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CONSTRUCTION OF BEST BREGMAN APPROXIMATIONS IN
REFLEXIVE BANACH SPACES

HEINZ H. BAUSCHKE AND PATRICK L. COMBETTES

Abstract. An iterative method is proposed to construct the Bregman projec-

tion of a point onto a countable intersection of closed convex sets in a reflexive

Banach space.

1. Problem statement

Let (X , ‖ · ‖) be a reflexive real Banach space with dual (X ∗, ‖ · ‖∗) and let
f : X → ]−∞,+∞] be a lower semicontinuous (l.s.c.) convex function which is
Gâteaux differentiable on int dom f 6= Ø and Legendre [1, Def. 5.2], i.e., it satisfies
the following two properties:

(i) ∂f is both locally bounded and single-valued on its domain (essential
smoothness);

(ii) (∂f)−1 is locally bounded on its domain and f is strictly convex on every
convex subset of dom ∂f (essential strict convexity).

The Bregman distance associated with f is

(1.1)

D : X × X → [0,+∞]

(x, y) 7→

{
f(x)− f(y)− 〈x− y,∇f(y)〉 , if y ∈ int dom f ;
+∞, otherwise.

Let x0 be a point in X and (Si)i∈I a countable family of closed and convex subsets
of X such that

(1.2) x0 ∈ int dom f, (int dom f) ∩
⋂
i∈I

Si 6= Ø, and S = dom f ∩
⋂
i∈I

Si.

The goal of this paper is to present a method for finding the best Bregman ap-
proximation (best D-approximation for short) to x0 from S, i.e., for solving the
problem

(1.3) find x ∈ S such that (∀x ∈ S) D(x, x0) ≤ D(x, x0).

It follows from [1, Coro. 7.9] that (1.3) possesses a unique solution, which is called
the D-projection of x0 onto S and is denoted by PSx0. Problem (1.3) is central in
many areas of mathematics and applied sciences. For instance, if X is Hilbertian
and f = ‖ · ‖2/2, (1.3) is a metric best approximation problem [14]; if X = RN and
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f is the negative entropy, then (1.3) is a best Kullback-Leibler approximation (in
particular, maximum entropy) problem [12].

Existing methods for solving (1.3) [4, 7, 8, 11] are based on Dykstra’s algorithm
[6, 14] for the metric best approximation problems in Hilbert spaces. They are
limited to scenarios in which X is a Euclidean space and I is finite, and require
in addition the storage of an auxiliary vector for each set Si at every iteration.
Furthermore, the methods of [4, 7, 11] demand the ability to perform D-projections
onto each Si.

The method presented in this paper extends a fixed point algorithmic framework
proposed in [3] from metric best approximation in Hilbert spaces to Bregman best
approximation in reflexive Banach spaces. An iteration of our method requires
only a step towards one of the sets in (Si)i∈I , followed by the D-projection of x0

onto the intersection of two half-spaces. The step towards the set is implemented
by applying a B-class operator to the current iterate. The main result shows the
strong convergence of this algorithm to the solution of (1.3). The method owes its
flexibility and generality to the large pool of operators available in the B-class.

The remainder of the paper is organized as follows. Section 2 contains prelim-
inary results. A conceptual fixed point method for finding the D-projection onto
a single closed convex set is developed in Section 3; it serves as the core of the
main algorithm for solving (1.3). In Section 4, the main algorithm is developed and
analyzed. Applications to various best D-approximation problems are described in
Section 5.

Throughout, the symbols ⇀ and → stand for weak and strong convergence,
respectively, and W(xn)n∈N denotes the set of weak cluster points of a sequence
(xn)n∈N in X . The domain, graph, range, and fixed point set of a set-valued
operator A are denoted by dom A (with closure domA), grA, ran A, and FixA
(with closure FixA), respectively. The domain of a function g : X → ]−∞,+∞]
is dom g = {x ∈ X | g(x) < +∞}, its lower level set at height η ∈ R is lev≤η g =
{x ∈ X | g(x) ≤ η}, and its subdifferential at x ∈ X is ∂g(x) =

{
x∗ ∈ X ∗ | (∀y ∈

X ) 〈y − x, x∗〉+ g(x) ≤ g(y)
}
.

2. Preliminaries

2.1. D-convergence.

Definition 2.1. A sequence (xn)n∈N in dom f D-converges to y ∈ int dom f if
D(xn, y) → 0, in symbols xn

D→ y.

The following proposition clarifies the relationships between weak, strong, and
D-convergence.

Proposition 2.2. Let x be a point in int dom f and let (xn)n∈N be a sequence in
dom f . Then:

(i) xn → x ⇒ xn
D→ x.

(ii) xn
D→ x ⇔

(
xn ⇀ x and f(xn) → f(x)

)
.

(iii) If dimX < +∞, then xn → x ⇔ xn
D→ x ⇔ xn ⇀ x.

Proof. (i): xn → x implies 〈xn − x,∇f(x)〉 → 0 and, by continuity of f at x,
f(xn) − f(x) → 0. Altogether, xn

D→ x. (ii): Suppose xn
D→ x. It follows from

the essential strict convexity of f that D(·, x) is coercive [1, Lemma 7.3(v)]. Hence
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(xn)n∈N is bounded and, in view of the reflexivity of X , xn ⇀ x will follow from
the identity W(xn)n∈N = {x}. To show this, take y ∈ W(xn)n∈N, say, xkn ⇀ y.
Since f is weak l.s.c., so is D(·, x) and therefore 0 ≤ D(y, x) ≤ lim D(xkn

, x) = 0.
Taking into account the fact that f is essentially strictly convex, we get y = x
[1, Lemma 7.3(vi)]. Therefore xn ⇀ x and, in turn, f(xn) − f(x) = D(xn, x) +
〈xn − x,∇f(x)〉 → 0. The reverse implication is clear. (iii) follows from (i) and (ii)
since xn ⇀ x ⇒ xn → x if dimX < +∞. �

Remark 2.3. It follows from [20, Prop. 2.2] that the implication xn
D→ x ⇒ xn → x

holds when f is totally convex at x, i.e. [9],

(∀t ∈ ]0,+∞[) inf
{
D(u, x) | u ∈ dom f and ‖u− x‖ = t

}
> 0.

Remark 2.4. Let f = ‖ · ‖2/2. If X is Hilbertian, Proposition 2.2(ii) is the well-
known Kadec-Klee property [15]. In general, f is Legendre if and only if X is
strictly convex (rotund) and Gâteaux smooth [1, Lemma 6.2(iii)]. It follows from
Proposition 2.2(ii) that D- and strong convergence coincide in this case if and only
X has the Kadec-Klee property.

The following example shows that X can be endowed with an equivalent norm
||| · ||| so that f = ||| · |||2/2 is Legendre while D- and strong convergence do not
coincide. Moreover, this function f is apparently the first example of a Legendre
function that has full domain but fails to be everywhere totally convex (see [20] for
further information).

Example 2.5 (Vanderwerff [23]). There exists an equivalent norm ||| · ||| on X such
that (X , ||| · |||) is strictly convex, Gâteaux smooth, but fails to have the Kadec-Klee
property.

Proof. It follows from [5, Corollary 1] that there exists a norm ‖ · ‖1,∗ on X ∗

which is equivalent to ‖ · ‖∗, Gâteaux differentiable on X ∗ r {0}, and not Fréchet
differentiable at some x∗0 ∈ X ∗ r {0}. Furthermore, there exists a norm ‖ · ‖2,∗ on
X ∗ which is equivalent to ‖ · ‖∗ and such that (X ∗, ‖ · ‖2,∗) is both strictly convex
and Gâteaux smooth (see [15, Theorem VII.2.7] for a much more general result).
Now set ||| · |||∗ =

(
‖ · ‖1,∗ + ‖ · ‖2,∗

)/(
‖x∗0‖1,∗ + ‖x∗0‖2,∗

)
. Then the norm ||| · |||∗ is

equivalent to ‖·‖∗ on X ∗. Also, (X ∗, |||·|||∗) is strictly convex and Gâteaux smooth.
Now let ||| · ||| be the dual norm of ||| · |||∗ on X ∗∗ = X . Then ||| · ||| is equivalent
to ‖ · ‖ on X and (X , ||| · |||) is both strictly convex and Gâteaux smooth (see, e.g.,
[15, Proposition II.1.6]). However, since ‖ · ‖1,∗ is not Fréchet differentiable at x∗0,
neither is ||| · |||∗. Consequently, since |||x∗0|||∗ = 1, [15, Theorem I.1.4(ii)] implies
the existence of sequences (xn)n∈N and (yn)n∈N in X and of a number ε > 0 such
that

(2.1)

{
〈xn, x∗0〉 → 1,

〈yn, x∗0〉 → 1,
and (∀n ∈ N)

{
|||xn||| = |||yn||| = 1,

|||xn − yn||| ≥ ε.

By reflexivity of X , we further assume that (xn)n∈N and (yn)n∈N converge weakly,
say to x and y, respectively. By weak lower semicontinuity of ||| · |||, (2.1) yields
1 = 〈x, x∗0〉 ≤ |||x||| · |||x∗0|||∗ = |||x||| ≤ lim |||xn||| = 1, whence |||x|||2 = 〈x, x∗0〉 =
|||x∗0|||2∗. Because (X ∗, ||| · |||∗) is Gâteaux smooth, it follows from [25, Theo-
rem 47.19(1)] that J∗x∗0 = {x}, where J∗ denotes the normalized duality map
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of (X ∗, ||| · |||∗). Likewise, J∗x∗0 = {y}, whence y = x. In summary,

(2.2)

{
xn ⇀ x,

yn ⇀ x,
and (∀n ∈ N)

{
|||xn||| = |||yn||| = |||x|||,
|||xn − yn||| ≥ ε.

Thus, if (X , |||| · |||) had the Kadec-Klee property, we would have xn → x and yn →
x, whence xn−yn → 0 in contradiction to the inequality infn∈N |||xn−yn||| ≥ ε. �

2.2. B-class. For every x and u in int dom f , set

H(x, u) =
{
y ∈ X | 〈y − u,∇f(x)−∇f(u)〉 ≤ 0

}
.

Definition 2.6. [2] An operator T : X → 2X belongs to B if ranT ⊂ dom T =
int dom f and (∀(x, u) ∈ grT ) FixT ⊂ H(x, u).

The operators in this class have properties that are crucial to the convergence
analysis of our method. The common types of operators encountered in numerical
methods based on Bregman distances are also found in this class. The following
proposition supplies some examples; it also introduces key notation and definitions.

Proposition 2.7. [2, Section 3] In each of the following cases, the operator T : X →
2X belongs to B.

(i) C is a closed convex subset of X such that C ∩ int dom f 6= Ø. T is
the D-projector onto C, i.e., T = PC , where for every x ∈ int dom f ,
PCx = argminD(C, x) or, equivalently,

(2.3) PCx ∈ int dom f ∩ C and C ⊂ H(x, PCx).

In this case, T is single-valued and FixT = C ∩ int dom f .
(ii) g : X → ]−∞,+∞] is an l.s.c. convex function such that lev≤0 g ∩

int dom f 6= Ø and dom f ⊂ dom g. For every x ∈ int dom f and x∗ ∈
∂g(x), set G(x, x∗) =

{
y ∈ X | 〈x− y, x∗〉 ≥ g(x)

}
. T is the subgradient

D-projector onto lev≤0 g, i.e., for every x ∈ int dom f ,

Tx =
{
PG(x,x∗)x | x∗ ∈ ∂g(x)

}
.

In this case, FixT = lev≤0 g ∩ int dom f .
(iii) A : X → 2X

∗
is a maximal monotone operator such that 0 ∈ ranA and

dom A ⊂ int dom f . T is the D-resolvent of A of index γ ∈ ]0,+∞[, i.e.,
T = (∇f + γA)−1 ◦ ∇f . In this case, T is single-valued and FixT =
A−10 ∩ int dom f .

3. D-projection à la Haugazeau

We develop a conceptual fixed point method for finding the D-projection of
x0 ∈ int dom f onto a closed convex set C ⊂ X in the spirit of a method initially
proposed by Haugazeau for metric projections in Hilbert spaces [18] and further
studied in this context in [3, 13, 16, 19, 22].

Given a triple (x, y, z) in (int dom f)3 such that H(x, y)∩H(y, z)∩int dom f 6= Ø,
the D-projection of x0 onto H(x, y)∩H(y, z) is a well-defined point in int dom f by
[1, Coro. 7.9]. We denote this point by Q(x, y, z).

Algorithm 3.1. At every iteration n ∈ N, select Tn ∈ B, un ∈ Tnxn, and set
xn+1 = Q(x0, xn, un).

Condition 3.2. C ∩ int dom f 6= Ø, C ⊂
⋂

n∈N FixTn, and
⋂

n∈N FixTn 6= Ø.
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Proposition 3.3 (viability). Under Condition 3.2, Algorithm 3.1 generates an
infinite sequence (xn)n∈N in int dom f .

Proof. By assumption, x0 ∈ int dom f . Now suppose that, at some iteration n ∈ N,
xn ∈ int dom f . Since Tn ∈ B, un ∈ int dom f and En = H(x0, xn) ∩H(xn, un) is
well-defined. In view of [1, Coro. 7.9], it suffices to show that En ∩ int dom f 6= Ø
to guarantee that xn+1 = PEn

x0 is a well-defined point in int dom f .
Since by Condition 3.2 C ∩ int dom f 6= Ø, we shall actually show that C ⊂⋂

n∈N En. Because Condition 3.2 holds and (Tn)n∈N lies in B, we have

(3.1) C ⊂
⋂
n∈N

FixTn ⊂
⋂
n∈N

H(xn, un).

Consequently, it remains to show that, for every n ∈ N, C ⊂ H(x0, xn). Let us
proceed by induction. For n = 0, it is clear that C ⊂ H(x0, x0) = X . Furthermore,
for every n ∈ N, it results from (3.1) and (2.3) that

(3.2) C ⊂ H(x0, xn) ⇒ C ⊂ En ⇒ C ⊂ H(x0, PEnx0) = H(x0, xn+1),

which completes the proof. �

Some basic properties of Algorithm 3.1 can now be collected.

Proposition 3.4. Let (xn)n∈N be an arbitrary orbit of Algorithm 3.1 generated
under Condition 3.2. Then:

(i) (∀n ∈ N) D(xn, x0) ≤ D(xn+1, x0) ≤ D(PCx0, x0).
(ii) (xn)n∈N is bounded.
(iii)

(
D(xn, x0)

)
n∈N converges and limD(xn, x0) ≤ D(PCx0, x0).

(iv) (∀n ∈ N) xn ∈ C ⇔ xn = PCx0.
(v) xn

D→ PCx0 ⇔ W(xn)n∈N ⊂ C.
(vi)

∑
n∈N D(xn+1, xn) < +∞.

(vii)
∑

n∈N D(un, xn) < +∞.

Proof. (i): By (2.3), for every n ∈ N, xn is the D-projection of x0 onto H(x0, xn).
Hence, the first inequality follows from the inclusion xn+1 ∈ H(x0, xn) and the sec-
ond from the inclusions PCx0 ∈ C ⊂ H(x0, xn+1) (see (3.2)). (ii): Since D(·, x0) is
coercive by [1, Lemma 7.3(v)], it results from (i) that (xn)n∈N is bounded. (iii) and
(iv) follow from (i). (v): The forward implication follows from Proposition 2.2(ii).
For the reverse implication, assume W(xn)n∈N ⊂ C and fix x ∈ W(xn)n∈N, say
xkn ⇀ x (the existence of x follows from (ii) and the reflexivity of X ). It results
from the weak lower semicontinuity of f and (iii) that

(3.3) D(x, x0) ≤ lim D(xkn , x0) = lim D(xn, x0) ≤ D(PCx0, x0).

Consequently, since x ∈ C, x = PCx0 and, in turn, W(xn)n∈N = {PCx0}. Next,
since (xn)n∈N is bounded, we obtain xn ⇀ PCx0. Since (3.3) yields

(3.4) D(PCx0, x0) ≤ lim D(xn, x0) ≤ D(PCx0, x0),

we have D(xn, x0) → D(PCx0, x0) and, as a result, xn
D→ PCx0. (vi): It follows

easily from (1.1) that, for every u ∈ X and every (y, z) ∈ (int dom f)2,

(3.5) D(u, y) = D(u, z) + D(z, y) + 〈u− z,∇f(z)−∇f(y)〉 .
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For every n ∈ N, this identity and the inclusion xn+1 ∈ H(x0, xn) imply

D(xn+1, x0)−D(xn, x0) = D(xn+1, xn) + 〈xn+1 − xn,∇f(xn)−∇f(x0)〉
≥ D(xn+1, xn).

Hence,
∑

n∈N D(xn+1, xn) ≤ D(PCx0, x0) by (i). (vii): For every n ∈ N, (3.5) and
the inclusion xn+1 ∈ H(xn, un) yield

D(xn+1, xn) = D(xn+1, un) + D(un, xn)− 〈xn+1 − un,∇f(xn)−∇f(un)〉
≥ D(un, xn).

In view of (vi), we conclude
∑

n∈N D(un, xn) < +∞. �

It will be convenient to repackage the main convergence properties of Algo-
rithm 3.1 as follows.

Condition 3.5. For every orbit (xn)n∈N of Algorithm 3.1 one has{∑
n∈N D(xn+1, xn) < +∞∑
n∈N D(un, xn) < +∞

⇒ W(xn)n∈N ⊂ C.

If X is Hilbertian and f = ‖ · ‖2/2, the theorem below is [3, Thm. 4.2(ii)(a)].

Theorem 3.6. Let (xn)n∈N be an arbitrary orbit of Algorithm 3.1 generated under
Conditions 3.2 and 3.5. Then xn

D→ PCx0.

Proof. Apply Proposition 3.4(v)–(vii). �

4. Main result

In order to solve (1.3), we implement Algorithm 3.1 in the following sequential
format (since the B-class is closed under certain averaging operations [2], it is also
possible to devise parallel block-iterative implementations along the lines of those
described in [2] for feasibility problems at the expense of more technical arguments).

Algorithm 4.1. At every iteration n ∈ N, take i(n) ∈ I and Tn ∈ B such that
Si(n) ∩ int dom f ⊂ Fix Tn. Then select un ∈ Tnxn and set xn+1 = Q(x0, xn, un).

Remark 4.2. At iteration n, the selection of un amounts to taking a step towards
Si(n). Indeed, since Tn ∈ B and Si(n) ∩ int dom f ⊂ FixTn, [2, Prop. 3.3] yields

(4.1) (∀y ∈ Si(n)) D(y, un) ≤ D(y, xn).

The update xn+1 = Q(x0, xn, un) is then obtained as the minimizer of f −∇f(x0)
over the intersection of the two half-spaces H(x0, xn) and H(xn, un), which is a
standard convex optimization problem.

Condition 4.3.
(i) The index control mapping i : N → I satisfies

(∀i ∈ I)(∃Mi > 0)(∀n ∈ N) i ∈ {i(n), . . . , i(n + Mi − 1)}.
(ii) For every sequence (yn)n∈N in int dom f and every bounded sequence

(zn)n∈N in int dom f , one has

D(yn, zn) → 0 ⇒ yn − zn → 0.
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Condition 4.4. For every orbit (xn)n∈N of Algorithm 4.1, every strictly increasing
sequence (pn)n∈N in N, and every index i ∈ I, one has

(4.2)


(∀n ∈ N) i = i(pn)
xpn

⇀ x

xn+1 − xn → 0
un − xn → 0

⇒ x ∈ Si.

Remark 4.5. Condition 4.3(i) states that each set Si must be activated at least once
within any Mi consecutive iterations. Condition 4.3(ii) holds when f is uniformly
convex on bounded sets [10, Section 4] (for examples, see [24]). Finally, concrete
examples in which Condition 4.4 holds will be described in Section 5.

Lemma 4.6. [2, Lemma 3.2] Let C1 and C2 be two convex subsets of X such that
C1 is closed and C1 ∩ intC2 6= Ø. Then C1 ∩ intC2 = C1 ∩ C2.

Our main result states that every orbit of Algorithm 4.1 converges strongly to
the solution of (1.3).

Theorem 4.7. Let (xn)n∈N be an arbitrary orbit of Algorithm 4.1 generated under
Conditions 4.3 and 4.4. Then xn → PSx0.

Proof. Since Algorithm 4.1 is a special case of Algorithm 3.1, we shall apply The-
orem 3.6 to C = S. Let us first verify Condition 3.2. Assumption (1.2) gives
(4.3)
(∀n ∈ N) Ø 6= (int dom f)∩

⋂
i∈I

Si = (int dom f)∩S ⊂ (int dom f)∩Si(n) ⊂ FixTn.

Hence
⋂

n∈N Fix Tn 6= Ø. Next, we derive from (1.2), Lemma 4.6, and (4.3) that

(4.4) (∀n ∈ N) S = dom f ∩
⋂
i∈I

Si ⊂ Fix Tn.

Consequently, S ⊂
⋂

n∈N FixTn. Altogether, Condition 3.2 holds.
Next, we verify Condition 3.5. To this end, fix i ∈ I and x ∈ W(xn)n∈N, say

xkn
⇀ x. Because x ∈ dom f , it is sufficient to show

(4.5)

{∑
n∈N D(xn+1, xn) < +∞∑
n∈N D(un, xn) < +∞

⇒ x ∈ Si.

In view Proposition 3.4(ii) and Condition 4.3(ii), it is actually enough to show

(4.6)

{
xn+1 − xn → 0
un − xn → 0

⇒ x ∈ Si.

Let Mi be as in Condition 4.3(i). After passing to a subsequence of (xkn
)n∈N if

necessary, we assume that, for every n ∈ N, kn+1 ≥ kn + Mi. Accordingly, there
exists a subsequence (xpn)n∈N of (xn)n∈N such that

(4.7) (∀n ∈ N) kn ≤ pn ≤ kn + Mi − 1 < kn+1 ≤ pn+1 and i = i(pn).

Furthermore,

(∀n ∈ N) ‖xpn
−xkn

‖ ≤
kn+Mi−2∑

l=kn

‖xl+1−xl‖ ≤ (Mi−1) max
kn≤l≤kn+Mi−2

‖xl+1−xl‖.
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Consequently, if xn+1 − xn → 0, then xpn − xkn → 0 and, in turn, xpn ⇀ x. If, in
addition, un − xn → 0, then Condition 4.4 yields x ∈ Si. Thus, (4.6) holds true.

We can now apply Theorem 3.6 to get D(xn, PSx0) → 0. In turn, Condi-
tion 4.3(ii) yields xn → PSx0. �

5. Applications

The versatility of Algorithm 4.1 is illustrated through its application to three
specific versions of the best D-approximation problem (1.2)–(1.3).

5.1. Best D-approximation via D-projections. For every i ∈ I, let Pi be the
D-projector onto the set Si. By Proposition 2.7(i), Pi is a single-valued operator in
B with Fix Pi = Si ∩ int dom f and we can implement Algorithm 4.1 as

Algorithm 5.1. For every n ∈ N, take i(n) ∈ I and set xn+1 = Q
(
x0, xn, Pi(n)xn

)
.

Corollary 5.2. Let (xn)n∈N be an arbitrary orbit of Algorithm 5.1 generated under
Condition 4.3. Then xn → PSx0.

Proof. In view of Theorem 4.7, it is enough to check that Condition 4.4 is satisfied.
To this end, take i ∈ I and a suborbit (xpn

)n∈N such that i(pn) ≡ i, xpn
⇀ x, and

Pixpn
−xpn

→ 0. Then Si 3 Pixpn
⇀ x and, since Si is weakly closed, x ∈ Si. �

If X is Hilbertian, f = ‖·‖2/2, I = {1, . . . ,m} is finite, and i : n 7→ n(modm)+1,
then Algorithm 5.1 is Haugazeau’s original best approximation method and Corol-
lary 5.2 relapses to [18, Thm. 3-2].

5.2. Best D-approximation from convex inequalities. For every i ∈ I, let
Si = lev≤0 gi, where gi : X → ]−∞,+∞] is an l.s.c. convex function such that
∂gi maps bounded sets to bounded sets and dom f ⊂ dom gi, and let Ri be the
subgradient D-projector onto Si. By Proposition 2.7(ii), Ri ∈ B and Fix Ri =
lev≤0 gi ∩ int dom f (6= Ø by (1.2)), and we can implement Algorithm 4.1 as

Algorithm 5.3. For every n ∈ N, take i(n) ∈ I, un ∈ Rixn, and set xn+1 =
Q

(
x0, xn, un

)
.

Corollary 5.4. Let (xn)n∈N be an arbitrary orbit of Algorithm 5.3 generated under
Condition 4.3. Then xn → PSx0.

Proof. Again, to apply Theorem 4.7, it suffices to check Condition 4.4. Take i ∈ I
and a suborbit (xpn)n∈N such that i(pn) ≡ i, xpn ⇀ x, and upn−xpn → 0. For every
n ∈ N, upn is the D-projection of xn onto Gi(xpn , x∗n) =

{
y ∈ X | 〈xpn − y, x∗n〉 ≥

gi(xpn
)
}

for some x∗n ∈ ∂gi(xpn
). Since ui,pn

∈ Gi(xpn
, x∗n), we have

(5.1) ‖upn
− xpn

‖ ≥ dGi(xpn ,x∗n)(xpn
) =

{
g+

i (xpn
)/‖x∗n‖∗, if x∗n 6= 0;

0, otherwise,

where dGi(xpn ,x∗n) is the metric distance function to Gi(xpn
, x∗n), g+

i = max{0, gi},
and the equality follows from [21, Lemma I.1.2]. Since (xpn)n∈N is bounded by
Proposition 3.4(ii), (x∗n)n∈N is bounded by assumption. Therefore, upn

− xpn
→ 0

implies g+
i (xpn) → 0. However, since g+

i is convex and l.s.c., it is weak l.s.c. and
thus g+

i (x) ≤ lim g+
i (xpn) = 0. We conclude gi(x) ≤ 0, i.e., x ∈ Si. �
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5.3. Best D-approximation from zeros of monotone operators. Suppose
dom f = X and, for every i ∈ I, let Si = A−1

i 0 be the set of zeros of a maximal
monotone operator Ai : X → 2X

∗
. For every γ ∈ ]0,+∞[, Proposition 2.7(iii)

asserts that the D-resolvent (∇f + γAi)−1 ◦ ∇f is a single-valued operator in B

with fixed point set A−1
i 0. Accordingly, we can implement Algorithm 4.1 as

Algorithm 5.5. For every n ∈ N, take i(n) ∈ I, γn ∈ ]0,+∞[, and set xn+1 =
Q

(
x0, xn, (∇f + γnAi(n))−1 ◦ ∇f(xn)

)
.

Remark 5.6. When I is a singleton, Algorithm 5.5 corresponds to the exact version
of the algorithm announced in [17].

Corollary 5.7. Let (xn)n∈N be an arbitrary orbit of Algorithm 5.5 generated under
Condition 4.3. Suppose ∇f is uniformly continuous on bounded subsets of X and,
for every i ∈ I and every strictly increasing sequence (pn)n∈N in N such that i(pn) ≡
i, one has infn∈N γpn

> 0. Then xn → PSx0.

Proof. As before, it is enough to check Condition 4.4. Take i ∈ I and a suborbit
(xpn

)n∈N such that i(pn) ≡ i, xpn
⇀ x, and upn

− xpn
→ 0, where upn

= (∇f +
γpn

Ai)−1 ◦ ∇f(xpn
). Then upn

⇀ x. Now set, for every n ∈ N, u∗n = (∇f(xpn
)−

∇f(upn
))/γpn

. Then
(
(upn

, u∗n)
)
n∈N lies in grAi. On the other hand, u∗n → 0 since

upn
−xpn

→ 0, ∇f is uniformly continuous on int dom f , and infn∈N γpn
> 0. Since

Ai is maximal monotone, grAi is weakly-strongly closed and must therefore contain
(x, 0), i.e., x ∈ Si. �

Remark 5.8. The function f in Corollary 5.7 is assumed to have full domain because,
by [1, Thm. 5.6(v)], every essentially smooth function whose gradient is uniformly
continuous on bounded subsets of the interior of its domain has full domain. If X is
strictly convex and uniformly smooth, then f = ‖ · ‖2/2 satisfies the requirements
of Corollary 5.7: it is Legendre [1, Lemma 6.2(iii)] and ∇f is uniformly continuous
on bounded sets [25, Prop. 47.19(2)(ii)].

Acknowledgement. It is our pleasure to thank Jon Vanderwerff for providing
Example 2.5, which completely settles a question implicit in the original version of
this manuscript.
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