace of H such that dim(A−A) = 300. (4.40)

We assume further that
B = [0,+∞[450 , (4.41)

and that A∩B 6= Ø. As in [21], the performance of the algorithms is measured by the decibel (dB)
values of the relative proximity function evaluated at the nth iterate xn, i.e., by

10 log10

(
‖PAxn − xn‖2 + ‖PBxn − xn‖2

‖PAx0 − x0‖2 + ‖PBx0 − x0‖2

)
. (4.42)

In the first experiment, we create 5 random instances of A such that A ∩ B 6= Ø. From a
randomly chosen starting point x0 ∈ A, we generated orbits (xn)n∈N of the four algorithms EAPM
(with ρ = 1 in (4.35)), POCS, RPM, and EPPM. The proximity function values (4.42), averaged
over all instances, are plotted in Figure 1. The experiment shows that EAPM outperforms the other
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Figure 1: Values of the relative proximity function.

methods. The better performance of EAPM may be attributed to the large step-sizes allowed by
the algorithm; Figure 2 shows that K(xn, A, PB) can indeed be substantially larger than 2. We
now explore the effect of the relaxed step-size, via the relaxation parameter ρ in (4.35), on the
performance of EAPM. Figures 3 and 4 depict the behavior of the relative proximity measure as a
function of ρ in the case of under- and over-relaxation, respectively.
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Figure 2: Values of the extrapolation parameter K(xn, A, PB) in the experiment of Figure 1.
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Figure 3: Values of the relative proximity function with relaxation parameter ρ ≤ 1.
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Figure 4: Values of the relative proximity function with relaxation parameter ρ ≥ 1.

It is well known that periodic “centering” of the iterates can significantly improve the convergence
properties of EPPM and related methods [21, 48, 49]. This technique amounts to periodically
halving the relaxation parameter. In the present setting, we replace the relaxation parameter
λn = ρK(xn, A, Rn) in (4.35) by (convergence is still guaranteed by Corollary 4.3)

λn =

{
ρK(xn, A, Rn)/2, if n = 2 (modulo 3);
ρK(xn, A, Rn), otherwise.

(4.43)

We repeat the experiment with this strategy and report the numerical results in Figures 5–8, which
correspond to Figures 1–4, respectively. Let us conclude by noting that EAPM also benefits from
centering to the extent that it still outperforms the other methods.
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Figure 5: Values of the relative proximity function when EPPM and EAPM are centered.
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Figure 7: Values of the relative proximity function with relaxation parameter ρ ≤ 1, when EAPM
and EPPM are centered.
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[1] A. Auslender, Méthodes Numériques pour la Résolution des Problèmes d’Optimisation avec Con-
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[39] A. Göpfert, H. Riahi, C. Tammer, and C. Zălinescu, Variational Methods in Partially Ordered
Spaces, Springer-Verlag, New York, 2003.

[40] L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding the common
point of convex sets, USSR Comput. Math. Math. Phys., 7 (1967), pp. 1–24.
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