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Abstract

A unified fixed point theoretic framework is proposed to investigate the asymptotic behavior
of algorithms for finding solutions to monotone inclusion problems. The basic iterative scheme
under consideration involves nonstationary compositions of perturbed averaged nonexpansive
operators. The analysis covers proximal methods for common zero problems as well as various
splitting methods for finding a zero of the sum of monotone operators.
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1 Introduction

Let H be a real Hilbert space, let A : H → 2H be a maximal monotone operator, and let
JA = (Id +A)−1 denote its resolvent. A basic problem that arises in several branches of applied
mathematics (see for instance [20, 29, 33, 51, 52, 54, 60] and the references therein) is to

Find x ∈ H such that 0 ∈ Ax. (1.1)

In this synthetic formulation, the operator A can often be decomposed as a sum of two or more
maximal monotone operators (Ai)i∈I [2, 26, 33, 38, 43, 48, 53, 55, 56], which leads to problems of
the form

Find x ∈ H such that 0 ∈
∑
i∈I

Aix. (1.2)
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In other applications, the decomposition of A assumes the form of an intersection [11, 18, 31, 32, 50]
and the problem is therefore

Find x ∈ H such that 0 ∈
⋂
i∈I

Aix. (1.3)

There is a vast literature on the topic of solving the above monotone inclusion problems. In the
present paper, we propose a fixed point setting that unifies and extends a large number of approaches
and convergence results. The operators under consideration will be averaged nonexpansive operators.

Definition 1.1 [4] Let α ∈ ]0, 1[. An operator T : domT = H → H is nonexpansive if

(∀(x, y) ∈ H2) ‖Tx− Ty‖ ≤ ‖x− y‖ (1.4)

and α-averaged if T = (1 − α) Id +αR for some nonexpansive operator R : domR = H → H. The
class of α-averaged operators on H is denoted by A(α). In particular, A(1

2) is the class of firmly
nonexpansive operators.

Firmly nonexpansive operators have a very natural connection with the basic problem (1.1).
Indeed, an operator T : domT = H → H is firmly nonexpansive if and only if it is the resolvent
of a maximal monotone operator A : H → 2H, i.e., T = JA (this fact appears implicitly in Minty’s
classical paper [44] and it is stated more explicitly in [15, 26, 43, 45]). On the other hand, it is
an easy matter to see that (1.1) is equivalent to the problem of finding a fixed point of JA. Since
for firmly nonexpansive operators the successive approximation method converges weakly to a fixed
point [14], it can be used to solve (1.1). The weak convergence to a zero of A of the sequence (xn)n∈N
constructed as

xn+1 = Txn where T = JA, (1.5)

was thus established in [41] in the case when A is the subdifferential of a lower semicontinuous convex
function.

Let us now turn to the sum problem (1.2) in the case of two maximal monotone operators
A,B : H → 2H, i.e.,

Find x ∈ H such that 0 ∈ Ax+Bx. (1.6)

An elementary form of this problem is to solve the equation u = Ax+Bx in RN , where A and B are
positive definite matrices. In the 1950s, several implicit decomposition methods have been proposed
to solve this problem in connection with the numerical solution of partial differential equations
[57, 58] and some of them have served as a basis to develop algorithms for solving the monotone
inclusion (1.6). The Douglas-Rachford algorithm [24] for u = Ax+Bx is described by the recursion{

yn+ 1
2
− yn +Ayn+ 1

2
+Byn = u

yn+1 − yn+ 1
2
−Byn +Byn+1 = 0,

(1.7)

the Peaceman-Rachford algorithm [47] by{
yn+ 1

2
− yn +Ayn+ 1

2
+Byn = u

yn+1 − yn+ 1
2

+Ayn+ 1
2

+Byn+1 = u,
(1.8)
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and the fractional steps method [36] by{
yn+ 1

2
− yn +Ayn+ 1

2
= u

yn+1 − yn +Ayn+ 1
2

+Byn+1 = u.
(1.9)

After eliminating the intermediate variable yn+ 1
2

in the Douglas-Rachford algorithm (1.7), we obtain

yn+1 = (Id +B)−1
(
(Id +A)−1(Id−B) +B + u

)
yn = JB

(
JA(Id−B + u) +B

)
yn. (1.10)

In [38], it was observed that with the change of variable xn = (Id +B)yn, the identities JA−AJA =
2JA − Id and JB −BJB = 2JB − Id make it possible to rewrite (1.10) for u = 0 as

xn+1 =
(
JA(JB −BJB) +BJB

)
xn =

(
JA(2JB − Id) + Id−JB

)
xn. (1.11)

It was shown there that, for general maximal monotone operators A and B, the operator JA(2JB −
Id) + Id−JB is firmly nonexpansive and the iteration (1.11) converges weakly to some point x such
that JBx solves (1.6). Let us note that the recursion (1.11) can also be obtained with the same
procedure from the iteration {

yn+ 1
2
− yn +Ayn+ 1

2
+Byn = u

yn+1 − yn +Ayn+ 1
2

+Byn+1 = u,
(1.12)

which was studied in [36, section V-II] for single-valued monotone operators in RN . In the case of
the Peaceman-Rachford algorithm (1.8), proceeding as above, we arrive at the iteration

xn+1 = (Id−A)JA(Id−B)JBxn = (2JA − Id)(2JB − Id)xn, (1.13)

which was investigated in [38] for general maximal monotone operators. Let us add that for the
fractional steps method (1.9), this same procedure leads to what is known as the backward-backward
method, namely

xn+1 = JAJBxn. (1.14)

Another splitting method of interest is the so-called forward-backward algorithm

xn+1 = JA(Id−B)xn, (1.15)

which is also meaningful for the general problem (1.6) as long as B is single-valued. Formally, it
can be obtained by iterating directly the first equation of (1.7), (1.8), or (1.12) with u = 0, xn = yn
and xn+1 = yn+ 1

2
, i.e., xn+1 − xn + Axn+1 + Bxn = 0. Here the words “forward” and “backward”

refer respectively to the standard notions of a forward difference (explicit) step and of a backward
difference (implicit) step in numerical analysis.

Just like the above methods, algorithms for solving the common zero problem (1.3) also draw
their inspiration from classical linear numerical analysis. Consider the simple realization of (1.3)
consisting of solving a linear system of m equation in Rm. The classical Kaczmarz’ algorithm [28]
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iterates xn+1 = P1 · · ·Pmxn, where Pi is the projection operator onto the hyperplane defined by the
ith equation. Replacing Pi by more general nonlinear resolvents, we obtain the iteration [18, 25]

xn+1 = JA1 · · ·JAmxn, (1.16)

which converges weakly to a solution to (1.3) under the provision that such a point exists; the same
is true for the iteration [18, 32, 50]

xn+1 =
1
m

m∑
i=1

JAixn, (1.17)

which is directly inspired by Cimmino’s method [16] for solving systems of linear equations in Rm.

Over the years, the algorithms mentioned above have undergone various improvements to gain
more flexibility, improve convergence patterns, or incorporate numerical errors. For instance, the
basic proximal point algorithm (1.5) has now evolved to [21, 26]

xn+1 = xn + λn(Tnxn + an − xn), where Tn = JγnA. (1.18)

Here λn ∈ ]0,+∞[ is a relaxation parameter, γn ∈ ]0,+∞[, and an ∈ H is an error term that models
the inexact computation of JγnAxn. In [11, 21], a fixed point theoretic framework was developed to
study the asymptotic behavior of iterations of type (1.18). This framework, however, fails to cover
other algorithms such as the nonstationary version of the forward-backward method (1.15) proposed
in [56] (see also [35] for a perturbed model), namely

xn+1 = T1,nT2,nxn, where

{
T1,n = JγnA,

T2,n = Id−γnB.
(1.19)

On the other hand, the fixed point analysis of this algorithm proposed in [34, 35] is not applicable
to some algorithms covered in [11, 21]. In order to study and generalize the above algorithms in a
unified framework, we therefore need to introduce a flexible iteration scheme involving a sufficiently
broad class of operators. The analysis presented in this paper will revolve around the following
algorithm.

Algorithm 1.2 Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn

(
T1,n

(
T2,n

(
· · ·Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

)
+ e2,n

)
+ e1,n − xn

)
, (1.20)

where (Ti,n)1≤i≤m ∈
m
X
i=1

A(αi,n) with (αi,n)1≤i≤m ∈ ]0, 1[m, (ei,n)1≤i≤m ∈ Hm, and λn ∈ ]0, 1].

The remainder of the paper is organized as follows. In section 2, we introduce our notation
and provide preliminary results. Section 3 is devoted to the convergence analysis of Algorithm 1.2.
These results, which are of interest in their own right in constructive fixed point theory, are applied in
subsequent sections to study and generalize a number of monotone inclusion algorithms and establish
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their convergence properties. Section 4 focuses on proximal methods for solving the common zero
problem (1.3) when it is feasible. The Douglas-Rachford and Peaceman-Rachford algorithms for the
sum problem (1.6) are investigated in section 5. In section 6, we study the forward-backward method
for (1.6) and apply it in particular to infeasible common zero problems. Further applications are
discussed in section 7.

2 Preliminary results

2.1 Notation

Throughout N is the set of nonnegative integers and H is a real Hilbert space with scalar product
〈· | ·〉, norm ‖·‖, and distance d. Id denotes the identity operator onH. The expressions xn ⇀ x and
xn → x denote respectively the weak and strong convergence to x of a sequence (xn)n∈N in H, and
W(xn)n∈N its set of weak cluster points. The subdifferential of a proper function f : H → ]−∞,+∞]
is the set-valued operator

∂f : H → 2H : x 7→
{
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)

}
. (2.1)

Γ0(H) denotes the class of proper, lower semicontinuous convex functions from H to ]−∞,+∞]. If
f ∈ Γ0(H), then proxf = J∂f is Moreau’s proximity operator [45]; moreover, the Moreau envelope of
index γ ∈ ]0,+∞[ of f is the function γf : x 7→ miny∈H f(y)+ 1

2γ ‖x−y‖
2. Now let C be a subset ofH.

Then dC is the distance function to C, intC its interior, C its closure, and ιC its indicator function,
which takes the value 0 on C and +∞ on its complement. If C is nonempty, closed, and convex,
then PC is the projector onto C and NC = ∂ιC its normal cone operator. Now let A : H → 2H be a
set-valued operator. The sets domA = {x ∈ H | Ax 6= Ø}, ranA = {u ∈ H | (∃x ∈ H) u ∈ Ax},
and grA = {(x, u) ∈ H2 | u ∈ Ax} are the domain, the range, and the graph of A, respectively. The
inverse A−1 of A is the set-valued operator with graph {(u, x) ∈ H2 | u ∈ Ax}. The resolvent of A
is JA = (Id +A)−1 and its Yosida approximation of index γ ∈ ]0,+∞[ is

γA =
Id−JγA

γ
= (γ Id +A−1)−1. (2.2)

It will also be convenient to introduce the “reflection” operator

RA = 2JA − Id . (2.3)

FixT = {x ∈ H | Tx = x} denotes the set of fixed points of an operator T : H → H. Given operators
(Tk)1≤k≤m fromH toH and a strictly positive integer i, we define (the directed composition product)

m∏
k=i

Tk =

{
TiTi+1 · · ·Tm, if i ≤ m;
Id, otherwise.

(2.4)
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2.2 Averaged nonexpansive operators

In the case of firmly nonexpansive operators, i.e., α = 1
2 in Definition 1.1, the following characteri-

zations go back to [59].

Lemma 2.1 Take T : H → H and α ∈ ]0, 1[. Then the following properties are equivalent.

(i) T ∈ A(α).

(ii) (∀(x, y) ∈ H2) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Id−T )x− (Id−T )y‖2.

(iii) (∀(x, y) ∈ H2) 2(1− α) 〈x− y | Tx− Ty〉 ≥ ‖Tx− Ty‖2 + (1− 2α)‖x− y‖2.

Proof. (i) ⇔ (ii): Set R = (1− 1/α) Id +T/α and fix (x, y) ∈ H2. Then

‖Rx−Ry‖2 =
(

1− 1
α

)
‖x− y‖2 +

1
α
‖Tx− Ty‖2 − 1

α

(
1− 1

α

)
‖(Id−T )x− (Id−T )y‖2. (2.5)

In other words,

α
(
‖x− y‖2 − ‖Rx−Ry‖2

)
= ‖x− y‖2 − ‖Tx− Ty‖2 − 1− α

α
‖(Id−T )x− (Id−T )y‖2. (2.6)

Now observe that (i) ⇔ R is nonexpansive ⇔ the left-hand side of (2.6) is nonnegative ⇔ (ii). (ii)
⇔ (iii): Write ‖(Id−T )x− (Id−T )y‖2 = ‖x− y‖2 + ‖Tx− Ty‖2 − 2 〈x− y | Tx− Ty〉 in (ii).

As we now show, averaged operators are closed under relaxations, convex combinations, and
compositions.

Lemma 2.2 Let (Ti)1≤i≤m be a finite family of operators from H to H, let (ωi)1≤i≤m be real numbers
in ]0, 1] adding up to 1, and let (αi)1≤i≤m be real numbers in ]0, 1[ such that, for every i ∈ {1, . . . ,m},
Ti ∈ A(αi). Then:

(i) (∀i ∈ {1, . . . ,m})(∀λ ∈ ]0, 1/αi[) Id +λ(Ti − Id) ∈ A(λαi).

(ii)
∑m

i=1 ωiTi ∈ A(α), with α = max1≤i≤m αi.

(iii) T1 · · ·Tm ∈ A(α), with
α =

m

m− 1 +
1

max
1≤i≤m

αi

. (2.7)

(iv) If
⋂m
i=1 FixTi 6= Ø, then

⋂m
i=1 FixTi = FixT1 · · ·Tm = Fix

∑m
i=1 ωiTi.
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Proof. (i): Fix i ∈ {1, . . . ,m} and λ ∈ ]0, 1/αi[. Then, Ti = (1−αi) Id +αiRi for some nonexpansive
operator Ri : H → H. Hence Id +λ(Ti−Id) = (1−λαi) Id +λαiRi ∈ A(λαi). (ii): Set T =

∑m
i=1 ωiTi

and fix (x, y) ∈ H2. Since α = max1≤i≤m αi, Lemma 2.1(ii) yields

(∀i ∈ {1, . . . ,m}) ‖Tix− Tiy‖2 +
1− αi
αi
‖(Id−Ti)x− (Id−Ti)y‖2 ≤ ‖x− y‖2. (2.8)

Hence, by convexity of ‖ · ‖2,

‖Tx− Ty‖2 +
1− α
α
‖(Id−T )x− (Id−T )y‖2

=

∥∥∥∥∥
m∑
i=1

ωiTix−
m∑
i=1

ωiTiy

∥∥∥∥∥
2

+
1− α
α

∥∥∥∥∥
m∑
i=1

ωi(Id−Ti)x−
m∑
i=1

ωi(Id−Ti)y

∥∥∥∥∥
2

≤
m∑
i=1

ωi‖Tix− Tiy‖2 +
m∑
i=1

1− αi
αi

ωi‖(Id−Ti)x− (Id−Ti)y‖2

≤ ‖x− y‖2. (2.9)

(iii): Set T = T1 · · ·Tm, (∀i ∈ {1, . . . ,m}) κi = αi/(1 − αi), and κ = max1≤i≤m κi. In addition, fix
(x, y) ∈ H2. Then we derive from the convexity of ‖ · ‖2 and Lemma 2.1(ii) that

‖(Id−T )x− (Id−T )y‖2/m = ‖(x− y)− (Tmx− Tmy) + (Tmx− Tmy)
− (Tm−1Tmx− Tm−1Tmy) + (Tm−1Tmx− Tm−1Tmy)− · · ·
− (T2 · · ·Tmx− T2 · · ·Tmy) + (T2 · · ·Tmx− T2 · · ·Tmy)
− (T1 · · ·Tmx− T1 · · ·Tmy)‖2/m

= ‖(Id−Tm)x− (Id−Tm)y
+ (Id−Tm−1)Tmx− (Id−Tm−1)Tmy + · · ·
+ (Id−T1)T2 · · ·Tmx− (Id−T1)T2 · · ·Tmy‖2/m

≤ ‖(Id−Tm)x− (Id−Tm)y‖2

+ ‖(Id−Tm−1)Tmx− (Id−Tm−1)Tmy‖2 + · · ·
+ ‖(Id−T1)T2 · · ·Tmx− (Id−T1)T2 · · ·Tmy‖2

≤ κm
(
‖x− y‖2 − ‖Tmx− Tmy‖2

)
+ κm−1

(
‖Tmx− Tmy‖2 − ‖Tm−1Tmx− Tm−1Tmy‖2

)
+ · · ·

+ κ1

(
‖T2 · · ·Tmx− T2 · · ·Tmy‖2 − ‖T1 · · ·Tmx− T1 · · ·Tmy‖2

)
≤ κ

(
‖x− y‖2 − ‖Tx− Ty‖2

)
. (2.10)

Consequently, Lemma 2.1 asserts that T ∈ A(α), with α = m/(m + 1/κ). This is precisely the
expression provided in (2.7). (iv): Fix i ∈ {1, . . . ,m}, x ∈ HrFixTi, and y ∈ FixTi. Then it follows
from Lemma 2.1(ii) that ‖Tix− y‖ < ‖x− y‖, i.e., Ti is attracting in the sense of [9, Definition 2.1].
The two identities therefore follow from [9, Proposition 2.10(i)] and [9, Proposition 2.12(i)].

Lemma 2.3 Suppose that B : H → H and β ∈ ]0,+∞[ satisfy βB ∈ A(1
2), and let γ ∈ ]0, 2β[.

Then, Id−γB ∈ A( γ
2β ).
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Proof. Since βB ∈ A(1
2), there exists a nonexpansive operator R : H → H such that B =

(Id +R)/(2β). In turn,

Id−γB =
(

1− γ

2β

)
Id +

γ

2β
(−R) ∈ A

(
γ

2β

)
. (2.11)

2.3 Monotone operators

A set-valued operator A : H → 2H is monotone if

(∀(x, u) ∈ grA)(∀(y, v) ∈ grA) 〈x− y | u− v〉 ≥ 0, (2.12)

and maximal monotone if, furthermore, grA is not properly contained in the graph of any monotone
operator B : H → 2H.

Lemma 2.4 [15, 44] Let T : H → H. Then T ∈ A(1
2) if and only if T = JA for some maximal

monotone operator A : H → 2H.

Lemma 2.5 Let A : H → 2H be a maximal monotone operator and let γ ∈ ]0,+∞[. Then

(i) γ(γA) ∈ A(1
2).

(ii) The set
FixJγA = A−1(0) =

(
γA
)−1(0) (2.13)

is closed and convex.

(iii) grA is sequentially weakly-strongly closed in H×H.

(iv) (∀z ∈ A−1(0))(∀x ∈ H) ‖JAx− x‖2 ≤ 〈z − x | JAx− x〉.

Proof. (i): It follows from Lemma 2.4 that JγA ∈ A(1
2). However, in view of Lemma 2.1(ii),

JγA ∈ A(1
2) ⇔ γ(γA) = Id−JγA ∈ A(1

2). (ii): [3, Proposition 3.5.6.1]. (iii): [3, Proposition 3.5.6.2].
(iv): Fix z ∈ A−1(0), x ∈ H, and set T = JA. Then (2.13) yields z = Tz. Hence, we deduce from
Lemma 2.4 and Lemma 2.1(iii) that ‖Tx − z‖2 ≤ 〈Tx− z | x− z〉. Hence, 〈Tx− z | Tx− x〉 ≤ 0
and, in turn, ‖Tx− x‖2 ≤ 〈z − x | Tx− x〉.

Our analysis will also exploit the following properties, which involve the reflection operators of
(2.3).

Lemma 2.6 Let A,B : H → 2H be two maximal monotone operators, let γ ∈ ]0,+∞[, and set
T = RγARγB. Then
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(i) T is nonexpansive.

(ii) 1
2(T + Id) = JγA(2JγB − Id)− JγB + Id.

(iii) (A+B)−1(0) = JγB(FixT ).

Proof. (i): Lemma 2.4 asserts that JγA and JγB belong to A(1
2). Therefore, RγA and RγB are

nonexpansive and it follows that RγARγB is nonexpansive as the composition of two nonexpansive
operators. (ii): T + Id = 2JγA(2JγB − Id)− (2JγB − Id) + Id = 2

(
JγA(2JγB − Id)− JγB + Id

)
. (iii):

For every y ∈ H

0 ∈ Ay +By ⇔ (∃x ∈ H) y − x ∈ γAy and x− y ∈ γBy
⇔ (∃x ∈ H) 2y − x ∈ (Id +γA)y and y = JγBx

⇔ (∃x ∈ H) y = JγA(RγBx) and y = JγBx

⇔ (∃x ∈ H) x = 2y −RγBx = RγA(RγBx) and y = JγBx

⇔ (∃x ∈ FixT ) y = JγBx

⇔ y ∈ JγB(FixT ). (2.14)

2.4 Quasi-Fejér sequences

The subsequent convergence analyses will be greatly simplified by the following facts.

Lemma 2.7 [49, Lemma 2.2.2] Let (αn)n∈N be a sequence in [0,+∞[, let (βn)n∈N be a summable
sequence in [0,+∞[, and let (εn)n∈N be a summable sequence in [0,+∞[ such that (∀n ∈ N) αn+1 ≤
(1 + βn)αn + εn. Then (αn)n∈N converges.

Lemma 2.8 Let C be a nonempty closed subset of H and let (xn)n∈N be a sequence in H which is
quasi-Fejér monotone with respect to C, i.e., there exists a summable sequence (εn)n∈N in [0,+∞[
such that

(∀x ∈ C)(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖xn − x‖+ εn. (2.15)

Then:

(i) The sequence (xn)n∈N is bounded.

(ii) The sequence (xn)n∈N converges weakly to a point in C if and only if W(xn)n∈N ⊂ C.

(iii) The sequence (xn)n∈N converges strongly to a point in C if and only if lim dC(xn) = 0.

(iv) If intC 6= Ø, then the sequence (xn)n∈N converges strongly to a point in H.

Proof. (i): Lemma 2.7. (ii): [21, Proposition 3.2(i) & Theorem 3.8]. (iii): [21, Theorem 3.11(iv)].
(iv): [21, Proposition 3.10].
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3 Convergence of Algorithm 1.2

Theorem 3.1 Let (xn)n∈N be an arbitrary orbit of Algorithm 1.2. Suppose that

G =
⋂
n∈N

FixT1,n · · ·Tm,n 6= Ø (3.1)

and
(∀i ∈ {1, . . . ,m})

∑
n∈N

λn‖ei,n‖ < +∞. (3.2)

Then:

(i) The sequence (xn)n∈N is quasi-Fejér monotone with respect to G.

(ii) (∀x ∈ G) max
1≤i≤m

∑
n∈N

λn
1− αi,n
αi,n

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

< +∞.

(iii)
∑
n∈N

λn(1− λn)

∥∥∥∥∥
m∏
k=1

Tk,nxn − xn

∥∥∥∥∥
2

< +∞.

Proof. Let n ∈ N and fix x ∈ G. Then we can rewrite (1.20) as

xn+1 = zn + en, (3.3)

where
zn = xn + λn(yn − xn)
yn = T1,n · · ·Tm,nxn

en = λn

(
T1,n

(
T2,n

(
· · ·Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

)
+ e2,n

)
+ e1,n − T1,n · · ·Tm,nxn

)
.

(3.4)
Since x ∈ FixT1,n · · ·Tm,n and the operators (Ti,n)1≤i≤m are nonexpansive, we have

‖xn+1 − x‖ ≤ ‖zn − x‖+ ‖en‖ (3.5)
= ‖(1− λn)(xn − x) + λn(yn − x)‖+ ‖en‖
≤ (1− λn)‖xn − x‖+ λn‖T1,n · · ·Tm,nxn − T1,n · · ·Tm,nx‖+ ‖en‖
≤ ‖xn − x‖+ ‖en‖. (3.6)
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It also follows from the nonexpansivity of the operators (Ti,n)1≤i≤m that

‖en‖/λn ≤ ‖e1,n‖+∥∥∥∥T1,n

(
T2,n

(
· · ·Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

)
+ e2,n

)
− T1,n · · ·Tm,nxn

∥∥∥∥
≤ ‖e1,n‖+∥∥∥∥T2,n

(
T3,n

(
· · ·Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

)
+ e3,n

)
+ e2,n − T2,n · · ·Tm,nxn

∥∥∥∥
≤ ‖e1,n‖+ ‖e2,n‖+∥∥∥∥T3,n

(
T4,n

(
· · ·Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

)
+ e4,n

)
+ e3,n − T3,n · · ·Tm,nxn

∥∥∥∥
≤

m∑
i=1

‖ei,n‖. (3.7)

Accordingly, we deduce from (3.2) that ∑
n∈N
‖en‖ < +∞ (3.8)

and, thereby, that (i) holds.

We now turn to (ii) and (iii). We first observe that (i) and Lemma 2.8(i) imply that

ζ = sup
n∈N
‖xn − x‖ < +∞. (3.9)

On the other hand, it follows from (3.5) and (3.4) that

‖xn+1 − x‖2 ≤ ‖zn − x‖2 + (2‖zn − x‖+ ‖en‖)‖en‖
≤ ‖(1− λn)(xn − x) + λn(yn − x)‖2 + ν‖en‖
= (1− λn)‖xn − x‖2 + λn‖yn − x‖2

−λn(1− λn)‖yn − xn‖2 + ν‖en‖, (3.10)

where ν = 2ζ + supn∈N ‖en‖ < +∞. Next, we derive from Lemma 2.1 that

(∀i ∈ {1, . . . ,m})(∀(u, v) ∈ H2)

‖Ti,nu− Ti,nv‖2 ≤ ‖u− v‖2 −
1− αi,n
αi,n

‖(Id−Ti,n)u− (Id−Ti,n)v‖2. (3.11)

11



Repeated applications of (3.11) yield

‖yn − x‖2 =

∥∥∥∥∥
m∏
k=1

Tk,nxn −
m∏
k=1

Tk,nx

∥∥∥∥∥
2

≤

∥∥∥∥∥
m∏
k=2

Tk,nxn −
m∏
k=2

Tk,nx

∥∥∥∥∥
2

− 1− α1,n

α1,n

∥∥∥∥∥(Id−T1,n)
m∏
k=2

Tk,nxn − (Id−T1,n)
m∏
k=2

Tk,nx

∥∥∥∥∥
2

≤

∥∥∥∥∥
m∏
k=3

Tk,nxn −
m∏
k=3

Tk,nx

∥∥∥∥∥
2

− 1− α2,n

α2,n

∥∥∥∥∥(Id−T2,n)
m∏
k=3

Tk,nxn − (Id−T2,n)
m∏
k=3

Tk,nx

∥∥∥∥∥
2

− 1− α1,n

α1,n

∥∥∥∥∥(Id−T1,n)
m∏
k=2

Tk,nxn − (Id−T1,n)
m∏
k=2

Tk,nx

∥∥∥∥∥
2

≤ ‖xn − x‖2 −
m∑
i=1

1− αi,n
αi,n

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

. (3.12)

Combining (3.10) and (3.12), we obtain

‖xn+1 − x‖2 ≤ ‖xn − x‖2 − λn
m∑
i=1

1− αi,n
αi,n

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

−λn(1− λn)‖yn − xn‖2 + ν‖en‖. (3.13)

Consequently, for every N ∈ N,

N∑
n=0

λn

m∑
i=1

1− αi,n
αi,n

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

+
N∑
n=0

λn(1− λn)‖yn − xn‖2 ≤ ‖x0 − x‖2 − ‖xN+1 − x‖2 + ν

N∑
n=0

‖en‖. (3.14)

In view of (3.8), taking the limit as N → +∞ yields

max
1≤i≤m

∑
n∈N

λn
1− αi,n
αi,n

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

< +∞ (3.15)

and ∑
n∈N

λn(1− λn)

∥∥∥∥∥
m∏
k=1

Tk,nxn − xn

∥∥∥∥∥
2

< +∞. (3.16)
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We have thus proven (ii) and (iii).

If we combine Theorem 3.1 and Lemma 2.8(ii), we obtain our main convergence result.

Theorem 3.2 Suppose that the following conditions are satisfied.

(i) G =
⋂
n∈N FixT1,n · · ·Tm,n 6= Ø.

(ii) For every subsequence (xkn)n∈N of an orbit (xn)n∈N generated by Algorithm 1.2, we have

(∀x ∈ G) max
1≤i≤m

∑
n∈N

λn
1− αi,n
αi,n

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

< +∞

∑
n∈N

λn(1− λn)

∥∥∥∥∥
m∏
k=1

Tk,nxn − xn

∥∥∥∥∥
2

< +∞

xkn ⇀ y

⇒ y ∈ G. (3.17)

(iii) (∀i ∈ {1, . . . ,m})
∑

n∈N λn‖ei,n‖ < +∞.

Then every orbit of Algorithm 1.2 converges weakly to a point in G.

Proof. For every n ∈ N, T1,n · · ·Tm,n is nonexpansive as a composition of nonexpansive operators
and FixT1,n · · ·Tm,n is therefore closed. In turn, G is closed and the claim therefore follows from
Theorem 3.1 and Lemma 2.8(ii).

Likewise, we derive from Theorem 3.1 and Lemma 2.8(iii)–(iv) the following strong convergence
statements.

Theorem 3.3 Suppose that the following conditions are satisfied.

(i) G =
⋂
n∈N FixT1,n · · ·Tm,n 6= Ø.

(ii) For every orbit (xn)n∈N generated by Algorithm 1.2, we have
(∀x ∈ G) max

1≤i≤m

∑
n∈N

λn
1− αi,n
αi,n

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

< +∞

∑
n∈N

λn(1− λn)

∥∥∥∥∥
m∏
k=1

Tk,nxn − xn

∥∥∥∥∥
2

< +∞

⇒ lim dG(xn) = 0. (3.18)
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(iii) (∀i ∈ {1, . . . ,m})
∑

n∈N λn‖ei,n‖ < +∞.

Then every orbit of Algorithm 1.2 converges strongly to a point in G. This is true in particular if
intG 6= Ø and condition (ii) in Theorem 3.2 holds.

Remark 3.4 A special case of interest is when

limλn > 0 and (∀i ∈ {1, . . . ,m}) limαi,n < 1. (3.19)

First of all, in this setting, (ii) in Theorem 3.1 yields

(∀x ∈ G) max
1≤i≤m

∑
n∈N

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

< +∞. (3.20)

Now, fix x ∈ G. Then, recalling that G =
⋂
n∈N Fix

∏m
k=1 Tk,n and invoking the convexity of ‖ · ‖2,

we obtain, for every n ∈ N,∥∥∥∥∥
m∏
k=1

Tk,nxn − xn

∥∥∥∥∥
2

=

∥∥∥∥∥
(

Id−
m∏
k=1

Tk,n

)
xn −

(
Id−

m∏
k=1

Tk,n

)
x

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
i=1

(Id−Ti,n)
m∏

k=i+1

Tk,nxn −
m∑
i=1

(Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

≤ m
m∑
i=1

∥∥∥∥∥(Id−Ti,n)
m∏

k=i+1

Tk,nxn − (Id−Ti,n)
m∏

k=i+1

Tk,nx

∥∥∥∥∥
2

. (3.21)

It therefore follows from (3.20) that (iii) in Theorem 3.1 can be replaced by

∑
n∈N

∥∥∥∥∥
m∏
k=1

Tk,nxn − xn

∥∥∥∥∥
2

< +∞. (3.22)

In turn, (3.17) and (3.18) can be modified accordingly.

4 Common zero problem

We consider the common zero problem (1.3), where (Ai)i∈I is a countable family of maximal mono-
tone operators. Its set of solutions is S =

⋂
i∈I A

−1
i (0).

For clarity, we first restate Algorithm 1.2 and Theorem 3.2 in the case when m = 1.
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Algorithm 4.1 Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn
(
T1,nxn + e1,n − xn

)
, (4.1)

where T1,n ∈ A(α1,n) with α1,n ∈ ]0, 1[, e1,n ∈ H, and λn ∈ ]0, 1].

Theorem 4.2 Suppose that the following conditions are satisfied.

(i) G =
⋂
n∈N FixT1,n 6= Ø.

(ii) For every subsequence (xkn)n∈N of an orbit (xn)n∈N generated by Algorithm 4.1, we have

∑
n∈N

λn
1− α1,n

α1,n
‖T1,nxn − xn‖2 < +∞∑

n∈N
λn(1− λn)‖T1,nxn − xn‖2 < +∞

xkn ⇀ y

⇒ y ∈ G. (4.2)

(iii)
∑

n∈N λn‖e1,n‖ < +∞.

Then every orbit of Algorithm 4.1 converges weakly to a point in G.

Our first application of Theorem 4.2 is the following result on the convergence of a parallel block-
iterative proximal method for solving (1.3).

Corollary 4.3 Suppose that S 6= Ø and that the following conditions are satisfied:

(i) For every n ∈ N, In is a nonempty finite subset of I. Moreover, there exist strictly positive
integers (Mi)i∈I such that (∀(i, n) ∈ I × N) i ∈

⋃n+Mi−1
k=n Ik.

(ii) For every i ∈ I, (γi,n)n∈N is a sequence in ]0,+∞[ such that, for every strictly increasing
sequence (kn)n∈N in N such that i ∈

⋂
n∈N Ikn, infn∈N γi,kn > 0.

(iii) (µn)n∈N lies in ]0, 2[ and 0 < limµn ≤ limµn < 2.

(iv) (∃ δ ∈ ]0, 1[)(∀n ∈ N)


(∀i ∈ In) ωi,n ∈ ]0, 1] ,∑

i∈In ωi,n = 1,

(∃ j ∈ In)

‖Jγj,nAjxn − xn‖ = max
i∈In
‖Jγi,nAixn − xn‖,

ωj,n ≥ δ.

(v)
∑

n∈N ‖
∑

i∈In ωi,nai,n‖ < +∞.
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Take x0 ∈ H and set

(∀n ∈ N) xn+1 = xn + µn

(∑
i∈In

ωi,n
(
Jγi,nAixn + ai,n

)
− xn

)
. (4.3)

Then (xn)n∈N converges weakly to a point in S.

Proof. For every n ∈ N, set

T1,n = Id +µn

(∑
i∈In

ωi,nJγi,nAi − Id

)
, λn = 1, α1,n = µn/2, and e1,n = µn

∑
i∈In

ωi,nai,n. (4.4)

Lemma 2.4 yields (∀i ∈ In) Jγi,nAi ∈ A(1
2). Hence, it follows from (iv) and Lemma 2.2(ii) that∑

i∈In ωi,nJγi,nAi ∈ A(1
2) and, in turn, from Lemma 2.2(i) that T1,n ∈ A(α1,n). Thus, in view of

(4.4), (4.3) is a special case of the recursion (4.1) governing Algorithm 4.1. It now remains to verify
the assumptions of Theorem 4.2. First, since S 6= Ø, it results from Lemma 2.2(iv) and (2.13) that

(∀n ∈ N) FixT1,n = Fix
∑
i∈In

ωi,nJγi,nAi =
⋂
i∈In

FixJγi,nAi =
⋂
i∈In

A−1
i (0). (4.5)

Hence, it follows from (i) that G =
⋂
n∈N FixT1,n =

⋂
i∈I A

−1
i (0) = S 6= Ø, which supplies item (i)

in Theorem 4.2. Next, we derive from (4.4), (iii), and (v) that∑
n∈N

λn‖e1,n‖ =
∑
n∈N
‖e1,n‖ ≤ 2

∑
n∈N

∥∥∥∥∑
i∈In

ωi,nai,n

∥∥∥∥ < +∞, (4.6)

which establishes item (iii) in Theorem 4.2. Finally, fix j ∈ I and suppose that xkn ⇀ y. We have
G = S and

∑
n∈N λn(1− α1,n) ‖T1,nxn − xn‖2 /α1,n =

∑
n∈N(2− µn) ‖T1,nxn − xn‖2 /µn. Hence, in

view of (iii), it suffices to check that T1,nxn − xn → 0 ⇒ 0 ∈ Ajy to verify item (ii) in Theorem 4.2.
So suppose T1,nxn − xn → 0. We first deduce from (4.1) and (4.6) that

‖xn+1 − xn‖ ≤ ‖T1,nxn − xn‖+ ‖e1,n‖ → 0. (4.7)

On the other hand, in view of (i), there exists a sequence (pn)n∈N in N such that

(∀n ∈ N) kn ≤ pn ≤ kn +Mj − 1 < kn+1 ≤ pn+1 and j ∈ Ipn . (4.8)

Now set
(∀n ∈ N) yn = Jγj,pnAjxpn and un =

xpn − yn
γj,pn

. (4.9)

By (4.7), ‖xpn − xkn‖ ≤
∑kn+Mj−2

l=kn
‖xl+1 − xl‖ ≤ (Mj − 1) maxkn≤l≤kn+Mj−2 ‖xl+1 − xl‖ → 0.

Hence, xpn − xkn → 0 and, in turn, xpn ⇀ y. Now fix z ∈ S and set γ = infn∈N γj,pn (> 0 by
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(ii)), ζ = supn∈N ‖z − xn‖ (< +∞ by (3.9)), and ε = limµn/2 (> 0 by (iii)). Then (4.9), (iv),
Lemma 2.5(iv), and the Cauchy-Schwarz inequality imply that, for n large enough,

δγ2‖un‖2 ≤ δ‖yn − xpn‖2

≤ δ max
i∈Ipn

‖Jγi,pnAixpn − xpn‖2

≤
∑
i∈Ipn

ωi,pn‖Jγi,pnAixpn − xpn‖2

≤

〈
z − xpn

∣∣∣∣ ∑
i∈Ipn

ωi,pnJγi,pnAixpn − xpn

〉
≤ ζ‖T1,pnxpn − xpn‖/ε. (4.10)

Altogether, un → 0 and yn − xpn → 0. Therefore yn ⇀ y, while (4.9) gives Ayn 3 un → 0. In view
of Lemma 2.5(iii), we conclude that 0 ∈ Ajy.

Remark 4.4 (Strong convergence) Using Theorem 3.3, we infer immediately that the conver-
gence is strong in Corollary 4.3 if intS 6= Ø. Another sufficient condition is that some operator
Aj in (Ai)i∈I have a boundedly relatively compact domain (the intersection of its closure with any
closed ball is compact). Indeed, we already have xn ⇀ y ∈ S. Now extract a subsequence (xpn)n∈N
such that j ∈

⋂
n∈N Ipn and define (yn)n∈N as in (4.9). It remains to check (3.18) with G = S. As

above, we assume T1,nxn − xn → 0 and obtain yn − xpn → 0 and yn ⇀ y. At the same time, for
every n ∈ N, yn ∈ ranJγj,pnAj = dom(Id +γj,pnAj) ⊂ domAj . Accordingly, yn → y and, in turn,
xpn → y ∈ S, whence lim dS(xn) = 0.

Corollary 4.3 covers and extends several known results. For instance, if ai,n ≡ 0 and each In
reduces to a singleton, then Corollary 4.3 reduces to [11, Corollary 6.1(i)]. On the other hand, when
γi,n ≡ γi and ai,n ≡ 0, we recover the results of [18] and, in particular, those of [32, section 4] if
we further assume ωi,n ≡ ωi and µn ≡ 1. In another direction, if we now take each Ai to be the
normal cone operator to a nonempty closed convex set Si, then the operator Jγi,nAi is the projector
Pi onto Si and Corollary 4.3 and Remark 4.4 capture various convergence results for projection
methods for solving convex feasibility problems, see [9, 19] and the references therein. In particular,
if I = {1, . . . ,m} is a finite index set, we recover the classical results of [27] for the cyclic projection
method

xn+1 = xn + µn
(
Pn (modulo m)+1xn − xn), where ε ≤ µn ≤ 2− ε. (4.11)

Another special case of interest is when a single operator is involved. Then (1.3) reduces to (1.1),
(4.3) reduces to the standard proximal point algorithm (1.18), and Corollary 4.3 reduces to [26,
Theorem 3] and, in particular, to [52, Theorem 1] for λn ≡ 1. In these results, the parameters
(γn)n∈N must be bounded away from zero. An alternative use of Theorem 4.2 leads to the following
corollary, in which this condition is weakened.

Corollary 4.5 Let (γn)n∈N be a sequence in ]0,+∞[ and let (λn)n∈N be a sequence in ]0, 1]. Suppose
that 0 ∈ ranA,

∑
n∈N γ

2
n = +∞, limλn > 0, and

∑
n∈N(1 − λn)γn/γn+1 < +∞. Take x0 ∈ H and

set
(∀n ∈ N) xn+1 = xn + λn

(
JγnAxn − xn). (4.12)
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Then (xn)n∈N converges weakly to a point in A−1(0).

Proof. Let n ∈ N and set yn = JγnAxn and un = (xn − yn)/γn. Then un ∈ Ayn and yn − yn+1 =
γn+1un+1 + yn − xn+1 = γn+1un+1 − (1− λn)γnun. Hence, by monotonicity,

0 ≤ 〈yn − yn+1 | un − un+1〉 /γn+1

= 〈un+1 − βnun | un − un+1〉
= (1 + βn) 〈un+1 | un〉 − ‖un+1‖2 − βn‖un‖2

≤ (1 + βn) 〈un+1 | un〉 − ‖un+1‖2, (4.13)

where βn = (1 − λn)γn/γn+1. Hence, it follows from Cauchy-Schwarz that ‖un+1‖ ≤ (1 + βn)‖un‖
and, in turn, from Lemma 2.7 that (‖un‖)n∈N converges. Now set T1,n = JγnA (hence α1,n = 1

2)
and e1,n = 0. Then (4.12) is a special instance of (4.1) and the claim will follow from Theorem 4.2
by establishing (4.2). To this end, it is enough to suppose that

∑
n∈N ‖yn − xn‖

2 < +∞ and
that xkn ⇀ y, and to show that 0 ∈ Ay. We therefore have

∑
n∈N γ

2
n‖un‖2 < +∞ and, since∑

n∈N γ
2
n = +∞, we obtain lim ‖un‖ = 0. Accordingly, un → 0 since (‖un‖)n∈N converges. Thus

Ayn 3 un → 0 and ykn ⇀ y since yn − xn → 0. Lemma 2.5(iii) then yields 0 ∈ Ay.

In particular, for λn ≡ 1, Corollary 4.5 coincides with [13, Proposition 8].

5 Douglas-Rachford and Peaceman-Rachford splitting

We turn our attention to the sum problem (1.6) for two maximal monotone operators A,B : H → 2H.
The Douglas-Rachford and Peaceman-Rachford algorithms proposed in [38] for solving this problem
are defined by (1.11) and (1.13), respectively. In this section, we shall investigate a more general
form of these algorithms. It will be assumed that the problem is feasible, i.e., 0 ∈ ran(A + B) (in
the case of normal cone operators, the Douglas-Rachford algorithm in the infeasible case is studied
in [12]).

Our convergence result for the Douglas-Rachford algorithm will be derived from Theorem 4.2 via
the following lemma.

Lemma 5.1 Let T : domT = H → H be a nonexpansive operator, let (µn)n∈N be a sequence in
]0, 1[, and let (cn)n∈N be a sequence in H. Suppose that FixT 6= Ø,

∑
n∈N µn(1 − µn) = +∞, and∑

n∈N µn‖cn‖ < +∞. Take x0 ∈ H and set

(∀n ∈ N) xn+1 = xn + µn(Txn + cn − xn). (5.1)

Then (xn)n∈N converges weakly to a point in FixT .

Proof. The recursion (5.1) is a specialization of (4.1) with

(∀n ∈ N) T1,n = Id +µn(T − Id) ∈ A(µn), λn = 1, α1,n = µn, and e1,n = µncn. (5.2)
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It is clear that conditions (i) and (iii) are satisfied in Theorem 4.2. In view of (4.2) and (5.2), to
check (ii) it is enough to verify that for an arbitrary suborbit (xkn)n∈N we have{∑

n∈N µn(1− µn)‖Txn − xn‖2 < +∞
xkn ⇀ y

⇒ Ty = y. (5.3)

To this end, suppose that
∑

n∈N µn(1− µn)‖Txn − xn‖2 < +∞. Since
∑

n∈N µn(1− µn) = +∞, we
get lim ‖Txn − xn‖ = 0. However, it follows from (5.1) that

(∀n ∈ N) ‖Txn+1 − xn+1‖ ≤ ‖Txn+1 − Txn‖+ (1− µn)‖Txn − xn‖+ µn‖cn‖
≤ ‖xn+1 − xn‖+ (1− µn)‖Txn − xn‖+ µn‖cn‖
≤ ‖Txn − xn‖+ 2µn‖cn‖. (5.4)

Since
∑

n∈N µn‖cn‖ < +∞, the sequence (‖Txn − xn‖)n∈N converges and therefore Txn − xn → 0.
If, in addition, xkn ⇀ y, then it follows at once from the demiclosed principle for nonexpansive
operators [14, Lemma 4] that Ty = y.

We now establish results on the asymptotic behavior of a perturbed, relaxed extension of the
Douglas-Rachford algorithm (1.11).

Corollary 5.2 Let γ ∈ ]0,+∞[, let (νn)n∈N be a sequence in ]0, 2[, and let (an)n∈N and (bn)n∈N be
sequences in H. Suppose that 0 ∈ ran(A+B),

∑
n∈N νn(2−νn) = +∞, and

∑
n∈N νn(‖an‖+‖bn‖) <

+∞. Take x0 ∈ H and set

(∀n ∈ N) xn+1 = xn + νn

(
JγA

(
2(JγBxn + bn)− xn

)
+ an − (JγBxn + bn)

)
. (5.5)

Then (xn)n∈N converges weakly to some point x ∈ H and JγBx ∈ (A+B)−1(0).

Proof. Recall the notation (2.3) and set

(∀n ∈ N) µn =
νn
2

and cn = 2an +RγA(RγBxn + 2bn)−RγA(RγBxn), (5.6)

and define T = RγARγB. Then it follows from Lemma 2.6(ii) and straightforward manipulations
that we can rewrite the updating rule in (5.5) as xn+1 = xn + µn

(
Txn + cn − xn

)
. Since RγA is

nonexpansive,∑
n∈N

µn‖cn‖ ≤
∑
n∈N

νn‖an‖+
∑
n∈N

νn‖RγA(RγBxn + 2bn)−RγA(RγBxn)‖/2

≤
∑
n∈N

νn(‖an‖+ ‖bn‖) < +∞. (5.7)

On the other hand,
∑

n∈N µn(1 − µn) =
∑

n∈N νn(2 − νn)/4 = +∞. Moreover, Lemma 2.6(iii) and
the assumption 0 ∈ ran(A + B) imply FixT 6= Ø. It therefore follows from Lemma 2.6(i) and
Lemma 5.1 that (xn)n∈N converges weakly to some point x ∈ FixT . In view of Lemma 2.6(iii), the
proof is complete.
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The above Corollary improves, on the one hand, upon [20, Proposition 12], where the additional
assumptions an ≡ 0 and bn ≡ 0 are made and, on the other hand, upon [26, Theorem 7], where
the additional assumptions 0 < lim νn ≤ lim νn < 2,

∑
n∈N ‖an‖ < +∞, and

∑
n∈N ‖bn‖ < +∞ are

made. The classical Lions and Mercier result [38, Theorem 1] is recovered when νn ≡ 1, an ≡ 0, and
bn ≡ 0.

Let us now consider the Peaceman-Rachford algorithm. In view of (1.13), this algorithm can be
rewritten as

xn+1 = Rxn, where R = RγARγB. (5.8)

Let us note that since R is merely nonexpansive, this iteration does not converge even weakly
in general. We now prove that strong convergence is achieved for a perturbed extension of this
algorithm under a Slater condition.

Corollary 5.3 Let γ ∈ ]0,+∞[ and let (an)n∈N and (bn)n∈N be sequences in H. Suppose that
int(A+B)−1(0) 6= Ø and that

∑
n∈N(‖an‖+ ‖bn‖) < +∞. Take x0 ∈ H and set

(∀n ∈ N) xn+1 = 2
(
JγA

(
2(JγBxn + bn)− xn

)
+ an

)
− 2(JγBxn + bn) + xn. (5.9)

Then (xn)n∈N converges strongly to some point x ∈ H such that JγBx ∈ (A+B)−1(0) and (JγBxn)n∈N
converges strongly to JγBx.

Proof. Set T = RγARγB and define (cn)n∈N as in (5.6). Then it follows from Lemma 2.6(ii) that
(5.9) can be rewritten as (∀n ∈ N) xn+1 = Txn + cn. Now fix y ∈ FixT , which is nonempty
by Lemma 2.6(iii). Then (∀n ∈ N) ‖xn+1 − y‖ ≤ ‖Txn − y‖ + ‖cn‖ ≤ ‖xn − y‖ + ‖cn‖. Hence,
since by nonexpansivity of RγA (5.6) yields

∑
n∈N ‖cn‖ ≤ 2

∑
n∈N(‖an‖+ ‖bn‖) < +∞, (xn)n∈N is a

quasi-Fejér sequence with respect to FixT . Since int FixT 6= Ø, it follows from Lemma 2.8(iv) that
(xn)n∈N converges strongly to some point x ∈ H. Hence, by continuity of T , Txn → Tx and, since
cn → 0, we obtain x← xn+1 = Txn+cn → Tx. In turn, this yields x ∈ FixT and, via Lemma 2.6(iii),
JγBx ∈ (A+B)−1(0). The continuity of JγB allows us to conclude that JγBxn → JγBx.

We conclude this section by observing that the Peaceman-Rachford recursion (5.9) is the limiting
case of the Douglas-Rachford recursion (5.5) as νn → 2.

6 Forward-backward splitting

In this section we revisit the inclusion (1.6) under the following assumption.

Assumption 6.1 A : H → 2H and B : H → H are maximal monotone and βB ∈ A(1
2) for some

β ∈ ]0,+∞[.

This set of assumptions is clearly more demanding on the operator B than those in section 5.
However, it leads to an algorithmic framework in which only one implicit (backward) step is required
at each iteration, as opposed to two in the Douglas-Rachford and Peaceman-Rachford methods.
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6.1 Preliminaries

For convenience, we specialize Algorithm 1.2 and Theorem 3.2 to the case when m = 2 (Theorem 3.3
can be rephrased in a like manner).

Algorithm 6.2 Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn
(
T1,n

(
T2,nxn + e2,n

)
+ e1,n − xn

)
, (6.1)

where T1,n ∈ A(α1,n) and T2,n ∈ A(α2,n), with (α1,n, α2,n) ∈ ]0, 1[2, (e1,n, e2,n) ∈ H2, and λn ∈ ]0, 1].

We now state Theorem 3.2 is the setting described in Remark 3.4.

Theorem 6.3 Suppose that the following conditions are satisfied.

(i) G =
⋂
n∈N Fix

(
T1,nT2,n

)
6= Ø.

(ii) limλn > 0, limα1,n < 1, and limα2,n < 1.

(iii) For every subsequence (xkn)n∈N of an orbit (xn)n∈N generated by Algorithm 6.2, we have

(∀x ∈ G)
∑
n∈N
‖(Id−T1,n)T2,nxn + (Id−T2,n)x‖2 < +∞

(∀x ∈ G)
∑
n∈N
‖(Id−T2,n)xn − (Id−T2,n)x‖2 < +∞∑

n∈N
‖T1,nT2,nxn − xn‖2 < +∞

xkn ⇀ y

⇒ y ∈ G. (6.2)

(iv)
∑

n∈N ‖e1,n‖ < +∞ and
∑

n∈N ‖e2,n‖ < +∞.

Then every orbit of Algorithm 6.2 converges weakly to a point in G.

6.2 Main result

We investigate the following nonstationary form of the forward-backward method (1.15) with relax-
ations and errors.

Algorithm 6.4 Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn

(
JγnA

(
xn − γn(Bxn + bn)

)
+ an − xn

)
, (6.3)

where γn ∈ ]0, 2β[, (an, bn) ∈ H2, and λn ∈ ]0, 1].
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Corollary 6.5 Suppose that Assumption 6.1 is in force and that the following conditions are satis-
fied.

(i) 0 ∈ ran(A+B).

(ii) limλn > 0 and 0 < lim γn ≤ lim γn < 2β.

(iii)
∑

n∈N ‖an‖ < +∞ and
∑

n∈N ‖bn‖ < +∞.

Then every orbit of Algorithm 6.4 converges weakly to a zero of A+B.

Proof. We shall show that this result is a special case of Theorem 6.3. Indeed set

(∀n ∈ N) T1,n = JγnA and T2,n = Id−γnB. (6.4)

Then (T1,n)n∈N lies in A(1
2) by Assumption 6.1 and Lemma 2.4. On the other hand, since βB ∈ A(1

2)
by Assumption 6.1, it follows from Lemma 2.3 that (∀n ∈ N) T2,n ∈ A(γn

2β ). Altogether, Algorithm 6.4
is a special case of Algorithm 6.2 with α1,n = 1/2, α2,n = γn/(2β), e1,n = an, and e2,n = −γnbn.
Furthermore, since B is single-valued,

(∀n ∈ N)(∀x ∈ H) x ∈ (A+B)−1(0) ⇔ x− γnBx ∈ x+ γnAx ⇔ x ∈ FixT1,nT2,n. (6.5)

Hence, G = (A + B)−1(0) and items (i), (ii), and (iv) in Theorem 6.3 are implied by (i)–(iii)
above. It remains to check item (iii) in Theorem 6.3. To this end, let us fix a suborbit (xkn)n∈N of
Algorithm 6.4, x ∈ (A+B)−1(0), and set

(∀n ∈ N) yn = JγnA(xn − γnBxn) and un =
xn − yn
γn

−Bxn. (6.6)

Then, in view of (6.4) and item (ii) above, (6.2) holds if
un → −Bx
Bxn → Bx

yn − xn → 0
xkn ⇀ y

⇒ 0 ∈ Ay +By. (6.7)

To show this implication, note that the above bracketed conditions imply that ykn ⇀ y. In addition,
B is continuous and monotone on H, hence maximal monotone [3, Proposition 3.5.7]. Therefore, by
Lemma 2.5(iii), the conditions xkn ⇀ y and Bxkn → Bx force Bx = By. Thus, we get ykn ⇀ y,
ukn → −By, and, since by (6.6)

(
(ykn , ukn)

)
n∈N lies in grA, Lemma 2.5(iii) yields −By ∈ Ay, i.e.,

0 ∈ Ay +By.

Remark 6.6 (Strong convergence) We have shown that xn ⇀ y for some y ∈ (A + B)−1(0).
Strong convergence conditions can be derived easily from Theorem 3.3. For instance, we obtain at
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once xn → y if int(A+B)−1(0) 6= Ø. To get other conditions, it suffices to check (3.18) or, arguing
as above, simply that 

un → −By
Bxn → By

yn − xn → 0

⇒ lim d(A+B)−1(0)(xn) = 0. (6.8)

Thus, we obtain strong convergence when B is uniformly monotone on bounded sets, i.e., for every
bounded set C ⊂ H there exists a strictly increasing function c : [0,+∞[ → [0,+∞[ with c(0) = 0
such that [60, section 25.3]

(∀(x, z) ∈ C2) 〈x− z | Bx−Bz〉 ≥ ‖x− z‖ · c(‖x− z‖). (6.9)

Indeed, (6.9) and Cauchy-Schwarz yield (∀n ∈ N) ‖Bxn −By‖ ≥ c(‖xn − y‖). Hence Bxn → By ⇒
xn → y. We also get strong convergence when domA is boundedly relatively compact. To see this,
we use the condition yn − xn → 0 and the same argument as in Remark 4.4 since (6.6) implies that
(yn)n∈N lies in domA.

Corollary 6.5 captures and extends several known results that were obtained using different ap-
proaches. The following example is an unrelaxed method that involves a specific model for the errors
associated with the operators A and B in (6.3).

Corollary 6.7 [35, Proposition 3.2] Suppose that Assumption 6.1 is in force. Take x0 ∈ H, ε ∈
]0, β], (cn)n∈N in H, (γn)n∈N in [ε, 2β − ε], and set

(∀n ∈ N) xn+1 = JγnAn

(
xn − γn(B +Bn)xn

)
+ cn, (6.10)

where (An)n∈N is a sequence of maximal monotone operators from H to 2H and (Bn)n∈N is a sequence
of operators from H to H. Suppose further that

(i) 0 ∈ ran(A+B).

(ii) (∀ρ ∈ [0,+∞[)
∑

n∈N sup‖y‖≤ρ ‖JγnAy − JγnAny‖ < +∞.

(iii) (∃ z ∈ H)(∀n ∈ N) Bnz = 0.

(iv) For every n ∈ N, Bn : H → H is Lipschitz-continuous with constant κn ∈ ]0,+∞[.

(v)
∑

n∈N κn < +∞.

(vi)
∑

n∈N ‖cn‖ < +∞.

Then (xn)n∈N converges weakly to a zero of A+B.

23



Proof. The recursion (6.10) is a special case of (6.3), where

(∀n ∈ N)


an = JγnAn

(
xn − γn(B +Bn)xn

)
− JγnA

(
xn − γn(B +Bn)xn

)
+ cn,

bn = Bnxn,

λn = 1.

(6.11)

Therefore, in view of Corollary 6.5, it remains to show that
∑

n∈N ‖an‖ < +∞ and
∑

n∈N ‖bn‖ < +∞.
To this end, let us fix x ∈ (A+B)−1(0). We first observe that (iii) and (iv) yield

(∀n ∈ N) ‖bn‖ ≤ ‖Bnxn −Bnx‖+ ‖Bnx−Bnz‖ ≤ κn
(
‖xn − x‖+ ‖x− z‖

)
. (6.12)

On the other hand, since, for every n ∈ N, the operators JγnAn and T2,n = Id−γnB are nonexpansive
and x ∈ FixJγnAT2,n, we derive from (6.10) and (6.12) that

‖xn+1 − x‖ ≤ ‖JγnAn

(
T2,nxn − γnbn

)
− x‖+ ‖cn‖

≤ ‖JγnAn

(
T2,nxn − γnbn

)
− JγnAn(T2,nx)‖+ ‖JγnAn(T2,nx)− JγnA(T2,nx)‖+ ‖cn‖

≤ ‖T2,nxn − γnbn − T2,nx‖+ ‖JγnAn(T2,nx)− JγnA(T2,nx)‖+ ‖cn‖
≤ ‖xn − x‖+ 2β‖bn‖+ ‖JγnAn(T2,nx)− JγnA(T2,nx)‖+ ‖cn‖
≤ (1 + 2βκn)‖xn − x‖+ εn, (6.13)

where
εn = 2βκn‖x− z‖+ ‖JγnAn(T2,nx)− JγnA(T2,nx)‖+ ‖cn‖. (6.14)

Now let ρ = ‖x‖+ 2β‖Bx‖. Then
sup
n∈N
‖T2,nx‖ ≤ ρ (6.15)

and it follows from (ii), (v), and (vi) that
∑

n∈N εn < +∞. We therefore derive from (6.13), (v),
and Lemma 2.7 that ζ = supn∈N ‖xn − x‖ < +∞ and, in turn, from (6.12) that

∑
n∈N ‖bn‖ < +∞.

Consequently, (6.15) yields

sup
n∈N
‖T2,nxn − γnbn‖ ≤ sup

n∈N
‖T2,nxn − T2,nx‖+ ‖T2,nx‖+ γn‖bn‖

≤ ζ + ρ+ 2β sup
n∈N
‖bn‖ < +∞ (6.16)

and we conclude from (6.11), (ii), and (vi) that∑
n∈N
‖an‖ ≤

∑
n∈N
‖JγnAn

(
T2,nxn − γnbn

)
− JγnA

(
T2,nxn − γnbn

)
‖+

∑
n∈N
‖cn‖ < +∞. (6.17)

Let us note that in the special case when An ≡ A, Bn ≡ 0, and cn = 0 above (i.e., an = bn = 0 and
λn ≡ 1 in Corollary 6.5), we recover [34, Proposition 3.1] and [56, Proposition 1(c)]. If we further
assume that γn ≡ γ, we recover [43, Remarque 3.1], which seems to be the first weak convergence
result of this type for the forward-backward method. The perturbation model (ii) above goes back
to [54].
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Now, take ϕ ∈ Γ0(H) and set A = ∂ϕ. Then JA = proxϕ and (1.6) reduces to the variational
inequality problem [37]

Find x ∈ H such that (∀y ∈ H) 〈x− y | Bx〉+ ϕ(x) ≤ ϕ(y). (6.18)

Moreover, Corollary 6.5 gives conditions for the weak convergence of the iteration

xn+1 = xn + λn

(
proxγnϕ

(
xn − γn(Bxn + bn)

)
+ an − xn

)
(6.19)

to a solution to this problem. Now set ϕ = ιC , where C is a nonempty closed convex subset of H.
Then, (6.18) turns into the classical variational inequality problem

Find x ∈ C such that (∀y ∈ C) 〈x− y | Bx〉 ≤ 0. (6.20)

Furthermore, for λn ≡ 1 and an ≡ 1, (6.19) becomes xn+1 = PC
(
xn − γn(Bxn + bn)

)
. The strong

convergence of this method was established in [6] under conditions akin to some of those discussed
in Remark 6.6. If we further assume that γn ≡ γ and bn ≡ 0, Corollary 6.5 furnishes the weak
convergence of the iteration xn+1 = PC

(
xn−γBxn

)
to a solution to (6.20). This result was obtained

in [42, Theorem 10]. Another special case of interest, is the following result that pertains to the
projected gradient method.

Corollary 6.8 Suppose that C is a closed convex subset of H, that f : H → R is convex and differ-
entiable with a 1/β-Lipschitz-continuous gradient, and that the following conditions are satisfied.

(i) f achieves its infimum on C.

(ii) limλn > 0 and 0 < lim γn ≤ lim γn < 2β.

(iii)
∑

n∈N ‖an‖ < +∞ and
∑

n∈N ‖bn‖ < +∞.

Take x0 ∈ H and set

(∀n ∈ N) xn+1 = xn + λn

(
PC
(
xn − γn(∇f(xn) + bn)

)
+ an − xn

)
. (6.21)

Then (xn)n∈N converges weakly to a minimizer of f on C.

Proof. If follows from the Baillon-Haddad theorem [5, Corollaire 10] that β∇f ∈ A(1
2). Hence the

result is a direct application of Corollary 6.5, where A = NC and B = ∇f .

6.3 Partial Yosida approximation of monotone inclusions

In this section, I = {0, . . . ,m} is a finite index set and (Ai)i∈I is a family of maximal monotone
operators from H to 2H. We apply the framework of section 6.2 to extend certain results on the

25



numerical solution of infeasible convex feasibility problems which arise in particular in signal theory
(see [17, 22] and the references therein).

In section 4 we have examined the common zero problem (1.3) under the premise that it was
feasible, i.e., that its set of solutions

S =
m⋂
i=0

A−1
i (0) (6.22)

was nonempty. In practical situations, however, (1.3) may turn out to be inconsistent. In such
instances, it is natural to approximate it by a more general problem, which exhibits more regularity
properties and is solvable. In this connection, we shall investigate the following extension of (1.3),
which assumes the form of the sum problem (1.2).

Definition 6.9 Fix parameters (ρi)1≤i≤m in ]0,+∞[. The partial Yosida approximation to problem
(1.3) is

Find x ∈ H such that 0 ∈ A0x+
m∑
i=1

ρiAix (6.23)

and its set of solutions is denoted by G, i.e.,

G =
(
A0 +

m∑
i=1

ρiAi

)−1

(0). (6.24)

In this sum reformulation of the common zero problem (1.3), the operators (Ai)1≤i≤m are replaced
by their Yosida approximation (2.2), while A0 is not regularized. In the case when m = 1, this
type of regularization is quite standard, e.g., [39, 43, 46]. Note, however, that the objectives and
methodologies of these papers are different from ours since there (1.3) is assumed to have solutions
and the problem is to approach a particular solution by regularization as ρi → 0.

Problem (6.23) is a special case of (1.6) in which

A = A0 and B =
m∑
i=1

ρiAi =
1
β

(
Id−

m∑
i=1

ωiJρiAi

)
, (6.25)

where
1
β

=
m∑
i=1

1
ρi

and (∀i ∈ {1, . . . ,m}) ωi =
β

ρi
. (6.26)

On the other hand, (6.23) is an extension of (1.3) in the following sense.

Proposition 6.10 Suppose that S 6= Ø. Then G = S.

Proof. Lemma 2.5(i) asserts that the operators
(
ρi( ρiAi)

)
1≤i≤m lie in A(1

2). It therefore follows
from (6.25), (6.26), and Lemma 2.2(ii) that βB =

∑m
i=1 ωiρi(

ρiAi) ∈ A(1
2). Now set T1 = JβA and
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T2 = Id−βB. Then Lemma 2.3 yields T2 ∈ A(1
2) and we derive from (6.22), (2.13), Lemma 2.4,

Lemma 2.2(iv), and (6.25) that

Ø 6= S ⊂
m⋂
i=1

A−1
i (0) =

m⋂
i=1

FixJρiAi = Fix
m∑
i=1

ωiJρiAi = FixT2. (6.27)

Thus, using (6.22), (2.13), Lemma 2.2(iv), (6.5), (6.25), and (6.24), we obtain

Ø 6= S = A−1
0 (0) ∩

m⋂
i=1

A−1
i (0) = FixT1 ∩ FixT2 = FixT1T2 = (A+B)−1(0) = G. (6.28)

In view of (6.25), allowing for an error bi,n in the evaluation of JρiAixn leads to the following
implementation of Algorithm 6.4.

Algorithm 6.11 Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn

(
JβµnA0

(
xn + µn

( m∑
i=1

ωi
(
JρiAixn + bi,n

)
− xn

))
+ an − xn

)
(6.29)

where µn ∈ ]0, 2[, (an, b1,n, . . . , bm,n) ∈ Hm+1, and λn ∈ ]0, 1].

Corollary 6.12 Suppose that the following conditions are satisfied.

(i) G 6= Ø.

(ii) limλn > 0 and 0 < limµn ≤ limµn < 2.

(iii)
∑

n∈N ‖an‖ < +∞ and max1≤i≤m
∑

n∈N ‖bi,n‖ < +∞.

Then every orbit of Algorithm 6.11 converges weakly to a point in G.

Proof. The claim is a consequence of Corollary 6.5 with A and B defined in (6.25)–(6.26) and
(∀n ∈ N) bn = −

∑m
i=1 ωibi,n/β and µn = γn/β.

Remark 6.13 (Backward-backward splitting) Suppose that m = 1 and set λn ≡ 1, µn ≡ 1,
an ≡ 0, and b1,n ≡ 0. Then (6.29) reduces to the backward-backward method (1.14), more specifically
to xn+1 = Jρ1A0Jρ1A1xn. Corollary 6.12 states that this iteration converges weakly to a zero of
A0+ ρ1A1 if such a point exists. In particular, if ϕ and ψ are two functions in Γ0(H) and we set ρ1 = 1,
A0 = ∂ϕ, and A1 = ∂ψ, the backward-backward iterative process becomes xn+1 = proxϕ proxψ xn.
This method was studied in [1] in connection with the problem of minimizing ϕ+ 1ψ.
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As an illustration of the above result, let us consider the problem of solving the convex inequality
system

Find x ∈ C0 such that max
1≤i≤m

fi(x) ≤ 0, (6.30)

where (fi)1≤i≤m is a family of functions in Γ0(H) and C0 is a closed convex set in H playing the
role of a hard constraint. This problem fits the general format (1.3), where A0 = NC0 and, for
every i ∈ {1, . . . ,m}, Ai = ∂ϕi with ϕi = max{0, fi}2. When it has no solution, Problem (6.30) can
therefore be replaced by (6.23) and solved by (6.29), which becomes

xn+1 = xn + λn

(
P0

(
xn + µn

( m∑
i=1

ωi
(

proxρiϕi
xn + bi,n

)
− xn

))
+ an − xn

)
, (6.31)

where P0 is the projector onto C0. In this case, it follows from [45, Proposition 7.d] and elementary
convex calculus that (6.23) can be formulated as the problem of minimizing ϕ =

∑m
i=1

ρiϕi over
C0. In particular, let (fi)1≤i≤m be the indicator functions of nonempty closed convex sets (Ci)1≤i≤m
with projectors (Pi)1≤i≤m. Then (6.30) reduces to the basic convex feasibility problem

Find x ∈
m⋂
i=0

Ci (6.32)

and (6.23) amounts to approximating it by the problem of minimizing ϕ = 1
2

∑m
i=1 d

2
Ci
/ρi over C0.

The recursion (6.31) then assumes the form

xn+1 = xn + λn

(
P0

(
xn + µn

( m∑
i=1

ωi
(
Pixn + bi,n

)
− xn

))
+ an − xn

)
. (6.33)

In this setting Corollary 6.12 extends various convergence results for projection methods. For exam-
ple, the case µn ≡ µ, an ≡ 0, and bi,n ≡ 0 was considered in [22] (in particular in [17] with C0 = H
and in [8, 23] with the additional hypothesis λn ≡ 1).

7 Stationary iteration

The following corollary of Theorem 3.2 involves an iteration process which is stationary in the sense
that the operators involved do not vary with n.

Corollary 7.1 For every i ∈ {1, . . . ,m}, let Ti ∈ A(αi), where αi ∈ ]0, 1[. Fix x0 ∈ H and, for
every n ∈ N, set

xn+1 = xn + λn

(
T1

(
T2

(
· · ·Tm−1(Tmxn + em,n) + em−1,n · · ·

)
+ e2,n

)
+ e1,n − xn

)
, (7.1)

where (ei,n)1≤i≤m ∈ Hm and λn ∈ ]0, 1]. Suppose that the following conditions are satisfied.

(i) FixT1 · · ·Tm 6= Ø.

28



(ii) limλn > 0.

(iii) (∀i ∈ {1, . . . ,m})
∑

n∈N ‖ei,n‖ < +∞.

Then (xn)n∈N converges weakly to a point y in FixT1 · · ·Tm. Moreover,(
T1 · · ·Tmxn, T2 · · ·Tmxn, . . . , Tmxn

)
⇀
(
T1 · · ·Tmy, T2 · · ·Tmy, . . . , Tmy

)
. (7.2)

Proof. Let T = T1 · · ·Tm and let (xkn)n∈N be a subsequence such that xkn ⇀ y for some y ∈ H. In
view of (i)–(iii), Theorem 3.2, and Remark 3.4, it is enough to show that

(∀x ∈ FixT ) max
1≤j≤m

∑
n∈N
‖(Id−Tj)Tj+1 · · ·Tmxn − (Id−Tj)Tj+1 · · ·Tmx‖2 < +∞ (7.3)

implies that y ∈ FixT to establish the first claim. First, we derive from (3.22) that

Txn − xn → 0. (7.4)

Hence, since T is nonexpansive, it follows from the demiclosed principle [14, Lemma 4] that y ∈
FixT . Therefore, we get xn ⇀ y ∈ FixT . Let us now prove the second claim by induction. For
i = 1, (7.4) yields Ti · · ·Tmxn = (Txn − xn) + xn ⇀ y = Ti · · ·Tmy. Now suppose that, for some
i ∈ {1, . . . ,m− 1}, Ti · · ·Tmxn ⇀ Ti · · ·Tmy. Then, since (7.3) yields Ti+1 · · ·Tmxn−Ti · · ·Tmxn →
Ti+1 · · ·Tmy − Ti · · ·Tmy, we conclude that Ti+1 · · ·Tmxn ⇀ Ti+1 · · ·Tmy.

In particular, Corollary 7.1 asserts that if (Ti)1≤i≤m are averaged operators whose composition
has a fixed point, the iterates xn+1 = T1 · · ·Tmxn converge weakly to such a point. This result
can also be deduced from [15] (combine Proposition 1.3, Proposition 1.1, and Corollary 1.3 in that
paper) and, in the special case of firmly nonexpansive operators, it appears in [40, Théorème 5.5.2].
If we take each Ti to be the resolvent of a maximal monotone operator Ai : H → 2H, then Corol-
lary 7.1 provides information on the asymptotic behavior of a relaxed, inexact version of the m-step
backward-backward method (1.16) (see also Remark 6.13) when the inclusion (1.3) is infeasible.

For an alternative interpretation, let us call a cycle an m-tuple (yi)1≤i≤m ∈ Hm such that

ym = Tmy1 and (∀i ∈ {1, . . . ,m− 1}) yi = Tiyi+1, (7.5)

where the notation and assumptions are as in Corollary 7.1. Then Corollary 7.1 states that(
(xn, T2 · · ·Tmxn, T3 · · ·Tmxn, . . . , Tmxn)

)
n∈N converges weakly to a cycle in Hm. In particular,

if each Ti is the projector Pi onto a nonempty closed convex set Si ⊂ H, FixP1 · · ·Pm 6= Ø
(e.g., one of the sets is bounded), λn ≡ 1, and ei,n ≡ 0, we obtain the weak convergence of(
(xn, P2 · · ·Pmxn, P3 · · ·Pmxn, . . . , Pmxn)

)
n∈N to a cycle (yi)1≤i≤m ∈

m
X
i=1
Si. This classical result

was obtained in [27, Theorem 2] (see also [10] for more information on cyclic projection methods for
inconsistent feasibility problems and [7] for the case when FixP1 · · ·Pm = Ø).
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Université de Paris.
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