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Background
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx.
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx.

m Considerable range of applications: optimization,

B Subdifferential: M = af (Fermat’s rule)

B Kuhn-Tucker operator: M = Gir ]
(Rockafellar 1967)

B efc. (Eckstein 1994, PLC 2018, Bui/PLC 2020).

L 8g*

Patrick L. Combettes — 2020-05-25 Back fo Single-Resolvent Iterations 4/28



b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx.

m Considerable range of applications: optimization, variational in-
equalities, statistics, mechanics, neural networks, finance, partial
differential equations, optimal fransportation, signal and image
processing, control, game theory, machine learning, economics,
mean fields games, etc.
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx.

m The proximal point algorithm (Bellman 1966, Martinet 1970, Rock-
afellar 1976):

Xni1 = Juxn, where Jy = (Id + M)~ is the resolvent of M.
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xni1 = Juxn, where Jy = (Id + M)~ is the resolvent of M.

m Acknowledging the fact that Jy, may be hard to implement, split-
ting methods have been developed: the goal is to express M as
a combination of operators, and devise an algorithm that uses
these operators individually.
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mkx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xnt1 = JuXn, Where Jy = (Id + M)*1 is the resolvent of M.

m Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

m The following structures have been considered:
M=A+8B
(Mercier 1979, Lions/Mercier 1979, Tseng 2000)
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mkx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xni1 = Juxn, where Jy = (Id + M)~ is the resolvent of M.
m Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.
m The following structures have been considered:
Ie]
M=>"A
k=1

(Spingarn 1983, Gol’stein 1985, Eckstein/Svaiter 2009, PLC 2009)
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xnt1 = JuXn, Where Jy = (Id + M)*1 is the resolvent of M.

m Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

m The following structures have been considered:

Je)
M:ZL;oBkoLk
k=1

(Briceno-Arias/PLC 2011)
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xni1 = Juxn, where Jy = (Id + M)~ is the resolvent of M.
m Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.
m The following structures have been considered:

P
M=A+> Lio(BOD)olL+C

k=1

(PLC/Pesquet 2012, VU 2013, Condat 2013, Bot/Hendrich 2013)
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xni1 = Juxn, where Jy = (Id + M)~ is the resolvent of M.

m Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

m The following structures have been considered:

P
M:A+ZB,<+C

k=1

(Raguet/Fadili/Peyré 2013, Briceno-Arias 2015, Davis/Yin 2017,
Raguet 2019)
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xni1 = Juxn, where Jy = (Id + M)~ is the resolvent of M.
m Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.
m The following structures have been considered:

m

M: (X], . 7Xm) — >< (A,'X,' + Cix; + Qxi+

i=1
p m
ZL;,(((BT+BE+ Bl) O (DF + DF + D)) (ZLMX/)))
k=1 J=1

(BUi/PLC 2020)
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b

Monotone operator splitting in Hilbert spaces

m Basic problem: Given a maximally monotone operator M: X —
2%, find x € X such that 0 € Mx. The proximal point algorithm
(Bellman 1966, Martinet 1970, Rockafellar 1976):

Xni1 = Juxn, where Jy = (Id + M)~ is the resolvent of M.

m Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

m ... which models in particular

m

o
minimize Z(f(x, + ©i(x) —s—Z (g + ¥) O hy) <ZLk,x,>
k=1

X]EXT,....XmE Xm =

(BUi/PLC 2020)

Patrick L. Combettes — 2020-05-25 Back fo Single-Resolvent Iterations 4/28



b

Monotone operator splitting

m The field has evolved in many exciting directions and various al-
gorithms are now available for complex structured problems, to-
gether with block-coordinate, block-iterative, and asynchronous
implementations.

m A common feature of these developments is to move away from
single-resolvent iterations such as the proximal point algorithm.

m We infroduce an extended notion of a resolvent, called warped
resolvent, and show that considering the warped resolvent itero-
tions of a single operator provides a surprisingly broad platform to
not only recover existing schemes in a synthetic framework, but
also design new ones.
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b

Set-valued operators

m X and U nonempty sets, 2 the power set of U.
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b

Set-valued operators

m X and U nonempty sets, 2“ the power set of U/.
B M: X 2% x— Mx C U aset-valued operator.

X
graph of M: graM = {(x,u) € X xU | u € Mx}.
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b

Set-valued operators

m X and U nonempty sets, 2“ the power set of U/.
B M: X 2% x— Mx C U aset-valued operator.

domain of M: domM = {x € X | Mx # @}.
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b

Set-valued operators

m X and U nonempty sets, 2“ the power set of U/.
mM: X —2Y: x— Mx C U aset-valued operator.

| 7

range of M: ran M = U, cgomm MX.
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b

Set-valued operators

m X and U nonempty sets, 2“ the power set of U/.

B M: X 2% x— Mx C U aset-valued operator.

| ]
B

L
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b

Set-valued operators

m X and U nonempty sets, 2 the power set of U.
B M: X — 24 aset-valued operator.

X
Misinjective if : (vx € X)(Vy € X) MxNMy #0 = x=y.
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b

Set-valued operators

m X and U/ nonempty sets, 24 the power set of I/.
B M: X — 24 aset-valued operator.

/[ y

X u

Misinjective if : (Vx € X)(Vy € X) MxNMy #0 = x=y.
This implies that /" is at most single-valued.

Patrick L. Combettes — 2020-05-25 Back fo Single-Resolvent Iterations 7/28



b
Problem model: Solving set-valued inclusions

m X aset, (4, B) a group with identity e, M: x — 24,
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b

Problem model: Solving set-valued inclusions

m X aset, (4, B) a group with identity e, M: x — 24,
m Objective: Find apointinZ={x € X | e € Mx}.

[ R

L
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b

Problem model: Solving set-valued inclusions

m X aset, (4, B) a group with identity e, M: x — 24,
m Objective: Find apointinZ={x € X | e € Mx}.
m Take K: X—U such that KEBM: x — {KxB u | ue Mx} isinjective.

[ R

S
X ¢————————
~
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b

Problem model: Solving set-valued inclusions

m X aset, (4, B) a group with identity e, M: x — 24,
m Objective: Find apointinZ={x € X | e € Mx}.
m Take K: X—U such that KEBM: x — {KxB u | ue Mx} isinjective.

m Clearly, _
xXeZ&s ee Mx U
< Kx € Kx 8 Mx
& x = (KB M) (Kx).
e_ ,,,,,,,,,,,,,,,,,,,,

[ R

S
X ¢————————
~

Patrick L. Combettes — 2020-05-25

Back fo Single-Resolvent Iterations 8/28



b

Problem model: Solving set-valued inclusions

m X aset, (4, B) a group with identity e, M: x — 24,
m Objective: Find apointinZ={x € X | e € Mx}.
m Take K: X—U such that KEBM: x — {KxB u | ue Mx} isinjective.

m Clearly,
xeZs ee Mx X 7
< Kx € Kx # Mx ///
& x = (KB M) (Kx). ; ot
I 1 // & ]

m Thus Z = Fix J,. where
J=((KBM) oK
is the warped resolvent of M with .
kernel K. ,
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b

Problem model: Solving set-valued inclusions

m X aset, (4, B) a group with identity e, M: x — 24,
m Objective: Find apointinZ={x € X | e € Mx}.
m Take K: X—U such that KEBM: x — {KxB u | ue Mx} isinjective.

m Clearly,
xeZs ee Mx X 7
< Kx € Kx # Mx ///
& x = (KB M) (Kx). ; ot
I 1 // & ]

m Thus Z = Fix J,. where
J=((KBM) oK

is the warped resolvent of M with .
kernel K. ,

B p=J\x e (b, KxBKp) € graM.
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The warped resolvent

PART 2:

The warped resolvent
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wr

The warped resolvent: Definition

m X is areflexive real Banach space with topological dual x*.
m An operator M: X — 2% is monotone if

(V(x1,x7) e graM) (V(x2,x3) € graM) (x; — X, X{ —x3) >0,

and maximally monotone if, furthermore, no point can be added
to gra M without compromising monotonicity.

Definition
let@ # D c X, letK: D — x*, and let M: X — 2% be such that
ranK c ran (K + M) and K + M is injective. The warped resolvent of M
with kernel K is J = (K + M)~ o K.
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wr

The warped resolvent: Properties

m Sufficient conditions for ran K c ran (K + M) and K + M is injective
are given in (Bui/PLC, 2019).

JK D s D,
Fix JJ& = DnzerM.
p = Jix < (p, Kx — Kp) € gra M.

Suppose that M is monotone. Let x € D, and set y = Jix and
y* = Kx — Ky. Then

zertMc{zeXx | (z-vy,y") <0}
m Suppose that M is monotone. Set p = J&x and g = J&y. Then

(p—q,Kx —Ky) = (p — q,Kp — KQ).
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wr

The warped resolvent: Examples

M: x — 2% is maximally monotone.
m If X is Hibertian and K = Id, JX, is the classical resolvent.
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wr

The warped resolvent: Examples

M: x — 2% is maximally monotone.
m If X is Hibertian and K = Id, JX, is the classical resolvent.

m If X is strictly convex with normalized duality mapping K, then J,‘@ is
the extended resolvent of (Kassay, 1985).
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wr

The warped resolvent: Examples

M: x — 2% is maximally monotone.
m If X is Hibertian and K = Id, JX, is the classical resolvent.

m If X is strictly convex with normalized duality mapping K, then J,‘@ is
the extended resolvent of (Kassay, 1985).

m Leff: X —» ]—o0, +o0] be alegendre function such that dom M C
intdomf, and set K = Vf. Then J§ is the D-resolvent of
(Bauschke/Borwein/PLC, 2003).
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wr

The warped resolvent: Examples

M: x — 2% is maximally monotone.
m If X is Hibertian and K = Id, JX, is the classical resolvent.

m If X is strictly convex with normalized duality mapping K, then J,‘@ is
the extended resolvent of (Kassay, 1985).

m Leff: X —» ]—o0, +o0] be alegendre function such that dom M C
intdomf, and set K = Vf. Then J§ is the D-resolvent of
(Bauschke/Borwein/PLC, 2003).

A X > 2% and B: ¥ — 2% are maximally monotone, and
f: X - ]—o0,+o0] is a suitable convex function. Set

M=A+B and K:intdomf — X*: x> VFf(x) — Bx.

Then Jiy = (VF+ A)~' o (Vf — B) is the Bregman forward-backward
operator to be investigated in Part 4.
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wr

The warped resolvent: Examples

m Let K: X — X* be strictly monotone, 3* monotone, and surjective.
Then J§, is the K-resolvent of (Bouschke/Wang/Yao, 2010).
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wr

The warped resolvent: Examples

m Let K: X — X* be strictly monotone, 3* monotone, and surjective.
Then J§, is the K-resolvent of (Bouschke/Wang/Yao, 2010).

m Let @ # C C X be closed and convex, with normal cone operator
Ne. The warped projection operator is projs. = J,’f,c = (K+Ng) ToK.

Left: Warped projections onfo B(0; 1). Setfs of
points projecting onto py, p., and ps for Ky = Id
P and
o p KQZ(&,&)H(&] +£—]*§27§1+52>

Nofte that K, is not a gradient.
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Warped proximal iterations in Hilbert space

PART 3:

Warped proximal iterations in
Hilbert spaces
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Finding zeros of monotone operators: Geometry

m M maoximally monotone with Z = zerM # @.

Hh={xeX | (x—ya|y;) <0}
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Finding zeros of monotone operators: Geometry

m M maoximally monotone with Z = zerM # @.

m lferate
(Yn,y5) € graM
An € [,2 — €]
if (Yn—Xn | yn) <0

| Xne1 = X0+ AnlYn — Xn | Vadva/llyall?
else
L Xn+] = Xn.

Hh={xeX | (x—ya|y;) <0}
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Finding zeros of monotone operators: Geometry

m M maoximally monotone with Z = zerM # @.

m lferate
(Yn,yn) € graM
An € [,2 — €]
if (Yn—Xn | ¥3) <O
| Xnt1 = X0+ Anlyn = Xa | Vadya/lIVa
else
L Xp+1 = Xn.

2
I

m Weak convergence to a pointin Z if
weak cluster points are in Z.

m The weak-to-strong convergence
principle  (Bauschke/PLC, 2001)
gives strong convergence of a 2
half-spaces variant.

m How fo choose (yn, y5) € gra M?

Hh={xeX | (x—ya|y;) <0}
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Finding zeros of monotone operators: Geometry

m M maximally monotone with Z = zerM # @.

m lterate
Yn= Js;/]\ﬂ}n _
Yn =70 (KnXn — Knyn)
An € [,2 — €]

if (yn—xn|yn) <0

| Xni1 = Xn+ AnlYn = Xn | Va)VA/ VAP
else

| Xni1 = Xn.

m Key: Move beyond Minty’s
parametrization of graM and
use a warped resolvent to pick
(vn, ¥3) € graM.

m Simply evaluate a warped resolvent
at some point Xx.

Ho={x€X | (Xx—yn|y:) <0}
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Convergence

Notation: (y*)* = y*/|ly*| if y* # 0: = 0 otherwise.

Theorem

Let (vn)nen be a sequence in [e, +oo[. Forevery n € N, letx, € X and let

Kn: X — X be a monofone operator such that ranK, c ran (Kn + vnM)
and K, + ynM is injective. Suppose that:

B X, — Xp» — 0.

~ - Xn—yn — O
m (Xp— KnXn — Knyn)* 0 "
<n Yo | (Koo n¥n) >_> = {Knxn—Knyn—>0.

Then (xn)nen converges weakly to a point in Z.
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Convergence

Notation: (y*)* = y*/|ly*| if y* # 0: = 0 otherwise.

Theorem

Let (vn)nen be a sequence in [e, +oo[. Forevery n € N, letx, € X and let

Kn: X — X be a monofone operator such that ranK, c ran (Kn + vnM)
and K, + ynM is injective. Suppose that:

m X, — xp — 0.
~ - Xn—yn — O
m (X)— KnXn — Knyn)* 0 ~
< n— Yn | ( nXn nyn) > = = {Kan Koy — 0.
Then (xn)nen converges weakly to a point in Z.

m We also have a strongly convergent version.
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Choosing the evaluation points (Xp)nex

The auxiliary sequence (Xn)nen COAN serve several purposes:

m X, can model an additive perturbation of xn, sy X» = X» + €n.
where we require only ||en|| — 0.
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Choosing the evaluation points (Xp)nex

The auxiliary sequence (Xn)nen COAN serve several purposes:

m X, can model an additive perturbation of xn, sy X» = X» + €n.
where we require only ||en|| — 0.

m Modeling inertia: let (an)neny be any bounded sequence in R and
SeT }n = Xn + an(Xn — Xn,] ).
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Choosing the evaluation points (Xp)nex

The auxiliary sequence (Xn)nen COAN serve several purposes:
m X, can model an additive perturbation of xn, sy X» = X» + €n.
where we require only ||en|| — 0.
m Modeling inertia: let (an)neny be any bounded sequence in R and
SeT Xn = Xn + an(Xn — Xp—1 ).
m More generally,

n

(VNEN) Xo=>_ pnjX.
j=0

with 357 5 ny = 1 .and (1 = pnn)Xn — 7" pingx) — 0.

Patrick L. Combettes — 2020-05-25 Back fo Single-Resolvent Iterations



Choosing the evaluation points (Xp)nex

The auxiliary sequence (Xn)nen COAN serve several purposes:

m X, can model an additive perturbation of xn, sy X» = X» + €n.
where we require only ||en|| — 0.

m Modeling inertia: let (an)neny be any bounded sequence in R and
SeT }n = Xn + an(Xn — Xn,] ).

m More generally,

n
(VNEN) Xo=>_ pnjX.
j=0

with 357 5 ny = 1 .and (1 = pnn)Xn — 7" pingx) — 0.
m Nonlinear perturbations can also be considered. For instance, at

iteration n, X, = Projc,Xn is an approximation to x, from some suit-
able closed convex set C, C X.
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Corollary 1

Corollary

Let A: X — 2% be maximally monotone, and let B: X — X be monotone and
B-Lipschitzian, with zer (A+ B) # @. Let Wh: X — X be a-strongly monotone and
x-Lipschitzian, and let yn € [e, (e — €)/p]. let An € [e,2 — €], and let X 5 en — 0.
Furthermore, let m > 0 and let (un ;) nen,0<j<n P€ bounded and satisfy
m Foreveryn > mandevery integerj e [0,n—m— 1], up; = 0.
m foreveryne N, > qun;=1.
Iterate ~
Xn = €n + 3o Hn, X
VF; E Wan = ’}/nBXn
yn = (Wh + A~V
Vi = ' (Vi — Wayn) + Byn
if{yn—xn|y3) <0
Xoy1 = Xn + An(Yn = Xn | V3) . .

n
a2
else Xp 1 = Xn.

Then (Xn)nen converges weakly to a point inzer (A + B).

Proof: M = A+ Band Kn = Wh — ynB. Special case: Tseng’s algorithm.
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Corollary 2: Multivariate inclusions

m Problem: find (X);c; € X, _, &j such that

iel
(Viel) OcAx+> L ((B,- + D) ( > ijxk)) + Cixi
jed kel

m Warping: Apply Theorem 2 to

M: (%)ier (V)jes, (Vi )jes) (X (Aixi + Cix; + Z L/7\G*>,

iel jed
X By +Dy—v), X {YJ‘—ZL/:'X:} )
jed jed iel
and Kh: (X, y, V") —

((v,fn] FinXi— Cixi— Y L v/*) (T2 WinYs = Dy + Vi) e

(—yj VY [-jixi) ):
jeJ

jed iel
iel

where f; , and W, , are strongly monotone and Lipschitzian.
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Corollary 2: Multivariate inclusions

forn=0,1,...
foreveryiel
I'n= F/'.,n;r‘,n - W’f,ncf;r.n — Yi,n Z}eJ L;V[fm
Gin= (Fip+70A) " (Fn+ Y087
07 n =7 (' — FinGlin) + CiGlin
forevery je J
Bin = Win¥in = 75,0D¥in + 7,0 Viin
bin= (Win+708) "1
fin =" ('n = Winbyn) + Dibyn
Gin = Xies LiXin = Vi + Vin =
foreveryic |
| an=00n+ e LiCin
foreveryje J
{ bin=fn—Cin
Cin =1+ bjn — X LiGin
On = Zrel ”G:nHQ + ZjeJ (Hb;nHZ + ”Cfn“2)
On =Y ie/ (Qin = Xin | Ofn) + Xjey ((Brn = Yin | Bfn) +(Cin = Vin | Gin))

if 0n < 0

| pn=Anbn/on
else

L Pn= 0

foreveryie |

| Xi.ns1 = Xin+ pnCip

foreveryje J

{ Yine1 = Yin + pnbfn
Vj).(nﬂ = Vl*n + pnc/*.rw
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Further connections

m Primal-dual splitting.

m Consider the inclusion 0 € Ax + L*(B(Lx)) and the associated
Kuhn-Tucker operator

M: X xY =29 (x,y") = (Ax+ L"y*) x (—Lx+ B~ 'y").

B The cutting plane method of (Alofaibi/PLC/Shahzad, 2014)
and (PLC/Eckstein, 2018) generate points (an, a5) € graA
and (bn, byy) € gra B. This implicitly provides

(vn, ¥n) = ((an, bp), (ap + L"bn, —Lan + bn)) € graM

to construct H, D zer M.
B The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is
therefore an instance of Theorem 2 with

Kn: (X,¥") = (v 'x = Ly*, L + pny™).
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m Primal-dual splitting.
m Consider the inclusion 0 € Ax + L*(B(Lx)) and the associated
Kuhn-Tucker operator
M: X xY =29 (x,y") = (Ax+ L"y*) x (—Lx+ B~ 'y").

B The cutting plane method of (Alofaibi/PLC/Shahzad, 2014)
and (PLC/Eckstein, 2018) generate points (an, a5) € graA
and (bn, byy) € gra B. This implicitly provides

(vn, ¥5) = ((an, bp), (ah + L"b, —Lan + bn)) € graM

to construct H, D zer M.
B The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is
therefore an instance of Theorem 2 with

Kn: (X,¥") = (v 'x = Ly*, L + pny™).

m An alternate cutting plane strategy was independently investi-
gated in (Giselsson, arXiv 2019), where an instance of a warped
resolvent (in our sense) was used.
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b

Warped proximal iterations with Bregman kernels

PART 4:

Warped proximal iterations with
Bregman kernels
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b

Bregman forward-backward splitting

m X a reflexive real Banach space, A: X — 2% and B: X — 2%
maximally monotone, and f € I'y(X') essentially smooth.

m C = (inftdomf) ndomA C infdomB and B is single-valued on
intdom B.

m (Vx e C)(Vy € C)(Vz e Z)(Vy* € Ay)(Vz* € Az)
(y — x,By — Bz) < kDs(X,y) + {y — z,01(y" — Z") 4 62(By — Bz)).
m The objective is to
find x € . = (infdom f) Nzer (A + B) # @.
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b

Bregman forward-backward splitting

m X a reflexive real Banach space, A: X — 2% and B: X — 2%
maximally monotone, and f € I'y(X') essentially smooth.

m C = (inftdomf) ndomA C infdomB and B is single-valued on
intdom B.

(Vx € C)(Vy € C)(Vz € Z)(Vy* € Ay)(Vz* € AZ)
(y — x,By — Bz) < kDs(X,y) + {y — z,01(y" — Z") 4 62(By — Bz)).
The objective is to
find x € . = (infdom f) Nzer (A + B) # @.

Apply the warped proximal point algorithm
Xnt1 = J/\é?xn

to M = A + B with kernel K, = v; 'V, — B for a suitable essentially
smooth function f,.

m We obtain the Bregman forward-backward splitting algorithm

Xni1 = (Vi + 1mA) - (Vfa(Xn) — ¥nBXn).
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Convergence

“Under suitable assumptions,”

Xnp1 = (Va4 'ynA)f] (Via(Xn) — BXn) — x € .7.

m This result provides, for instance, the convergence of the basic
Bregman forward-backward splitting method
(VF+7A) " (VF(X0) — vBXn),

which is new even in Euclidean spaces.

m It also allows us to recover and extend 4, so far unrelated, splitting
frameworks.
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b

Xp1 = (VI + 90A) " (Va(Xn) — 7nBXn): Instantiations

m The iteration X1 = (Vf + %A)_] (Vf(xn)) for finding a zero of Ain
a reflexive Banach space (Bauschke/Borwein/PLC, 2003).

m The iteration X, = (Un + %A)A (UnXxn — ynBxn) for finding a zero of
A+ B in a Hilbert space, where U, is a strongly positive Hermitian
bounded linear operator (PLC/VT, 2014).

m The iteration
Xns1 = (VF+~7A) " (VF(xn) — vBxn)

for finding a zero of A+ B in a Hilbert space, where f is real-valued
and strongly convex (Renaud/Cohen, 1997).

m The iteration
X1 = (Vi +7000) ' (VEa(Xn) = 1 Vip(xn)

for minimizing ¢ + v in a reflexive Banach space (Nguyen, 2017;
see also Bauschke/Bolte/Teboulle, 2017).
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b

lllustration: The minimization setfing

Let ¢ € To(X), ¥ € To(X), and € To(X) be essentially smooth. Set
C = (intdom f) ndom d¢ and .’ = (intdom f) N Argmin(¢ + 9). Suppose
that C # @, ¢ + ¢ is coercive, C C intfdomv, . # @, ¢ is Gateaux
differentiable on intdom v, and Dr > 8D,

Corollary

Take xg € C and set
(VN EN)  Xop1 = (Via+7009) " (Va(Xn) — 1 Vih(Xn)).

Then:
B (Xn)nen cOnverges weakly to a point in ..
B (¢ +9)(xn) = min(p +¥)(X) = o(1/n).
B 3 e N(Dp, (X1, %) + Dy (X0, Xn41)) < +00.

m Weak convergence was obtained in (Nguyen, 2017) under more
restrictive assumptions.

m The rates are new, even in Euclidean spaces.

Patrick L. Combettes — 2020-05-25 Back fo Single-Resolvent Iterations 26/28



References

m BUi/PLC, Warped proximal iterations for monotone inclusions, arXiv,

2019.

m BUi/PLC, Bregman forward-backward operator splitting, arXiv,
2019.

m BUIi/PLC, Multivariate monotone inclusions in saddle form, arXiv,
2020.

m PLC, Monotone operator theory in convex optimization, Math. Pro-
gramming, 2018.

m Bauschke/PLC, Convex Analysis and Monotfone Operator Theory
in Hilbert Spaces, 2nd ed. corrected printing, Springer, 2019.

Patrick L. Combettes — 2020-05-25 Back fo Single-Resolvent Iterations 27/28



Bregman distance

m f € Io(X)isalegendre functionifit is both (Bauschke/Borwein/PLC,
2001):

B Essentially smooth: 9f is both locally bounded and single-
valued on its domain.

B Essentially strictly convex: of* is locally bounded on its do-

main and f is strictly convex on every convex subset of
dom of.

m Take f € (X)), Gateaux differentiable on int dom f # @. The asso-
ciated Bregman distance is

Di: X x X — [0, 4+00]

(%, ) > f(x) — f(y) — (x =y, Vf(y)), ifyeintdomf;
’ +o0, otherwise.
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